tda18271-common.c (18656B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 tda18271-common.c - driver for the Philips / NXP TDA18271 silicon tuner 4 5 Copyright (C) 2007, 2008 Michael Krufky <mkrufky@linuxtv.org> 6 7*/ 8 9#include "tda18271-priv.h" 10 11static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 12{ 13 struct tda18271_priv *priv = fe->tuner_priv; 14 enum tda18271_i2c_gate gate; 15 int ret = 0; 16 17 switch (priv->gate) { 18 case TDA18271_GATE_DIGITAL: 19 case TDA18271_GATE_ANALOG: 20 gate = priv->gate; 21 break; 22 case TDA18271_GATE_AUTO: 23 default: 24 switch (priv->mode) { 25 case TDA18271_DIGITAL: 26 gate = TDA18271_GATE_DIGITAL; 27 break; 28 case TDA18271_ANALOG: 29 default: 30 gate = TDA18271_GATE_ANALOG; 31 break; 32 } 33 } 34 35 switch (gate) { 36 case TDA18271_GATE_ANALOG: 37 if (fe->ops.analog_ops.i2c_gate_ctrl) 38 ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable); 39 break; 40 case TDA18271_GATE_DIGITAL: 41 if (fe->ops.i2c_gate_ctrl) 42 ret = fe->ops.i2c_gate_ctrl(fe, enable); 43 break; 44 default: 45 ret = -EINVAL; 46 break; 47 } 48 49 return ret; 50}; 51 52/*---------------------------------------------------------------------*/ 53 54static void tda18271_dump_regs(struct dvb_frontend *fe, int extended) 55{ 56 struct tda18271_priv *priv = fe->tuner_priv; 57 unsigned char *regs = priv->tda18271_regs; 58 59 tda_reg("=== TDA18271 REG DUMP ===\n"); 60 tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]); 61 tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]); 62 tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]); 63 tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]); 64 tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]); 65 tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]); 66 tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]); 67 tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]); 68 tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]); 69 tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]); 70 tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]); 71 tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]); 72 tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]); 73 tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]); 74 tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]); 75 tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]); 76 77 /* only dump extended regs if DBG_ADV is set */ 78 if (!(tda18271_debug & DBG_ADV)) 79 return; 80 81 /* W indicates write-only registers. 