cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tegra30-emc.c (44585B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Tegra30 External Memory Controller driver
      4 *
      5 * Based on downstream driver from NVIDIA and tegra124-emc.c
      6 * Copyright (C) 2011-2014 NVIDIA Corporation
      7 *
      8 * Author: Dmitry Osipenko <digetx@gmail.com>
      9 * Copyright (C) 2019 GRATE-DRIVER project
     10 */
     11
     12#include <linux/bitfield.h>
     13#include <linux/clk.h>
     14#include <linux/clk/tegra.h>
     15#include <linux/debugfs.h>
     16#include <linux/delay.h>
     17#include <linux/err.h>
     18#include <linux/interconnect-provider.h>
     19#include <linux/interrupt.h>
     20#include <linux/io.h>
     21#include <linux/iopoll.h>
     22#include <linux/kernel.h>
     23#include <linux/module.h>
     24#include <linux/mutex.h>
     25#include <linux/of_platform.h>
     26#include <linux/platform_device.h>
     27#include <linux/pm_opp.h>
     28#include <linux/slab.h>
     29#include <linux/sort.h>
     30#include <linux/types.h>
     31
     32#include <soc/tegra/common.h>
     33#include <soc/tegra/fuse.h>
     34
     35#include "../jedec_ddr.h"
     36#include "../of_memory.h"
     37
     38#include "mc.h"
     39
     40#define EMC_INTSTATUS				0x000
     41#define EMC_INTMASK				0x004
     42#define EMC_DBG					0x008
     43#define EMC_ADR_CFG				0x010
     44#define EMC_CFG					0x00c
     45#define EMC_REFCTRL				0x020
     46#define EMC_TIMING_CONTROL			0x028
     47#define EMC_RC					0x02c
     48#define EMC_RFC					0x030
     49#define EMC_RAS					0x034
     50#define EMC_RP					0x038
     51#define EMC_R2W					0x03c
     52#define EMC_W2R					0x040
     53#define EMC_R2P					0x044
     54#define EMC_W2P					0x048
     55#define EMC_RD_RCD				0x04c
     56#define EMC_WR_RCD				0x050
     57#define EMC_RRD					0x054
     58#define EMC_REXT				0x058
     59#define EMC_WDV					0x05c
     60#define EMC_QUSE				0x060
     61#define EMC_QRST				0x064
     62#define EMC_QSAFE				0x068
     63#define EMC_RDV					0x06c
     64#define EMC_REFRESH				0x070
     65#define EMC_BURST_REFRESH_NUM			0x074
     66#define EMC_PDEX2WR				0x078
     67#define EMC_PDEX2RD				0x07c
     68#define EMC_PCHG2PDEN				0x080
     69#define EMC_ACT2PDEN				0x084
     70#define EMC_AR2PDEN				0x088
     71#define EMC_RW2PDEN				0x08c
     72#define EMC_TXSR				0x090
     73#define EMC_TCKE				0x094
     74#define EMC_TFAW				0x098
     75#define EMC_TRPAB				0x09c
     76#define EMC_TCLKSTABLE				0x0a0
     77#define EMC_TCLKSTOP				0x0a4
     78#define EMC_TREFBW				0x0a8
     79#define EMC_QUSE_EXTRA				0x0ac
     80#define EMC_ODT_WRITE				0x0b0
     81#define EMC_ODT_READ				0x0b4
     82#define EMC_WEXT				0x0b8
     83#define EMC_CTT					0x0bc
     84#define EMC_MRS_WAIT_CNT			0x0c8
     85#define EMC_MRS					0x0cc
     86#define EMC_EMRS				0x0d0
     87#define EMC_SELF_REF				0x0e0
     88#define EMC_MRW					0x0e8
     89#define EMC_MRR					0x0ec
     90#define EMC_XM2DQSPADCTRL3			0x0f8
     91#define EMC_FBIO_SPARE				0x100
     92#define EMC_FBIO_CFG5				0x104
     93#define EMC_FBIO_CFG6				0x114
     94#define EMC_CFG_RSV				0x120
     95#define EMC_AUTO_CAL_CONFIG			0x2a4
     96#define EMC_AUTO_CAL_INTERVAL			0x2a8
     97#define EMC_AUTO_CAL_STATUS			0x2ac
     98#define EMC_STATUS				0x2b4
     99#define EMC_CFG_2				0x2b8
    100#define EMC_CFG_DIG_DLL				0x2bc
    101#define EMC_CFG_DIG_DLL_PERIOD			0x2c0
    102#define EMC_CTT_DURATION			0x2d8
    103#define EMC_CTT_TERM_CTRL			0x2dc
    104#define EMC_ZCAL_INTERVAL			0x2e0
    105#define EMC_ZCAL_WAIT_CNT			0x2e4
    106#define EMC_ZQ_CAL				0x2ec
    107#define EMC_XM2CMDPADCTRL			0x2f0
    108#define EMC_XM2DQSPADCTRL2			0x2fc
    109#define EMC_XM2DQPADCTRL2			0x304
    110#define EMC_XM2CLKPADCTRL			0x308
    111#define EMC_XM2COMPPADCTRL			0x30c
    112#define EMC_XM2VTTGENPADCTRL			0x310
    113#define EMC_XM2VTTGENPADCTRL2			0x314
    114#define EMC_XM2QUSEPADCTRL			0x318
    115#define EMC_DLL_XFORM_DQS0			0x328
    116#define EMC_DLL_XFORM_DQS1			0x32c
    117#define EMC_DLL_XFORM_DQS2			0x330
    118#define EMC_DLL_XFORM_DQS3			0x334
    119#define EMC_DLL_XFORM_DQS4			0x338
    120#define EMC_DLL_XFORM_DQS5			0x33c
    121#define EMC_DLL_XFORM_DQS6			0x340
    122#define EMC_DLL_XFORM_DQS7			0x344
    123#define EMC_DLL_XFORM_QUSE0			0x348
    124#define EMC_DLL_XFORM_QUSE1			0x34c
    125#define EMC_DLL_XFORM_QUSE2			0x350
    126#define EMC_DLL_XFORM_QUSE3			0x354
    127#define EMC_DLL_XFORM_QUSE4			0x358
    128#define EMC_DLL_XFORM_QUSE5			0x35c
    129#define EMC_DLL_XFORM_QUSE6			0x360
    130#define EMC_DLL_XFORM_QUSE7			0x364
    131#define EMC_DLL_XFORM_DQ0			0x368
    132#define EMC_DLL_XFORM_DQ1			0x36c
    133#define EMC_DLL_XFORM_DQ2			0x370
    134#define EMC_DLL_XFORM_DQ3			0x374
    135#define EMC_DLI_TRIM_TXDQS0			0x3a8
    136#define EMC_DLI_TRIM_TXDQS1			0x3ac
    137#define EMC_DLI_TRIM_TXDQS2			0x3b0
    138#define EMC_DLI_TRIM_TXDQS3			0x3b4
    139#define EMC_DLI_TRIM_TXDQS4			0x3b8
    140#define EMC_DLI_TRIM_TXDQS5			0x3bc
    141#define EMC_DLI_TRIM_TXDQS6			0x3c0
    142#define EMC_DLI_TRIM_TXDQS7			0x3c4
    143#define EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE	0x3c8
    144#define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE	0x3cc
    145#define EMC_UNSTALL_RW_AFTER_CLKCHANGE		0x3d0
    146#define EMC_SEL_DPD_CTRL			0x3d8
    147#define EMC_PRE_REFRESH_REQ_CNT			0x3dc
    148#define EMC_DYN_SELF_REF_CONTROL		0x3e0
    149#define EMC_TXSRDLL				0x3e4
    150
    151#define EMC_STATUS_TIMING_UPDATE_STALLED	BIT(23)
    152
    153#define EMC_MODE_SET_DLL_RESET			BIT(8)
    154#define EMC_MODE_SET_LONG_CNT			BIT(26)
    155
    156#define EMC_SELF_REF_CMD_ENABLED		BIT(0)
    157
    158#define DRAM_DEV_SEL_ALL			(0 << 30)
    159#define DRAM_DEV_SEL_0				BIT(31)
    160#define DRAM_DEV_SEL_1				BIT(30)
    161#define DRAM_BROADCAST(num) \
    162	((num) > 1 ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0)
    163
    164#define EMC_ZQ_CAL_CMD				BIT(0)
    165#define EMC_ZQ_CAL_LONG				BIT(4)
    166#define EMC_ZQ_CAL_LONG_CMD_DEV0 \
    167	(DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
    168#define EMC_ZQ_CAL_LONG_CMD_DEV1 \
    169	(DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
    170
    171#define EMC_DBG_READ_MUX_ASSEMBLY		BIT(0)
    172#define EMC_DBG_WRITE_MUX_ACTIVE		BIT(1)
    173#define EMC_DBG_FORCE_UPDATE			BIT(2)
    174#define EMC_DBG_CFG_PRIORITY			BIT(24)
