mmu.c (20074B)
1// SPDX-License-Identifier: GPL-2.0 2 3/* 4 * Copyright 2016-2020 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8#include <linux/slab.h> 9 10#include "../habanalabs.h" 11 12/** 13 * hl_mmu_get_funcs() - get MMU functions structure 14 * @hdev: habanalabs device structure. 15 * @pgt_residency: page table residency. 16 * @is_dram_addr: true if we need HMMU functions 17 * 18 * @return appropriate MMU functions structure 19 */ 20static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, 21 bool is_dram_addr) 22{ 23 return &hdev->mmu_func[pgt_residency]; 24} 25 26bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) 27{ 28 struct asic_fixed_properties *prop = &hdev->asic_prop; 29 30 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, 31 prop->dmmu.start_addr, 32 prop->dmmu.end_addr); 33} 34 35/** 36 * hl_mmu_init() - initialize the MMU module. 37 * @hdev: habanalabs device structure. 38 * 39 * Return: 0 for success, non-zero for failure. 40 */ 41int hl_mmu_init(struct hl_device *hdev) 42{ 43 int rc = -EOPNOTSUPP; 44 45 if (!hdev->mmu_enable) 46 return 0; 47 48 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { 49 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); 50 if (rc) 51 return rc; 52 } 53 54 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) 55 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); 56 57 return rc; 58} 59 60/** 61 * hl_mmu_fini() - release the MMU module. 62 * @hdev: habanalabs device structure. 63 * 64 * This function does the following: 65 * - Disable MMU in H/W. 66 * - Free the pgt_infos pool. 67 * 68 * All contexts should be freed before calling this function. 69 */ 70void hl_mmu_fini(struct hl_device *hdev) 71{ 72 if (!hdev->mmu_enable) 73 return; 74 75 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) 76 hdev->mmu_func[MMU_DR_PGT].fini(hdev); 77 78 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) 79 hdev->mmu_func[MMU_HR_PGT].fini(hdev); 80} 81 82/** 83 * hl_mmu_ctx_init() - initialize a context for using the MMU module. 84 * @ctx: pointer to the context structure to initialize. 85 * 86 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all 87 * page tables hops related to this context. 88 * Return: 0 on success, non-zero otherwise. 89 */ 90int hl_mmu_ctx_init(struct hl_ctx *ctx) 91{ 92 struct hl_device *hdev = ctx->hdev; 93 int rc = -EOPNOTSUPP; 94 95 if (!hdev->mmu_enable) 96 return 0; 97 98 mutex_init(&ctx->mmu_lock); 99 100 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { 101 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); 102 if (rc) 103 return rc; 104 } 105 106 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) 107 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); 108 109 return rc; 110} 111 112/* 113 * hl_mmu_ctx_fini - disable a ctx from using the mmu module 114 * 115 * @ctx: pointer to the context structure 116 * 117 * This function does the following: 118 * - Free any pgts which were not freed yet 119 * - Free the mutex 120 * - Free DRAM default page mapping hops 121 */ 122void hl_mmu_ctx_fini(struct hl_ctx *ctx) 123{ 124 struct hl_device *hdev = ctx->hdev; 125 126 if (!hdev->mmu_enable) 127 return; 128 129 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) 130 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); 131 132 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) 133 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); 134 135 mutex_destroy(&ctx->mmu_lock); 136} 137 138/* 139 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation 140 * 141 * @hdev: pointer to device data. 142 * @mmu_prop: MMU properties. 143 * @page_size: page size 144 * @real_page_size: set here the actual page size to use for the operation 145 * @is_dram_addr: true if DRAM address, otherwise false. 146 * 147 * @return 0 on success, otherwise non 0 error code 148 * 149 * note that this is general implementation that can fit most MMU arch. but as this is used as an 150 * MMU function: 151 * 1. it shall not be called directly- only from mmu_func structure instance 152 * 2. each MMU may modify the implementation internally 153 */ 154int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 155 u32 page_size, u32 *real_page_size, bool is_dram_addr) 156{ 157 /* 158 * The H/W handles mapping of specific page sizes. Hence if the page 159 * size is bigger, we break it to sub-pages and map them separately. 