cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

exynos5422-dmc.c (47835B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
      4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
      5 */
      6
      7#include <linux/clk.h>
      8#include <linux/devfreq.h>
      9#include <linux/devfreq-event.h>
     10#include <linux/device.h>
     11#include <linux/interrupt.h>
     12#include <linux/io.h>
     13#include <linux/mfd/syscon.h>
     14#include <linux/module.h>
     15#include <linux/moduleparam.h>
     16#include <linux/of_device.h>
     17#include <linux/pm_opp.h>
     18#include <linux/platform_device.h>
     19#include <linux/regmap.h>
     20#include <linux/regulator/consumer.h>
     21#include <linux/slab.h>
     22#include "../jedec_ddr.h"
     23#include "../of_memory.h"
     24
     25static int irqmode;
     26module_param(irqmode, int, 0644);
     27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
     28
     29#define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
     30#define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
     31#define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
     32#define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
     33#define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
     34#define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
     35#define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
     36#define CDREX_PAUSE				(0x2091c)
     37#define CDREX_LPDDR3PHY_CON3			(0x20a20)
     38#define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
     39#define EXYNOS5_TIMING_SET_SWI			BIT(28)
     40#define USE_MX_MSPLL_TIMINGS			(1)
     41#define USE_BPLL_TIMINGS			(0)
     42#define EXYNOS5_AREF_NORMAL			(0x2e)
     43
     44#define DREX_PPCCLKCON		(0x0130)
     45#define DREX_PEREV2CONFIG	(0x013c)
     46#define DREX_PMNC_PPC		(0xE000)
     47#define DREX_CNTENS_PPC		(0xE010)
     48#define DREX_CNTENC_PPC		(0xE020)
     49#define DREX_INTENS_PPC		(0xE030)
     50#define DREX_INTENC_PPC		(0xE040)
     51#define DREX_FLAG_PPC		(0xE050)
     52#define DREX_PMCNT2_PPC		(0xE130)
     53
     54/*
     55 * A value for register DREX_PMNC_PPC which should be written to reset
     56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
     57 * CCNT counter.
     58 */
     59#define CC_RESET		BIT(2)
     60
     61/*
     62 * A value for register DREX_PMNC_PPC which does the reset of all performance
     63 * counters to zero.
     64 */
     65#define PPC_COUNTER_RESET	BIT(1)
     66
     67/*
     68 * Enables all configured counters (including cycle counter). The value should
     69 * be written to the register DREX_PMNC_PPC.
     70 */
     71#define PPC_ENABLE		BIT(0)
     72
     73/* A value for register DREX_PPCCLKCON which enables performance events clock.
     74 * Must be written before first access to the performance counters register
     75 * set, otherwise it could crash.
     76 */
     77#define PEREV_CLK_EN		BIT(0)
     78
     79/*
     80 * Values which are used to enable counters, interrupts or configure flags of
     81 * the performance counters. They configure counter 2 and cycle counter.
     82 */
     83#define PERF_CNT2		BIT(2)
     84#define PERF_CCNT		BIT(31)
     85
     86/*
     87 * Performance event types which are used for setting the preferred event
     88 * to track in the counters.
     89 * There is a set of different types, the values are from range 0 to 0x6f.
     90 * These settings should be written to the configuration register which manages
     91 * the type of the event (register DREX_PEREV2CONFIG).
     92 */
     93#define READ_TRANSFER_CH0	(0x6d)
     94#define READ_TRANSFER_CH1	(0x6f)
     95
     96#define PERF_COUNTER_START_VALUE 0xff000000
     97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
     98
     99/**
    100 * struct dmc_opp_table - Operating level desciption
    101 * @freq_hz:		target frequency in Hz
    102 * @volt_uv:		target voltage in uV
    103 *
    104 * Covers frequency and voltage settings of the DMC operating mode.
    105 */
    106struct dmc_opp_table {
    107	u32 freq_hz;
    108	u32 volt_uv;
    109};
    110
    111/**
    112 * struct exynos5_dmc - main structure describing DMC device
    113 * @dev:		DMC device
    114 * @df:			devfreq device structure returned by devfreq framework
    115 * @gov_data:		configuration of devfreq governor
    116 * @base_drexi0:	DREX0 registers mapping
    117 * @base_drexi1:	DREX1 registers mapping
    118 * @clk_regmap:		regmap for clock controller registers
    119 * @lock:		protects curr_rate and frequency/voltage setting section
    120 * @curr_rate:		current frequency
    121 * @curr_volt:		current voltage
    122 * @opp:		OPP table
    123 * @opp_count:		number of 'opp' elements
    124 * @timings_arr_size:	number of 'timings' elements
    125 * @timing_row:		values for timing row register, for each OPP
    126 * @timing_data:	values for timing data register, for each OPP
    127 * @timing_power:	balues for timing power register, for each OPP
    128 * @timings:		DDR memory timings, from device tree
    129 * @min_tck:		DDR memory minimum timing values, from device tree
    130 * @bypass_timing_row:	value for timing row register for bypass timings
    131 * @bypass_timing_data:	value for timing data register for bypass timings
    132 * @bypass_timing_power:	value for timing power register for bypass
    133 *				timings
    134 * @vdd_mif:		Memory interface regulator
    135 * @fout_spll:		clock: SPLL
    136 * @fout_bpll:		clock: BPLL
    137 * @mout_spll:		clock: mux SPLL
    138 * @mout_bpll:		clock: mux BPLL
    139 * @mout_mclk_cdrex:	clock: mux mclk_cdrex
    140 * @mout_mx_mspll_ccore:	clock: mux mx_mspll_ccore
    141 * @counter:		devfreq events
    142 * @num_counters:	number of 'counter' elements
    143 * @last_overflow_ts:	time (in ns) of last overflow of each DREX
    144 * @load:		utilization in percents
    145 * @total:		total time between devfreq events
    146 * @in_irq_mode:	whether running in interrupt mode (true)
    147 *			or polling (false)
    148 *
    149 * The main structure for the Dynamic Memory Controller which covers clocks,
    150 * memory regions, HW information, parameters and current operating mode.