    175
    176#define EMC_CFG5_QUSE_MODE_SHIFT		13
    177#define EMC_CFG5_QUSE_MODE_MASK			(7 << EMC_CFG5_QUSE_MODE_SHIFT)
    178
    179#define EMC_CFG5_QUSE_MODE_INTERNAL_LPBK	2
    180#define EMC_CFG5_QUSE_MODE_PULSE_INTERN		3
    181
    182#define EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE	BIT(9)
    183
    184#define EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE	BIT(10)
    185
    186#define EMC_XM2QUSEPADCTRL_IVREF_ENABLE		BIT(4)
    187
    188#define EMC_XM2DQSPADCTRL2_VREF_ENABLE		BIT(5)
    189#define EMC_XM2DQSPADCTRL3_VREF_ENABLE		BIT(5)
    190
    191#define EMC_AUTO_CAL_STATUS_ACTIVE		BIT(31)
    192
    193#define	EMC_FBIO_CFG5_DRAM_TYPE_MASK		0x3
    194
    195#define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK	0x3ff
    196#define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT	16
    197#define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \
    198	(0x3ff << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
    199
    200#define EMC_REFCTRL_DEV_SEL_MASK		0x3
    201#define EMC_REFCTRL_ENABLE			BIT(31)
    202#define EMC_REFCTRL_ENABLE_ALL(num) \
    203	(((num) > 1 ? 0 : 2) | EMC_REFCTRL_ENABLE)
    204#define EMC_REFCTRL_DISABLE_ALL(num)		((num) > 1 ? 0 : 2)
    205
    206#define EMC_CFG_PERIODIC_QRST			BIT(21)
    207#define EMC_CFG_DYN_SREF_ENABLE			BIT(28)
    208
    209#define EMC_CLKCHANGE_REQ_ENABLE		BIT(0)
    210#define EMC_CLKCHANGE_PD_ENABLE			BIT(1)
    211#define EMC_CLKCHANGE_SR_ENABLE			BIT(2)
    212
    213#define EMC_TIMING_UPDATE			BIT(0)
    214
    215#define EMC_REFRESH_OVERFLOW_INT		BIT(3)
    216#define EMC_CLKCHANGE_COMPLETE_INT		BIT(4)
    217#define EMC_MRR_DIVLD_INT			BIT(5)
    218
    219#define EMC_MRR_DEV_SELECTN			GENMASK(31, 30)
    220#define EMC_MRR_MRR_MA				GENMASK(23, 16)
    221#define EMC_MRR_MRR_DATA			GENMASK(15, 0)
    222
    223#define EMC_ADR_CFG_EMEM_NUMDEV			BIT(0)
    224
    225enum emc_dram_type {
    226	DRAM_TYPE_DDR3,
    227	DRAM_TYPE_DDR1,
    228	DRAM_TYPE_LPDDR2,
    229	DRAM_TYPE_DDR2,
    230};
    231
    232enum emc_dll_change {
    233	DLL_CHANGE_NONE,
    234	DLL_CHANGE_ON,
    235	DLL_CHANGE_OFF
    236};
    237
    238static const u16 emc_timing_registers[] = {
    239	[0] = EMC_RC,
    240	[1] = EMC_RFC,
    241	[2] = EMC_RAS,
    242	[3] = EMC_RP,
    243	[4] = EMC_R2W,
    244	[5] = EMC_W2R,
    245	[6] = EMC_R2P,
    246	[7] = EMC_W2P,
    247	[8] = EMC_RD_RCD,
    248	[9] = EMC_WR_RCD,
    249	[10] = EMC_RRD,
    250	[11] = EMC_REXT,
    251	[12] = EMC_WEXT,
    252	[13] = EMC_WDV,
    253	[14] = EMC_QUSE,
    254	[15] = EMC_QRST,
    255	[16] = EMC_QSAFE,
    256	[17] = EMC_RDV,
    257	[18] = EMC_REFRESH,
    258	[19] = EMC_BURST_REFRESH_NUM,
    259	[20] = EMC_PRE_REFRESH_REQ_CNT,
    260	[21] = EMC_PDEX2WR,
    261	[22] = EMC_PDEX2RD,
    262	[23] = EMC_PCHG2PDEN,
    263	[24] = EMC_ACT2PDEN,
    264	[25] = EMC_AR2PDEN,
    265	[26] = EMC_RW2PDEN,
    266	[27] = EMC_TXSR,
    267	[28] = EMC_TXSRDLL,
    268	[29] = EMC_TCKE,
    269	[30] = EMC_TFAW,
    270	[31] = EMC_TRPAB,
    271	[32] = EMC_TCLKSTABLE,
    272	[33] = EMC_TCLKSTOP,
    273	[34] = EMC_TREFBW,
    274	[35] = EMC_QUSE_EXTRA,
    275	[36] = EMC_FBIO_CFG6,
    276	[37] = EMC_ODT_WRITE,
    277	[38] = EMC_ODT_READ,
    278	[39] = EMC_FBIO_CFG5,
    279	[40] = EMC_CFG_DIG_DLL,
    280	[41] = EMC_CFG_DIG_DLL_PERIOD,
    281	[42] = EMC_DLL_XFORM_DQS0,
    282	[43] = EMC_DLL_XFORM_DQS1,
    283	[44] = EMC_DLL_XFORM_DQS2,
    284	[45] = EMC_DLL_XFORM_DQS3,
    285	[46] = EMC_DLL_XFORM_DQS4,
    286	[47] = EMC_DLL_XFORM_DQS5,
    287	[48] = EMC_DLL_XFORM_DQS6,
    288	[49] = EMC_DLL_XFORM_DQS7,
    289	[50] = EMC_DLL_XFORM_QUSE0,
    290	[51] = EMC_DLL_XFORM_QUSE1,
    291	[52] = EMC_DLL_XFORM_QUSE2,
    292	[53] = EMC_DLL_XFORM_QUSE3,
    293	[54] = EMC_DLL_XFORM_QUSE4,
    294	[55] = EMC_DLL_XFORM_QUSE5,
    295	[56] = EMC_DLL_XFORM_QUSE6,
    296	[57] = EMC_DLL_XFORM_QUSE7,
    297	[58] = EMC_DLI_TRIM_TXDQS0,
    298	[59] = EMC_DLI_TRIM_TXDQS1,
    299	[60] = EMC_DLI_TRIM_TXDQS2,
    300	[61] = EMC_DLI_TRIM_TXDQS3,
    301	[62] = EMC_DLI_TRIM_TXDQS4,
    302	[63] = EMC_DLI_TRIM_TXDQS5,
    303	[64] = EMC_DLI_TRIM_TXDQS6,
    304	[65] = EMC_DLI_TRIM_TXDQS7,
    305	[66] = EMC_DLL_XFORM_DQ0,
    306	[67] = EMC_DLL_XFORM_DQ1,
    307	[68] = EMC_DLL_XFORM_DQ2,
    308	[69] = EMC_DLL_XFORM_DQ3,
    309	[70] = EMC_XM2CMDPADCTRL,
    310	[71] = EMC_XM2DQSPADCTRL2,
    311	[72] = EMC_XM2DQPADCTRL2,
    312	[73] = EMC_XM2CLKPADCTRL,
    313	[74] = EMC_XM2COMPPADCTRL,
    314	[75] = EMC_XM2VTTGENPADCTRL,
    315	[76] = EMC_XM2VTTGENPADCTRL2,
    316	[77] = EMC_XM2QUSEPADCTRL,
    317	[78] = EMC_XM2DQSPADCTRL3,
    318	[79] = EMC_CTT_TERM_CTRL,
    319	[80] = EMC_ZCAL_INTERVAL,
    320	[81] = EMC_ZCAL_WAIT_CNT,
    321	[82] = EMC_MRS_WAIT_CNT,
    322	[83] = EMC_AUTO_CAL_CONFIG,
    323	[84] = EMC_CTT,
    324	[85] = EMC_CTT_DURATION,
    325	[86] = EMC_DYN_SELF_REF_CONTROL,
    326	[87] = EMC_FBIO_SPARE,
    327	[88] = EMC_CFG_RSV,
    328};
    329
    330struct emc_timing {
    331	unsigned long rate;
    332
    333	u32 data[ARRAY_SIZE(emc_timing_registers)];
    334
    335	u32 emc_auto_cal_interval;
    336	u32 emc_mode_1;
    337	u32 emc_mode_2;
    338	u32 emc_mode_reset;
    339	u32 emc_zcal_cnt_long;
    340	bool emc_cfg_periodic_qrst;
    341	bool emc_cfg_dyn_self_ref;
    342};
    343
    344enum emc_rate_request_type {
    345	EMC_RATE_DEBUG,
    346	EMC_RATE_ICC,
    347	EMC_RATE_TYPE_MAX,
    348};
    349
    350struct emc_rate_request {
    351	unsigned long min_rate;
    352	unsigned long max_rate;
    353};
    354
    355struct tegra_emc {
    356	struct device *dev;
    357	struct tegra_mc *mc;
    358	struct icc_provider provider;
    359	struct notifier_block clk_nb;
    360	struct clk *clk;
    361	void __iomem *regs;
    362	unsigned int irq;
    363	bool bad_state;
    364
    365	struct emc_timing *new_timing;
    366	struct emc_timing *timings;
    367	unsigned int num_timings;
    368
    369	u32 mc_override;
    370	u32 emc_cfg;
    371
    372	u32 emc_mode_1;
    373	u32 emc_mode_2;
    374	u32 emc_mode_reset;
    375
    376	bool vref_cal_toggle : 1;
    377	bool zcal_long : 1;
    378	bool dll_on : 1;
    379
    380	struct {
    381		struct dentry *root;
    382		unsigned long min_rate;
    383		unsigned long max_rate;
    384	} debugfs;
    385
    386	/*
    387	 * There are multiple sources in the EMC driver which could request
    388	 * a min/max clock rate, these rates are contained in this array.