160 */ 161 if ((page_size % mmu_prop->page_size) == 0) { 162 *real_page_size = mmu_prop->page_size; 163 return 0; 164 } 165 166 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", 167 page_size, mmu_prop->page_size >> 10); 168 169 return -EFAULT; 170} 171 172static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, 173 bool is_dram_addr) 174{ 175 struct asic_fixed_properties *prop = &hdev->asic_prop; 176 177 if (is_dram_addr) 178 return &prop->dmmu; 179 else if ((page_size % prop->pmmu_huge.page_size) == 0) 180 return &prop->pmmu_huge; 181 182 return &prop->pmmu; 183} 184 185/* 186 * hl_mmu_unmap_page - unmaps a virtual addr 187 * 188 * @ctx: pointer to the context structure 189 * @virt_addr: virt addr to map from 190 * @page_size: size of the page to unmap 191 * @flush_pte: whether to do a PCI flush 192 * 193 * This function does the following: 194 * - Check that the virt addr is mapped 195 * - Unmap the virt addr and frees pgts if possible 196 * - Returns 0 on success, -EINVAL if the given addr is not mapped 197 * 198 * Because this function changes the page tables in the device and because it 199 * changes the MMU hash, it must be protected by a lock. 200 * However, because it maps only a single page, the lock should be implemented 201 * in a higher level in order to protect the entire mapping of the memory area 202 * 203 * For optimization reasons PCI flush may be requested once after unmapping of 204 * large area. 205 */ 206int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) 207{ 208 struct hl_device *hdev = ctx->hdev; 209 struct hl_mmu_properties *mmu_prop; 210 struct hl_mmu_funcs *mmu_funcs; 211 int i, pgt_residency, rc = 0; 212 u32 real_page_size, npages; 213 u64 real_virt_addr; 214 bool is_dram_addr; 215 216 if (!hdev->mmu_enable) 217 return 0; 218 219 is_dram_addr = hl_is_dram_va(hdev, virt_addr); 220 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); 221 222 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 223 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 224 225 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, 226 is_dram_addr); 227 if (rc) 228 return rc; 229 230 npages = page_size / real_page_size; 231 real_virt_addr = virt_addr; 232 233 for (i = 0 ; i < npages ; i++) { 234 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); 235 if (rc) 236 break; 237 238 real_virt_addr += real_page_size; 239 } 240 241 if (flush_pte) 242 mmu_funcs->flush(ctx); 243 244 return rc; 245} 246 247/* 248 * hl_mmu_map_page - maps a virtual addr to physical addr 249 * 250 * @ctx: pointer to the context structure 251 * @virt_addr: virt addr to map from 252 * @phys_addr: phys addr to map to 253 * @page_size: physical page size 254 * @flush_pte: whether to do a PCI flush 255 * 256 * This function does the following: 257 * - Check that the virt addr is not mapped 258 * - Allocate pgts as necessary in order to map the virt addr to the phys 259 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. 260 * 261 * Because this function changes the page tables in the device and because it 262 * changes the MMU hash, it must be protected by a lock. 263 * However, because it maps only a single page, the lock should be implemented 264 * in a higher level in order to protect the entire mapping of the memory area 265 * 266 * For optimization reasons PCI flush may be requested once after mapping of 267 * large area. 268 */ 269int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 270 bool flush_pte) 271{ 272 int i, rc, pgt_residency, mapped_cnt = 0; 273 struct hl_device *hdev = ctx->hdev; 274 struct hl_mmu_properties *mmu_prop; 275 u64 real_virt_addr, real_phys_addr; 276 struct hl_mmu_funcs *mmu_funcs; 277 u32 real_page_size, npages; 278 bool is_dram_addr; 279 280 281 if (!hdev->mmu_enable) 282 return 0; 283 284 is_dram_addr = hl_is_dram_va(hdev, virt_addr); 285 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); 286 287 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 288 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 289 290 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, 