cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rc-ir-raw.c (19221B)


      1// SPDX-License-Identifier: GPL-2.0
      2// rc-ir-raw.c - handle IR pulse/space events
      3//
      4// Copyright (C) 2010 by Mauro Carvalho Chehab
      5
      6#include <linux/export.h>
      7#include <linux/kthread.h>
      8#include <linux/mutex.h>
      9#include <linux/kmod.h>
     10#include <linux/sched.h>
     11#include "rc-core-priv.h"
     12
     13/* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
     14static LIST_HEAD(ir_raw_client_list);
     15
     16/* Used to handle IR raw handler extensions */
     17DEFINE_MUTEX(ir_raw_handler_lock);
     18static LIST_HEAD(ir_raw_handler_list);
     19static atomic64_t available_protocols = ATOMIC64_INIT(0);
     20
     21static int ir_raw_event_thread(void *data)
     22{
     23	struct ir_raw_event ev;
     24	struct ir_raw_handler *handler;
     25	struct ir_raw_event_ctrl *raw = data;
     26	struct rc_dev *dev = raw->dev;
     27
     28	while (1) {
     29		mutex_lock(&ir_raw_handler_lock);
     30		while (kfifo_out(&raw->kfifo, &ev, 1)) {
     31			if (is_timing_event(ev)) {
     32				if (ev.duration == 0)
     33					dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
     34				if (is_timing_event(raw->prev_ev) &&
     35				    !is_transition(&ev, &raw->prev_ev))
     36					dev_warn_once(&dev->dev, "two consecutive events of type %s",
     37						      TO_STR(ev.pulse));
     38			}
     39			list_for_each_entry(handler, &ir_raw_handler_list, list)
     40				if (dev->enabled_protocols &
     41				    handler->protocols || !handler->protocols)
     42					handler->decode(dev, ev);
     43			lirc_raw_event(dev, ev);
     44			raw->prev_ev = ev;
     45		}
     46		mutex_unlock(&ir_raw_handler_lock);
     47
     48		set_current_state(TASK_INTERRUPTIBLE);
     49
     50		if (kthread_should_stop()) {
     51			__set_current_state(TASK_RUNNING);
     52			break;
     53		} else if (!kfifo_is_empty(&raw->kfifo))
     54			set_current_state(TASK_RUNNING);
     55
     56		schedule();
     57	}
     58
     59	return 0;
     60}
     61
     62/**
     63 * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
     64 * @dev:	the struct rc_dev device descriptor
     65 * @ev:		the struct ir_raw_event descriptor of the pulse/space
     66 *
     67 * This routine (which may be called from an interrupt context) stores a
     68 * pulse/space duration for the raw ir decoding state machines. Pulses are
     69 * signalled as positive values and spaces as negative values. A zero value
     70 * will reset the decoding state machines.
     71 */
     72int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
     73{
     74	if (!dev->raw)
     75		return -EINVAL;
     76
     77	dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
     78		ev->duration, TO_STR(ev->pulse));
     79
     80	if (!kfifo_put(&dev->raw->kfifo, *ev)) {
     81		dev_err(&dev->dev, "IR event FIFO is full!\n");
     82		return -ENOSPC;
     83	}
     84
     85	return 0;
     86}
     87EXPORT_SYMBOL_GPL(ir_raw_event_store);
     88
     89/**
     90 * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
     91 * @dev:	the struct rc_dev device descriptor
     92 * @pulse:	true for pulse, false for space
     93 *
     94 * This routine (which may be called from an interrupt context) is used to
     95 * store the beginning of an ir pulse or space (or the start/end of ir
     96 * reception) for the raw ir decoding state machines. This is used by
     97 * hardware which does not provide durations directly but only interrupts
     98 * (or similar events) on state change.