    389	 */
    390	struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
    391
    392	/* protect shared rate-change code path */
    393	struct mutex rate_lock;
    394
    395	bool mrr_error;
    396};
    397
    398static int emc_seq_update_timing(struct tegra_emc *emc)
    399{
    400	u32 val;
    401	int err;
    402
    403	writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL);
    404
    405	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_STATUS, val,
    406				!(val & EMC_STATUS_TIMING_UPDATE_STALLED),
    407				1, 200);
    408	if (err) {
    409		dev_err(emc->dev, "failed to update timing: %d\n", err);
    410		return err;
    411	}
    412
    413	return 0;
    414}
    415
    416static irqreturn_t tegra_emc_isr(int irq, void *data)
    417{
    418	struct tegra_emc *emc = data;
    419	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
    420	u32 status;
    421
    422	status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
    423	if (!status)
    424		return IRQ_NONE;
    425
    426	/* notify about HW problem */
    427	if (status & EMC_REFRESH_OVERFLOW_INT)
    428		dev_err_ratelimited(emc->dev,
    429				    "refresh request overflow timeout\n");
    430
    431	/* clear interrupts */
    432	writel_relaxed(status, emc->regs + EMC_INTSTATUS);
    433
    434	return IRQ_HANDLED;
    435}
    436
    437static struct emc_timing *emc_find_timing(struct tegra_emc *emc,
    438					  unsigned long rate)
    439{
    440	struct emc_timing *timing = NULL;
    441	unsigned int i;
    442
    443	for (i = 0; i < emc->num_timings; i++) {
    444		if (emc->timings[i].rate >= rate) {
    445			timing = &emc->timings[i];
    446			break;
    447		}
    448	}
    449
    450	if (!timing) {
    451		dev_err(emc->dev, "no timing for rate %lu\n", rate);
    452		return NULL;
    453	}
    454
    455	return timing;
    456}
    457
    458static bool emc_dqs_preset(struct tegra_emc *emc, struct emc_timing *timing,
    459			   bool *schmitt_to_vref)
    460{
    461	bool preset = false;
    462	u32 val;
    463
    464	if (timing->data[71] & EMC_XM2DQSPADCTRL2_VREF_ENABLE) {
    465		val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL2);
    466
    467		if (!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) {
    468			val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE;
    469			writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL2);
    470
    471			preset = true;
    472		}
    473	}
    474
    475	if (timing->data[78] & EMC_XM2DQSPADCTRL3_VREF_ENABLE) {
    476		val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL3);
    477
    478		if (!(val & EMC_XM2DQSPADCTRL3_VREF_ENABLE)) {
    479			val |= EMC_XM2DQSPADCTRL3_VREF_ENABLE;
    480			writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL3);
    481
    482			preset = true;
    483		}
    484	}
    485
    486	if (timing->data[77] & EMC_XM2QUSEPADCTRL_IVREF_ENABLE) {
    487		val = readl_relaxed(emc->regs + EMC_XM2QUSEPADCTRL);
    488
    489		if (!(val & EMC_XM2QUSEPADCTRL_IVREF_ENABLE)) {
    490			val |= EMC_XM2QUSEPADCTRL_IVREF_ENABLE;
    491			writel_relaxed(val, emc->regs + EMC_XM2QUSEPADCTRL);
    492
    493			*schmitt_to_vref = true;
    494			preset = true;
    495		}
    496	}
    497
    498	return preset;
    499}
    500
    501static int emc_prepare_mc_clk_cfg(struct tegra_emc *emc, unsigned long rate)
    502{
    503	struct tegra_mc *mc = emc->mc;
    504	unsigned int misc0_index = 16;
    505	unsigned int i;
    506	bool same;
    507
    508	for (i = 0; i < mc->num_timings; i++) {
    509		if (mc->timings[i].rate != rate)
    510			continue;
    511
    512		if (mc->timings[i].emem_data[misc0_index] & BIT(27))
    513			same = true;
    514		else
    515			same = false;
    516
    517		return tegra20_clk_prepare_emc_mc_same_freq(emc->clk, same);
    518	}
    519
    520	return -EINVAL;
    521}
    522
    523static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
    524{
    525	struct emc_timing *timing = emc_find_timing(emc, rate);
    526	enum emc_dll_change dll_change;
    527	enum emc_dram_type dram_type;
    528	bool schmitt_to_vref = false;
    529	unsigned int pre_wait = 0;
    530	bool qrst_used = false;
    531	unsigned int dram_num;
    532	unsigned int i;
    533	u32 fbio_cfg5;
    534	u32 emc_dbg;
    535	u32 val;
    536	int err;
    537
    538	if (!timing || emc->bad_state)
    539		return -EINVAL;
    540
    541	dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
    542		__func__, timing->rate, rate);
    543
    544	emc->bad_state = true;
    545
    546	err = emc_prepare_mc_clk_cfg(emc, rate);
    547	if (err) {
    548		dev_err(emc->dev, "mc clock preparation failed: %d\n", err);
    549		return err;
    550	}
    551
    552	emc->vref_cal_toggle = false;
    553	emc->mc_override = mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE);
    554	emc->emc_cfg = readl_relaxed(emc->regs + EMC_CFG);
    555	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
    556
    557	if (emc->dll_on == !!(timing->emc_mode_1 & 0x1))
    558		dll_change = DLL_CHANGE_NONE;
    559	else if (timing->emc_mode_1 & 0x1)
    560		dll_change = DLL_CHANGE_ON;
    561	else
    562		dll_change = DLL_CHANGE_OFF;
    563
    564	emc->dll_on = !!(timing->emc_mode_1 & 0x1);
    565
    566	if (timing->data[80] && !readl_relaxed(emc->regs + EMC_ZCAL_INTERVAL))
    567		emc->zcal_long = true;
    568	else
    569		emc->zcal_long = false;
    570
    571	fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
    572	dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
    573
    574	dram_num = tegra_mc_get_emem_device_count(emc->mc);
    575
    576	/* disable dynamic self-refresh */
    577	if (emc->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) {
    578		emc->emc_cfg &= ~EMC_CFG_DYN_SREF_ENABLE;
    579		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
    580
    581		pre_wait = 5;
    582	}
    583
    584	/* update MC arbiter settings */
    585	val = mc_readl(emc->mc, MC_EMEM_ARB_OUTSTANDING_REQ);
    586	if (!(val & MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE) ||
    587	    ((val & MC_EMEM_ARB_OUTSTANDING_REQ_MAX_MASK) > 0x50)) {
    588
    589		val = MC_EMEM_ARB_OUTSTANDING_REQ_LIMIT_ENABLE |
    590		      MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE | 0x50;
    591		mc_writel(emc->mc, val, MC_EMEM_ARB_OUTSTANDING_REQ);
    592		mc_writel(emc->mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
    593	}
    594
    595	if (emc->mc_override & MC_EMEM_ARB_OVERRIDE_EACK_MASK)
    596		mc_writel(emc->mc,
    597			  emc->mc_override & ~MC_EMEM_ARB_OVERRIDE_EACK_MASK,
    598			  MC_EMEM_ARB_OVERRIDE);
    599
    600	/* check DQ/DQS VREF delay */
    601	if (emc_dqs_preset(emc, timing, &schmitt_to_vref)) {