    151 */
    152struct exynos5_dmc {
    153	struct device *dev;
    154	struct devfreq *df;
    155	struct devfreq_simple_ondemand_data gov_data;
    156	void __iomem *base_drexi0;
    157	void __iomem *base_drexi1;
    158	struct regmap *clk_regmap;
    159	/* Protects curr_rate and frequency/voltage setting section */
    160	struct mutex lock;
    161	unsigned long curr_rate;
    162	unsigned long curr_volt;
    163	struct dmc_opp_table *opp;
    164	int opp_count;
    165	u32 timings_arr_size;
    166	u32 *timing_row;
    167	u32 *timing_data;
    168	u32 *timing_power;
    169	const struct lpddr3_timings *timings;
    170	const struct lpddr3_min_tck *min_tck;
    171	u32 bypass_timing_row;
    172	u32 bypass_timing_data;
    173	u32 bypass_timing_power;
    174	struct regulator *vdd_mif;
    175	struct clk *fout_spll;
    176	struct clk *fout_bpll;
    177	struct clk *mout_spll;
    178	struct clk *mout_bpll;
    179	struct clk *mout_mclk_cdrex;
    180	struct clk *mout_mx_mspll_ccore;
    181	struct devfreq_event_dev **counter;
    182	int num_counters;
    183	u64 last_overflow_ts[2];
    184	unsigned long load;
    185	unsigned long total;
    186	bool in_irq_mode;
    187};
    188
    189#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
    190	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
    191
    192#define TIMING_VAL2REG(timing, t_val)			\
    193({							\
    194		u32 __val;				\
    195		__val = (t_val) << (timing)->bit_beg;	\
    196		__val;					\
    197})
    198
    199struct timing_reg {
    200	char *name;
    201	int bit_beg;
    202	int bit_end;
    203	unsigned int val;
    204};
    205
    206static const struct timing_reg timing_row_reg_fields[] = {
    207	TIMING_FIELD("tRFC", 24, 31),
    208	TIMING_FIELD("tRRD", 20, 23),
    209	TIMING_FIELD("tRP", 16, 19),
    210	TIMING_FIELD("tRCD", 12, 15),
    211	TIMING_FIELD("tRC", 6, 11),
    212	TIMING_FIELD("tRAS", 0, 5),
    213};
    214
    215static const struct timing_reg timing_data_reg_fields[] = {
    216	TIMING_FIELD("tWTR", 28, 31),
    217	TIMING_FIELD("tWR", 24, 27),
    218	TIMING_FIELD("tRTP", 20, 23),
    219	TIMING_FIELD("tW2W-C2C", 14, 14),
    220	TIMING_FIELD("tR2R-C2C", 12, 12),
    221	TIMING_FIELD("WL", 8, 11),
    222	TIMING_FIELD("tDQSCK", 4, 7),
    223	TIMING_FIELD("RL", 0, 3),
    224};
    225
    226static const struct timing_reg timing_power_reg_fields[] = {
    227	TIMING_FIELD("tFAW", 26, 31),
    228	TIMING_FIELD("tXSR", 16, 25),
    229	TIMING_FIELD("tXP", 8, 15),
    230	TIMING_FIELD("tCKE", 4, 7),
    231	TIMING_FIELD("tMRD", 0, 3),
    232};
    233
    234#define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
    235		      ARRAY_SIZE(timing_data_reg_fields) + \
    236		      ARRAY_SIZE(timing_power_reg_fields))
    237
    238static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
    239{
    240	int i, ret;
    241
    242	for (i = 0; i < dmc->num_counters; i++) {
    243		if (!dmc->counter[i])
    244			continue;
    245		ret = devfreq_event_set_event(dmc->counter[i]);
    246		if (ret < 0)
    247			return ret;
    248	}
    249	return 0;
    250}
    251
    252static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
    253{
    254	int i, ret;
    255
    256	for (i = 0; i < dmc->num_counters; i++) {
    257		if (!dmc->counter[i])
    258			continue;
    259		ret = devfreq_event_enable_edev(dmc->counter[i]);
    260		if (ret < 0)
    261			return ret;
    262	}
    263	return 0;
    264}
    265
    266static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
    267{
    268	int i, ret;
    269
    270	for (i = 0; i < dmc->num_counters; i++) {
    271		if (!dmc->counter[i])
    272			continue;
    273		ret = devfreq_event_disable_edev(dmc->counter[i]);
    274		if (ret < 0)
    275			return ret;
    276	}
    277	return 0;
    278}
    279
    280/**
    281 * find_target_freq_idx() - Finds requested frequency in local DMC configuration
    282 * @dmc:	device for which the information is checked
    283 * @target_rate:	requested frequency in KHz
    284 *
    285 * Seeks in the local DMC driver structure for the requested frequency value
    286 * and returns index or error value.
    287 */
    288static int find_target_freq_idx(struct exynos5_dmc *dmc,
    289				unsigned long target_rate)
    290{
    291	int i;
    292
    293	for (i = dmc->opp_count - 1; i >= 0; i--)
    294		if (dmc->opp[i].freq_hz <= target_rate)
    295			return i;
    296
    297	return -EINVAL;
    298}
    299
    300/**
    301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
    302 * @dmc:	device for which the new settings is going to be applied
    303 * @set:	boolean variable passing set value
    304 *
    305 * Changes the register set, which holds timing parameters.
    306 * There is two register sets: 0 and 1. The register set 0
    307 * is used in normal operation when the clock is provided from main PLL.
    308 * The bank register set 1 is used when the main PLL frequency is going to be
    309 * changed and the clock is taken from alternative, stable source.
    310 * This function switches between these banks according to the
    311 * currently used clock source.
    312 */
    313static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
    314{
    315	unsigned int reg;
    316	int ret;
    317
    318	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
    319	if (ret)
    320		return ret;
    321
    322	if (set)
    323		reg |= EXYNOS5_TIMING_SET_SWI;
    324	else
    325		reg &= ~EXYNOS5_TIMING_SET_SWI;
    326
    327	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
    328
    329	return 0;
    330}
    331
    332/**
    333 * exynos5_init_freq_table() - Initialized PM OPP framework
    334 * @dmc:	DMC device for which the frequencies are used for OPP init
    335 * @profile:	devfreq device's profile
    336 *
    337 * Populate the devfreq device's OPP table based on current frequency, voltage.
    338 */
    339static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
    340				   struct devfreq_dev_profile *profile)
    341{
    342	int i, ret;
    343	int idx;
    344	unsigned long freq;
    345
    346	ret = devm_pm_opp_of_add_table(dmc->dev);
    347	if (ret < 0) {
    348		dev_err(dmc->dev, "Failed to get OPP table\n");
    349		return ret;
    350	}
    351
    352	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
    353
    354	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
    355				      sizeof(struct dmc_opp_table), GFP_KERNEL);
    356	if (!dmc->opp)
    357		return -ENOMEM;
    358
    359	idx = dmc->opp_count - 1;
    360	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
    361		struct dev_pm_opp *opp;
    362
    363		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
    364		if (IS_ERR(opp))
    365			return PTR_ERR(opp);
    366
    367		dmc->opp[idx - i].freq_hz = freq;
    368		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
    369
    370		dev_pm_opp_put(opp);
    371	}
    372
    373	return 0;
    374}
    375
    376/**
    377 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
    378 * @dmc:	device for which the new settings is going to be applied
    379 *
    380 * Low-level function for changing timings for DRAM memory clocking from
    381 * 'bypass' clock source (fixed frequency @400MHz).