82 * Register dump for write-only registers shows last value written. */ 83 84 tda_reg("EXTENDED_BYTE_1 = 0x%02x\n", 0xff & regs[R_EB1]); 85 tda_reg("EXTENDED_BYTE_2 = 0x%02x\n", 0xff & regs[R_EB2]); 86 tda_reg("EXTENDED_BYTE_3 = 0x%02x\n", 0xff & regs[R_EB3]); 87 tda_reg("EXTENDED_BYTE_4 = 0x%02x\n", 0xff & regs[R_EB4]); 88 tda_reg("EXTENDED_BYTE_5 = 0x%02x\n", 0xff & regs[R_EB5]); 89 tda_reg("EXTENDED_BYTE_6 = 0x%02x\n", 0xff & regs[R_EB6]); 90 tda_reg("EXTENDED_BYTE_7 = 0x%02x\n", 0xff & regs[R_EB7]); 91 tda_reg("EXTENDED_BYTE_8 = 0x%02x\n", 0xff & regs[R_EB8]); 92 tda_reg("EXTENDED_BYTE_9 W = 0x%02x\n", 0xff & regs[R_EB9]); 93 tda_reg("EXTENDED_BYTE_10 = 0x%02x\n", 0xff & regs[R_EB10]); 94 tda_reg("EXTENDED_BYTE_11 = 0x%02x\n", 0xff & regs[R_EB11]); 95 tda_reg("EXTENDED_BYTE_12 = 0x%02x\n", 0xff & regs[R_EB12]); 96 tda_reg("EXTENDED_BYTE_13 = 0x%02x\n", 0xff & regs[R_EB13]); 97 tda_reg("EXTENDED_BYTE_14 = 0x%02x\n", 0xff & regs[R_EB14]); 98 tda_reg("EXTENDED_BYTE_15 = 0x%02x\n", 0xff & regs[R_EB15]); 99 tda_reg("EXTENDED_BYTE_16 W = 0x%02x\n", 0xff & regs[R_EB16]); 100 tda_reg("EXTENDED_BYTE_17 W = 0x%02x\n", 0xff & regs[R_EB17]); 101 tda_reg("EXTENDED_BYTE_18 = 0x%02x\n", 0xff & regs[R_EB18]); 102 tda_reg("EXTENDED_BYTE_19 W = 0x%02x\n", 0xff & regs[R_EB19]); 103 tda_reg("EXTENDED_BYTE_20 W = 0x%02x\n", 0xff & regs[R_EB20]); 104 tda_reg("EXTENDED_BYTE_21 = 0x%02x\n", 0xff & regs[R_EB21]); 105 tda_reg("EXTENDED_BYTE_22 = 0x%02x\n", 0xff & regs[R_EB22]); 106 tda_reg("EXTENDED_BYTE_23 = 0x%02x\n", 0xff & regs[R_EB23]); 107} 108 109int tda18271_read_regs(struct dvb_frontend *fe) 110{ 111 struct tda18271_priv *priv = fe->tuner_priv; 112 unsigned char *regs = priv->tda18271_regs; 113 unsigned char buf = 0x00; 114 int ret; 115 struct i2c_msg msg[] = { 116 { .addr = priv->i2c_props.addr, .flags = 0, 117 .buf = &buf, .len = 1 }, 118 { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, 119 .buf = regs, .len = 16 } 120 }; 121 122 tda18271_i2c_gate_ctrl(fe, 1); 123 124 /* read all registers */ 125 ret = i2c_transfer(priv->i2c_props.adap, msg, 2); 126 127 tda18271_i2c_gate_ctrl(fe, 0); 128 129 if (ret != 2) 130 tda_err("ERROR: i2c_transfer returned: %d\n", ret); 131 132 if (tda18271_debug & DBG_REG) 133 tda18271_dump_regs(fe, 0); 134 135 return (ret == 2 ? 0 : ret); 136} 137 138int tda18271_read_extended(struct dvb_frontend *fe) 139{ 140 struct tda18271_priv *priv = fe->tuner_priv; 141 unsigned char *regs = priv->tda18271_regs; 142 unsigned char regdump[TDA18271_NUM_REGS]; 143 unsigned char buf = 0x00; 144 int ret, i; 145 struct i2c_msg msg[] = { 146 { .addr = priv->i2c_props.addr, .flags = 0, 147 .buf = &buf, .len = 1 }, 148 { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, 149 .buf = regdump, .len = TDA18271_NUM_REGS } 150 }; 151 152 tda18271_i2c_gate_ctrl(fe, 1); 153 154 /* read all registers */ 155 ret = i2c_transfer(priv->i2c_props.adap, msg, 2); 156 157 tda18271_i2c_gate_ctrl(fe, 0); 158 159 if (ret != 2) 160 tda_err("ERROR: i2c_transfer returned: %d\n", ret); 161 162 for (i = 0; i < TDA18271_NUM_REGS; i++) { 163 /* don't update write-only registers */ 164 if ((i != R_EB9) && 165 (i != R_EB16) && 166 (i != R_EB17) && 167 (i != R_EB19) && 168 (i != R_EB20)) 169 regs[i] = regdump[i]; 170 } 171 172 if (tda18271_debug & DBG_REG) 173 tda18271_dump_regs(fe, 1); 174 175 return (ret == 2 ? 