cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tegra20-emc.c (31740B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Tegra20 External Memory Controller driver
      4 *
      5 * Author: Dmitry Osipenko <digetx@gmail.com>
      6 */
      7
      8#include <linux/bitfield.h>
      9#include <linux/clk.h>
     10#include <linux/clk/tegra.h>
     11#include <linux/debugfs.h>
     12#include <linux/devfreq.h>
     13#include <linux/err.h>
     14#include <linux/interconnect-provider.h>
     15#include <linux/interrupt.h>
     16#include <linux/io.h>
     17#include <linux/iopoll.h>
     18#include <linux/kernel.h>
     19#include <linux/module.h>
     20#include <linux/mutex.h>
     21#include <linux/of.h>
     22#include <linux/platform_device.h>
     23#include <linux/pm_opp.h>
     24#include <linux/slab.h>
     25#include <linux/sort.h>
     26#include <linux/types.h>
     27
     28#include <soc/tegra/common.h>
     29#include <soc/tegra/fuse.h>
     30
     31#include "../jedec_ddr.h"
     32#include "../of_memory.h"
     33
     34#include "mc.h"
     35
     36#define EMC_INTSTATUS				0x000
     37#define EMC_INTMASK				0x004
     38#define EMC_DBG					0x008
     39#define EMC_ADR_CFG_0				0x010
     40#define EMC_TIMING_CONTROL			0x028
     41#define EMC_RC					0x02c
     42#define EMC_RFC					0x030
     43#define EMC_RAS					0x034
     44#define EMC_RP					0x038
     45#define EMC_R2W					0x03c
     46#define EMC_W2R					0x040
     47#define EMC_R2P					0x044
     48#define EMC_W2P					0x048
     49#define EMC_RD_RCD				0x04c
     50#define EMC_WR_RCD				0x050
     51#define EMC_RRD					0x054
     52#define EMC_REXT				0x058
     53#define EMC_WDV					0x05c
     54#define EMC_QUSE				0x060
     55#define EMC_QRST				0x064
     56#define EMC_QSAFE				0x068
     57#define EMC_RDV					0x06c
     58#define EMC_REFRESH				0x070
     59#define EMC_BURST_REFRESH_NUM			0x074
     60#define EMC_PDEX2WR				0x078
     61#define EMC_PDEX2RD				0x07c
     62#define EMC_PCHG2PDEN				0x080
     63#define EMC_ACT2PDEN				0x084
     64#define EMC_AR2PDEN				0x088
     65#define EMC_RW2PDEN				0x08c
     66#define EMC_TXSR				0x090
     67#define EMC_TCKE				0x094
     68#define EMC_TFAW				0x098
     69#define EMC_TRPAB				0x09c
     70#define EMC_TCLKSTABLE				0x0a0
     71#define EMC_TCLKSTOP				0x0a4
     72#define EMC_TREFBW				0x0a8
     73#define EMC_QUSE_EXTRA				0x0ac
     74#define EMC_ODT_WRITE				0x0b0
     75#define EMC_ODT_READ				0x0b4
     76#define EMC_MRR					0x0ec
     77#define EMC_FBIO_CFG5				0x104
     78#define EMC_FBIO_CFG6				0x114
     79#define EMC_STAT_CONTROL			0x160
     80#define EMC_STAT_LLMC_CONTROL			0x178
     81#define EMC_STAT_PWR_CLOCK_LIMIT		0x198
     82#define EMC_STAT_PWR_CLOCKS			0x19c
     83#define EMC_STAT_PWR_COUNT			0x1a0
     84#define EMC_AUTO_CAL_INTERVAL			0x2a8
     85#define EMC_CFG_2				0x2b8
     86#define EMC_CFG_DIG_DLL				0x2bc
     87#define EMC_DLL_XFORM_DQS			0x2c0
     88#define EMC_DLL_XFORM_QUSE			0x2c4
     89#define EMC_ZCAL_REF_CNT			0x2e0
     90#define EMC_ZCAL_WAIT_CNT			0x2e4
     91#define EMC_CFG_CLKTRIM_0			0x2d0
     92#define EMC_CFG_CLKTRIM_1			0x2d4
     93#define EMC_CFG_CLKTRIM_2			0x2d8
     94
     95#define EMC_CLKCHANGE_REQ_ENABLE		BIT(0)