     99 */
    100int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
    101{
    102	ktime_t			now;
    103	struct ir_raw_event	ev = {};
    104
    105	if (!dev->raw)
    106		return -EINVAL;
    107
    108	now = ktime_get();
    109	ev.duration = ktime_to_us(ktime_sub(now, dev->raw->last_event));
    110	ev.pulse = !pulse;
    111
    112	return ir_raw_event_store_with_timeout(dev, &ev);
    113}
    114EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
    115
    116/*
    117 * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
    118 *				       ir decoders, schedule decoding and
    119 *				       timeout
    120 * @dev:	the struct rc_dev device descriptor
    121 * @ev:		the struct ir_raw_event descriptor of the pulse/space
    122 *
    123 * This routine (which may be called from an interrupt context) stores a
    124 * pulse/space duration for the raw ir decoding state machines, schedules
    125 * decoding and generates a timeout.
    126 */
    127int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
    128{
    129	ktime_t		now;
    130	int		rc = 0;
    131
    132	if (!dev->raw)
    133		return -EINVAL;
    134
    135	now = ktime_get();
    136
    137	spin_lock(&dev->raw->edge_spinlock);
    138	rc = ir_raw_event_store(dev, ev);
    139
    140	dev->raw->last_event = now;
    141
    142	/* timer could be set to timeout (125ms by default) */
    143	if (!timer_pending(&dev->raw->edge_handle) ||
    144	    time_after(dev->raw->edge_handle.expires,
    145		       jiffies + msecs_to_jiffies(15))) {
    146		mod_timer(&dev->raw->edge_handle,
    147			  jiffies + msecs_to_jiffies(15));
    148	}
    149	spin_unlock(&dev->raw->edge_spinlock);
    150
    151	return rc;
    152}
    153EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
    154
    155/**
    156 * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
    157 * @dev:	the struct rc_dev device descriptor
    158 * @ev:		the event that has occurred
    159 *
    160 * This routine (which may be called from an interrupt context) works
    161 * in similar manner to ir_raw_event_store_edge.
    162 * This routine is intended for devices with limited internal buffer
    163 * It automerges samples of same type, and handles timeouts. Returns non-zero
    164 * if the event was added, and zero if the event was ignored due to idle
    165 * processing.
    166 */
    167int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
    168{
    169	if (!dev->raw)
    170		return -EINVAL;
    171
    172	/* Ignore spaces in idle mode */
    173	if (dev->idle && !ev->pulse)
    174		return 0;
    175	else if (dev->idle)
    176		ir_raw_event_set_idle(dev, false);
    177
    178	if (!dev->raw->this_ev.duration)
    179		dev->raw->this_ev = *ev;
    180	else if (ev->pulse == dev->raw->this_ev.pulse)
    181		dev->raw->this_ev.duration += ev->duration;
    182	else {
    183		ir_raw_event_store(dev, &dev->raw->this_ev);
    184		dev->raw->this_ev = *ev;
    185	}
    186
    187	/* Enter idle mode if necessary */
    188	if (!ev->pulse && dev->timeout &&
    189	    dev->raw->this_ev.duration >= dev->timeout)
    190		ir_raw_event_set_idle(dev, true);
    191
    192	return 1;
    193}
    194EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
    195
    196/**
    197 * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
    198 * @dev:	the struct rc_dev device descriptor
    199 * @idle:	whether the device is idle or not
    200 */
    201void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
    202{
    203	if (!dev->raw)
    204		return;
    205
    206	dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
    207
    208	if (idle) {
    209		dev->raw->this_ev.timeout = true;
    210		ir_raw_event_store(dev, &dev->raw->this_ev);
    211		dev->raw->this_ev = (struct ir_raw_event) {};
    212	}
    213
    214	if (dev->s_idle)
    215		dev->s_idle(dev, idle);
    216
    217	dev->idle = idle;
    218}
    219EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
    220
    221/**
    222 * ir_raw_event_handle() - schedules the decoding of stored ir data
    223 * @dev:	the struct rc_dev device descriptor
    224 *
    225 * This routine will tell rc-core to start decoding stored ir data.