0 : ret); 176} 177 178static int __tda18271_write_regs(struct dvb_frontend *fe, int idx, int len, 179 bool lock_i2c) 180{ 181 struct tda18271_priv *priv = fe->tuner_priv; 182 unsigned char *regs = priv->tda18271_regs; 183 unsigned char buf[TDA18271_NUM_REGS + 1]; 184 struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0, 185 .buf = buf }; 186 int i, ret = 1, max; 187 188 BUG_ON((len == 0) || (idx + len > sizeof(buf))); 189 190 switch (priv->small_i2c) { 191 case TDA18271_03_BYTE_CHUNK_INIT: 192 max = 3; 193 break; 194 case TDA18271_08_BYTE_CHUNK_INIT: 195 max = 8; 196 break; 197 case TDA18271_16_BYTE_CHUNK_INIT: 198 max = 16; 199 break; 200 case TDA18271_39_BYTE_CHUNK_INIT: 201 default: 202 max = 39; 203 } 204 205 206 /* 207 * If lock_i2c is true, it will take the I2C bus for tda18271 private 208 * usage during the entire write ops, as otherwise, bad things could 209 * happen. 210 * During device init, several write operations will happen. So, 211 * tda18271_init_regs controls the I2C lock directly, 212 * disabling lock_i2c here. 213 */ 214 if (lock_i2c) { 215 tda18271_i2c_gate_ctrl(fe, 1); 216 i2c_lock_bus(priv->i2c_props.adap, I2C_LOCK_SEGMENT); 217 } 218 while (len) { 219 if (max > len) 220 max = len; 221 222 buf[0] = idx; 223 for (i = 1; i <= max; i++) 224 buf[i] = regs[idx - 1 + i]; 225 226 msg.len = max + 1; 227 228 /* write registers */ 229 ret = __i2c_transfer(priv->i2c_props.adap, &msg, 1); 230 if (ret != 1) 231 break; 232 233 idx += max; 234 len -= max; 235 } 236 if (lock_i2c) { 237 i2c_unlock_bus(priv->i2c_props.adap, I2C_LOCK_SEGMENT); 238 tda18271_i2c_gate_ctrl(fe, 0); 239 } 240 241 if (ret != 1) 242 tda_err("ERROR: idx = 0x%x, len = %d, i2c_transfer returned: %d\n", 243 idx, max, ret); 244 245 return (ret == 1 ? 0 : ret); 246} 247 248int tda18271_write_regs(struct dvb_frontend *fe, int idx, int len) 249{ 250 return __tda18271_write_regs(fe, idx, len, true); 251} 252 253/*---------------------------------------------------------------------*/ 254 255static int __tda18271_charge_pump_source(struct dvb_frontend *fe, 256 enum tda18271_pll pll, int force, 257 bool lock_i2c) 258{ 259 struct tda18271_priv *priv = fe->tuner_priv; 260 unsigned char *regs = priv->tda18271_regs; 261 262 int r_cp = (pll == TDA18271_CAL_PLL) ? R_EB7 : R_EB4; 263 264 regs[r_cp] &= ~0x20; 265 regs[r_cp] |= ((force & 1) << 5); 266 267 return __tda18271_write_regs(fe, r_cp, 1, lock_i2c); 268} 269 270int tda18271_charge_pump_source(struct dvb_frontend *fe, 271 enum tda18271_pll pll, int force) 272{ 273 return __tda18271_charge_pump_source(fe, pll, force, true); 274} 275 276 277int tda18271_init_regs(struct dvb_frontend *fe) 278{ 279 struct tda18271_priv *priv = fe->tuner_priv; 280 unsigned char *regs = priv->tda18271_regs; 281 282 tda_dbg("initializing registers for device @ %d-%04x\n", 283 i2c_adapter_id(priv->i2c_props.adap), 284 priv->i2c_props.addr); 285 286 /* 287 * Don't let any other I2C transfer to happen at adapter during init, 288 * as those could cause bad things 289 */ 290 tda18271_i2c_gate_ctrl(fe, 1); 291 i2c_lock_bus(priv->i2c_props.adap, I2C_LOCK_SEGMENT); 292 293 /* initialize registers */ 294 switch (priv->id) { 295 case TDA18271HDC1: 296 regs[R_ID] = 0x83; 297 break; 298 case TDA18271HDC2: 299 regs[R_ID] = 0x84; 300 break; 301 } 302 303 regs[R_TM] = 0x08; 304 regs[R_PL] = 0x80; 305 regs[R_EP1] = 0xc6; 306 regs[R_EP2] = 0xdf; 307 regs[R_EP3] = 0x16; 308 regs[R_EP4] = 0x60; 309 regs[R_EP5] = 0x80; 310 regs[R_CPD] = 0x80; 311 regs[R_CD1] = 0x00; 312 regs[R_CD2] = 0x00; 313 regs[R_CD3] = 0x00; 314 regs[R_MPD] = 0x00; 315 regs[R_MD1] = 0x00; 316 regs[R_MD2] = 0x00; 317 regs[R_MD3] = 0x00; 318 319 switch (priv->id) { 320 case TDA18271HDC1: 321 regs[R_EB1] = 0xff; 322 break; 323 case TDA18271HDC2: 324 regs[R_EB1] = 0xfc; 325 break; 326 } 327 328 regs[R_EB2] = 0x01; 329 regs[R_EB3] = 0x84; 330 regs[R_EB4] = 0x41; 331 regs[R_EB5] = 0x01; 332 regs[R_EB6] = 0x84; 333 regs[R_EB7] = 0x40; 334 regs[R_EB8] = 0x07; 335 regs[R_EB9] = 0x00; 336 regs[R_EB10] = 0x00; 337 regs[R_EB11] = 0x96; 338 339 switch (priv->id) { 340 case TDA18271HDC1: 341 regs[R_EB12] = 0x0f; 342 break; 343 case TDA18271HDC2: 344 regs[R_EB12] = 0x33; 345 break; 346 } 347 348 regs[R_EB13] = 0xc1; 349 regs[R_EB14] = 0x00; 350 regs[R_EB15] = 0x8f; 351 regs[R_EB16] = 0x00; 352 regs[R_EB17] = 0x00; 353 354 switch (priv->id) { 355 case TDA18271HDC1: 356 regs[R_EB18] = 0x00; 357 break; 358 case TDA18271HDC2: 359 regs[R_EB18] = 0x8c; 360 break; 361 } 362 363 regs[R_EB19] = 0x00; 364 regs[R_EB20] = 0x20; 365 366 switch (priv->id) { 367 case TDA18271HDC1: 368 regs[R_EB21] = 0x33; 369 break; 370 case TDA18271HDC2: 371 regs[R_EB21] = 0xb3; 372 break; 373 } 374 375 regs[R_EB22] = 0x48; 376 regs[R_EB23] = 0xb0; 377 378 __tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS, false); 379 380 /* setup agc1 gain */ 381 regs[R_EB17] = 0x00; 382 __tda18271_write_regs(fe, R_EB17, 1, false); 383 regs[R_EB17] = 0x03; 384 __tda18271_write_regs(fe, R_EB17, 1, false); 385 regs[R_EB17] = 0x43; 386 __tda18271_write_regs(fe, R_EB17, 1, false); 387 regs[R_EB17] = 0x4c; 388 __tda18271_write_regs(fe, R_EB17, 1, false); 389 390 /* setup agc2 gain */ 391 if ((priv->id) == TDA18271HDC1) { 392 regs[R_EB20] = 0xa0; 393 __tda18271_write_regs(fe, R_EB20, 1, false); 394 regs[R_EB20] = 0xa7; 395 __tda18271_write_regs(fe, R_EB20, 1, false); 396 regs[R_EB20] = 0xe7; 397 __tda18271_write_regs(fe, R_EB20, 1, false); 398 regs[R_EB20] = 0xec; 399 __tda18271_write_regs(fe, R_EB20, 1, false); 400 } 401 402 /* image rejection calibration */ 403 404 /* low-band */ 405 regs[R_EP3] = 0x1f; 406 regs[R_EP4] = 0x66; 407 regs[R_EP5] = 0x81; 408 regs[R_CPD] = 0xcc; 409 regs[R_CD1] = 0x6c; 410 