     96#define EMC_CLKCHANGE_PD_ENABLE			BIT(1)
     97#define EMC_CLKCHANGE_SR_ENABLE			BIT(2)
     98
     99#define EMC_TIMING_UPDATE			BIT(0)
    100
    101#define EMC_REFRESH_OVERFLOW_INT		BIT(3)
    102#define EMC_CLKCHANGE_COMPLETE_INT		BIT(4)
    103#define EMC_MRR_DIVLD_INT			BIT(5)
    104
    105#define EMC_DBG_READ_MUX_ASSEMBLY		BIT(0)
    106#define EMC_DBG_WRITE_MUX_ACTIVE		BIT(1)
    107#define EMC_DBG_FORCE_UPDATE			BIT(2)
    108#define EMC_DBG_READ_DQM_CTRL			BIT(9)
    109#define EMC_DBG_CFG_PRIORITY			BIT(24)
    110
    111#define EMC_FBIO_CFG5_DRAM_WIDTH_X16		BIT(4)
    112#define EMC_FBIO_CFG5_DRAM_TYPE			GENMASK(1, 0)
    113
    114#define EMC_MRR_DEV_SELECTN			GENMASK(31, 30)
    115#define EMC_MRR_MRR_MA				GENMASK(23, 16)
    116#define EMC_MRR_MRR_DATA			GENMASK(15, 0)
    117
    118#define EMC_ADR_CFG_0_EMEM_NUMDEV		GENMASK(25, 24)
    119
    120#define EMC_PWR_GATHER_CLEAR			(1 << 8)
    121#define EMC_PWR_GATHER_DISABLE			(2 << 8)
    122#define EMC_PWR_GATHER_ENABLE			(3 << 8)
    123
    124enum emc_dram_type {
    125	DRAM_TYPE_RESERVED,
    126	DRAM_TYPE_DDR1,
    127	DRAM_TYPE_LPDDR2,
    128	DRAM_TYPE_DDR2,
    129};
    130
    131static const u16 emc_timing_registers[] = {
    132	EMC_RC,
    133	EMC_RFC,
    134	EMC_RAS,
    135	EMC_RP,
    136	EMC_R2W,
    137	EMC_W2R,
    138	EMC_R2P,
    139	EMC_W2P,
    140	EMC_RD_RCD,
    141	EMC_WR_RCD,
    142	EMC_RRD,
    143	EMC_REXT,
    144	EMC_WDV,
    145	EMC_QUSE,
    146	EMC_QRST,
    147	EMC_QSAFE,
    148	EMC_RDV,
    149	EMC_REFRESH,
    150	EMC_BURST_REFRESH_NUM,
    151	EMC_PDEX2WR,
    152	EMC_PDEX2RD,
    153	EMC_PCHG2PDEN,
    154	EMC_ACT2PDEN,
    155	EMC_AR2PDEN,
    156	EMC_RW2PDEN,
    157	EMC_TXSR,
    158	EMC_TCKE,
    159	EMC_TFAW,
    160	EMC_TRPAB,
    161	EMC_TCLKSTABLE,
    162	EMC_TCLKSTOP,
    163	EMC_TREFBW,
    164	EMC_QUSE_EXTRA,
    165	EMC_FBIO_CFG6,
    166	EMC_ODT_WRITE,
    167	EMC_ODT_READ,
    168	EMC_FBIO_CFG5,
    169	EMC_CFG_DIG_DLL,
    170	EMC_DLL_XFORM_DQS,
    171	EMC_DLL_XFORM_QUSE,
    172	EMC_ZCAL_REF_CNT,
    173	EMC_ZCAL_WAIT_CNT,
    174	EMC_AUTO_CAL_INTERVAL,
    175	EMC_CFG_CLKTRIM_0,
    176	EMC_CFG_CLKTRIM_1,
    177	EMC_CFG_CLKTRIM_2,
    178};
    179
    180struct emc_timing {
    181	unsigned long rate;
    182	u32 data[ARRAY_SIZE(emc_timing_registers)];
    183};
    184
    185enum emc_rate_request_type {
    186	EMC_RATE_DEVFREQ,
    187	EMC_RATE_DEBUG,
    188	EMC_RATE_ICC,
    189	EMC_RATE_TYPE_MAX,
    190};
    191
    192struct emc_rate_request {
    193	unsigned long min_rate;
    194	unsigned long max_rate;
    195};
    196
    197struct tegra_emc {
    198	struct device *dev;
    199	struct tegra_mc *mc;
    200	struct icc_provider provider;
    201	struct notifier_block clk_nb;
    202	struct clk *clk;
    203	void __iomem *regs;
    204	unsigned int dram_bus_width;
    205
    206	struct emc_timing *timings;
    207	unsigned int num_timings;
    208
    209	struct {
    210		struct dentry *root;
    211		unsigned long min_rate;
    212		unsigned long max_rate;
    213	} debugfs;
    214
    215	/*
    216	 * There are multiple sources in the EMC driver which could request
    217	 * a min/max clock rate, these rates are contained in this array.
