mmu_v1.c (21736B)
1// SPDX-License-Identifier: GPL-2.0 2 3/* 4 * Copyright 2016-2019 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8#include "../habanalabs.h" 9#include "../../include/hw_ip/mmu/mmu_general.h" 10 11#include <linux/slab.h> 12 13#define MMU_V1_MAX_HOPS (MMU_HOP4 + 1) 14 15static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); 16 17static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) 18{ 19 struct pgt_info *pgt_info = NULL; 20 21 hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, 22 (unsigned long) hop_addr) 23 if (hop_addr == pgt_info->shadow_addr) 24 break; 25 26 return pgt_info; 27} 28 29static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) 30{ 31 struct hl_device *hdev = ctx->hdev; 32 33 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, 34 hdev->asic_prop.mmu_hop_table_size); 35 hash_del(&pgt_info->node); 36 kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); 37 kfree(pgt_info); 38} 39 40static void free_hop(struct hl_ctx *ctx, u64 hop_addr) 41{ 42 struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); 43 44 _free_hop(ctx, pgt_info); 45} 46 47static u64 alloc_hop(struct hl_ctx *ctx) 48{ 49 struct hl_device *hdev = ctx->hdev; 50 struct asic_fixed_properties *prop = &hdev->asic_prop; 51 struct pgt_info *pgt_info; 52 u64 phys_addr, shadow_addr; 53 54 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); 55 if (!pgt_info) 56 return ULLONG_MAX; 57 58 phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, 59 prop->mmu_hop_table_size); 60 if (!phys_addr) { 61 dev_err(hdev->dev, "failed to allocate page\n"); 62 goto pool_add_err; 63 } 64 65 shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, 66 GFP_KERNEL); 67 if (!shadow_addr) 68 goto shadow_err; 69 70 pgt_info->phys_addr = phys_addr; 71 pgt_info->shadow_addr = shadow_addr; 72 pgt_info->ctx = ctx; 73 pgt_info->num_of_ptes = 0; 74 hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); 75 76 return shadow_addr; 77 78shadow_err: 79 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr, 80 prop->mmu_hop_table_size); 81pool_add_err: 82 kfree(pgt_info); 83 84 return ULLONG_MAX; 85} 86 87static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) 88{ 89 return ctx->hdev->asic_prop.mmu_pgt_addr + 90 (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); 91} 92 93static inline u64 get_hop0_addr(struct hl_ctx *ctx) 94{ 95 return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + 96 (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); 97} 98 99static void flush(struct hl_ctx *ctx) 100{ 101 /* flush all writes from all cores to reach PCI */ 102 mb(); 103 ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); 104} 105 106/* transform the value to physical address when writing to H/W */ 107static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) 108{ 109 /* 110 * The value to write is actually the address of the next shadow hop + 111 * flags at the 12 LSBs. 112 * Hence in order to get the value to write to the physical PTE, we 113 * clear the 12 LSBs and translate the shadow hop to its associated 114 * physical hop, and add back the original 12 LSBs. 115 */ 116 u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | 117 (val & FLAGS_MASK); 118 119 ctx->hdev->asic_funcs->write_pte(ctx->hdev, 120 get_phys_addr(ctx, shadow_pte_addr), 121 phys_val); 122 123 *(u64 *) (uintptr_t) shadow_pte_addr = val; 124} 125 126/* do not transform the value to physical address when writing to H/W */ 127static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, 128 u64 val) 129{ 130 ctx->hdev->asic_funcs->write_pte(ctx->hdev, 131 get_phys_addr(ctx, shadow_pte_addr), 132 val); 133 *(u64 *) (uintptr_t) shadow_pte_addr = val; 134} 135 136/* clear the last and present bits */ 137static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) 138{ 139 /* no need to transform the value to physical address */ 140 write_final_pte(ctx, pte_addr, 0); 141} 142 143static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) 144{ 145 get_pgt_info(ctx, hop_addr)->num_of_ptes++; 146} 147 148/* 149 * put_pte - decrement the num of ptes and free the hop if possible 150 * 151 * @ctx: pointer to the context structure 152 * @hop_addr: addr of the hop 153 * 154 * This function returns the number of ptes left on this hop. If the number is 155 * 0, it means the pte was freed. 