regs[R_CD2] = 0x00; 411 regs[R_CD3] = 0x00; 412 regs[R_MPD] = 0xcd; 413 regs[R_MD1] = 0x77; 414 regs[R_MD2] = 0x08; 415 regs[R_MD3] = 0x00; 416 417 __tda18271_write_regs(fe, R_EP3, 11, false); 418 419 if ((priv->id) == TDA18271HDC2) { 420 /* main pll cp source on */ 421 __tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 1, false); 422 msleep(1); 423 424 /* main pll cp source off */ 425 __tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 0, false); 426 } 427 428 msleep(5); /* pll locking */ 429 430 /* launch detector */ 431 __tda18271_write_regs(fe, R_EP1, 1, false); 432 msleep(5); /* wanted low measurement */ 433 434 regs[R_EP5] = 0x85; 435 regs[R_CPD] = 0xcb; 436 regs[R_CD1] = 0x66; 437 regs[R_CD2] = 0x70; 438 439 __tda18271_write_regs(fe, R_EP3, 7, false); 440 msleep(5); /* pll locking */ 441 442 /* launch optimization algorithm */ 443 __tda18271_write_regs(fe, R_EP2, 1, false); 444 msleep(30); /* image low optimization completion */ 445 446 /* mid-band */ 447 regs[R_EP5] = 0x82; 448 regs[R_CPD] = 0xa8; 449 regs[R_CD2] = 0x00; 450 regs[R_MPD] = 0xa9; 451 regs[R_MD1] = 0x73; 452 regs[R_MD2] = 0x1a; 453 454 __tda18271_write_regs(fe, R_EP3, 11, false); 455 msleep(5); /* pll locking */ 456 457 /* launch detector */ 458 __tda18271_write_regs(fe, R_EP1, 1, false); 459 msleep(5); /* wanted mid measurement */ 460 461 regs[R_EP5] = 0x86; 462 regs[R_CPD] = 0xa8; 463 regs[R_CD1] = 0x66; 464 regs[R_CD2] = 0xa0; 465 466 __tda18271_write_regs(fe, R_EP3, 7, false); 467 msleep(5); /* pll locking */ 468 469 /* launch optimization algorithm */ 470 __tda18271_write_regs(fe, R_EP2, 1, false); 471 msleep(30); /* image mid optimization completion */ 472 473 /* high-band */ 474 regs[R_EP5] = 0x83; 475 regs[R_CPD] = 0x98; 476 regs[R_CD1] = 0x65; 477 regs[R_CD2] = 0x00; 478 regs[R_MPD] = 0x99; 479 regs[R_MD1] = 0x71; 480 regs[R_MD2] = 0xcd; 481 482 __tda18271_write_regs(fe, R_EP3, 11, false); 483 msleep(5); /* pll locking */ 484 485 /* launch detector */ 486 __tda18271_write_regs(fe, R_EP1, 1, false); 487 msleep(5); /* wanted high measurement */ 488 489 regs[R_EP5] = 0x87; 490 regs[R_CD1] = 0x65; 491 regs[R_CD2] = 0x50; 492 493 __tda18271_write_regs(fe, R_EP3, 7, false); 494 msleep(5); /* pll locking */ 495 496 /* launch optimization algorithm */ 497 __tda18271_write_regs(fe, R_EP2, 1, false); 498 msleep(30); /* image high optimization completion */ 499 500 /* return to normal mode */ 501 regs[R_EP4] = 0x64; 502 __tda18271_write_regs(fe, R_EP4, 1, false); 503 504 /* synchronize */ 505 __tda18271_write_regs(fe, R_EP1, 1, false); 506 507 i2c_unlock_bus(priv->i2c_props.adap, I2C_LOCK_SEGMENT); 508 tda18271_i2c_gate_ctrl(fe, 0); 509 510 return 0; 511} 512 513/*---------------------------------------------------------------------*/ 514 515/* 516 * Standby modes, EP3 [7:5] 517 * 518 * | SM || SM_LT || SM_XT || mode description 519 * |=====\\=======\\=======\\==================================== 