    382 * It uses timing bank registers set 1.
    383 */
    384static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
    385{
    386	writel(EXYNOS5_AREF_NORMAL,
    387	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
    388
    389	writel(dmc->bypass_timing_row,
    390	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
    391	writel(dmc->bypass_timing_row,
    392	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
    393	writel(dmc->bypass_timing_data,
    394	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
    395	writel(dmc->bypass_timing_data,
    396	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
    397	writel(dmc->bypass_timing_power,
    398	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
    399	writel(dmc->bypass_timing_power,
    400	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
    401}
    402
    403/**
    404 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
    405 * @dmc:	device for which the new settings is going to be applied
    406 * @target_rate:	target frequency of the DMC
    407 *
    408 * Low-level function for changing timings for DRAM memory operating from main
    409 * clock source (BPLL), which can have different frequencies. Thus, each
    410 * frequency must have corresponding timings register values in order to keep
    411 * the needed delays.
    412 * It uses timing bank registers set 0.
    413 */
    414static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
    415				       unsigned long target_rate)
    416{
    417	int idx;
    418
    419	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
    420		if (dmc->opp[idx].freq_hz <= target_rate)
    421			break;
    422
    423	if (idx < 0)
    424		return -EINVAL;
    425
    426	writel(EXYNOS5_AREF_NORMAL,
    427	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
    428
    429	writel(dmc->timing_row[idx],
    430	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
    431	writel(dmc->timing_row[idx],
    432	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
    433	writel(dmc->timing_data[idx],
    434	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
    435	writel(dmc->timing_data[idx],
    436	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
    437	writel(dmc->timing_power[idx],
    438	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
    439	writel(dmc->timing_power[idx],
    440	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
    441
    442	return 0;
    443}
    444
    445/**
    446 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
    447 * @dmc:	device for which it is going to be set
    448 * @target_volt:	new voltage which is chosen to be final
    449 *
    450 * Function tries to align voltage to the safe level for 'normal' mode.
    451 * It checks the need of higher voltage and changes the value. The target
    452 * voltage might be lower that currently set and still the system will be
    453 * stable.
    454 */
    455static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
    456					    unsigned long target_volt)
    457{
    458	int ret = 0;
    459
    460	if (dmc->curr_volt <= target_volt)
    461		return 0;
    462
    463	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
    464				    target_volt);
    465	if (!ret)
    466		dmc->curr_volt = target_volt;
    467
    468	return ret;
    469}
    470
    471/**
    472 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
    473 * @dmc:	device for which it is going to be set
    474 * @target_volt:	new voltage which is chosen to be final
    475 *
    476 * Function tries to align voltage to the safe level for the 'bypass' mode.
    477 * It checks the need of higher voltage and changes the value.
    478 * The target voltage must not be less than currently needed, because
    479 * for current frequency the device might become unstable.
    480 */
    481static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
    482					    unsigned long target_volt)
    483{
    484	int ret = 0;
    485
    486	if (dmc->curr_volt >= target_volt)
    487		return 0;
    488
    489	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
    490				    target_volt);
    491	if (!ret)
    492		dmc->curr_volt = target_volt;
    493
    494	return ret;
    495}
    496
    497/**
    498 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
    499 * @dmc:	device for which it is going to be set
    500 * @target_rate:	new frequency which is chosen to be final
    501 *
    502 * Function changes the DRAM timings for the temporary 'bypass' mode.
    503 */
    504static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
    505						 unsigned long target_rate)
    506{
    507	int idx = find_target_freq_idx(dmc, target_rate);
    508
    509	if (idx < 0)
    510		return -EINVAL;
    511
    512	exynos5_set_bypass_dram_timings(dmc);
    513
    514	return 0;
    515}
    516
    517/**
    518 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
    519 * @dmc:	DMC device for which the switching is going to happen
    520 * @target_rate:	new frequency which is going to be set as a final
    521 * @target_volt:	new voltage which is going to be set as a final
    522 *
    523 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
    524 * This mode is used only temporary but if required, changes voltage and timings
    525 * for DRAM chips. It switches the main clock to stable clock source for the
    526 * period of the main PLL reconfiguration.
    527 */
    528static int
    529exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
    530					   unsigned long target_rate,
    531					   unsigned long target_volt)
    532{
    533	int ret;
    534
    535	/*
    536	 * Having higher voltage for a particular frequency does not harm
    537	 * the chip. Use it for the temporary frequency change when one
    538	 * voltage manipulation might be avoided.
    539	 */
    540	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
    541	if (ret)
    542		return ret;
    543
    544	/*
    545	 * Longer delays for DRAM does not cause crash, the opposite does.
    546	 */
    547	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
    548	if (ret)
    549		return ret;
    550
    551	/*
    552	 * Delays are long enough, so use them for the new coming clock.
    553	 */
    554	ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
    555
    556	return ret;
    557}
    558
    559/**
    560 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
    561 * using safe procedure
    562 * @dmc:	device for which the frequency is going to be changed
    563 * @target_rate:	requested new frequency
    564 * @target_volt:	requested voltage which corresponds to the new frequency
    565 *
    566 * The DMC frequency change procedure requires a few steps.
    567 * The main requirement is to change the clock source in the clk mux
    568 * for the time of main clock PLL locking. The assumption is that the
    569 * alternative clock source set as parent is stable.
    570 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
    571 * clock. This requires alignment in DRAM timing parameters for the new
    572 * T-period. There is two bank sets for keeping DRAM
    573 * timings: set 0 and set 1. The set 0 is used when main clock source is
    574 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
    575 * the two bank sets is part of the process.
    576 * The voltage must also be aligned to the minimum required level. There is
    577 * this intermediate step with switching to 'bypass' parent clock source.
    578 * if the old voltage is lower, it requires an increase of the voltage level.
    579 * The complexity of the voltage manipulation is hidden in low level function.
    580 * In this function there is last alignment of the voltage level at the end.
    581 */
    582static int
    583exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
    584				 unsigned long target_rate,
    585				 unsigned long target_volt)
    586{
    587	int ret;
    588
    589	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
    590							 target_volt);
    591	if (ret)
    592		return ret;
    593
    594	/*
    595	 * Voltage is set at least to a level needed for this frequency,
    596	 * so switching clock source is safe now.