156 */ 157static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) 158{ 159 struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); 160 int num_of_ptes_left; 161 162 pgt_info->num_of_ptes--; 163 164 /* 165 * Need to save the number of ptes left because free_hop might free 166 * the pgt_info 167 */ 168 num_of_ptes_left = pgt_info->num_of_ptes; 169 if (!num_of_ptes_left) 170 _free_hop(ctx, pgt_info); 171 172 return num_of_ptes_left; 173} 174 175static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 176 u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx) 177{ 178 u64 mask, shift; 179 180 mask = mmu_prop->hop_masks[hop_idx]; 181 shift = mmu_prop->hop_shifts[hop_idx]; 182 return hop_addr_arr[hop_idx] + 183 ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); 184} 185 186static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, 187 bool *is_new_hop) 188{ 189 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); 190 191 if (hop_addr == ULLONG_MAX) { 192 hop_addr = alloc_hop(ctx); 193 *is_new_hop = (hop_addr != ULLONG_MAX); 194 } 195 196 return hop_addr; 197} 198 199/* translates shadow address inside hop to a physical address */ 200static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) 201{ 202 u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); 203 u64 shadow_hop_addr = shadow_addr & ~page_mask; 204 u64 pte_offset = shadow_addr & page_mask; 205 u64 phys_hop_addr; 206 207 if (shadow_hop_addr != get_hop0_addr(ctx)) 208 phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; 209 else 210 phys_hop_addr = get_phys_hop0_addr(ctx); 211 212 return phys_hop_addr + pte_offset; 213} 214 215static int dram_default_mapping_init(struct hl_ctx *ctx) 216{ 217 struct hl_device *hdev = ctx->hdev; 218 struct asic_fixed_properties *prop = &hdev->asic_prop; 219 u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, 220 hop2_pte_addr, hop3_pte_addr, pte_val; 221 int rc, i, j, hop3_allocated = 0; 222 223 if ((!prop->dram_supports_virtual_memory) || 224 (!hdev->dram_default_page_mapping) || 225 (ctx->asid == HL_KERNEL_ASID_ID)) 226 return 0; 227 228 num_of_hop3 = prop->dram_size_for_default_page_mapping; 229 do_div(num_of_hop3, prop->dram_page_size); 230 do_div(num_of_hop3, HOP_PTE_ENTRIES_512); 231 232 /* add hop1 and hop2 */ 233 total_hops = num_of_hop3 + 2; 234 235 ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); 236 if (!ctx->dram_default_hops) 237 return -ENOMEM; 238 239 hop0_addr = get_hop0_addr(ctx); 240 241 hop1_addr = alloc_hop(ctx); 242 if (hop1_addr == ULLONG_MAX) { 243 dev_err(hdev->dev, "failed to alloc hop 1\n"); 244 rc = -ENOMEM; 245 goto hop1_err; 246 } 247 248 ctx->dram_default_hops[total_hops - 1] = hop1_addr; 249 250 hop2_addr = alloc_hop(ctx); 251 if (hop2_addr == ULLONG_MAX) { 252 dev_err(hdev->dev, "failed to alloc hop 2\n"); 253 rc = -ENOMEM; 254 goto hop2_err; 255 } 256 257 ctx->dram_default_hops[total_hops - 2] = hop2_addr; 258 259 for (i = 0 ; i < num_of_hop3 ; i++) { 260 ctx->dram_default_hops[i] = alloc_hop(ctx); 261 if (ctx->dram_default_hops[i] == ULLONG_MAX) { 262 dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); 263 rc = -ENOMEM; 264 goto hop3_err; 265 } 266 hop3_allocated++; 267 } 268 269 /* need only pte 0 in hops 0 and 1 */ 270 pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; 271 write_pte(ctx, hop0_addr, pte_val); 272 273 pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; 