    218	 */
    219	struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
    220
    221	/* protect shared rate-change code path */
    222	struct mutex rate_lock;
    223
    224	struct devfreq_simple_ondemand_data ondemand_data;
    225
    226	/* memory chip identity information */
    227	union lpddr2_basic_config4 basic_conf4;
    228	unsigned int manufacturer_id;
    229	unsigned int revision_id1;
    230	unsigned int revision_id2;
    231
    232	bool mrr_error;
    233};
    234
    235static irqreturn_t tegra_emc_isr(int irq, void *data)
    236{
    237	struct tegra_emc *emc = data;
    238	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
    239	u32 status;
    240
    241	status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
    242	if (!status)
    243		return IRQ_NONE;
    244
    245	/* notify about HW problem */
    246	if (status & EMC_REFRESH_OVERFLOW_INT)
    247		dev_err_ratelimited(emc->dev,
    248				    "refresh request overflow timeout\n");
    249
    250	/* clear interrupts */
    251	writel_relaxed(status, emc->regs + EMC_INTSTATUS);
    252
    253	return IRQ_HANDLED;
    254}
    255
    256static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
    257						unsigned long rate)
    258{
    259	struct emc_timing *timing = NULL;
    260	unsigned int i;
    261
    262	for (i = 0; i < emc->num_timings; i++) {
    263		if (emc->timings[i].rate >= rate) {
    264			timing = &emc->timings[i];
    265			break;
    266		}
    267	}
    268
    269	if (!timing) {
    270		dev_err(emc->dev, "no timing for rate %lu\n", rate);
    271		return NULL;
    272	}
    273
    274	return timing;
    275}
    276
    277static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
    278{
    279	struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
    280	unsigned int i;
    281
    282	if (!timing)
    283		return -EINVAL;
    284
    285	dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
    286		__func__, timing->rate, rate);
    287
    288	/* program shadow registers */
    289	for (i = 0; i < ARRAY_SIZE(timing->data); i++)
    290		writel_relaxed(timing->data[i],
    291			       emc->regs + emc_timing_registers[i]);
    292
    293	/* wait until programming has settled */
    294	readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
    295
    296	return 0;
    297}
    298
    299static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
    300{
    301	int err;
    302	u32 v;
    303
    304	dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
    305
    306	if (flush) {
    307		/* manually initiate memory timing update */
    308		writel_relaxed(EMC_TIMING_UPDATE,
    309			       emc->regs + EMC_TIMING_CONTROL);
    310		return 0;
    311	}
    312
    313	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
    314						v & EMC_CLKCHANGE_COMPLETE_INT,
    315						1, 100);
    316	if (err) {
    317		dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
    318		return err;
    319	}
    320
    321	return 0;
    322}
    323
    324static int tegra_emc_clk_change_notify(struct notifier_block *nb,
    325				       unsigned long msg, void *data)
    326{
    327	struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
    328	struct clk_notifier_data *cnd = data;
    329	int err;
    330
    331	switch (msg) {
    332	case PRE_RATE_CHANGE:
    333		err = emc_prepare_timing_change(emc, cnd->new_rate);
    334		break;
    335
    336	case ABORT_RATE_CHANGE:
    337		err = emc_prepare_timing_change(emc, cnd->old_rate);
    338		if (err)
    339			break;
    340
    341		err = emc_complete_timing_change(emc, true);
    342		break;
    343
    344	case POST_RATE_CHANGE:
    345		err = emc_complete_timing_change(emc, false);
    346		break;
    347
    348	default:
    349		return NOTIFY_DONE;
    350	}
    351
    352	return notifier_from_errno(err);
    353}
    354
    355static int load_one_timing_from_dt(struct tegra_emc *emc,
    356				   struct emc_timing *timing,
    357				   struct device_node *node)
    358{
    359	u32 rate;
    360	int err;
    361
    362	if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
    363		dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
    364		return -EINVAL;
    365	}
    366
    367	err = of_property_read_u32(node, "clock-frequency", &rate);
    368	if (err) {
    369		dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
    370			node, err);
    371		return err;
    372	}
    373
    374	err = of_property_read_u32_array(node, "nvidia,emc-registers",
    375					 timing->data,
    376					 ARRAY_SIZE(emc_timing_registers));
    377	if (err) {
    378		dev_err(emc->dev,
    379			"timing %pOF: failed to read emc timing data: %d\n",
    380			node, err);
    381		return err;
    382	}
    383
    384	/*
    385	 * The EMC clock rate is twice the bus rate, and the bus rate is
    386	 * measured in kHz.
    387	 */
    388	timing->rate = rate * 2 * 1000;
    389
    390	dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
    391		__func__, node, timing->rate);
    392
    393	return 0;
    394}
    395
    396static int cmp_timings(const void *_a, const void *_b)
    397{
    398	const struct emc_timing *a = _a;
    399	const struct emc_timing *b = _b;
    400
    401	if (a->rate < b->rate)
    402		return -1;
    403
    404	if (a->rate > b->rate)
    405		return 1;
    406
    407	return 0;
    408}
    409
    410static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
    411					  struct device_node *node)
    412{
    413	struct device_node *child;
    414	struct emc_timing *timing;
    415	int child_count;
    416	int err;
    417
    418	child_count = of_get_child_count(node);
    419	if (!child_count) {
    420		dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
    421		return -EINVAL;
    422	}
    423
    424	emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
    425				    GFP_KERNEL);
    426	if (!emc->timings)
    427		return -ENOMEM;
    428