520 * | 0 || 0 || 0 || normal mode 521 * |-----||-------||-------||------------------------------------ 522 * | || || || standby mode w/ slave tuner output 523 * | 1 || 0 || 0 || & loop through & xtal oscillator on 524 * |-----||-------||-------||------------------------------------ 525 * | 1 || 1 || 0 || standby mode w/ xtal oscillator on 526 * |-----||-------||-------||------------------------------------ 527 * | 1 || 1 || 1 || power off 528 * 529 */ 530 531int tda18271_set_standby_mode(struct dvb_frontend *fe, 532 int sm, int sm_lt, int sm_xt) 533{ 534 struct tda18271_priv *priv = fe->tuner_priv; 535 unsigned char *regs = priv->tda18271_regs; 536 537 if (tda18271_debug & DBG_ADV) 538 tda_dbg("sm = %d, sm_lt = %d, sm_xt = %d\n", sm, sm_lt, sm_xt); 539 540 regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */ 541 regs[R_EP3] |= (sm ? (1 << 7) : 0) | 542 (sm_lt ? (1 << 6) : 0) | 543 (sm_xt ? (1 << 5) : 0); 544 545 return tda18271_write_regs(fe, R_EP3, 1); 546} 547 548/*---------------------------------------------------------------------*/ 549 550int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq) 551{ 552 /* sets main post divider & divider bytes, but does not write them */ 553 struct tda18271_priv *priv = fe->tuner_priv; 554 unsigned char *regs = priv->tda18271_regs; 555 u8 d, pd; 556 u32 div; 557 558 int ret = tda18271_lookup_pll_map(fe, MAIN_PLL, &freq, &pd, &d); 559 if (tda_fail(ret)) 560 goto fail; 561 562 regs[R_MPD] = (0x7f & pd); 563 564 div = ((d * (freq / 1000)) << 7) / 125; 565 566 regs[R_MD1] = 0x7f & (div >> 16); 567 regs[R_MD2] = 0xff & (div >> 8); 568 regs[R_MD3] = 0xff & div; 569fail: 570 return ret; 571} 572 573int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq) 574{ 575 /* sets cal post divider & divider bytes, but does not write them */ 576 struct tda18271_priv *priv = fe->tuner_priv; 577 unsigned char *regs = priv->tda18271_regs; 578 u8 d, pd; 579 u32 div; 580 581 int ret = tda18271_lookup_pll_map(fe, CAL_PLL, &freq, &pd, &d); 582 if (tda_fail(ret)) 583 goto fail; 584 585 regs[R_CPD] = pd; 586 587 div = ((d * (freq / 1000)) << 7) / 125; 588 589 regs[R_CD1] = 0x7f & (div >> 16); 590 regs[R_CD2] = 0xff & (div >> 8); 591 regs[R_CD3] = 0xff & div; 592fail: 593 return ret; 594} 595 596/*---------------------------------------------------------------------*/ 597 598int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq) 599{ 600 /* sets bp filter bits, but does not write them */ 601 struct tda18271_priv *priv = fe->tuner_priv; 602 unsigned char *regs = priv->tda18271_regs; 603 u8 val; 604 605 int ret = tda18271_lookup_map(fe, BP_FILTER, freq, &val); 606 if (tda_fail(ret)) 607 goto fail; 608 609 regs[R_EP1] &= ~0x07; /* clear bp filter bits */ 610 regs[R_EP1] |= (0x07 & val); 611fail: 612 return ret; 613} 614 615int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq) 616{ 617 /* sets