274 write_pte(ctx, hop1_addr, pte_val); 275 get_pte(ctx, hop1_addr); 276 277 hop2_pte_addr = hop2_addr; 278 for (i = 0 ; i < num_of_hop3 ; i++) { 279 pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | 280 PAGE_PRESENT_MASK; 281 write_pte(ctx, hop2_pte_addr, pte_val); 282 get_pte(ctx, hop2_addr); 283 hop2_pte_addr += HL_PTE_SIZE; 284 } 285 286 pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | 287 LAST_MASK | PAGE_PRESENT_MASK; 288 289 for (i = 0 ; i < num_of_hop3 ; i++) { 290 hop3_pte_addr = ctx->dram_default_hops[i]; 291 for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { 292 write_final_pte(ctx, hop3_pte_addr, pte_val); 293 get_pte(ctx, ctx->dram_default_hops[i]); 294 hop3_pte_addr += HL_PTE_SIZE; 295 } 296 } 297 298 flush(ctx); 299 300 return 0; 301 302hop3_err: 303 for (i = 0 ; i < hop3_allocated ; i++) 304 free_hop(ctx, ctx->dram_default_hops[i]); 305 306 free_hop(ctx, hop2_addr); 307hop2_err: 308 free_hop(ctx, hop1_addr); 309hop1_err: 310 kfree(ctx->dram_default_hops); 311 312 return rc; 313} 314 315static void dram_default_mapping_fini(struct hl_ctx *ctx) 316{ 317 struct hl_device *hdev = ctx->hdev; 318 struct asic_fixed_properties *prop = &hdev->asic_prop; 319 u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, 320 hop2_pte_addr, hop3_pte_addr; 321 int i, j; 322 323 if ((!prop->dram_supports_virtual_memory) || 324 (!hdev->dram_default_page_mapping) || 325 (ctx->asid == HL_KERNEL_ASID_ID)) 326 return; 327 328 num_of_hop3 = prop->dram_size_for_default_page_mapping; 329 do_div(num_of_hop3, prop->dram_page_size); 330 do_div(num_of_hop3, HOP_PTE_ENTRIES_512); 331 332 hop0_addr = get_hop0_addr(ctx); 333 /* add hop1 and hop2 */ 334 total_hops = num_of_hop3 + 2; 335 hop1_addr = ctx->dram_default_hops[total_hops - 1]; 336 hop2_addr = ctx->dram_default_hops[total_hops - 2]; 337 338 for (i = 0 ; i < num_of_hop3 ; i++) { 339 hop3_pte_addr = ctx->dram_default_hops[i]; 340 for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { 341 clear_pte(ctx, hop3_pte_addr); 342 put_pte(ctx, ctx->dram_default_hops[i]); 343 hop3_pte_addr += HL_PTE_SIZE; 344 } 345 } 346 347 hop2_pte_addr = hop2_addr; 348 hop2_pte_addr = hop2_addr; 349 for (i = 0 ; i < num_of_hop3 ; i++) { 350 clear_pte(ctx, hop2_pte_addr); 351 put_pte(ctx, hop2_addr); 352 hop2_pte_addr += HL_PTE_SIZE; 353 } 354 355 clear_pte(ctx, hop1_addr); 356 put_pte(ctx, hop1_addr); 357 clear_pte(ctx, hop0_addr); 358 359 kfree(ctx->dram_default_hops); 360 361 flush(ctx); 362} 363 364/** 365 * hl_mmu_v1_init() - initialize the MMU module. 366 * @hdev: habanalabs device structure. 367 * 368 * This function does the following: 369 * - Create a pool of pages for pgt_infos. 370 * - Create a shadow table for pgt 371 * 372 * Return: 0 for success, non-zero for failure. 373 */ 374static int hl_mmu_v1_init(struct hl_device *hdev) 375{ 376 struct asic_fixed_properties *prop = &hdev->asic_prop; 377 int rc; 378 379 hdev->mmu_priv.dr.mmu_pgt_pool = 380 gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); 381 382 if (!hdev->mmu_priv.dr.mmu_pgt_pool) { 383 dev_err(hdev->dev, "Failed to create page gen pool\n"); 384 return -ENOMEM; 385 } 386 387 rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + 388 prop->mmu_hop0_tables_total_size, 389 prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, 390 -1); 391 if (rc) { 392 dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); 393 goto err_pool_add; 394 } 395 396 hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, 397 prop->mmu_hop_table_size, 398 GFP_KERNEL | __GFP_ZERO); 399 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { 400 rc = -ENOMEM; 401 goto err_pool_add; 402 } 403 404 /* MMU H/W init will be done in device hw_init() */ 405 406 return 0; 407 408err_pool_add: 409 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); 410 411 return rc; 412} 413 414/** 415 * hl_mmu_fini() - release the MMU module. 