    597	 */
    598	clk_prepare_enable(dmc->fout_spll);
    599	clk_prepare_enable(dmc->mout_spll);
    600	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
    601
    602	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
    603	if (ret)
    604		goto disable_clocks;
    605
    606	/*
    607	 * We are safe to increase the timings for current bypass frequency.
    608	 * Thanks to this the settings will be ready for the upcoming clock
    609	 * source change.
    610	 */
    611	exynos5_dram_change_timings(dmc, target_rate);
    612
    613	clk_set_rate(dmc->fout_bpll, target_rate);
    614
    615	ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
    616	if (ret)
    617		goto disable_clocks;
    618
    619	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
    620	if (ret)
    621		goto disable_clocks;
    622
    623	/*
    624	 * Make sure if the voltage is not from 'bypass' settings and align to
    625	 * the right level for power efficiency.
    626	 */
    627	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
    628
    629disable_clocks:
    630	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
    631	clk_disable_unprepare(dmc->mout_spll);
    632	clk_disable_unprepare(dmc->fout_spll);
    633
    634	return ret;
    635}
    636
    637/**
    638 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
    639 * table.
    640 * @dmc:	device for which the frequency is going to be changed
    641 * @freq:       requested frequency in KHz
    642 * @target_rate:	returned frequency which is the same or lower than
    643 *			requested
    644 * @target_volt:	returned voltage which corresponds to the returned
    645 *			frequency
    646 * @flags:	devfreq flags provided for this frequency change request
    647 *
    648 * Function gets requested frequency and checks OPP framework for needed
    649 * frequency and voltage. It populates the values 'target_rate' and
    650 * 'target_volt' or returns error value when OPP framework fails.
    651 */
    652static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
    653				     unsigned long *freq,
    654				     unsigned long *target_rate,
    655				     unsigned long *target_volt, u32 flags)
    656{
    657	struct dev_pm_opp *opp;
    658
    659	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
    660	if (IS_ERR(opp))
    661		return PTR_ERR(opp);
    662
    663	*target_rate = dev_pm_opp_get_freq(opp);
    664	*target_volt = dev_pm_opp_get_voltage(opp);
    665	dev_pm_opp_put(opp);
    666
    667	return 0;
    668}
    669
    670/**
    671 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
    672 * @dev:	device for which the frequency is going to be changed
    673 * @freq:	requested frequency in KHz
    674 * @flags:	flags provided for this frequency change request
    675 *
    676 * An entry function provided to the devfreq framework which provides frequency
    677 * change of the DMC. The function gets the possible rate from OPP table based
    678 * on requested frequency. It calls the next function responsible for the
    679 * frequency and voltage change. In case of failure, does not set 'curr_rate'
    680 * and returns error value to the framework.
    681 */
    682static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
    683			      u32 flags)
    684{
    685	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
    686	unsigned long target_rate = 0;
    687	unsigned long target_volt = 0;
    688	int ret;
    689
    690	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
    691					flags);
    692
    693	if (ret)
    694		return ret;
    695
    696	if (target_rate == dmc->curr_rate)
    697		return 0;
    698
    699	mutex_lock(&dmc->lock);
    700
    701	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
    702
    703	if (ret) {
    704		mutex_unlock(&dmc->lock);
    705		return ret;
    706	}
    707
    708	dmc->curr_rate = target_rate;
    709
    710	mutex_unlock(&dmc->lock);
    711	return 0;
    712}
    713
    714/**
    715 * exynos5_counters_get() - Gets the performance counters values.
    716 * @dmc:	device for which the counters are going to be checked
    717 * @load_count:	variable which is populated with counter value
    718 * @total_count:	variable which is used as 'wall clock' reference
    719 *
    720 * Function which provides performance counters values. It sums up counters for
    721 * two DMC channels. The 'total_count' is used as a reference and max value.
    722 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
    723 */
    724static int exynos5_counters_get(struct exynos5_dmc *dmc,
    725				unsigned long *load_count,
    726				unsigned long *total_count)
    727{
    728	unsigned long total = 0;
    729	struct devfreq_event_data event;
    730	int ret, i;
    731
    732	*load_count = 0;
    733
    734	/* Take into account only read+write counters, but stop all */
    735	for (i = 0; i < dmc->num_counters; i++) {
    736		if (!dmc->counter[i])
    737			continue;
    738
    739		ret = devfreq_event_get_event(dmc->counter[i], &event);
    740		if (ret < 0)
    741			return ret;
    742
    743		*load_count += event.load_count;
    744
    745		if (total < event.total_count)
    746			total = event.total_count;
    747	}
    748
    749	*total_count = total;
    750
    751	return 0;
    752}
    753
    754/**
    755 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
    756 * @dmc:	device for which the counters are going to be checked
    757 * @beg_value:	initial value for the counter
    758 *
    759 * Function which enables needed counters, interrupts and sets initial values
    760 * then starts the counters.
    761 */
    762static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
    763					  u32 beg_value)
    764{
    765	/* Enable interrupts for counter 2 */
    766	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
    767	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
    768
    769	/* Enable counter 2 and CCNT  */
    770	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
    771	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
    772
    773	/* Clear overflow flag for all counters */
    774	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
    775	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
    776
    777	/* Reset all counters */
    778	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
    779	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
    780
    781	/*
    782	 * Set start value for the counters, the number of samples that
    783	 * will be gathered is calculated as: 0xffffffff - beg_value
    784	 */
    785	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
    786	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
    787
    788	/* Start all counters */
    789	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
    790	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
    791}
    792
    793/**
    794 * exynos5_dmc_perf_events_calc() - Calculate utilization
    795 * @dmc:	device for which the counters are going to be checked
    796 * @diff_ts:	time between last interrupt and current one
    797 *
    798 * Function which calculates needed utilization for the devfreq governor.
    799 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
    800 * between interrupts, which approximates utilization.
    801 */
    802static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
    803{
    804	/*
    805	 * This is a simple algorithm for managing traffic on DMC.
    806	 * When there is almost no load the counters overflow every 4s,
    807	 * no mater the DMC frequency.
    808	 * The high load might be approximated using linear function.
    809	 * Knowing that, simple calculation can provide 'busy_time' and
    810	 * 'total_time' to the devfreq governor which picks up target
    811	 * frequency.
    812	 * We want a fast ramp up and slow decay in frequency change function.
    813	 */
    814	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
    815		/*
    816		 * Set higher utilization for the simple_ondemand governor.
    817		 * The governor should increase the frequency of the DMC.
    818		 */
    819		dmc->load = 70;
    820		dmc->total = 100;
    821	} else {
    822		/*
    823		 * Set low utilization for the simple_ondemand governor.