    429	timing = emc->timings;
    430
    431	for_each_child_of_node(node, child) {
    432		if (of_node_name_eq(child, "lpddr2"))
    433			continue;
    434
    435		err = load_one_timing_from_dt(emc, timing++, child);
    436		if (err) {
    437			of_node_put(child);
    438			return err;
    439		}
    440
    441		emc->num_timings++;
    442	}
    443
    444	sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
    445	     NULL);
    446
    447	dev_info_once(emc->dev,
    448		      "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
    449		      emc->num_timings,
    450		      tegra_read_ram_code(),
    451		      emc->timings[0].rate / 1000000,
    452		      emc->timings[emc->num_timings - 1].rate / 1000000);
    453
    454	return 0;
    455}
    456
    457static struct device_node *
    458tegra_emc_find_node_by_ram_code(struct tegra_emc *emc)
    459{
    460	struct device *dev = emc->dev;
    461	struct device_node *np;
    462	u32 value, ram_code;
    463	int err;
    464
    465	if (emc->mrr_error) {
    466		dev_warn(dev, "memory timings skipped due to MRR error\n");
    467		return NULL;
    468	}
    469
    470	if (of_get_child_count(dev->of_node) == 0) {
    471		dev_info_once(dev, "device-tree doesn't have memory timings\n");
    472		return NULL;
    473	}
    474
    475	if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
    476		return of_node_get(dev->of_node);
    477
    478	ram_code = tegra_read_ram_code();
    479
    480	for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
    481	     np = of_find_node_by_name(np, "emc-tables")) {
    482		err = of_property_read_u32(np, "nvidia,ram-code", &value);
    483		if (err || value != ram_code) {
    484			struct device_node *lpddr2_np;
    485			bool cfg_mismatches = false;
    486
    487			lpddr2_np = of_find_node_by_name(np, "lpddr2");
    488			if (lpddr2_np) {
    489				const struct lpddr2_info *info;
    490
    491				info = of_lpddr2_get_info(lpddr2_np, dev);
    492				if (info) {
    493					if (info->manufacturer_id >= 0 &&
    494					    info->manufacturer_id != emc->manufacturer_id)
    495						cfg_mismatches = true;
    496
    497					if (info->revision_id1 >= 0 &&
    498					    info->revision_id1 != emc->revision_id1)
    499						cfg_mismatches = true;
    500
    501					if (info->revision_id2 >= 0 &&
    502					    info->revision_id2 != emc->revision_id2)
    503						cfg_mismatches = true;
    504
    505					if (info->density != emc->basic_conf4.density)
    506						cfg_mismatches = true;
    507
    508					if (info->io_width != emc->basic_conf4.io_width)
    509						cfg_mismatches = true;
    510
    511					if (info->arch_type != emc->basic_conf4.arch_type)
    512						cfg_mismatches = true;
    513				} else {
    514					dev_err(dev, "failed to parse %pOF\n", lpddr2_np);
    515					cfg_mismatches = true;
    516				}
    517
    518				of_node_put(lpddr2_np);
    519			} else {
    520				cfg_mismatches = true;
    521			}
    522
    523			if (cfg_mismatches) {
    524				of_node_put(np);
    525				continue;
    526			}
    527		}
    528
    529		return np;
    530	}
    531
    532	dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
    533		ram_code);
    534
    535	return NULL;
    536}
    537
    538static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
    539					unsigned int emem_dev,
    540					unsigned int register_addr,
    541					unsigned int *register_data)
    542{
    543	u32 memory_dev = emem_dev ? 1 : 2;
    544	u32 val, mr_mask = 0xff;
    545	int err;
    546
    547	/* clear data-valid interrupt status */
    548	writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
    549
    550	/* issue mode register read request */
    551	val  = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
    552	val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
    553
    554	writel_relaxed(val, emc->regs + EMC_MRR);
    555
    556	/* wait for the LPDDR2 data-valid interrupt */
    557	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
    558						val & EMC_MRR_DIVLD_INT,
    559						1, 100);
    560	if (err) {
    561		dev_err(emc->dev, "mode register %u read failed: %d\n",
    562			register_addr, err);
    563		emc->mrr_error = true;
    564		return err;
    565	}
    566
    567	/* read out mode register data */
    568	val = readl_relaxed(emc->regs + EMC_MRR);
    569	*register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
    570
    571	return 0;
    572}
    573
    574static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
    575				      unsigned int emem_dev,
    576				      bool print_out)
    577{
    578	/* these registers are standard for all LPDDR JEDEC memory chips */
    579	emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id);
    580	emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1);
    581	emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2);
    582	emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value);
    583
    584	if (!print_out)
    585		return;
    586
    587	dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
    588		 emem_dev, emc->manufacturer_id,
    589		 lpddr2_jedec_manufacturer(emc->manufacturer_id),
    590		 emc->revision_id1, emc->revision_id2,
    591		 4 >> emc->basic_conf4.arch_type,
    592		 64 << emc->basic_conf4.density,
    593		 32 >> emc->basic_conf4.io_width);
    594}
    595
    596static int emc_setup_hw(struct tegra_emc *emc)
    597{
    598	u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg;
    599	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
    600	static bool print_sdram_info_once;
    601	enum emc_dram_type dram_type;
    602	const char *dram_type_str;
    603	unsigned int emem_numdev;
    604
    605	emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
    606
    607	/*
    608	 * Depending on a memory type, DRAM should enter either self-refresh
    609	 * or power-down state on EMC clock change.