    602		if (pre_wait < 3)
    603			pre_wait = 3;
    604	}
    605
    606	if (pre_wait) {
    607		err = emc_seq_update_timing(emc);
    608		if (err)
    609			return err;
    610
    611		udelay(pre_wait);
    612	}
    613
    614	/* disable auto-calibration if VREF mode is switching */
    615	if (timing->emc_auto_cal_interval) {
    616		val = readl_relaxed(emc->regs + EMC_XM2COMPPADCTRL);
    617		val ^= timing->data[74];
    618
    619		if (val & EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE) {
    620			writel_relaxed(0, emc->regs + EMC_AUTO_CAL_INTERVAL);
    621
    622			err = readl_relaxed_poll_timeout_atomic(
    623				emc->regs + EMC_AUTO_CAL_STATUS, val,
    624				!(val & EMC_AUTO_CAL_STATUS_ACTIVE), 1, 300);
    625			if (err) {
    626				dev_err(emc->dev,
    627					"auto-cal finish timeout: %d\n", err);
    628				return err;
    629			}
    630
    631			emc->vref_cal_toggle = true;
    632		}
    633	}
    634
    635	/* program shadow registers */
    636	for (i = 0; i < ARRAY_SIZE(timing->data); i++) {
    637		/* EMC_XM2CLKPADCTRL should be programmed separately */
    638		if (i != 73)
    639			writel_relaxed(timing->data[i],
    640				       emc->regs + emc_timing_registers[i]);
    641	}
    642
    643	err = tegra_mc_write_emem_configuration(emc->mc, timing->rate);
    644	if (err)
    645		return err;
    646
    647	/* DDR3: predict MRS long wait count */
    648	if (dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) {
    649		u32 cnt = 512;
    650
    651		if (emc->zcal_long)
    652			cnt -= dram_num * 256;
    653
    654		val = timing->data[82] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK;
    655		if (cnt < val)
    656			cnt = val;
    657
    658		val = timing->data[82] & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
    659		val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) &
    660			EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
    661
    662		writel_relaxed(val, emc->regs + EMC_MRS_WAIT_CNT);
    663	}
    664
    665	/* this read also completes the writes */
    666	val = readl_relaxed(emc->regs + EMC_SEL_DPD_CTRL);
    667
    668	if (!(val & EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE) && schmitt_to_vref) {
    669		u32 cur_mode, new_mode;
    670
    671		cur_mode = fbio_cfg5 & EMC_CFG5_QUSE_MODE_MASK;
    672		cur_mode >>= EMC_CFG5_QUSE_MODE_SHIFT;
    673
    674		new_mode = timing->data[39] & EMC_CFG5_QUSE_MODE_MASK;
    675		new_mode >>= EMC_CFG5_QUSE_MODE_SHIFT;
    676
    677		if ((cur_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN &&
    678		     cur_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK) ||
    679		    (new_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN &&
    680		     new_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK))
    681			qrst_used = true;
    682	}
    683
    684	/* flow control marker 1 */
    685	writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE);
    686
    687	/* enable periodic reset */
    688	if (qrst_used) {
    689		writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE,
    690			       emc->regs + EMC_DBG);
    691		writel_relaxed(emc->emc_cfg | EMC_CFG_PERIODIC_QRST,
    692			       emc->regs + EMC_CFG);
    693		writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
    694	}
    695
    696	/* disable auto-refresh to save time after clock change */
    697	writel_relaxed(EMC_REFCTRL_DISABLE_ALL(dram_num),
    698		       emc->regs + EMC_REFCTRL);
    699
    700	/* turn off DLL and enter self-refresh on DDR3 */
    701	if (dram_type == DRAM_TYPE_DDR3) {
    702		if (dll_change == DLL_CHANGE_OFF)
    703			writel_relaxed(timing->emc_mode_1,
    704				       emc->regs + EMC_EMRS);
    705
    706		writel_relaxed(DRAM_BROADCAST(dram_num) |
    707			       EMC_SELF_REF_CMD_ENABLED,
    708			       emc->regs + EMC_SELF_REF);
    709	}
    710
    711	/* flow control marker 2 */
    712	writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_AFTER_CLKCHANGE);
    713
    714	/* enable write-active MUX, update unshadowed pad control */
    715	writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG);
    716	writel_relaxed(timing->data[73], emc->regs + EMC_XM2CLKPADCTRL);
    717
    718	/* restore periodic QRST and disable write-active MUX */
    719	val = !!(emc->emc_cfg & EMC_CFG_PERIODIC_QRST);
    720	if (qrst_used || timing->emc_cfg_periodic_qrst != val) {
    721		if (timing->emc_cfg_periodic_qrst)
    722			emc->emc_cfg |= EMC_CFG_PERIODIC_QRST;
    723		else
    724			emc->emc_cfg &= ~EMC_CFG_PERIODIC_QRST;
    725
    726		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
    727	}
    728	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
    729
    730	/* exit self-refresh on DDR3 */
    731	if (dram_type == DRAM_TYPE_DDR3)
    732		writel_relaxed(DRAM_BROADCAST(dram_num),
    733			       emc->regs + EMC_SELF_REF);
    734
    735	/* set DRAM-mode registers */
    736	if (dram_type == DRAM_TYPE_DDR3) {
    737		if (timing->emc_mode_1 != emc->emc_mode_1)
    738			writel_relaxed(timing->emc_mode_1,
    739				       emc->regs + EMC_EMRS);
    740
    741		if (timing->emc_mode_2 != emc->emc_mode_2)
    742			writel_relaxed(timing->emc_mode_2,
    743				       emc->regs + EMC_EMRS);
    744
    745		if (timing->emc_mode_reset != emc->emc_mode_reset ||
    746		    dll_change == DLL_CHANGE_ON) {
    747			val = timing->emc_mode_reset;
    748			if (dll_change == DLL_CHANGE_ON) {
    749				val |= EMC_MODE_SET_DLL_RESET;
    750				val |= EMC_MODE_SET_LONG_CNT;
    751			} else {
    752				val &= ~EMC_MODE_SET_DLL_RESET;
    753			}
    754			writel_relaxed(val, emc->regs + EMC_MRS);
    755		}
    756	} else {
    757		if (timing->emc_mode_2 != emc->emc_mode_2)
    758			writel_relaxed(timing->emc_mode_2,
    759				       emc->regs + EMC_MRW);
    760
    761		if (timing->emc_mode_1 != emc->emc_mode_1)
    762			writel_relaxed(timing->emc_mode_1,
    763				       emc->regs + EMC_MRW);
    764	}
    765
    766	emc->emc_mode_1 = timing->emc_mode_1;
    767	emc->emc_mode_2 = timing->emc_mode_2;
    768	emc->emc_mode_reset = timing->emc_mode_reset;
    769
    770	/* issue ZCAL command if turning ZCAL on */
    771	if (emc->zcal_long) {
    772		writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV0,
    773			       emc->regs + EMC_ZQ_CAL);
    774
    775		if (dram_num > 1)
    776			writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV1,
    777				       emc->regs + EMC_ZQ_CAL);
    778	}
    779
    780	/* flow control marker 3 */
    781	writel_relaxed(0x1, emc->regs + EMC_UNSTALL_RW_AFTER_CLKCHANGE);
    782
    783	/*
    784	 * Read and discard an arbitrary MC register (Note: EMC registers
    785	 * can't be used) to ensure the register writes are completed.