291 is_dram_addr); 292 if (rc) 293 return rc; 294 295 /* 296 * Verify that the phys and virt addresses are aligned with the 297 * MMU page size (in dram this means checking the address and MMU 298 * after scrambling) 299 */ 300 if ((is_dram_addr && 301 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & 302 (mmu_prop->page_size - 1)) || 303 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & 304 (mmu_prop->page_size - 1)))) || 305 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || 306 (virt_addr & (real_page_size - 1))))) 307 dev_crit(hdev->dev, 308 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", 309 phys_addr, virt_addr, real_page_size); 310 311 npages = page_size / real_page_size; 312 real_virt_addr = virt_addr; 313 real_phys_addr = phys_addr; 314 315 for (i = 0 ; i < npages ; i++) { 316 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, 317 is_dram_addr); 318 if (rc) 319 goto err; 320 321 real_virt_addr += real_page_size; 322 real_phys_addr += real_page_size; 323 mapped_cnt++; 324 } 325 326 if (flush_pte) 327 mmu_funcs->flush(ctx); 328 329 return 0; 330 331err: 332 real_virt_addr = virt_addr; 333 for (i = 0 ; i < mapped_cnt ; i++) { 334 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) 335 dev_warn_ratelimited(hdev->dev, 336 "failed to unmap va: 0x%llx\n", real_virt_addr); 337 338 real_virt_addr += real_page_size; 339 } 340 341 mmu_funcs->flush(ctx); 342 343 return rc; 344} 345 346/* 347 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page 348 * for mapping contiguous physical memory 349 * 350 * @ctx: pointer to the context structure 351 * @virt_addr: virt addr to map from 352 * @phys_addr: phys addr to map to 353 * @size: size to map 354 * 355 */ 356int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 357 u64 phys_addr, u32 size) 358{ 359 struct hl_device *hdev = ctx->hdev; 360 struct asic_fixed_properties *prop = &hdev->asic_prop; 361 u64 curr_va, curr_pa; 362 u32 page_size; 363 bool flush_pte; 364 int rc = 0, off; 365 366 if (hl_mem_area_inside_range(virt_addr, size, 367 prop->dmmu.start_addr, prop->dmmu.end_addr)) 368 page_size = prop->dmmu.page_size; 369 else if (hl_mem_area_inside_range(virt_addr, size, 370 prop->pmmu.start_addr, prop->pmmu.end_addr)) 371 page_size = prop->pmmu.page_size; 372 else if (hl_mem_area_inside_range(virt_addr, size, 373 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) 374 page_size = prop->pmmu_huge.page_size; 375 else 376 return -EINVAL; 377 378 for (off = 0 ; off < size ; off += page_size) { 379 curr_va = virt_addr + off; 380 curr_pa = phys_addr + off; 381 flush_pte = (off + page_size) >= size; 382 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, 383 flush_pte); 384 if (rc) { 385 dev_err(hdev->dev, 386 "Map failed for va 0x%llx to pa 0x%llx\n", 387 curr_va, curr_pa); 388 goto unmap; 389 } 390 } 391 392 return rc; 393 394unmap: 395 for (; off >= 0 ; off -= page_size) { 396 curr_va = virt_addr + off; 397 flush_pte = (off - (s32) page_size) < 0; 398 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) 399 dev_warn_ratelimited(hdev->dev, 400 "failed to unmap va 0x%llx\n", curr_va); 401 } 402 403 return rc; 404} 405 406/* 407 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page 408 * for unmapping contiguous physical memory 409 * 410 * @ctx: pointer to the context structure 411 * @virt_addr: virt addr to unmap 412 * @size: size to unmap 413 * 414 */ 415int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) 416{ 417 struct hl_device *hdev = ctx->hdev; 418 struct asic_fixed_properties *prop = &hdev->asic_prop; 419 u64 curr_va; 420 u32 page_size; 421 bool flush_pte; 422 int rc = 0, off; 423 424 if (hl_mem_area_inside_range(virt_addr, size, 425 prop->dmmu.start_addr, prop->dmmu.end_addr)) 426 page_size = prop->dmmu.page_size; 427 else if (hl_mem_area_inside_range(virt_addr, size, 428 prop->pmmu.start_addr, prop->pmmu.end_addr)) 429 page_size = prop->pmmu.page_size; 430 else if (hl_mem_area_inside_range(virt_addr, size, 431 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) 432 page_size = prop->pmmu_huge.page_size; 433 else 434 return -EINVAL; 435 436 for (off = 0 ; off < size ; off += page_size) { 437 curr_va = virt_addr + off; 438 flush_pte = (off + page_size) >= size; 439 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); 440 if (rc) 441 dev_warn_ratelimited(hdev->dev, 442 "Unmap failed for va 0x%llx\n", curr_va); 443 } 444 445 return rc; 446} 447 448/* 449 * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out 450 * 451 * @ctx: pointer to the context structure 452 * 453 */ 454void hl_mmu_swap_out(struct hl_ctx *ctx) 455{ 456 struct hl_device *hdev = ctx->hdev; 457 458 if (!hdev->mmu_enable) 459 return; 460 461 if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) 462 hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); 463 464 if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) 465 hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); 466} 467 468/* 469 * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in 470 * 471 * @ctx: pointer to the context structure 472 * 473 */ 474void hl_mmu_swap_in(struct hl_ctx *ctx) 475{ 476 struct hl_device *hdev = ctx->hdev; 477 478 if (!hdev->mmu_enable) 479 return; 480 481 if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) 482 hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); 483 484 if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) 485 hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); 486} 487 488static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, 489 struct hl_mmu_hop_info *hops, 490 u64 *phys_addr) 491{ 492 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 493 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; 494 struct hl_mmu_properties *mmu_prop; 495 496 /* last hop holds the phys address and flags */ 497 if (hops->unscrambled_paddr) 498 tmp_phys_addr = hops->unscrambled_paddr; 499 else 500 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; 501 502 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) 503 mmu_prop = &prop->pmmu_huge; 504 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) 505 mmu_prop = &prop->pmmu; 506 else /* HL_VA_RANGE_TYPE_DRAM */ 507 mmu_prop = &prop->dmmu; 508 509 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && 510 !is_power_of_2(prop->dram_page_size)) { 511 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, 512 page_id, page_start; 513 u32 page_off; 514 515 /* 516 * Bit arithmetics cannot be used for non power of two page 517 * sizes. In addition, since bit arithmetics is not used, 518 * we cannot ignore dram base. All that shall be considered. 519 */ 520 521 dram_page_size = prop->dram_page_size; 522 dram_base = prop->dram_base_address; 523 abs_phys_addr = tmp_phys_addr - dram_base; 524 abs_virt_addr = virt_addr - dram_base; 525 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); 526 page_start = page_id * dram_page_size; 527 div_u64_rem(abs_virt_addr, dram_page_size, &page_off); 528 529 *phys_addr = page_start + page_off + dram_base; 530 } else { 531 /* 532 * find the correct hop shift field in hl_mmu_properties 533 * structure in order to determine the right masks 534 * for the page offset. 535 */ 536 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; 537 offset_mask = (1ull << hop_shift) - 1; 538 addr_mask = ~(offset_mask); 539 *phys_addr = (tmp_phys_addr & addr_mask) | 540 (virt_addr & offset_mask); 541 } 542} 543 544int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) 545{ 546 struct hl_mmu_hop_info hops; 547 int rc; 548 549 memset(&hops, 0, sizeof(hops)); 550 551 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); 552 if (rc) 553 return rc; 554 555 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); 556 557 return 0; 558} 559 560int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 561 struct hl_mmu_hop_info *hops) 562{ 563 struct hl_device *hdev = ctx->hdev; 564 struct asic_fixed_properties *prop; 565 struct hl_mmu_properties *mmu_prop; 566 struct hl_mmu_funcs *mmu_funcs; 567 int pgt_residency, rc; 568 bool is_dram_addr; 569 570 if (!hdev->mmu_enable) 571 return -EOPNOTSUPP; 572 573 prop = &hdev->asic_prop; 574 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ 575 576 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, 577 prop->dmmu.start_addr, 578 prop->dmmu.end_addr); 579 580 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ 581 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; 582 