    824		 * The governor should decrease the frequency of the DMC.
    825		 */
    826		dmc->load = 35;
    827		dmc->total = 100;
    828	}
    829
    830	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
    831}
    832
    833/**
    834 * exynos5_dmc_perf_events_check() - Checks the status of the counters
    835 * @dmc:	device for which the counters are going to be checked
    836 *
    837 * Function which is called from threaded IRQ to check the counters state
    838 * and to call approximation for the needed utilization.
    839 */
    840static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
    841{
    842	u32 val;
    843	u64 diff_ts, ts;
    844
    845	ts = ktime_get_ns();
    846
    847	/* Stop all counters */
    848	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
    849	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
    850
    851	/* Check the source in interrupt flag registers (which channel) */
    852	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
    853	if (val) {
    854		diff_ts = ts - dmc->last_overflow_ts[0];
    855		dmc->last_overflow_ts[0] = ts;
    856		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
    857	} else {
    858		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
    859		diff_ts = ts - dmc->last_overflow_ts[1];
    860		dmc->last_overflow_ts[1] = ts;
    861		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
    862	}
    863
    864	exynos5_dmc_perf_events_calc(dmc, diff_ts);
    865
    866	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
    867}
    868
    869/**
    870 * exynos5_dmc_enable_perf_events() - Enable performance events
    871 * @dmc:	device for which the counters are going to be checked
    872 *
    873 * Function which is setup needed environment and enables counters.
    874 */
    875static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
    876{
    877	u64 ts;
    878
    879	/* Enable Performance Event Clock */
    880	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
    881	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
    882
    883	/* Select read transfers as performance event2 */
    884	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
    885	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
    886
    887	ts = ktime_get_ns();
    888	dmc->last_overflow_ts[0] = ts;
    889	dmc->last_overflow_ts[1] = ts;
    890
    891	/* Devfreq shouldn't be faster than initialization, play safe though. */
    892	dmc->load = 99;
    893	dmc->total = 100;
    894}
    895
    896/**
    897 * exynos5_dmc_disable_perf_events() - Disable performance events
    898 * @dmc:	device for which the counters are going to be checked
    899 *
    900 * Function which stops, disables performance event counters and interrupts.
    901 */
    902static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
    903{
    904	/* Stop all counters */
    905	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
    906	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
    907
    908	/* Disable interrupts for counter 2 */
    909	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
    910	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
    911
    912	/* Disable counter 2 and CCNT  */
    913	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
    914	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
    915
    916	/* Clear overflow flag for all counters */
    917	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
    918	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
    919}
    920
    921/**
    922 * exynos5_dmc_get_status() - Read current DMC performance statistics.
    923 * @dev:	device for which the statistics are requested
    924 * @stat:	structure which has statistic fields
    925 *
    926 * Function reads the DMC performance counters and calculates 'busy_time'
    927 * and 'total_time'. To protect from overflow, the values are shifted right
    928 * by 10. After read out the counters are setup to count again.
    929 */
    930static int exynos5_dmc_get_status(struct device *dev,
    931				  struct devfreq_dev_status *stat)
    932{
    933	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
    934	unsigned long load, total;
    935	int ret;
    936
    937	if (dmc->in_irq_mode) {
    938		mutex_lock(&dmc->lock);
    939		stat->current_frequency = dmc->curr_rate;
    940		mutex_unlock(&dmc->lock);
    941
    942		stat->busy_time = dmc->load;
    943		stat->total_time = dmc->total;
    944	} else {
    945		ret = exynos5_counters_get(dmc, &load, &total);
    946		if (ret < 0)
    947			return -EINVAL;
    948
    949		/* To protect from overflow, divide by 1024 */
    950		stat->busy_time = load >> 10;
    951		stat->total_time = total >> 10;
    952
    953		ret = exynos5_counters_set_event(dmc);
    954		if (ret < 0) {
    955			dev_err(dev, "could not set event counter\n");
    956			return ret;
    957		}
    958	}
    959
    960	return 0;
    961}
    962
    963/**
    964 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
    965 * @dev:	device for which the framework checks operating frequency
    966 * @freq:	returned frequency value
    967 *
    968 * It returns the currently used frequency of the DMC. The real operating
    969 * frequency might be lower when the clock source value could not be divided
    970 * to the requested value.
    971 */
    972static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
    973{
    974	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
    975
    976	mutex_lock(&dmc->lock);
    977	*freq = dmc->curr_rate;
    978	mutex_unlock(&dmc->lock);
    979
    980	return 0;
    981}
    982
    983/*
    984 * exynos5_dmc_df_profile - Devfreq governor's profile structure
    985 *
    986 * It provides to the devfreq framework needed functions and polling period.
    987 */
    988static struct devfreq_dev_profile exynos5_dmc_df_profile = {
    989	.timer = DEVFREQ_TIMER_DELAYED,
    990	.target = exynos5_dmc_target,
    991	.get_dev_status = exynos5_dmc_get_status,
    992	.get_cur_freq = exynos5_dmc_get_cur_freq,
    993};
    994
    995/**
    996 * exynos5_dmc_align_init_freq() - Align initial frequency value
    997 * @dmc:	device for which the frequency is going to be set
    998 * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
    999 *
   1000 * The initial bootloader frequency, which is present during boot, might be
   1001 * different that supported frequency values in the driver. It is possible
   1002 * due to different PLL settings or used PLL as a source.
   1003 * This function provides the 'initial_freq' for the devfreq framework
   1004 * statistics engine which supports only registered values. Thus, some alignment
   1005 * must be made.
   1006 */
   1007static unsigned long
   1008exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
   1009			    unsigned long bootloader_init_freq)
   1010{
   1011	unsigned long aligned_freq;
   1012	int idx;
   1013
   1014	idx = find_target_freq_idx(dmc, bootloader_init_freq);
   1015	if (idx >= 0)
   1016		aligned_freq = dmc->opp[idx].freq_hz;
   1017	else
   1018		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
   1019
   1020	return aligned_freq;
   1021}
   1022
   1023/**
   1024 * create_timings_aligned() - Create register values and align with standard
   1025 * @dmc:	device for which the frequency is going to be set
   1026 * @reg_timing_row:	array to fill with values for timing row register
   1027 * @reg_timing_data:	array to fill with values for timing data register
   1028 * @reg_timing_power:	array to fill with values for timing power register
   1029 * @clk_period_ps:	the period of the clock, known as tCK
   1030 *
   1031 * The function calculates timings and creates a register value ready for
   1032 * a frequency transition. The register contains a few timings. They are
   1033 * shifted by a known offset. The timing value is calculated based on memory
   1034 * specyfication: minimal time required and minimal cycles required.