    786	 */
    787	mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE);
    788
    789	return 0;
    790}
    791
    792static int emc_complete_timing_change(struct tegra_emc *emc,
    793				      unsigned long rate)
    794{
    795	struct emc_timing *timing = emc_find_timing(emc, rate);
    796	unsigned int dram_num;
    797	int err;
    798	u32 v;
    799
    800	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
    801						v & EMC_CLKCHANGE_COMPLETE_INT,
    802						1, 100);
    803	if (err) {
    804		dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
    805		return err;
    806	}
    807
    808	/* re-enable auto-refresh */
    809	dram_num = tegra_mc_get_emem_device_count(emc->mc);
    810	writel_relaxed(EMC_REFCTRL_ENABLE_ALL(dram_num),
    811		       emc->regs + EMC_REFCTRL);
    812
    813	/* restore auto-calibration */
    814	if (emc->vref_cal_toggle)
    815		writel_relaxed(timing->emc_auto_cal_interval,
    816			       emc->regs + EMC_AUTO_CAL_INTERVAL);
    817
    818	/* restore dynamic self-refresh */
    819	if (timing->emc_cfg_dyn_self_ref) {
    820		emc->emc_cfg |= EMC_CFG_DYN_SREF_ENABLE;
    821		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
    822	}
    823
    824	/* set number of clocks to wait after each ZQ command */
    825	if (emc->zcal_long)
    826		writel_relaxed(timing->emc_zcal_cnt_long,
    827			       emc->regs + EMC_ZCAL_WAIT_CNT);
    828
    829	/* wait for writes to settle */
    830	udelay(2);
    831
    832	/* update restored timing */
    833	err = emc_seq_update_timing(emc);
    834	if (!err)
    835		emc->bad_state = false;
    836
    837	/* restore early ACK */
    838	mc_writel(emc->mc, emc->mc_override, MC_EMEM_ARB_OVERRIDE);
    839
    840	return err;
    841}
    842
    843static int emc_unprepare_timing_change(struct tegra_emc *emc,
    844				       unsigned long rate)
    845{
    846	if (!emc->bad_state) {
    847		/* shouldn't ever happen in practice */
    848		dev_err(emc->dev, "timing configuration can't be reverted\n");
    849		emc->bad_state = true;
    850	}
    851
    852	return 0;
    853}
    854
    855static int emc_clk_change_notify(struct notifier_block *nb,
    856				 unsigned long msg, void *data)
    857{
    858	struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
    859	struct clk_notifier_data *cnd = data;
    860	int err;
    861
    862	switch (msg) {
    863	case PRE_RATE_CHANGE:
    864		/*
    865		 * Disable interrupt since read accesses are prohibited after
    866		 * stalling.
    867		 */
    868		disable_irq(emc->irq);
    869		err = emc_prepare_timing_change(emc, cnd->new_rate);
    870		enable_irq(emc->irq);
    871		break;
    872
    873	case ABORT_RATE_CHANGE:
    874		err = emc_unprepare_timing_change(emc, cnd->old_rate);
    875		break;
    876
    877	case POST_RATE_CHANGE:
    878		err = emc_complete_timing_change(emc, cnd->new_rate);
    879		break;
    880
    881	default:
    882		return NOTIFY_DONE;
    883	}
    884
    885	return notifier_from_errno(err);
    886}
    887
    888static int load_one_timing_from_dt(struct tegra_emc *emc,
    889				   struct emc_timing *timing,
    890				   struct device_node *node)
    891{
    892	u32 value;
    893	int err;
    894
    895	err = of_property_read_u32(node, "clock-frequency", &value);
    896	if (err) {
    897		dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
    898			node, err);
    899		return err;
    900	}
    901
    902	timing->rate = value;
    903
    904	err = of_property_read_u32_array(node, "nvidia,emc-configuration",
    905					 timing->data,
    906					 ARRAY_SIZE(emc_timing_registers));
    907	if (err) {
    908		dev_err(emc->dev,
    909			"timing %pOF: failed to read emc timing data: %d\n",
    910			node, err);
    911		return err;
    912	}
    913
    914#define EMC_READ_BOOL(prop, dtprop) \
    915	timing->prop = of_property_read_bool(node, dtprop);
    916
    917#define EMC_READ_U32(prop, dtprop) \
    918	err = of_property_read_u32(node, dtprop, &timing->prop); \
    919	if (err) { \
    920		dev_err(emc->dev, \
    921			"timing %pOFn: failed to read " #prop ": %d\n", \
    922			node, err); \
    923		return err; \
    924	}
    925
    926	EMC_READ_U32(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval")
    927	EMC_READ_U32(emc_mode_1, "nvidia,emc-mode-1")
    928	EMC_READ_U32(emc_mode_2, "nvidia,emc-mode-2")
    929	EMC_READ_U32(emc_mode_reset, "nvidia,emc-mode-reset")
    930	EMC_READ_U32(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long")
    931	EMC_READ_BOOL(emc_cfg_dyn_self_ref, "nvidia,emc-cfg-dyn-self-ref")
    932	EMC_READ_BOOL(emc_cfg_periodic_qrst, "nvidia,emc-cfg-periodic-qrst")
    933
    934#undef EMC_READ_U32
    935#undef EMC_READ_BOOL
    936
    937	dev_dbg(emc->dev, "%s: %pOF: rate %lu\n", __func__, node, timing->rate);
    938
    939	return 0;
    940}
    941
    942static int cmp_timings(const void *_a, const void *_b)
    943{
    944	const struct emc_timing *a = _a;
    945	const struct emc_timing *b = _b;
    946
    947	if (a->rate < b->rate)
    948		return -1;
    949
    950	if (a->rate > b->rate)
    951		return 1;
    952
    953	return 0;
    954}
    955
    956static int emc_check_mc_timings(struct tegra_emc *emc)
    957{
    958	struct tegra_mc *mc = emc->mc;
    959	unsigned int i;
    960
    961	if (emc->num_timings != mc->num_timings) {
    962		dev_err(emc->dev, "emc/mc timings number mismatch: %u %u\n",
    963			emc->num_timings, mc->num_timings);
    964		return -EINVAL;
    965	}
    966
    967	for (i = 0; i < mc->num_timings; i++) {
    968		if (emc->timings[i].rate != mc->timings[i].rate) {
    969			dev_err(emc->dev,
    970				"emc/mc timing rate mismatch: %lu %lu\n",
    971				emc->timings[i].rate, mc->timings[i].rate);
    972			return -EINVAL;
    973		}
    974	}
    975
    976	return 0;
    977}
    978
    979static int emc_load_timings_from_dt(struct tegra_emc *emc,
    980				    struct device_node *node)
    981{
    982	struct device_node *child;
    983	struct emc_timing *timing;
    984	int child_count;
    985	int err;
    986
    987	child_count = of_get_child_count(node);
    988	if (!child_count) {
    989		dev_err(emc->dev, "no memory timings in: %pOF\n", node);
    990		return -EINVAL;
    991	}
    992
    993	emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
    994				    GFP_KERNEL);
    995	if (!emc->timings)
    996		return -ENOMEM;
    997
    998	emc->num_timings = child_count;
    999	timing = emc->timings;
   1000
   1001	for_each_child_of_node(node, child) {
   1002		err = load_one_timing_from_dt(emc, timing++, child);
   1003		if (err) {
   1004			of_node_put(child);
   1005			return err;
   1006		}
   1007	}
   1008
   1009	sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
   1010	     NULL);
   1011
   1012	err = emc_check_mc_timings(emc);
   1013	if (err)
   1014		return err;
   1015
   1016	dev_info_once(emc->dev,
   1017		      "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
   1018		      emc->num_timings,
   1019		      tegra_read_ram_code(),
   1020		      emc->timings[0].rate / 1000000,
   1021		      emc->timings[emc->num_timings - 1].rate / 1000000);
   1022
   1023	return 0;
   1024}
   1025
   1026static struct device_node *emc_find_node_by_ram_code(struct tegra_emc *emc)
   1027{
   1028	struct device *dev = emc->dev;
   1029	struct device_node *np;
   1030	u32 value, ram_code;
   1031	int err;
   1032
   1033	if (emc->mrr_error) {
   1034		dev_warn(dev, "memory timings skipped due to MRR error\n");
   1035		return NULL;
   1036	}
   1037
   1038	if (of_get_child_count(dev->of_node) == 0) {
   1039		dev_info_once(dev, "device-tree doesn't have memory timings\n");
   1040		return NULL;
   1041	}
   1042