    226 */
    227void ir_raw_event_handle(struct rc_dev *dev)
    228{
    229	if (!dev->raw || !dev->raw->thread)
    230		return;
    231
    232	wake_up_process(dev->raw->thread);
    233}
    234EXPORT_SYMBOL_GPL(ir_raw_event_handle);
    235
    236/* used internally by the sysfs interface */
    237u64
    238ir_raw_get_allowed_protocols(void)
    239{
    240	return atomic64_read(&available_protocols);
    241}
    242
    243static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
    244{
    245	struct ir_raw_handler *handler;
    246	u32 timeout = 0;
    247
    248	mutex_lock(&ir_raw_handler_lock);
    249	list_for_each_entry(handler, &ir_raw_handler_list, list) {
    250		if (!(dev->enabled_protocols & handler->protocols) &&
    251		    (*rc_proto & handler->protocols) && handler->raw_register)
    252			handler->raw_register(dev);
    253
    254		if ((dev->enabled_protocols & handler->protocols) &&
    255		    !(*rc_proto & handler->protocols) &&
    256		    handler->raw_unregister)
    257			handler->raw_unregister(dev);
    258	}
    259	mutex_unlock(&ir_raw_handler_lock);
    260
    261	if (!dev->max_timeout)
    262		return 0;
    263
    264	mutex_lock(&ir_raw_handler_lock);
    265	list_for_each_entry(handler, &ir_raw_handler_list, list) {
    266		if (handler->protocols & *rc_proto) {
    267			if (timeout < handler->min_timeout)
    268				timeout = handler->min_timeout;
    269		}
    270	}
    271	mutex_unlock(&ir_raw_handler_lock);
    272
    273	if (timeout == 0)
    274		timeout = IR_DEFAULT_TIMEOUT;
    275	else
    276		timeout += MS_TO_US(10);
    277
    278	if (timeout < dev->min_timeout)
    279		timeout = dev->min_timeout;
    280	else if (timeout > dev->max_timeout)
    281		timeout = dev->max_timeout;
    282
    283	if (dev->s_timeout)
    284		dev->s_timeout(dev, timeout);
    285	else
    286		dev->timeout = timeout;
    287
    288	return 0;
    289}
    290
    291static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
    292{
    293	mutex_lock(&dev->lock);
    294	dev->enabled_protocols &= ~protocols;
    295	mutex_unlock(&dev->lock);
    296}
    297
    298/**
    299 * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
    300 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
    301 *		each raw event filled.
    302 * @max:	Maximum number of raw events to fill.
    303 * @timings:	Manchester modulation timings.
    304 * @n:		Number of bits of data.
    305 * @data:	Data bits to encode.
    306 *
    307 * Encodes the @n least significant bits of @data using Manchester (bi-phase)
    308 * modulation with the timing characteristics described by @timings, writing up
    309 * to @max raw IR events using the *@ev pointer.
    310 *
    311 * Returns:	0 on success.
    312 *		-ENOBUFS if there isn't enough space in the array to fit the
    313 *		full encoded data. In this case all @max events will have been
    314 *		written.
    315 */
    316int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
    317			  const struct ir_raw_timings_manchester *timings,
    318			  unsigned int n, u64 data)
    319{
    320	bool need_pulse;
    321	u64 i;
    322	int ret = -ENOBUFS;
    323
    324	i = BIT_ULL(n - 1);
    325
    326	if (timings->leader_pulse) {
    327		if (!max--)
    328			return ret;
    329		init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
    330		if (timings->leader_space) {
    331			if (!max--)
    332				return ret;
    333			init_ir_raw_event_duration(++(*ev), 0,
    334						   timings->leader_space);
    335		}
    336	} else {
    337		/* continue existing signal */
    338		--(*ev);
    339	}
    340	/* from here on *ev will point to the last event rather than the next */
    341
    342	while (n && i > 0) {
    343		need_pulse = !(data & i);
    344		if (timings->invert)
    345			need_pulse = !need_pulse;
    346		if (need_pulse == !!(*ev)->pulse) {
    347			(*ev)->duration += timings->clock;
    348		} else {
    349			if (!max--)
    350				goto nobufs;
    351			init_ir_raw_event_duration(++(*ev), need_pulse,
    352						   timings->clock);
    353		}
    354
    355		if (!max--)
    356			goto nobufs;
    357		init_ir_raw_event_duration(++(*ev), !need_pulse,
    358					   timings->clock);
    359		i >>= 1;
    360	}
    361
    362	if (timings->trailer_space) {
    363		if (!(*ev)->pulse)
    364			(*ev)->duration += timings->trailer_space;
    365		else if (!max--)
    366			goto nobufs;
    367		else
    368			init_ir_raw_event_duration(++(*ev), 0,
    369						   timings->trailer_space);
    370	}
    371
    372	ret = 0;
    373nobufs:
    374	/* point to the next event rather than last event before returning */
    375	++(*ev);
    376	return ret;
    377}
    378EXPORT_SYMBOL(ir_raw_gen_manchester);
    379
    380/**
    381 * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
    382 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
    383 *		each raw event filled.