   1035 */
   1036static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
   1037				  u32 *reg_timing_data, u32 *reg_timing_power,
   1038				  u32 clk_period_ps)
   1039{
   1040	u32 val;
   1041	const struct timing_reg *reg;
   1042
   1043	if (clk_period_ps == 0)
   1044		return -EINVAL;
   1045
   1046	*reg_timing_row = 0;
   1047	*reg_timing_data = 0;
   1048	*reg_timing_power = 0;
   1049
   1050	val = dmc->timings->tRFC / clk_period_ps;
   1051	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
   1052	val = max(val, dmc->min_tck->tRFC);
   1053	reg = &timing_row_reg_fields[0];
   1054	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1055
   1056	val = dmc->timings->tRRD / clk_period_ps;
   1057	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
   1058	val = max(val, dmc->min_tck->tRRD);
   1059	reg = &timing_row_reg_fields[1];
   1060	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1061
   1062	val = dmc->timings->tRPab / clk_period_ps;
   1063	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
   1064	val = max(val, dmc->min_tck->tRPab);
   1065	reg = &timing_row_reg_fields[2];
   1066	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1067
   1068	val = dmc->timings->tRCD / clk_period_ps;
   1069	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
   1070	val = max(val, dmc->min_tck->tRCD);
   1071	reg = &timing_row_reg_fields[3];
   1072	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1073
   1074	val = dmc->timings->tRC / clk_period_ps;
   1075	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
   1076	val = max(val, dmc->min_tck->tRC);
   1077	reg = &timing_row_reg_fields[4];
   1078	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1079
   1080	val = dmc->timings->tRAS / clk_period_ps;
   1081	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
   1082	val = max(val, dmc->min_tck->tRAS);
   1083	reg = &timing_row_reg_fields[5];
   1084	*reg_timing_row |= TIMING_VAL2REG(reg, val);
   1085
   1086	/* data related timings */
   1087	val = dmc->timings->tWTR / clk_period_ps;
   1088	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
   1089	val = max(val, dmc->min_tck->tWTR);
   1090	reg = &timing_data_reg_fields[0];
   1091	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1092
   1093	val = dmc->timings->tWR / clk_period_ps;
   1094	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
   1095	val = max(val, dmc->min_tck->tWR);
   1096	reg = &timing_data_reg_fields[1];
   1097	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1098
   1099	val = dmc->timings->tRTP / clk_period_ps;
   1100	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
   1101	val = max(val, dmc->min_tck->tRTP);
   1102	reg = &timing_data_reg_fields[2];
   1103	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1104
   1105	val = dmc->timings->tW2W_C2C / clk_period_ps;
   1106	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
   1107	val = max(val, dmc->min_tck->tW2W_C2C);
   1108	reg = &timing_data_reg_fields[3];
   1109	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1110
   1111	val = dmc->timings->tR2R_C2C / clk_period_ps;
   1112	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
   1113	val = max(val, dmc->min_tck->tR2R_C2C);
   1114	reg = &timing_data_reg_fields[4];
   1115	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1116
   1117	val = dmc->timings->tWL / clk_period_ps;
   1118	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
   1119	val = max(val, dmc->min_tck->tWL);
   1120	reg = &timing_data_reg_fields[5];
   1121	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1122
   1123	val = dmc->timings->tDQSCK / clk_period_ps;
   1124	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
   1125	val = max(val, dmc->min_tck->tDQSCK);
   1126	reg = &timing_data_reg_fields[6];
   1127	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1128
   1129	val = dmc->timings->tRL / clk_period_ps;
   1130	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
   1131	val = max(val, dmc->min_tck->tRL);
   1132	reg = &timing_data_reg_fields[7];
   1133	*reg_timing_data |= TIMING_VAL2REG(reg, val);
   1134
   1135	/* power related timings */
   1136	val = dmc->timings->tFAW / clk_period_ps;
   1137	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
   1138	val = max(val, dmc->min_tck->tFAW);
   1139	reg = &timing_power_reg_fields[0];
   1140	*reg_timing_power |= TIMING_VAL2REG(reg, val);
   1141
   1142	val = dmc->timings->tXSR / clk_period_ps;
   1143	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
   1144	val = max(val, dmc->min_tck->tXSR);
   1145	reg = &timing_power_reg_fields[1];
   1146	*reg_timing_power |= TIMING_VAL2REG(reg, val);
   1147
   1148	val = dmc->timings->tXP / clk_period_ps;
   1149	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
   1150	val = max(val, dmc->min_tck->tXP);
   1151	reg = &timing_power_reg_fields[2];
   1152	*reg_timing_power |= TIMING_VAL2REG(reg, val);
   1153
   1154	val = dmc->timings->tCKE / clk_period_ps;
   1155	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
   1156	val = max(val, dmc->min_tck->tCKE);
   1157	reg = &timing_power_reg_fields[3];
   1158	*reg_timing_power |= TIMING_VAL2REG(reg, val);
   1159
   1160	val = dmc->timings->tMRD / clk_period_ps;
   1161	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
   1162	val = max(val, dmc->min_tck->tMRD);
   1163	reg = &timing_power_reg_fields[4];
   1164	*reg_timing_power |= TIMING_VAL2REG(reg, val);
   1165
   1166	return 0;
   1167}
   1168
   1169/**
   1170 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
   1171 * @dmc:        device for which the frequency is going to be set
   1172 *
   1173 * The function parses DT entries with DRAM information.