   1043	ram_code = tegra_read_ram_code();
   1044
   1045	for_each_child_of_node(dev->of_node, np) {
   1046		err = of_property_read_u32(np, "nvidia,ram-code", &value);
   1047		if (err || value != ram_code)
   1048			continue;
   1049
   1050		return np;
   1051	}
   1052
   1053	dev_err(dev, "no memory timings for RAM code %u found in device-tree\n",
   1054		ram_code);
   1055
   1056	return NULL;
   1057}
   1058
   1059static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
   1060					unsigned int emem_dev,
   1061					unsigned int register_addr,
   1062					unsigned int *register_data)
   1063{
   1064	u32 memory_dev = emem_dev ? 1 : 2;
   1065	u32 val, mr_mask = 0xff;
   1066	int err;
   1067
   1068	/* clear data-valid interrupt status */
   1069	writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
   1070
   1071	/* issue mode register read request */
   1072	val  = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
   1073	val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
   1074
   1075	writel_relaxed(val, emc->regs + EMC_MRR);
   1076
   1077	/* wait for the LPDDR2 data-valid interrupt */
   1078	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
   1079						val & EMC_MRR_DIVLD_INT,
   1080						1, 100);
   1081	if (err) {
   1082		dev_err(emc->dev, "mode register %u read failed: %d\n",
   1083			register_addr, err);
   1084		emc->mrr_error = true;
   1085		return err;
   1086	}
   1087
   1088	/* read out mode register data */
   1089	val = readl_relaxed(emc->regs + EMC_MRR);
   1090	*register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
   1091
   1092	return 0;
   1093}
   1094
   1095static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
   1096				      unsigned int emem_dev)
   1097{
   1098	union lpddr2_basic_config4 basic_conf4;
   1099	unsigned int manufacturer_id;
   1100	unsigned int revision_id1;
   1101	unsigned int revision_id2;
   1102
   1103	/* these registers are standard for all LPDDR JEDEC memory chips */
   1104	emc_read_lpddr_mode_register(emc, emem_dev, 5, &manufacturer_id);
   1105	emc_read_lpddr_mode_register(emc, emem_dev, 6, &revision_id1);
   1106	emc_read_lpddr_mode_register(emc, emem_dev, 7, &revision_id2);
   1107	emc_read_lpddr_mode_register(emc, emem_dev, 8, &basic_conf4.value);
   1108
   1109	dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
   1110		 emem_dev, manufacturer_id,
   1111		 lpddr2_jedec_manufacturer(manufacturer_id),
   1112		 revision_id1, revision_id2,
   1113		 4 >> basic_conf4.arch_type,
   1114		 64 << basic_conf4.density,
   1115		 32 >> basic_conf4.io_width);
   1116}
   1117
   1118static int emc_setup_hw(struct tegra_emc *emc)
   1119{
   1120	u32 fbio_cfg5, emc_cfg, emc_dbg, emc_adr_cfg;
   1121	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
   1122	static bool print_sdram_info_once;
   1123	enum emc_dram_type dram_type;
   1124	const char *dram_type_str;
   1125	unsigned int emem_numdev;
   1126
   1127	fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
   1128	dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
   1129
   1130	emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
   1131
   1132	/* enable EMC and CAR to handshake on PLL divider/source changes */
   1133	emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
   1134
   1135	/* configure clock change mode accordingly to DRAM type */
   1136	switch (dram_type) {
   1137	case DRAM_TYPE_LPDDR2:
   1138		emc_cfg |= EMC_CLKCHANGE_PD_ENABLE;
   1139		emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE;
   1140		break;
   1141
   1142	default:
   1143		emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE;
   1144		emc_cfg &= ~EMC_CLKCHANGE_PD_ENABLE;
   1145		break;
   1146	}
   1147
   1148	writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
   1149
   1150	/* initialize interrupt */
   1151	writel_relaxed(intmask, emc->regs + EMC_INTMASK);
   1152	writel_relaxed(0xffffffff, emc->regs + EMC_INTSTATUS);
   1153
   1154	/* ensure that unwanted debug features are disabled */
   1155	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
   1156	emc_dbg |= EMC_DBG_CFG_PRIORITY;
   1157	emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
   1158	emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
   1159	emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
   1160	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
   1161
   1162	switch (dram_type) {
   1163	case DRAM_TYPE_DDR1:
   1164		dram_type_str = "DDR1";
   1165		break;
   1166	case DRAM_TYPE_LPDDR2:
   1167		dram_type_str = "LPDDR2";
   1168		break;
   1169	case DRAM_TYPE_DDR2:
   1170		dram_type_str = "DDR2";
   1171		break;
   1172	case DRAM_TYPE_DDR3:
   1173		dram_type_str = "DDR3";
   1174		break;
   1175	}
   1176
   1177	emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG);
   1178	emem_numdev = FIELD_GET(EMC_ADR_CFG_EMEM_NUMDEV, emc_adr_cfg) + 1;
   1179
   1180	dev_info_once(emc->dev, "%u %s %s attached\n", emem_numdev,
   1181		      dram_type_str, emem_numdev == 2 ? "devices" : "device");
   1182
   1183	if (dram_type == DRAM_TYPE_LPDDR2 && !print_sdram_info_once) {
   1184		while (emem_numdev--)
   1185			emc_read_lpddr_sdram_info(emc, emem_numdev);
   1186
   1187		print_sdram_info_once = true;
   1188	}
   1189
   1190	return 0;
   1191}
   1192
   1193static long emc_round_rate(unsigned long rate,
   1194			   unsigned long min_rate,
   1195			   unsigned long max_rate,
   1196			   void *arg)
   1197{
   1198	struct emc_timing *timing = NULL;
   1199	struct tegra_emc *emc = arg;
   1200	unsigned int i;
   1201
   1202	if (!emc->num_timings)
   1203		return clk_get_rate(emc->clk);
   1204
   1205	min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
   1206
   1207	for (i = 0; i < emc->num_timings; i++) {
   1208		if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
   1209			continue;
   1210
   1211		if (emc->timings[i].rate > max_rate) {
   1212			i = max(i, 1u) - 1;
   1213
   1214			if (emc->timings[i].rate < min_rate)
   1215				break;
   1216		}
   1217
   1218		if (emc->timings[i].rate < min_rate)
   1219			continue;
   1220
   1221		timing = &emc->timings[i];
   1222		break;
   1223	}
   1224
   1225	if (!timing) {
   1226		dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
   1227			rate, min_rate, max_rate);
   1228		return -EINVAL;
   1229	}
   1230
   1231	return timing->rate;
   1232}
   1233
   1234static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
   1235{
   1236	unsigned int i;
   1237
   1238	for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
   1239		emc->requested_rate[i].min_rate = 0;
   1240		emc->requested_rate[i].max_rate = ULONG_MAX;
   1241	}
   1242}
   1243
   1244static int emc_request_rate(struct tegra_emc *emc,
   1245			    unsigned long new_min_rate,
   1246			    unsigned long new_max_rate,
   1247			    enum emc_rate_request_type type)
   1248{
   1249	struct emc_rate_request *req = emc->requested_rate;
   1250	unsigned long min_rate = 0, max_rate = ULONG_MAX;
   1251	unsigned int i;
   1252	int err;
   1253
   1254	/* select minimum and maximum rates among the requested rates */
   1255	for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
   1256		if (i == type) {
   1257			min_rate = max(new_min_rate, min_rate);
   1258			max_rate = min(new_max_rate, max_rate);
   1259		} else {
   1260			min_rate = max(req->min_rate, min_rate);
   1261			max_rate = min(req->max_rate, max_rate);
   1262		}
   1263	}
   1264
   1265	if (min_rate > max_rate) {
   1266		dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
   1267				    __func__, type, min_rate, max_rate);
   1268		return -ERANGE;
   1269	}
   1270
   1271	/*
   1272	 * EMC rate-changes should go via OPP API because it manages voltage
   1273	 * changes.