416 * @hdev: habanalabs device structure. 417 * 418 * This function does the following: 419 * - Disable MMU in H/W. 420 * - Free the pgt_infos pool. 421 * 422 * All contexts should be freed before calling this function. 423 */ 424static void hl_mmu_v1_fini(struct hl_device *hdev) 425{ 426 /* MMU H/W fini was already done in device hw_fini() */ 427 428 if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { 429 kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); 430 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); 431 432 /* Make sure that if we arrive here again without init was 433 * called we won't cause kernel panic. This can happen for 434 * example if we fail during hard reset code at certain points 435 */ 436 hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; 437 } 438} 439 440/** 441 * hl_mmu_ctx_init() - initialize a context for using the MMU module. 442 * @ctx: pointer to the context structure to initialize. 443 * 444 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all 445 * page tables hops related to this context. 446 * Return: 0 on success, non-zero otherwise. 447 */ 448static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx) 449{ 450 hash_init(ctx->mmu_shadow_hash); 451 return dram_default_mapping_init(ctx); 452} 453 454/* 455 * hl_mmu_ctx_fini - disable a ctx from using the mmu module 456 * 457 * @ctx: pointer to the context structure 458 * 459 * This function does the following: 460 * - Free any pgts which were not freed yet 461 * - Free the mutex 462 * - Free DRAM default page mapping hops 463 */ 464static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx) 465{ 466 struct hl_device *hdev = ctx->hdev; 467 struct pgt_info *pgt_info; 468 struct hlist_node *tmp; 469 int i; 470 471 dram_default_mapping_fini(ctx); 472 473 if (!hash_empty(ctx->mmu_shadow_hash)) 474 dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", 475 ctx->asid); 476 477 hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { 478 dev_err_ratelimited(hdev->dev, 479 "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", 480 pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); 481 _free_hop(ctx, pgt_info); 482 } 483} 484 485static int hl_mmu_v1_unmap(struct hl_ctx *ctx, 486 u64 virt_addr, bool is_dram_addr) 487{ 488 u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; 489 struct hl_device *hdev = ctx->hdev; 490 struct asic_fixed_properties *prop = &hdev->asic_prop; 491 struct hl_mmu_properties *mmu_prop; 492 bool is_huge, clear_hop3 = true; 493 int hop_idx; 494 495 /* shifts and masks are the same in PMMU and HPMMU, use one of them */ 496 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; 497 498 for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) { 499 if (hop_idx == MMU_HOP0) { 500 hop_addr[hop_idx] = get_hop0_addr(ctx); 501 } else { 502 hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); 503 if (hop_addr[hop_idx] == ULLONG_MAX) 504 goto not_mapped; 505 } 506 507 hop_pte_addr[hop_idx] = 508 get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); 509 510 curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; 511 } 512 513 is_huge = curr_pte & mmu_prop->last_mask; 514 515 if (is_dram_addr && !is_huge) { 516 dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); 517 return -EFAULT; 518 } 519 520 if (!is_huge) { 521 hop_idx = MMU_HOP4; 522 hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); 523 if (hop_addr[hop_idx] == ULLONG_MAX) 524 goto not_mapped; 525 526 hop_pte_addr[hop_idx] = 527 get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); 528 curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; 529 clear_hop3 = false; 530 } 531 532 if (hdev->dram_default_page_mapping && is_dram_addr) { 533 u64 default_pte = (prop->mmu_dram_default_page_addr & 534 HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | 535 PAGE_PRESENT_MASK; 536 if (curr_pte == default_pte) { 537 dev_err(hdev->dev, 538 "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", 539 virt_addr); 540 goto not_mapped; 541 } 542 543 if (!