K & M bits, but does not write them */ 618 struct tda18271_priv *priv = fe->tuner_priv; 619 unsigned char *regs = priv->tda18271_regs; 620 u8 val; 621 622 int ret = tda18271_lookup_map(fe, RF_CAL_KMCO, freq, &val); 623 if (tda_fail(ret)) 624 goto fail; 625 626 regs[R_EB13] &= ~0x7c; /* clear k & m bits */ 627 regs[R_EB13] |= (0x7c & val); 628fail: 629 return ret; 630} 631 632int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq) 633{ 634 /* sets rf band bits, but does not write them */ 635 struct tda18271_priv *priv = fe->tuner_priv; 636 unsigned char *regs = priv->tda18271_regs; 637 u8 val; 638 639 int ret = tda18271_lookup_map(fe, RF_BAND, freq, &val); 640 if (tda_fail(ret)) 641 goto fail; 642 643 regs[R_EP2] &= ~0xe0; /* clear rf band bits */ 644 regs[R_EP2] |= (0xe0 & (val << 5)); 645fail: 646 return ret; 647} 648 649int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq) 650{ 651 /* sets gain taper bits, but does not write them */ 652 struct tda18271_priv *priv = fe->tuner_priv; 653 unsigned char *regs = priv->tda18271_regs; 654 u8 val; 655 656 int ret = tda18271_lookup_map(fe, GAIN_TAPER, freq, &val); 657 if (tda_fail(ret)) 658 goto fail; 659 660 regs[R_EP2] &= ~0x1f; /* clear gain taper bits */ 661 regs[R_EP2] |= (0x1f & val); 662fail: 663 return ret; 664} 665 666int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq) 667{ 668 /* sets IR Meas bits, but does not write them */ 669 struct tda18271_priv *priv = fe->tuner_priv; 670 unsigned char *regs = priv->tda18271_regs; 671 u8 val; 672 673 int ret = tda18271_lookup_map(fe, IR_MEASURE, freq, &val); 674 if (tda_fail(ret)) 675 goto fail; 676 677 regs[R_EP5] &= ~0x07; 678 regs[R_EP5] |= (0x07 & val); 679fail: 680 return ret; 681} 682 683int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq) 684{ 685 /* sets rf cal byte (RFC_Cprog), but does not write it */ 686 struct tda18271_priv *priv = fe->tuner_priv; 687 unsigned char *regs = priv->tda18271_regs; 688 u8 val; 689 690 int ret = tda18271_lookup_map(fe, RF_CAL, freq, &val); 691 /* The TDA18271HD/C1 rf_cal map lookup is expected to go out of range 692 * for frequencies above 61.1 MHz. In these cases, the internal RF 693 * tracking filters calibration mechanism is used. 694 * 695 * There is no need to warn the user about this. 696 */ 697 if (ret < 0) 698 goto fail; 699 700 regs[R_EB14] = val; 701fail: 702 return ret; 703} 704 705void _tda_printk(struct tda18271_priv *state, const char *level, 706 const char *func, const char *fmt, ...) 707{ 708 struct va_format vaf; 709 va_list args; 710 711 va_start(args, fmt); 712 713 vaf.fmt = fmt; 714 vaf.va = &args; 715 716 if (state) 717 printk("%s%s: [%d-%04x|%c] %pV", 718 level, func, i2c_adapter_id(state->i2c_props.adap), 719 state->i2c_props.addr, 720 (state->role == TDA18271_MASTER) ? 'M' : 'S', 721 &vaf); 722 else 723 printk("%s%s: %pV", level, func, &vaf); 724 725 va_end(args); 726}