   1274	 */
   1275	err = dev_pm_opp_set_rate(emc->dev, min_rate);
   1276	if (err)
   1277		return err;
   1278
   1279	emc->requested_rate[type].min_rate = new_min_rate;
   1280	emc->requested_rate[type].max_rate = new_max_rate;
   1281
   1282	return 0;
   1283}
   1284
   1285static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
   1286			    enum emc_rate_request_type type)
   1287{
   1288	struct emc_rate_request *req = &emc->requested_rate[type];
   1289	int ret;
   1290
   1291	mutex_lock(&emc->rate_lock);
   1292	ret = emc_request_rate(emc, rate, req->max_rate, type);
   1293	mutex_unlock(&emc->rate_lock);
   1294
   1295	return ret;
   1296}
   1297
   1298static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
   1299			    enum emc_rate_request_type type)
   1300{
   1301	struct emc_rate_request *req = &emc->requested_rate[type];
   1302	int ret;
   1303
   1304	mutex_lock(&emc->rate_lock);
   1305	ret = emc_request_rate(emc, req->min_rate, rate, type);
   1306	mutex_unlock(&emc->rate_lock);
   1307
   1308	return ret;
   1309}
   1310
   1311/*
   1312 * debugfs interface
   1313 *
   1314 * The memory controller driver exposes some files in debugfs that can be used
   1315 * to control the EMC frequency. The top-level directory can be found here:
   1316 *
   1317 *   /sys/kernel/debug/emc
   1318 *
   1319 * It contains the following files:
   1320 *
   1321 *   - available_rates: This file contains a list of valid, space-separated
   1322 *     EMC frequencies.
   1323 *
   1324 *   - min_rate: Writing a value to this file sets the given frequency as the
   1325 *       floor of the permitted range. If this is higher than the currently
   1326 *       configured EMC frequency, this will cause the frequency to be
   1327 *       increased so that it stays within the valid range.
   1328 *
   1329 *   - max_rate: Similarily to the min_rate file, writing a value to this file
   1330 *       sets the given frequency as the ceiling of the permitted range. If
   1331 *       the value is lower than the currently configured EMC frequency, this
   1332 *       will cause the frequency to be decreased so that it stays within the
   1333 *       valid range.
   1334 */
   1335
   1336static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
   1337{
   1338	unsigned int i;
   1339
   1340	for (i = 0; i < emc->num_timings; i++)
   1341		if (rate == emc->timings[i].rate)
   1342			return true;
   1343
   1344	return false;
   1345}
   1346
   1347static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
   1348{
   1349	struct tegra_emc *emc = s->private;
   1350	const char *prefix = "";
   1351	unsigned int i;
   1352
   1353	for (i = 0; i < emc->num_timings; i++) {
   1354		seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
   1355		prefix = " ";
   1356	}
   1357
   1358	seq_puts(s, "\n");
   1359
   1360	return 0;
   1361}
   1362
   1363static int tegra_emc_debug_available_rates_open(struct inode *inode,
   1364						struct file *file)
   1365{
   1366	return single_open(file, tegra_emc_debug_available_rates_show,
   1367			   inode->i_private);
   1368}
   1369
   1370static const struct file_operations tegra_emc_debug_available_rates_fops = {
   1371	.open = tegra_emc_debug_available_rates_open,
   1372	.read = seq_read,
   1373	.llseek = seq_lseek,
   1374	.release = single_release,
   1375};
   1376
   1377static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
   1378{
   1379	struct tegra_emc *emc = data;
   1380
   1381	*rate = emc->debugfs.min_rate;
   1382
   1383	return 0;
   1384}
   1385
   1386static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
   1387{
   1388	struct tegra_emc *emc = data;
   1389	int err;
   1390
   1391	if (!tegra_emc_validate_rate(emc, rate))
   1392		return -EINVAL;
   1393
   1394	err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
   1395	if (err < 0)
   1396		return err;
   1397
   1398	emc->debugfs.min_rate = rate;
   1399
   1400	return 0;
   1401}
   1402
   1403DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
   1404			tegra_emc_debug_min_rate_get,
   1405			tegra_emc_debug_min_rate_set, "%llu\n");
   1406
   1407static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
   1408{
   1409	struct tegra_emc *emc = data;
   1410
   1411	*rate = emc->debugfs.max_rate;
   1412
   1413	return 0;
   1414}
   1415
   1416static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
   1417{
   1418	struct tegra_emc *emc = data;
   1419	int err;
   1420
   1421	if (!tegra_emc_validate_rate(emc, rate))
   1422		return -EINVAL;
   1423
   1424	err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
   1425	if (err < 0)
   1426		return err;
   1427
   1428	emc->debugfs.max_rate = rate;
   1429
   1430	return 0;
   1431}
   1432
   1433DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
   1434			tegra_emc_debug_max_rate_get,
   1435			tegra_emc_debug_max_rate_set, "%llu\n");
   1436
   1437static void tegra_emc_debugfs_init(struct tegra_emc *emc)
   1438{
   1439	struct device *dev = emc->dev;
   1440	unsigned int i;
   1441	int err;
   1442
   1443	emc->debugfs.min_rate = ULONG_MAX;
   1444	emc->debugfs.max_rate = 0;
   1445
   1446	for (i = 0; i < emc->num_timings; i++) {
   1447		if (emc->timings[i].rate < emc->debugfs.min_rate)
   1448			emc->debugfs.min_rate = emc->timings[i].rate;
   1449
   1450		if (emc->timings[i].rate > emc->debugfs.max_rate)
   1451			emc->debugfs.max_rate = emc->timings[i].rate;
   1452	}
   1453
   1454	if (!emc->num_timings) {
   1455		emc->debugfs.min_rate = clk_get_rate(emc->clk);
   1456		emc->debugfs.max_rate = emc->debugfs.min_rate;
   1457	}
   1458
   1459	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
   1460				 emc->debugfs.max_rate);
   1461	if (err < 0) {
   1462		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
   1463			emc->debugfs.min_rate, emc->debugfs.max_rate,
   1464			emc->clk);
   1465	}
   1466
   1467	emc->debugfs.root = debugfs_create_dir("emc", NULL);
   1468
   1469	debugfs_create_file("available_rates", 0444, emc->debugfs.root,
   1470			    emc, &tegra_emc_debug_available_rates_fops);
   1471	debugfs_create_file("min_rate", 0644, emc->debugfs.root,
   1472			    emc, &tegra_emc_debug_min_rate_fops);
   1473	debugfs_create_file("max_rate", 0644, emc->debugfs.root,
   1474			    emc, &tegra_emc_debug_max_rate_fops);
   1475}
   1476
   1477static inline struct tegra_emc *
   1478to_tegra_emc_provider(struct icc_provider *provider)
   1479{
   1480	return container_of(provider, struct tegra_emc, provider);
   1481}
   1482
   1483static struct icc_node_data *
   1484emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
   1485{
   1486	struct icc_provider *provider = data;
   1487	struct icc_node_data *ndata;
   1488	struct icc_node *node;
   1489
   1490	/* External Memory is the only possible ICC route */
   1491	list_for_each_entry(node, &provider->nodes, node_list) {
   1492		if (node->id != TEGRA_ICC_EMEM)
   1493			continue;
   1494
   1495		ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
   1496		if (!ndata)
   1497			return ERR_PTR(-ENOMEM);
   1498
   1499		/*
   1500		 * SRC and DST nodes should have matching TAG in order to have
   1501		 * it set by default for a requested path.
   1502		 */
   1503		ndata->tag = TEGRA_MC_ICC_TAG_ISO;
   1504		ndata->node = node;
   1505
   1506		return ndata;
   1507	}
   1508
   1509	return ERR_PTR(-EPROBE_DEFER);
   1510}
   1511
   1512static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
   1513{
   1514	struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
   1515	unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
   1516	unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
   1517	unsigned long long rate = max(avg_bw, peak_bw);
   1518	const unsigned int dram_data_bus_width_bytes = 4;
   1519	const unsigned int ddr = 2;
   1520	int err;
   1521
   1522	/*
   1523	 * Tegra30 EMC runs on a clock rate of SDRAM bus.  This means that
   1524	 * EMC clock rate is twice smaller than the peak data rate because
   1525	 * data is sampled on both EMC clock edges.