    384 * @max:	Maximum number of raw events to fill.
    385 * @timings:	Pulse distance modulation timings.
    386 * @n:		Number of bits of data.
    387 * @data:	Data bits to encode.
    388 *
    389 * Encodes the @n least significant bits of @data using pulse-distance
    390 * modulation with the timing characteristics described by @timings, writing up
    391 * to @max raw IR events using the *@ev pointer.
    392 *
    393 * Returns:	0 on success.
    394 *		-ENOBUFS if there isn't enough space in the array to fit the
    395 *		full encoded data. In this case all @max events will have been
    396 *		written.
    397 */
    398int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
    399		  const struct ir_raw_timings_pd *timings,
    400		  unsigned int n, u64 data)
    401{
    402	int i;
    403	int ret;
    404	unsigned int space;
    405
    406	if (timings->header_pulse) {
    407		ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
    408					     timings->header_space);
    409		if (ret)
    410			return ret;
    411	}
    412
    413	if (timings->msb_first) {
    414		for (i = n - 1; i >= 0; --i) {
    415			space = timings->bit_space[(data >> i) & 1];
    416			ret = ir_raw_gen_pulse_space(ev, &max,
    417						     timings->bit_pulse,
    418						     space);
    419			if (ret)
    420				return ret;
    421		}
    422	} else {
    423		for (i = 0; i < n; ++i, data >>= 1) {
    424			space = timings->bit_space[data & 1];
    425			ret = ir_raw_gen_pulse_space(ev, &max,
    426						     timings->bit_pulse,
    427						     space);
    428			if (ret)
    429				return ret;
    430		}
    431	}
    432
    433	ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
    434				     timings->trailer_space);
    435	return ret;
    436}
    437EXPORT_SYMBOL(ir_raw_gen_pd);
    438
    439/**
    440 * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
    441 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
    442 *		each raw event filled.
    443 * @max:	Maximum number of raw events to fill.
    444 * @timings:	Pulse distance modulation timings.
    445 * @n:		Number of bits of data.
    446 * @data:	Data bits to encode.
    447 *
    448 * Encodes the @n least significant bits of @data using space-distance
    449 * modulation with the timing characteristics described by @timings, writing up
    450 * to @max raw IR events using the *@ev pointer.
    451 *
    452 * Returns:	0 on success.
    453 *		-ENOBUFS if there isn't enough space in the array to fit the
    454 *		full encoded data. In this case all @max events will have been
    455 *		written.