    610	 */
    611	if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
    612	    !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
    613		dev_err(emc->dev,
    614			"bootloader didn't specify DRAM auto-suspend mode\n");
    615		return -EINVAL;
    616	}
    617
    618	/* enable EMC and CAR to handshake on PLL divider/source changes */
    619	emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
    620	writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
    621
    622	/* initialize interrupt */
    623	writel_relaxed(intmask, emc->regs + EMC_INTMASK);
    624	writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
    625
    626	/* ensure that unwanted debug features are disabled */
    627	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
    628	emc_dbg |= EMC_DBG_CFG_PRIORITY;
    629	emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
    630	emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
    631	emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
    632	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
    633
    634	emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
    635
    636	if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
    637		emc->dram_bus_width = 16;
    638	else
    639		emc->dram_bus_width = 32;
    640
    641	dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio);
    642
    643	switch (dram_type) {
    644	case DRAM_TYPE_RESERVED:
    645		dram_type_str = "INVALID";
    646		break;
    647	case DRAM_TYPE_DDR1:
    648		dram_type_str = "DDR1";
    649		break;
    650	case DRAM_TYPE_LPDDR2:
    651		dram_type_str = "LPDDR2";
    652		break;
    653	case DRAM_TYPE_DDR2:
    654		dram_type_str = "DDR2";
    655		break;
    656	}
    657
    658	emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0);
    659	emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1;
    660
    661	dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n",
    662		      emc->dram_bus_width, emem_numdev, dram_type_str,
    663		      emem_numdev == 2 ? "devices" : "device");
    664
    665	if (dram_type == DRAM_TYPE_LPDDR2) {
    666		while (emem_numdev--)
    667			emc_read_lpddr_sdram_info(emc, emem_numdev,
    668						  !print_sdram_info_once);
    669		print_sdram_info_once = true;
    670	}
    671
    672	return 0;
    673}
    674
    675static long emc_round_rate(unsigned long rate,
    676			   unsigned long min_rate,
    677			   unsigned long max_rate,
    678			   void *arg)
    679{
    680	struct emc_timing *timing = NULL;
    681	struct tegra_emc *emc = arg;
    682	unsigned int i;
    683
    684	if (!emc->num_timings)
    685		return clk_get_rate(emc->clk);
    686
    687	min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
    688
    689	for (i = 0; i < emc->num_timings; i++) {
    690		if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
    691			continue;
    692
    693		if (emc->timings[i].rate > max_rate) {
    694			i = max(i, 1u) - 1;
    695
    696			if (emc->timings[i].rate < min_rate)
    697				break;
    698		}
    699
    700		if (emc->timings[i].rate < min_rate)
    701			continue;
    702
    703		timing = &emc->timings[i];
    704		break;
    705	}
    706
    707	if (!timing) {
    708		dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
    709			rate, min_rate, max_rate);
    710		return -EINVAL;
    711	}
    712
    713	return timing->rate;
    714}
    715
    716static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
    717{
    718	unsigned int i;
    719
    720	for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
    721		emc->requested_rate[i].min_rate = 0;
    722		emc->requested_rate[i].max_rate = ULONG_MAX;
    723	}
    724}
    725
    726static int emc_request_rate(struct tegra_emc *emc,
    727			    unsigned long new_min_rate,
    728			    unsigned long new_max_rate,
    729			    enum emc_rate_request_type type)
    730{
    731	struct emc_rate_request *req = emc->requested_rate;
    732	unsigned long min_rate = 0, max_rate = ULONG_MAX;
    733	unsigned int i;
    734	int err;
    735
    736	/* select minimum and maximum rates among the requested rates */
    737	for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
    738		if (i == type) {
    739			min_rate = max(new_min_rate, min_rate);
    740			max_rate = min(new_max_rate, max_rate);
    741		} else {
    742			min_rate = max(req->min_rate, min_rate);
    743			max_rate = min(req->max_rate, max_rate);
    744		}
    745	}
    746
    747	if (min_rate > max_rate) {
    748		dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
    749				    __func__, type, min_rate, max_rate);
    750		return -ERANGE;
    751	}
    752
    753	/*
    754	 * EMC rate-changes should go via OPP API because it manages voltage
    755	 * changes.
    756	 */
    757	err = dev_pm_opp_set_rate(emc->dev, min_rate);
    758	if (err)
    759		return err;
    760
    761	emc->requested_rate[type].min_rate = new_min_rate;
    762	emc->requested_rate[type].max_rate = new_max_rate;
    763
    764	return 0;
    765}
    766
    767static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
    768			    enum emc_rate_request_type type)
    769{
    770	struct emc_rate_request *req = &emc->requested_rate[type];
    771	int ret;
    772
    773	mutex_lock(&emc->rate_lock);
    774	ret = emc_request_rate(emc, rate, req->max_rate, type);
    775	mutex_unlock(&emc->rate_lock);
    776
    777	return ret;
    778}
    779
    780static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
    781			    enum emc_rate_request_type type)
    782{
    783	struct emc_rate_request *req = &emc->requested_rate[type];
    784	int ret;
    785
    786	mutex_lock(&emc->rate_lock);
    787	ret = emc_request_rate(emc, req->min_rate, rate, type);
    788	mutex_unlock(&emc->rate_lock);
    789
    790	return ret;
    791}
    792
    793/*
    794 * debugfs interface
    795 *
    796 * The memory controller driver exposes some files in debugfs that can be used
    797 * to control the EMC frequency. The top-level directory can be found here:
    798 *
    799 *   /sys/kernel/debug/emc
    800 *
    801 * It contains the following files:
    802 *
    803 *   - available_rates: This file contains a list of valid, space-separated
    804 *     EMC frequencies.