   1526	 */
   1527	do_div(rate, ddr * dram_data_bus_width_bytes);
   1528	rate = min_t(u64, rate, U32_MAX);
   1529
   1530	err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
   1531	if (err)
   1532		return err;
   1533
   1534	return 0;
   1535}
   1536
   1537static int tegra_emc_interconnect_init(struct tegra_emc *emc)
   1538{
   1539	const struct tegra_mc_soc *soc = emc->mc->soc;
   1540	struct icc_node *node;
   1541	int err;
   1542
   1543	emc->provider.dev = emc->dev;
   1544	emc->provider.set = emc_icc_set;
   1545	emc->provider.data = &emc->provider;
   1546	emc->provider.aggregate = soc->icc_ops->aggregate;
   1547	emc->provider.xlate_extended = emc_of_icc_xlate_extended;
   1548
   1549	err = icc_provider_add(&emc->provider);
   1550	if (err)
   1551		goto err_msg;
   1552
   1553	/* create External Memory Controller node */
   1554	node = icc_node_create(TEGRA_ICC_EMC);
   1555	if (IS_ERR(node)) {
   1556		err = PTR_ERR(node);
   1557		goto del_provider;
   1558	}
   1559
   1560	node->name = "External Memory Controller";
   1561	icc_node_add(node, &emc->provider);
   1562
   1563	/* link External Memory Controller to External Memory (DRAM) */
   1564	err = icc_link_create(node, TEGRA_ICC_EMEM);
   1565	if (err)
   1566		goto remove_nodes;
   1567
   1568	/* create External Memory node */
   1569	node = icc_node_create(TEGRA_ICC_EMEM);
   1570	if (IS_ERR(node)) {
   1571		err = PTR_ERR(node);
   1572		goto remove_nodes;
   1573	}
   1574
   1575	node->name = "External Memory (DRAM)";
   1576	icc_node_add(node, &emc->provider);
   1577
   1578	return 0;
   1579
   1580remove_nodes:
   1581	icc_nodes_remove(&emc->provider);
   1582del_provider:
   1583	icc_provider_del(&emc->provider);
   1584err_msg:
   1585	dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
   1586
   1587	return err;
   1588}
   1589
   1590static void devm_tegra_emc_unset_callback(void *data)
   1591{
   1592	tegra20_clk_set_emc_round_callback(NULL, NULL);
   1593}
   1594
   1595static void devm_tegra_emc_unreg_clk_notifier(void *data)
   1596{
   1597	struct tegra_emc *emc = data;
   1598
   1599	clk_notifier_unregister(emc->clk, &emc->clk_nb);
   1600}
   1601
   1602static int tegra_emc_init_clk(struct tegra_emc *emc)
   1603{
   1604	int err;
   1605
   1606	tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
   1607
   1608	err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
   1609				       NULL);
   1610	if (err)
   1611		return err;
   1612
   1613	emc->clk = devm_clk_get(emc->dev, NULL);
   1614	if (IS_ERR(emc->clk)) {
   1615		dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
   1616		return PTR_ERR(emc->clk);
   1617	}
   1618
   1619	err = clk_notifier_register(emc->clk, &emc->clk_nb);
   1620	if (err) {
   1621		dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
   1622		return err;
   1623	}
   1624
   1625	err = devm_add_action_or_reset(emc->dev,
   1626				       devm_tegra_emc_unreg_clk_notifier, emc);
   1627	if (err)
   1628		return err;
   1629
   1630	return 0;
   1631}
   1632
   1633static int tegra_emc_probe(struct platform_device *pdev)
   1634{
   1635	struct tegra_core_opp_params opp_params = {};
   1636	struct device_node *np;
   1637	struct tegra_emc *emc;
   1638	int err;
   1639
   1640	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
   1641	if (!emc)
   1642		return -ENOMEM;
   1643
   1644	emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
   1645	if (IS_ERR(emc->mc))
   1646		return PTR_ERR(emc->mc);
   1647
   1648	mutex_init(&emc->rate_lock);
   1649	emc->clk_nb.notifier_call = emc_clk_change_notify;
   1650	emc->dev = &pdev->dev;
   1651
   1652	emc->regs = devm_platform_ioremap_resource(pdev, 0);
   1653	if (IS_ERR(emc->regs))
   1654		return PTR_ERR(emc->regs);
   1655
   1656	err = emc_setup_hw(emc);
   1657	if (err)
   1658		return err;
   1659
   1660	np = emc_find_node_by_ram_code(emc);
   1661	if (np) {
   1662		err = emc_load_timings_from_dt(emc, np);
   1663		of_node_put(np);
   1664		if (err)
   1665			return err;
   1666	}
   1667
   1668	err = platform_get_irq(pdev, 0);
   1669	if (err < 0)
   1670		return err;
   1671
   1672	emc->irq = err;
   1673
   1674	err = devm_request_irq(&pdev->dev, emc->irq, tegra_emc_isr, 0,
   1675			       dev_name(&pdev->dev), emc);
   1676	if (err) {
   1677		dev_err(&pdev->dev, "failed to request irq: %d\n", err);
   1678		return err;
   1679	}
   1680
   1681	err = tegra_emc_init_clk(emc);
   1682	if (err)
   1683		return err;
   1684
   1685	opp_params.init_state = true;
   1686
   1687	err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
   1688	if (err)
   1689		return err;
   1690
   1691	platform_set_drvdata(pdev, emc);
   1692	tegra_emc_rate_requests_init(emc);
   1693	tegra_emc_debugfs_init(emc);
   1694	tegra_emc_interconnect_init(emc);
   1695
   1696	/*
   1697	 * Don't allow the kernel module to be unloaded. Unloading adds some
   1698	 * extra complexity which doesn't really worth the effort in a case of
   1699	 * this driver.
   1700	 */
   1701	try_module_get(THIS_MODULE);
   1702
   1703	return 0;
   1704}
   1705
   1706static int tegra_emc_suspend(struct device *dev)
   1707{
   1708	struct tegra_emc *emc = dev_get_drvdata(dev);
   1709	int err;
   1710
   1711	/* take exclusive control over the clock's rate */
   1712	err = clk_rate_exclusive_get(emc->clk);
   1713	if (err) {
   1714		dev_err(emc->dev, "failed to acquire clk: %d\n", err);
   1715		return err;
   1716	}
   1717
   1718	/* suspending in a bad state will hang machine */
   1719	if (WARN(emc->bad_state, "hardware in a bad state\n"))
   1720		return -EINVAL;
   1721
   1722	emc->bad_state = true;
   1723
   1724	return 0;
   1725}
   1726
   1727static int tegra_emc_resume(struct device *dev)
   1728{
   1729	struct tegra_emc *emc = dev_get_drvdata(dev);
   1730
   1731	emc_setup_hw(emc);
   1732	emc->bad_state = false;
   1733
   1734	clk_rate_exclusive_put(emc->clk);
   1735
   1736	return 0;
   1737}
   1738
   1739static const struct dev_pm_ops tegra_emc_pm_ops = {
   1740	.suspend = tegra_emc_suspend,
   1741	.resume = tegra_emc_resume,
   1742};
   1743
   1744static const struct of_device_id tegra_emc_of_match[] = {
   1745	{ .compatible = "nvidia,tegra30-emc", },
   1746	{},
   1747};
   1748MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
   1749
   1750static struct platform_driver tegra_emc_driver = {
   1751	.probe = tegra_emc_probe,
   1752	.driver = {
   1753		.name = "tegra30-emc",
   1754		.of_match_table = tegra_emc_of_match,
   1755		.pm = &tegra_emc_pm_ops,
   1756		.suppress_bind_attrs = true,
   1757		.sync_state = icc_sync_state,
   1758	},
   1759};
   1760module_platform_driver(tegra_emc_driver);
   1761
   1762MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
   1763MODULE_DESCRIPTION("NVIDIA Tegra30 EMC driver");
   1764MODULE_LICENSE("GPL v2");