(curr_pte & PAGE_PRESENT_MASK)) { 544 dev_err(hdev->dev, 545 "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", 546 virt_addr); 547 goto not_mapped; 548 } 549 550 hop_idx = MMU_HOP3; 551 write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte); 552 put_pte(ctx, hop_addr[hop_idx]); 553 } else { 554 if (!(curr_pte & PAGE_PRESENT_MASK)) 555 goto not_mapped; 556 557 if (hop_addr[MMU_HOP4]) 558 clear_pte(ctx, hop_pte_addr[MMU_HOP4]); 559 else 560 clear_pte(ctx, hop_pte_addr[MMU_HOP3]); 561 562 if (hop_addr[MMU_HOP4] && !put_pte(ctx, hop_addr[MMU_HOP4])) 563 clear_hop3 = true; 564 565 if (!clear_hop3) 566 goto mapped; 567 568 for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) { 569 clear_pte(ctx, hop_pte_addr[hop_idx]); 570 571 if (hop_idx == MMU_HOP0) 572 break; 573 574 if (put_pte(ctx, hop_addr[hop_idx])) 575 goto mapped; 576 } 577 } 578 579mapped: 580 return 0; 581 582not_mapped: 583 dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", 584 virt_addr); 585 586 return -EINVAL; 587} 588 589static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 590 u32 page_size, bool is_dram_addr) 591{ 592 u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; 593 struct hl_device *hdev = ctx->hdev; 594 struct asic_fixed_properties *prop = &hdev->asic_prop; 595 struct hl_mmu_properties *mmu_prop; 596 bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false}; 597 int num_hops, hop_idx, prev_hop, rc = -ENOMEM; 598 599 /* 600 * This mapping function can map a page or a huge page. For huge page 601 * there are only 3 hops rather than 4. Currently the DRAM allocation 602 * uses huge pages only but user memory could have been allocated with 603 * one of the two page sizes. Since this is a common code for all the 604 * three cases, we need this hugs page check. 605 */ 606 if (is_dram_addr) { 607 mmu_prop = &prop->dmmu; 608 is_huge = true; 609 } else if (page_size == prop->pmmu_huge.page_size) { 610 mmu_prop = &prop->pmmu_huge; 611 is_huge = true; 612 } else { 613 mmu_prop = &prop->pmmu; 614 is_huge = false; 615 } 616 617 num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS; 618 619 for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) { 620 if (hop_idx == MMU_HOP0) { 621 hop_addr[hop_idx] = get_hop0_addr(ctx); 622 } else { 623 hop_addr[hop_idx] = 624 get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]); 625 if (hop_addr[hop_idx] == ULLONG_MAX) 626 goto err; 627 } 628 629 hop_pte_addr[hop_idx] = 630 get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); 631 curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; 632 } 633 634 if (hdev->dram_default_page_mapping && is_dram_addr) { 635 u64 default_pte = (prop->mmu_dram_default_page_addr & 636 HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | 637 PAGE_PRESENT_MASK; 638 639 if (curr_pte != default_pte) { 640 dev_err(hdev->dev, 641 "DRAM: mapping already exists for virt_addr 0x%llx\n", 642 virt_addr); 643 rc = -EINVAL; 644 goto err; 645 } 646 647 for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { 648 if (hop_new[hop_idx]) { 649 dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); 650 rc = -EFAULT; 651 goto err; 652 } 653 } 654 } else if (curr_pte & PAGE_PRESENT_MASK) { 655 dev_err(hdev->dev, 656 "mapping already exists for virt_addr 0x%llx\n", 657 virt_addr); 658 659 for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) 660 dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx, 661 *(u64 *) (uintptr_t) hop_pte_addr[hop_idx], 662 hop_pte_addr[hop_idx]); 663 664 rc = -EINVAL; 665 goto err; 666 } 667 668 curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask 669 | PAGE_PRESENT_MASK; 670 671 write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte); 