    805 *
    806 *   - min_rate: Writing a value to this file sets the given frequency as the
    807 *       floor of the permitted range. If this is higher than the currently
    808 *       configured EMC frequency, this will cause the frequency to be
    809 *       increased so that it stays within the valid range.
    810 *
    811 *   - max_rate: Similarily to the min_rate file, writing a value to this file
    812 *       sets the given frequency as the ceiling of the permitted range. If
    813 *       the value is lower than the currently configured EMC frequency, this
    814 *       will cause the frequency to be decreased so that it stays within the
    815 *       valid range.
    816 */
    817
    818static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
    819{
    820	unsigned int i;
    821
    822	for (i = 0; i < emc->num_timings; i++)
    823		if (rate == emc->timings[i].rate)
    824			return true;
    825
    826	return false;
    827}
    828
    829static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
    830{
    831	struct tegra_emc *emc = s->private;
    832	const char *prefix = "";
    833	unsigned int i;
    834
    835	for (i = 0; i < emc->num_timings; i++) {
    836		seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
    837		prefix = " ";
    838	}
    839
    840	seq_puts(s, "\n");
    841
    842	return 0;
    843}
    844
    845static int tegra_emc_debug_available_rates_open(struct inode *inode,
    846						struct file *file)
    847{
    848	return single_open(file, tegra_emc_debug_available_rates_show,
    849			   inode->i_private);
    850}
    851
    852static const struct file_operations tegra_emc_debug_available_rates_fops = {
    853	.open = tegra_emc_debug_available_rates_open,
    854	.read = seq_read,
    855	.llseek = seq_lseek,
    856	.release = single_release,
    857};
    858
    859static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
    860{
    861	struct tegra_emc *emc = data;
    862
    863	*rate = emc->debugfs.min_rate;
    864
    865	return 0;
    866}
    867
    868static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
    869{
    870	struct tegra_emc *emc = data;
    871	int err;
    872
    873	if (!tegra_emc_validate_rate(emc, rate))
    874		return -EINVAL;
    875
    876	err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
    877	if (err < 0)
    878		return err;
    879
    880	emc->debugfs.min_rate = rate;
    881
    882	return 0;
    883}
    884
    885DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
    886			tegra_emc_debug_min_rate_get,
    887			tegra_emc_debug_min_rate_set, "%llu\n");
    888
    889static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
    890{
    891	struct tegra_emc *emc = data;
    892
    893	*rate = emc->debugfs.max_rate;
    894
    895	return 0;
    896}
    897
    898static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
    899{
    900	struct tegra_emc *emc = data;
    901	int err;
    902
    903	if (!tegra_emc_validate_rate(emc, rate))
    904		return -EINVAL;
    905
    906	err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
    907	if (err < 0)
    908		return err;
    909
    910	emc->debugfs.max_rate = rate;
    911
    912	return 0;
    913}
    914
    915DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
    916			tegra_emc_debug_max_rate_get,
    917			tegra_emc_debug_max_rate_set, "%llu\n");
    918
    919static void tegra_emc_debugfs_init(struct tegra_emc *emc)
    920{
    921	struct device *dev = emc->dev;
    922	unsigned int i;
    923	int err;
    924
    925	emc->debugfs.min_rate = ULONG_MAX;
    926	emc->debugfs.max_rate = 0;
    927
    928	for (i = 0; i < emc->num_timings; i++) {
    929		if (emc->timings[i].rate < emc->debugfs.min_rate)
    930			emc->debugfs.min_rate = emc->timings[i].rate;
    931
    932		if (emc->timings[i].rate > emc->debugfs.max_rate)
    933			emc->debugfs.max_rate = emc->timings[i].rate;
    934	}
    935
    936	if (!emc->num_timings) {
    937		emc->debugfs.min_rate = clk_get_rate(emc->clk);
    938		emc->debugfs.max_rate = emc->debugfs.min_rate;
    939	}
    940
    941	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
    942				 emc->debugfs.max_rate);
    943	if (err < 0) {
    944		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
    945			emc->debugfs.min_rate, emc->debugfs.max_rate,
    946			emc->clk);
    947	}
    948
    949	emc->debugfs.root = debugfs_create_dir("emc", NULL);
    950
    951	debugfs_create_file("available_rates", 0444, emc->debugfs.root,
    952			    emc, &tegra_emc_debug_available_rates_fops);
    953	debugfs_create_file("min_rate", 0644, emc->debugfs.root,
    954			    emc, &tegra_emc_debug_min_rate_fops);
    955	debugfs_create_file("max_rate", 0644, emc->debugfs.root,
    956			    emc, &tegra_emc_debug_max_rate_fops);
    957}
    958
    959static inline struct tegra_emc *
    960to_tegra_emc_provider(struct icc_provider *provider)
    961{
    962	return container_of(provider, struct tegra_emc, provider);
    963}
    964
    965static struct icc_node_data *
    966emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
    967{
    968	struct icc_provider *provider = data;
    969	struct icc_node_data *ndata;
    970	struct icc_node *node;
    971
    972	/* External Memory is the only possible ICC route */
    973	list_for_each_entry(node, &provider->nodes, node_list) {
    974		if (node->id != TEGRA_ICC_EMEM)
    975			continue;
    976
    977		ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
    978		if (!ndata)
    979			return ERR_PTR(-ENOMEM);
    980
    981		/*
    982		 * SRC and DST nodes should have matching TAG in order to have
    983		 * it set by default for a requested path.