   1174 */
   1175static int of_get_dram_timings(struct exynos5_dmc *dmc)
   1176{
   1177	int ret = 0;
   1178	int idx;
   1179	struct device_node *np_ddr;
   1180	u32 freq_mhz, clk_period_ps;
   1181
   1182	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
   1183	if (!np_ddr) {
   1184		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
   1185		return -EINVAL;
   1186	}
   1187
   1188	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
   1189					     sizeof(u32), GFP_KERNEL);
   1190	if (!dmc->timing_row) {
   1191		ret = -ENOMEM;
   1192		goto put_node;
   1193	}
   1194
   1195	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
   1196					      sizeof(u32), GFP_KERNEL);
   1197	if (!dmc->timing_data) {
   1198		ret = -ENOMEM;
   1199		goto put_node;
   1200	}
   1201
   1202	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
   1203					       sizeof(u32), GFP_KERNEL);
   1204	if (!dmc->timing_power) {
   1205		ret = -ENOMEM;
   1206		goto put_node;
   1207	}
   1208
   1209	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
   1210						 DDR_TYPE_LPDDR3,
   1211						 &dmc->timings_arr_size);
   1212	if (!dmc->timings) {
   1213		dev_warn(dmc->dev, "could not get timings from DT\n");
   1214		ret = -EINVAL;
   1215		goto put_node;
   1216	}
   1217
   1218	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
   1219	if (!dmc->min_tck) {
   1220		dev_warn(dmc->dev, "could not get tck from DT\n");
   1221		ret = -EINVAL;
   1222		goto put_node;
   1223	}
   1224
   1225	/* Sorted array of OPPs with frequency ascending */
   1226	for (idx = 0; idx < dmc->opp_count; idx++) {
   1227		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
   1228		clk_period_ps = 1000000 / freq_mhz;
   1229
   1230		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
   1231					     &dmc->timing_data[idx],
   1232					     &dmc->timing_power[idx],
   1233					     clk_period_ps);
   1234	}
   1235
   1236
   1237	/* Take the highest frequency's timings as 'bypass' */
   1238	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
   1239	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
   1240	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
   1241
   1242put_node:
   1243	of_node_put(np_ddr);
   1244	return ret;
   1245}
   1246
   1247/**
   1248 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
   1249 * @dmc:	DMC structure containing needed fields
   1250 *
   1251 * Get the needed clocks defined in DT device, enable and set the right parents.
   1252 * Read current frequency and initialize the initial rate for governor.
   1253 */
   1254static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
   1255{
   1256	int ret;
   1257	unsigned long target_volt = 0;
   1258	unsigned long target_rate = 0;
   1259	unsigned int tmp;
   1260
   1261	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
   1262	if (IS_ERR(dmc->fout_spll))
   1263		return PTR_ERR(dmc->fout_spll);
   1264
   1265	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
   1266	if (IS_ERR(dmc->fout_bpll))
   1267		return PTR_ERR(dmc->fout_bpll);
   1268
   1269	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
   1270	if (IS_ERR(dmc->mout_mclk_cdrex))
   1271		return PTR_ERR(dmc->mout_mclk_cdrex);
   1272
   1273	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
   1274	if (IS_ERR(dmc->mout_bpll))
   1275		return PTR_ERR(dmc->mout_bpll);
   1276
   1277	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
   1278						"mout_mx_mspll_ccore");
   1279	if (IS_ERR(dmc->mout_mx_mspll_ccore))
   1280		return PTR_ERR(dmc->mout_mx_mspll_ccore);
   1281
   1282	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
   1283	if (IS_ERR(dmc->mout_spll)) {
   1284		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
   1285		if (IS_ERR(dmc->mout_spll))
   1286			return PTR_ERR(dmc->mout_spll);
   1287	}
   1288
   1289	/*
   1290	 * Convert frequency to KHz values and set it for the governor.
   1291	 */
   1292	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
   1293	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
   1294	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
   1295
   1296	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
   1297					&target_volt, 0);
   1298	if (ret)
   1299		return ret;
   1300
   1301	dmc->curr_volt = target_volt;
   1302
   1303	ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
   1304	if (ret)
   1305		return ret;
   1306
   1307	clk_prepare_enable(dmc->fout_bpll);
   1308	clk_prepare_enable(dmc->mout_bpll);
   1309
   1310	/*
   1311	 * Some bootloaders do not set clock routes correctly.
   1312	 * Stop one path in clocks to PHY.
   1313	 */
   1314	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
   1315	tmp &= ~(BIT(1) | BIT(0));
   1316	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
   1317
   1318	return 0;
   1319}
   1320
   1321/**
   1322 * exynos5_performance_counters_init() - Initializes performance DMC's counters
   1323 * @dmc:	DMC for which it does the setup
   1324 *
   1325 * Initialization of performance counters in DMC for estimating usage.
   1326 * The counter's values are used for calculation of a memory bandwidth and based
   1327 * on that the governor changes the frequency.
   1328 * The counters are not used when the governor is GOVERNOR_USERSPACE.
   1329 */
   1330static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
   1331{
   1332	int ret, i;
   1333
   1334	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
   1335							"devfreq-events");
   1336	if (dmc->num_counters < 0) {
   1337		dev_err(dmc->dev, "could not get devfreq-event counters\n");
   1338		return dmc->num_counters;
   1339	}
   1340
   1341	dmc->counter = devm_kcalloc(dmc->dev, dmc->num_counters,
   1342				    sizeof(*dmc->counter), GFP_KERNEL);
   1343	if (!dmc->counter)
   1344		return -ENOMEM;
   1345
   1346	for (i = 0; i < dmc->num_counters; i++) {
   1347		dmc->counter[i] =
   1348			devfreq_event_get_edev_by_phandle(dmc->dev,
   1349						"devfreq-events", i);
   1350		if (IS_ERR_OR_NULL(dmc->counter[i]))
   1351			return -EPROBE_DEFER;
   1352	}
   1353
   1354	ret = exynos5_counters_enable_edev(dmc);
   1355	if (ret < 0) {
   1356		dev_err(dmc->dev, "could not enable event counter\n");
   1357		return ret;
   1358	}
   1359
   1360	ret = exynos5_counters_set_event(dmc);
   1361	if (ret < 0) {
   1362		exynos5_counters_disable_edev(dmc);
   1363		dev_err(dmc->dev, "could not set event counter\n");
   1364		return ret;
   1365	}
   1366
   1367	return 0;
   1368}
   1369
   1370/**
   1371 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
   1372 * @dmc:	device which is used for changing this feature
   1373 *
   1374 * There is a need of pausing DREX DMC when divider or MUX in clock tree
   1375 * changes its configuration. In such situation access to the memory is blocked
   1376 * in DMC automatically. This feature is used when clock frequency change
   1377 * request appears and touches clock tree.
   1378 */
   1379static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
   1380{
   1381	unsigned int val;
   1382	int ret;
   1383
   1384	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
   1385	if (ret)
   1386		return ret;
   1387
   1388	val |= 1UL;
   1389	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
   1390
   1391	return 0;
   1392}
   1393
   1394static irqreturn_t dmc_irq_thread(int irq, void *priv)
   1395{
   1396	int res;
   1397	struct exynos5_dmc *dmc = priv;
   1398
   1399	mutex_lock(&dmc->df->lock);
   1400	exynos5_dmc_perf_events_check(dmc);
   1401	res = update_devfreq(dmc->df);
   1402	mutex_unlock(&dmc->df->lock);
   1403
   1404	if (res)
   1405		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
   1406
   1407	return IRQ_HANDLED;
   1408}
   1409
   1410/**
   1411 * exynos5_dmc_probe() - Probe function for the DMC driver
   1412 * @pdev:	platform device for which the driver is going to be initialized
   1413 *
   1414 * Initialize basic components: clocks, regulators, performance counters, etc.