672 673 for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { 674 prev_hop = hop_idx - 1; 675 676 if (hop_new[hop_idx]) { 677 curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; 678 write_pte(ctx, hop_pte_addr[prev_hop], curr_pte); 679 if (hop_idx != MMU_HOP1) 680 get_pte(ctx, hop_addr[prev_hop]); 681 } 682 } 683 684 get_pte(ctx, hop_addr[num_hops - 1]); 685 686 return 0; 687 688err: 689 for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) { 690 if (hop_new[hop_idx]) 691 free_hop(ctx, hop_addr[hop_idx]); 692 } 693 694 return rc; 695} 696 697/* 698 * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out 699 * 700 * @ctx: pointer to the context structure 701 * 702 */ 703static void hl_mmu_v1_swap_out(struct hl_ctx *ctx) 704{ 705 706} 707 708/* 709 * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in 710 * 711 * @ctx: pointer to the context structure 712 * 713 */ 714static void hl_mmu_v1_swap_in(struct hl_ctx *ctx) 715{ 716 717} 718 719static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 720 struct hl_mmu_hop_info *hops) 721{ 722 struct hl_device *hdev = ctx->hdev; 723 struct asic_fixed_properties *prop = &hdev->asic_prop; 724 struct hl_mmu_properties *mmu_prop; 725 bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge; 726 int i, used_hops; 727 728 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, 729 prop->dmmu.start_addr, 730 prop->dmmu.end_addr); 731 is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, 732 prop->pmmu.start_addr, 733 prop->pmmu.end_addr); 734 is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, 735 prop->pmmu_huge.page_size, 736 prop->pmmu_huge.start_addr, 737 prop->pmmu_huge.end_addr); 738 if (is_dram_addr) { 739 mmu_prop = &prop->dmmu; 740 is_huge = true; 741 } else if (is_pmmu_addr) { 742 mmu_prop = &prop->pmmu; 743 is_huge = false; 744 } else if (is_pmmu_h_addr) { 745 mmu_prop = &prop->pmmu_huge; 746 is_huge = true; 747 } else { 748 return -EINVAL; 749 } 750 751 used_hops = mmu_prop->num_hops; 752 753 /* huge pages use lesser hops */ 754 if (is_huge) 755 used_hops--; 756 757 hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx); 758 hops->hop_info[0].hop_pte_addr = 759 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, 760 hops->hop_info[0].hop_addr, virt_addr); 761 hops->hop_info[0].hop_pte_val = 762 hdev->asic_funcs->read_pte(hdev, 763 hops->hop_info[0].hop_pte_addr); 764 765 for (i = 1 ; i < used_hops ; i++) { 766 hops->hop_info[i].hop_addr = 767 hl_mmu_get_next_hop_addr(ctx, 768 hops->hop_info[i - 1].hop_pte_val); 769 if (hops->hop_info[i].hop_addr == ULLONG_MAX) 770 return -EFAULT; 771 772 hops->hop_info[i].hop_pte_addr = 773 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, 774 hops->hop_info[i].hop_addr, 775 virt_addr); 776 hops->hop_info[i].hop_pte_val = 777 hdev->asic_funcs->read_pte(hdev, 778 hops->hop_info[i].hop_pte_addr); 779 780 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) 781 return -EFAULT; 782 783 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) 784 break; 785 } 786 787 /* if passed over all hops then no last hop was found */ 788 if (i == mmu_prop->num_hops) 789 return -EFAULT; 790 791 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) 792 return -EFAULT; 793 794 hops->used_hops = i + 1; 795 796 return 0; 797} 798 799/* 800 * hl_mmu_v1_prepare - prepare mmu for working with mmu v1 801 * 802 * @hdev: pointer to the device structure 803 */ 804void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) 805{ 806 mmu->init = hl_mmu_v1_init; 807 mmu->fini = hl_mmu_v1_fini; 808 mmu->ctx_init = hl_mmu_v1_ctx_init; 809 mmu->ctx_fini = hl_mmu_v1_ctx_fini; 810 mmu->map = hl_mmu_v1_map; 811 mmu->unmap = hl_mmu_v1_unmap; 812 mmu->flush = flush; 813 mmu->swap_out = hl_mmu_v1_swap_out; 814 mmu->swap_in = hl_mmu_v1_swap_in; 815 mmu->get_tlb_info = hl_mmu_v1_get_tlb_info; 816}