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 583 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 584 585 mutex_lock(&ctx->mmu_lock); 586 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); 587 mutex_unlock(&ctx->mmu_lock); 588 589 if (rc) 590 return rc; 591 592 /* add page offset to physical address */ 593 if (hops->unscrambled_paddr) 594 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); 595 596 return 0; 597} 598 599int hl_mmu_if_set_funcs(struct hl_device *hdev) 600{ 601 if (!hdev->mmu_enable) 602 return 0; 603 604 switch (hdev->asic_type) { 605 case ASIC_GOYA: 606 case ASIC_GAUDI: 607 case ASIC_GAUDI_SEC: 608 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); 609 break; 610 default: 611 dev_err(hdev->dev, "Unrecognized ASIC type %d\n", 612 hdev->asic_type); 613 return -EOPNOTSUPP; 614 } 615 616 return 0; 617} 618 619/** 620 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. 621 * @hdev: pointer to device data. 622 * @addr: The address to scramble. 623 * 624 * Return: The scrambled address. 625 */ 626u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) 627{ 628 return addr; 629} 630 631/** 632 * hl_mmu_descramble_addr() - The generic mmu address descrambling 633 * routine. 634 * @hdev: pointer to device data. 635 * @addr: The address to descramble. 636 * 637 * Return: The un-scrambled address. 638 */ 639u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) 640{ 641 return addr; 642} 643 644int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) 645{ 646 int rc; 647 648 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); 649 if (rc) 650 dev_err_ratelimited(hdev->dev, "MMU cache invalidation failed\n"); 651 652 return rc; 653} 654 655int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 656 u32 flags, u32 asid, u64 va, u64 size) 657{ 658 int rc; 659 660 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, 661 asid, va, size); 662 if (rc) 663 dev_err_ratelimited(hdev->dev, "MMU cache range invalidation failed\n"); 664 665 return rc; 666} 667 668static void hl_mmu_prefetch_work_function(struct work_struct *work) 669{ 670 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, pf_work); 671 struct hl_ctx *ctx = pfw->ctx; 672 673 if (!hl_device_operational(ctx->hdev, NULL)) 674 goto put_ctx; 675 676 mutex_lock(&ctx->mmu_lock); 677 678 ctx->hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, 679 pfw->va, pfw->size); 680 681 mutex_unlock(&ctx->mmu_lock); 682 683put_ctx: 684 /* 685 * context was taken in the common mmu prefetch function- see comment there about 686 * context handling. 687 */ 688 hl_ctx_put(ctx); 689 kfree(pfw); 690} 691 692int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) 693{ 694 struct hl_prefetch_work *handle_pf_work; 695 696 handle_pf_work = kmalloc(sizeof(*handle_pf_work), GFP_KERNEL); 697 if (!handle_pf_work) 698 return -ENOMEM; 699 700 INIT_WORK(&handle_pf_work->pf_work, hl_mmu_prefetch_work_function); 701 handle_pf_work->ctx = ctx; 702 handle_pf_work->va = va; 703 handle_pf_work->size = size; 704 handle_pf_work->flags = flags; 705 handle_pf_work->asid = asid; 706 707 /* 708 * as actual prefetch is done in a WQ we must get the context (and put it 709 * at the end of the work function) 710 */ 711 hl_ctx_get(ctx); 712 queue_work(ctx->hdev->pf_wq, &handle_pf_work->pf_work); 713 714 return 0; 715} 716 717u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) 718{ 719 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; 720} 721 722/** 723 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP 724 * @ctx: pointer to the context structure to initialize. 725 * @mmu_prop: MMU properties. 726 * @hop_idx: HOP index. 727 * @hop_addr: HOP address. 728 * @virt_addr: virtual address fro the translation. 729 * 730 * @return the matching PTE value on success, otherwise U64_MAX. 731 */ 732u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 733 u8 hop_idx, u64 hop_addr, u64 virt_addr) 734{ 735 u64 mask, shift; 736 737 if (hop_idx >= mmu_prop->num_hops) { 738 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); 739 return U64_MAX; 740 } 741 742 shift = mmu_prop->hop_shifts[hop_idx]; 743 mask = mmu_prop->hop_masks[hop_idx]; 744 745 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); 746} 747