    456 */
    457int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
    458		  const struct ir_raw_timings_pl *timings,
    459		  unsigned int n, u64 data)
    460{
    461	int i;
    462	int ret = -ENOBUFS;
    463	unsigned int pulse;
    464
    465	if (!max--)
    466		return ret;
    467
    468	init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
    469
    470	if (timings->msb_first) {
    471		for (i = n - 1; i >= 0; --i) {
    472			if (!max--)
    473				return ret;
    474			init_ir_raw_event_duration((*ev)++, 0,
    475						   timings->bit_space);
    476			if (!max--)
    477				return ret;
    478			pulse = timings->bit_pulse[(data >> i) & 1];
    479			init_ir_raw_event_duration((*ev)++, 1, pulse);
    480		}
    481	} else {
    482		for (i = 0; i < n; ++i, data >>= 1) {
    483			if (!max--)
    484				return ret;
    485			init_ir_raw_event_duration((*ev)++, 0,
    486						   timings->bit_space);
    487			if (!max--)
    488				return ret;
    489			pulse = timings->bit_pulse[data & 1];
    490			init_ir_raw_event_duration((*ev)++, 1, pulse);
    491		}
    492	}
    493
    494	if (!max--)
    495		return ret;
    496
    497	init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
    498
    499	return 0;
    500}
    501EXPORT_SYMBOL(ir_raw_gen_pl);
    502
    503/**
    504 * ir_raw_encode_scancode() - Encode a scancode as raw events
    505 *
    506 * @protocol:		protocol
    507 * @scancode:		scancode filter describing a single scancode
    508 * @events:		array of raw events to write into
    509 * @max:		max number of raw events
    510 *
    511 * Attempts to encode the scancode as raw events.
    512 *
    513 * Returns:	The number of events written.
    514 *		-ENOBUFS if there isn't enough space in the array to fit the
    515 *		encoding. In this case all @max events will have been written.
    516 *		-EINVAL if the scancode is ambiguous or invalid, or if no
    517 *		compatible encoder was found.
    518 */
    519int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
    520			   struct ir_raw_event *events, unsigned int max)
    521{
    522	struct ir_raw_handler *handler;
    523	int ret = -EINVAL;
    524	u64 mask = 1ULL << protocol;
    525
    526	ir_raw_load_modules(&mask);
    527
    528	mutex_lock(&ir_raw_handler_lock);
    529	list_for_each_entry(handler, &ir_raw_handler_list, list) {
    530		if (handler->protocols & mask && handler->encode) {
    531			ret = handler->encode(protocol, scancode, events, max);
    532			if (ret >= 0 || ret == -ENOBUFS)
    533				break;
    534		}
    535	}
    536	mutex_unlock(&ir_raw_handler_lock);
    537
    538	return ret;
    539}
    540EXPORT_SYMBOL(ir_raw_encode_scancode);
    541
    542/**
    543 * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
    544 *
    545 * @t:		timer_list
    546 *
    547 * This callback is armed by ir_raw_event_store_edge(). It does two things:
    548 * first of all, rather than calling ir_raw_event_handle() for each
    549 * edge and waking up the rc thread, 15 ms after the first edge
    550 * ir_raw_event_handle() is called. Secondly, generate a timeout event
    551 * no more IR is received after the rc_dev timeout.
    552 */
    553static void ir_raw_edge_handle(struct timer_list *t)
    554{
    555	struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
    556	struct rc_dev *dev = raw->dev;
    557	unsigned long flags;
    558	ktime_t interval;
    559
    560	spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
    561	interval = ktime_sub(ktime_get(), dev->raw->last_event);
    562	if (ktime_to_us(interval) >= dev->timeout) {
    563		struct ir_raw_event ev = {
    564			.timeout = true,
    565			.duration = ktime_to_us(interval)
    566		};
    567
    568		ir_raw_event_store(dev, &ev);
    569	} else {
    570		mod_timer(&dev->raw->edge_handle,
    571			  jiffies + usecs_to_jiffies(dev->timeout -
    572						     ktime_to_us(interval)));
    573	}
    574	spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
    575
    576	ir_raw_event_handle(dev);
    577}
    578
    579/**
    580 * ir_raw_encode_carrier() - Get carrier used for protocol
    581 *
    582 * @protocol:		protocol
    583 *
    584 * Attempts to find the carrier for the specified protocol
    585 *
    586 * Returns:	The carrier in Hz
    587 *		-EINVAL if the protocol is invalid, or if no
    588 *		compatible encoder was found.