    984		 */
    985		ndata->tag = TEGRA_MC_ICC_TAG_ISO;
    986		ndata->node = node;
    987
    988		return ndata;
    989	}
    990
    991	return ERR_PTR(-EPROBE_DEFER);
    992}
    993
    994static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
    995{
    996	struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
    997	unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
    998	unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
    999	unsigned long long rate = max(avg_bw, peak_bw);
   1000	unsigned int dram_data_bus_width_bytes;
   1001	int err;
   1002
   1003	/*
   1004	 * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
   1005	 * is sampled on both clock edges.  This means that EMC clock rate
   1006	 * equals to the peak data-rate.
   1007	 */
   1008	dram_data_bus_width_bytes = emc->dram_bus_width / 8;
   1009	do_div(rate, dram_data_bus_width_bytes);
   1010	rate = min_t(u64, rate, U32_MAX);
   1011
   1012	err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
   1013	if (err)
   1014		return err;
   1015
   1016	return 0;
   1017}
   1018
   1019static int tegra_emc_interconnect_init(struct tegra_emc *emc)
   1020{
   1021	const struct tegra_mc_soc *soc;
   1022	struct icc_node *node;
   1023	int err;
   1024
   1025	emc->mc = devm_tegra_memory_controller_get(emc->dev);
   1026	if (IS_ERR(emc->mc))
   1027		return PTR_ERR(emc->mc);
   1028
   1029	soc = emc->mc->soc;
   1030
   1031	emc->provider.dev = emc->dev;
   1032	emc->provider.set = emc_icc_set;
   1033	emc->provider.data = &emc->provider;
   1034	emc->provider.aggregate = soc->icc_ops->aggregate;
   1035	emc->provider.xlate_extended = emc_of_icc_xlate_extended;
   1036
   1037	err = icc_provider_add(&emc->provider);
   1038	if (err)
   1039		goto err_msg;
   1040
   1041	/* create External Memory Controller node */
   1042	node = icc_node_create(TEGRA_ICC_EMC);
   1043	if (IS_ERR(node)) {
   1044		err = PTR_ERR(node);
   1045		goto del_provider;
   1046	}
   1047
   1048	node->name = "External Memory Controller";
   1049	icc_node_add(node, &emc->provider);
   1050
   1051	/* link External Memory Controller to External Memory (DRAM) */
   1052	err = icc_link_create(node, TEGRA_ICC_EMEM);
   1053	if (err)
   1054		goto remove_nodes;
   1055
   1056	/* create External Memory node */
   1057	node = icc_node_create(TEGRA_ICC_EMEM);
   1058	if (IS_ERR(node)) {
   1059		err = PTR_ERR(node);
   1060		goto remove_nodes;
   1061	}
   1062
   1063	node->name = "External Memory (DRAM)";
   1064	icc_node_add(node, &emc->provider);
   1065
   1066	return 0;
   1067
   1068remove_nodes:
   1069	icc_nodes_remove(&emc->provider);
   1070del_provider:
   1071	icc_provider_del(&emc->provider);
   1072err_msg:
   1073	dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
   1074
   1075	return err;
   1076}
   1077
   1078static void devm_tegra_emc_unset_callback(void *data)
   1079{
   1080	tegra20_clk_set_emc_round_callback(NULL, NULL);
   1081}
   1082
   1083static void devm_tegra_emc_unreg_clk_notifier(void *data)
   1084{
   1085	struct tegra_emc *emc = data;
   1086
   1087	clk_notifier_unregister(emc->clk, &emc->clk_nb);
   1088}
   1089
   1090static int tegra_emc_init_clk(struct tegra_emc *emc)
   1091{
   1092	int err;
   1093
   1094	tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
   1095
   1096	err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
   1097				       NULL);
   1098	if (err)
   1099		return err;
   1100
   1101	emc->clk = devm_clk_get(emc->dev, NULL);
   1102	if (IS_ERR(emc->clk)) {
   1103		dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
   1104		return PTR_ERR(emc->clk);
   1105	}
   1106
   1107	err = clk_notifier_register(emc->clk, &emc->clk_nb);
   1108	if (err) {
   1109		dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
   1110		return err;
   1111	}
   1112
   1113	err = devm_add_action_or_reset(emc->dev,
   1114				       devm_tegra_emc_unreg_clk_notifier, emc);
   1115	if (err)
   1116		return err;
   1117
   1118	return 0;
   1119}
   1120
   1121static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
   1122				    u32 flags)
   1123{
   1124	struct tegra_emc *emc = dev_get_drvdata(dev);
   1125	struct dev_pm_opp *opp;
   1126	unsigned long rate;
   1127
   1128	opp = devfreq_recommended_opp(dev, freq, flags);
   1129	if (IS_ERR(opp)) {
   1130		dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
   1131		return PTR_ERR(opp);
   1132	}
   1133
   1134	rate = dev_pm_opp_get_freq(opp);
   1135	dev_pm_opp_put(opp);
   1136
   1137	return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
   1138}
   1139
   1140static int tegra_emc_devfreq_get_dev_status(struct device *dev,
   1141					    struct devfreq_dev_status *stat)
   1142{
   1143	struct tegra_emc *emc = dev_get_drvdata(dev);
   1144
   1145	/* freeze counters */
   1146	writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