   1415 * Read out product version and based on the information setup
   1416 * internal structures for the controller (frequency and voltage) and for DRAM
   1417 * memory parameters: timings for each operating frequency.
   1418 * Register new devfreq device for controlling DVFS of the DMC.
   1419 */
   1420static int exynos5_dmc_probe(struct platform_device *pdev)
   1421{
   1422	int ret = 0;
   1423	struct device *dev = &pdev->dev;
   1424	struct device_node *np = dev->of_node;
   1425	struct exynos5_dmc *dmc;
   1426	int irq[2];
   1427
   1428	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
   1429	if (!dmc)
   1430		return -ENOMEM;
   1431
   1432	mutex_init(&dmc->lock);
   1433
   1434	dmc->dev = dev;
   1435	platform_set_drvdata(pdev, dmc);
   1436
   1437	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
   1438	if (IS_ERR(dmc->base_drexi0))
   1439		return PTR_ERR(dmc->base_drexi0);
   1440
   1441	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
   1442	if (IS_ERR(dmc->base_drexi1))
   1443		return PTR_ERR(dmc->base_drexi1);
   1444
   1445	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
   1446							  "samsung,syscon-clk");
   1447	if (IS_ERR(dmc->clk_regmap))
   1448		return PTR_ERR(dmc->clk_regmap);
   1449
   1450	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
   1451	if (ret) {
   1452		dev_warn(dev, "couldn't initialize frequency settings\n");
   1453		return ret;
   1454	}
   1455
   1456	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
   1457	if (IS_ERR(dmc->vdd_mif)) {
   1458		ret = PTR_ERR(dmc->vdd_mif);
   1459		return ret;
   1460	}
   1461
   1462	ret = exynos5_dmc_init_clks(dmc);
   1463	if (ret)
   1464		return ret;
   1465
   1466	ret = of_get_dram_timings(dmc);
   1467	if (ret) {
   1468		dev_warn(dev, "couldn't initialize timings settings\n");
   1469		goto remove_clocks;
   1470	}
   1471
   1472	ret = exynos5_dmc_set_pause_on_switching(dmc);
   1473	if (ret) {
   1474		dev_warn(dev, "couldn't get access to PAUSE register\n");
   1475		goto remove_clocks;
   1476	}
   1477
   1478	/* There is two modes in which the driver works: polling or IRQ */
   1479	irq[0] = platform_get_irq_byname(pdev, "drex_0");
   1480	irq[1] = platform_get_irq_byname(pdev, "drex_1");
   1481	if (irq[0] > 0 && irq[1] > 0 && irqmode) {
   1482		ret = devm_request_threaded_irq(dev, irq[0], NULL,
   1483						dmc_irq_thread, IRQF_ONESHOT,
   1484						dev_name(dev), dmc);
   1485		if (ret) {
   1486			dev_err(dev, "couldn't grab IRQ\n");
   1487			goto remove_clocks;
   1488		}
   1489
   1490		ret = devm_request_threaded_irq(dev, irq[1], NULL,
   1491						dmc_irq_thread, IRQF_ONESHOT,
   1492						dev_name(dev), dmc);
   1493		if (ret) {
   1494			dev_err(dev, "couldn't grab IRQ\n");
   1495			goto remove_clocks;
   1496		}
   1497
   1498		/*
   1499		 * Setup default thresholds for the devfreq governor.
   1500		 * The values are chosen based on experiments.
   1501		 */
   1502		dmc->gov_data.upthreshold = 55;
   1503		dmc->gov_data.downdifferential = 5;
   1504
   1505		exynos5_dmc_enable_perf_events(dmc);
   1506
   1507		dmc->in_irq_mode = 1;
   1508	} else {
   1509		ret = exynos5_performance_counters_init(dmc);
   1510		if (ret) {
   1511			dev_warn(dev, "couldn't probe performance counters\n");
   1512			goto remove_clocks;
   1513		}
   1514
   1515		/*
   1516		 * Setup default thresholds for the devfreq governor.
   1517		 * The values are chosen based on experiments.
   1518		 */
   1519		dmc->gov_data.upthreshold = 10;
   1520		dmc->gov_data.downdifferential = 5;
   1521
   1522		exynos5_dmc_df_profile.polling_ms = 100;
   1523	}
   1524
   1525	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
   1526					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
   1527					  &dmc->gov_data);
   1528
   1529	if (IS_ERR(dmc->df)) {
   1530		ret = PTR_ERR(dmc->df);
   1531		goto err_devfreq_add;
   1532	}
   1533
   1534	if (dmc->in_irq_mode)
   1535		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
   1536
   1537	dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
   1538
   1539	return 0;
   1540
   1541err_devfreq_add:
   1542	if (dmc->in_irq_mode)
   1543		exynos5_dmc_disable_perf_events(dmc);
   1544	else
   1545		exynos5_counters_disable_edev(dmc);
   1546remove_clocks:
   1547	clk_disable_unprepare(dmc->mout_bpll);
   1548	clk_disable_unprepare(dmc->fout_bpll);
   1549
   1550	return ret;
   1551}
   1552
   1553/**
   1554 * exynos5_dmc_remove() - Remove function for the platform device
   1555 * @pdev:	platform device which is going to be removed
   1556 *
   1557 * The function relies on 'devm' framework function which automatically
   1558 * clean the device's resources. It just calls explicitly disable function for
   1559 * the performance counters.
   1560 */
   1561static int exynos5_dmc_remove(struct platform_device *pdev)
   1562{
   1563	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
   1564
   1565	if (dmc->in_irq_mode)
   1566		exynos5_dmc_disable_perf_events(dmc);
   1567	else
   1568		exynos5_counters_disable_edev(dmc);
   1569
   1570	clk_disable_unprepare(dmc->mout_bpll);
   1571	clk_disable_unprepare(dmc->fout_bpll);
   1572
   1573	return 0;
   1574}
   1575
   1576static const struct of_device_id exynos5_dmc_of_match[] = {
   1577	{ .compatible = "samsung,exynos5422-dmc", },
   1578	{ },
   1579};
   1580MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
   1581
   1582static struct platform_driver exynos5_dmc_platdrv = {
   1583	.probe	= exynos5_dmc_probe,
   1584	.remove = exynos5_dmc_remove,
   1585	.driver = {
   1586		.name	= "exynos5-dmc",
   1587		.of_match_table = exynos5_dmc_of_match,
   1588	},
   1589};
   1590module_platform_driver(exynos5_dmc_platdrv);
   1591MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
   1592MODULE_LICENSE("GPL v2");
   1593MODULE_AUTHOR("Lukasz Luba");