    589 */
    590int ir_raw_encode_carrier(enum rc_proto protocol)
    591{
    592	struct ir_raw_handler *handler;
    593	int ret = -EINVAL;
    594	u64 mask = BIT_ULL(protocol);
    595
    596	mutex_lock(&ir_raw_handler_lock);
    597	list_for_each_entry(handler, &ir_raw_handler_list, list) {
    598		if (handler->protocols & mask && handler->encode) {
    599			ret = handler->carrier;
    600			break;
    601		}
    602	}
    603	mutex_unlock(&ir_raw_handler_lock);
    604
    605	return ret;
    606}
    607EXPORT_SYMBOL(ir_raw_encode_carrier);
    608
    609/*
    610 * Used to (un)register raw event clients
    611 */
    612int ir_raw_event_prepare(struct rc_dev *dev)
    613{
    614	if (!dev)
    615		return -EINVAL;
    616
    617	dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
    618	if (!dev->raw)
    619		return -ENOMEM;
    620
    621	dev->raw->dev = dev;
    622	dev->change_protocol = change_protocol;
    623	dev->idle = true;
    624	spin_lock_init(&dev->raw->edge_spinlock);
    625	timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
    626	INIT_KFIFO(dev->raw->kfifo);
    627
    628	return 0;
    629}
    630
    631int ir_raw_event_register(struct rc_dev *dev)
    632{
    633	struct task_struct *thread;
    634
    635	thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
    636	if (IS_ERR(thread))
    637		return PTR_ERR(thread);
    638
    639	dev->raw->thread = thread;
    640
    641	mutex_lock(&ir_raw_handler_lock);
    642	list_add_tail(&dev->raw->list, &ir_raw_client_list);
    643	mutex_unlock(&ir_raw_handler_lock);
    644
    645	return 0;
    646}
    647
    648void ir_raw_event_free(struct rc_dev *dev)
    649{
    650	if (!dev)
    651		return;
    652
    653	kfree(dev->raw);
    654	dev->raw = NULL;
    655}
    656
    657void ir_raw_event_unregister(struct rc_dev *dev)
    658{
    659	struct ir_raw_handler *handler;
    660
    661	if (!dev || !dev->raw)
    662		return;
    663
    664	kthread_stop(dev->raw->thread);
    665	del_timer_sync(&dev->raw->edge_handle);
    666
    667	mutex_lock(&ir_raw_handler_lock);
    668	list_del(&dev->raw->list);
    669	list_for_each_entry(handler, &ir_raw_handler_list, list)
    670		if (handler->raw_unregister &&
    671		    (handler->protocols & dev->enabled_protocols))
    672			handler->raw_unregister(dev);
    673
    674	lirc_bpf_free(dev);
    675
    676	ir_raw_event_free(dev);
    677
    678	/*
    679	 * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
    680	 * ensure that the raw member is null on unlock; this is how
    681	 * "device gone" is checked.
    682	 */
    683	mutex_unlock(&ir_raw_handler_lock);
    684}
    685
    686/*
    687 * Extension interface - used to register the IR decoders
    688 */
    689
    690int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
    691{
    692	mutex_lock(&ir_raw_handler_lock);
    693	list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
    694	atomic64_or(ir_raw_handler->protocols, &available_protocols);
    695	mutex_unlock(&ir_raw_handler_lock);
    696
    697	return 0;
    698}
    699EXPORT_SYMBOL(ir_raw_handler_register);
    700
    701void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
    702{
    703	struct ir_raw_event_ctrl *raw;
    704	u64 protocols = ir_raw_handler->protocols;
    705
    706	mutex_lock(&ir_raw_handler_lock);
    707	list_del(&ir_raw_handler->list);
    708	list_for_each_entry(raw, &ir_raw_client_list, list) {
    709		if (ir_raw_handler->raw_unregister &&
    710		    (raw->dev->enabled_protocols & protocols))
    711			ir_raw_handler->raw_unregister(raw->dev);
    712		ir_raw_disable_protocols(raw->dev, protocols);
    713	}
    714	atomic64_andnot(protocols, &available_protocols);
    715	mutex_unlock(&ir_raw_handler_lock);
    716}
    717EXPORT_SYMBOL(ir_raw_handler_unregister);