   1147
   1148	/*
   1149	 *  busy_time: number of clocks EMC request was accepted
   1150	 * total_time: number of clocks PWR_GATHER control was set to ENABLE
   1151	 */
   1152	stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
   1153	stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
   1154	stat->current_frequency = clk_get_rate(emc->clk);
   1155
   1156	/* clear counters and restart */
   1157	writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
   1158	writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
   1159
   1160	return 0;
   1161}
   1162
   1163static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
   1164	.polling_ms = 30,
   1165	.target = tegra_emc_devfreq_target,
   1166	.get_dev_status = tegra_emc_devfreq_get_dev_status,
   1167};
   1168
   1169static int tegra_emc_devfreq_init(struct tegra_emc *emc)
   1170{
   1171	struct devfreq *devfreq;
   1172
   1173	/*
   1174	 * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
   1175	 * should be less than 50.  Secondly, multiple active memory clients
   1176	 * may cause over 20% of lost clock cycles due to stalls caused by
   1177	 * competing memory accesses.  This means that threshold should be
   1178	 * set to a less than 30 in order to have a properly working governor.
   1179	 */
   1180	emc->ondemand_data.upthreshold = 20;
   1181
   1182	/*
   1183	 * Reset statistic gathers state, select global bandwidth for the
   1184	 * statistics collection mode and set clocks counter saturation
   1185	 * limit to maximum.
   1186	 */
   1187	writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
   1188	writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
   1189	writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
   1190
   1191	devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
   1192					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
   1193					  &emc->ondemand_data);
   1194	if (IS_ERR(devfreq)) {
   1195		dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
   1196		return PTR_ERR(devfreq);
   1197	}
   1198
   1199	return 0;
   1200}
   1201
   1202static int tegra_emc_probe(struct platform_device *pdev)
   1203{
   1204	struct tegra_core_opp_params opp_params = {};
   1205	struct device_node *np;
   1206	struct tegra_emc *emc;
   1207	int irq, err;
   1208
   1209	irq = platform_get_irq(pdev, 0);
   1210	if (irq < 0) {
   1211		dev_err(&pdev->dev, "please update your device tree\n");
   1212		return irq;
   1213	}
   1214
   1215	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
   1216	if (!emc)
   1217		return -ENOMEM;
   1218
   1219	mutex_init(&emc->rate_lock);
   1220	emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
   1221	emc->dev = &pdev->dev;
   1222
   1223	emc->regs = devm_platform_ioremap_resource(pdev, 0);
   1224	if (IS_ERR(emc->regs))
   1225		return PTR_ERR(emc->regs);
   1226
   1227	err = emc_setup_hw(emc);
   1228	if (err)
   1229		return err;
   1230
   1231	np = tegra_emc_find_node_by_ram_code(emc);
   1232	if (np) {
   1233		err = tegra_emc_load_timings_from_dt(emc, np);
   1234		of_node_put(np);
   1235		if (err)
   1236			return err;
   1237	}
   1238
   1239	err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
   1240			       dev_name(&pdev->dev), emc);
   1241	if (err) {
   1242		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
   1243		return err;
   1244	}
   1245
   1246	err = tegra_emc_init_clk(emc);
   1247	if (err)
   1248		return err;
   1249
   1250	opp_params.init_state = true;
   1251
   1252	err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
   1253	if (err)
   1254		return err;
   1255
   1256	platform_set_drvdata(pdev, emc);
   1257	tegra_emc_rate_requests_init(emc);
   1258	tegra_emc_debugfs_init(emc);
   1259	tegra_emc_interconnect_init(emc);
   1260	tegra_emc_devfreq_init(emc);
   1261
   1262	/*
   1263	 * Don't allow the kernel module to be unloaded. Unloading adds some
   1264	 * extra complexity which doesn't really worth the effort in a case of
   1265	 * this driver.
   1266	 */
   1267	try_module_get(THIS_MODULE);
   1268
   1269	return 0;
   1270}
   1271
   1272static const struct of_device_id tegra_emc_of_match[] = {
   1273	{ .compatible = "nvidia,tegra20-emc", },
   1274	{},
   1275};
   1276MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
   1277
   1278static struct platform_driver tegra_emc_driver = {
   1279	.probe = tegra_emc_probe,
   1280	.driver = {
   1281		.name = "tegra20-emc",
   1282		.of_match_table = tegra_emc_of_match,
   1283		.suppress_bind_attrs = true,
   1284		.sync_state = icc_sync_state,
   1285	},
   1286};
   1287module_platform_driver(tegra_emc_driver);
   1288
   1289MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
   1290MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
   1291MODULE_SOFTDEP("pre: governor_simpleondemand");
   1292MODULE_LICENSE("GPL v2");