cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

heap.c (8282B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * This is for all the tests relating directly to heap memory, including
      4 * page allocation and slab allocations.
      5 */
      6#include "lkdtm.h"
      7#include <linux/slab.h>
      8#include <linux/vmalloc.h>
      9#include <linux/sched.h>
     10
     11static struct kmem_cache *double_free_cache;
     12static struct kmem_cache *a_cache;
     13static struct kmem_cache *b_cache;
     14
     15/*
     16 * Using volatile here means the compiler cannot ever make assumptions
     17 * about this value. This means compile-time length checks involving
     18 * this variable cannot be performed; only run-time checks.
     19 */
     20static volatile int __offset = 1;
     21
     22/*
     23 * If there aren't guard pages, it's likely that a consecutive allocation will
     24 * let us overflow into the second allocation without overwriting something real.
     25 *
     26 * This should always be caught because there is an unconditional unmapped
     27 * page after vmap allocations.
     28 */
     29static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
     30{
     31	char *one, *two;
     32
     33	one = vzalloc(PAGE_SIZE);
     34	two = vzalloc(PAGE_SIZE);
     35
     36	pr_info("Attempting vmalloc linear overflow ...\n");
     37	memset(one, 0xAA, PAGE_SIZE + __offset);
     38
     39	vfree(two);
     40	vfree(one);
     41}
     42
     43/*
     44 * This tries to stay within the next largest power-of-2 kmalloc cache
     45 * to avoid actually overwriting anything important if it's not detected
     46 * correctly.
     47 *
     48 * This should get caught by either memory tagging, KASan, or by using
     49 * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
     50 */
     51static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
     52{
     53	size_t len = 1020;
     54	u32 *data = kmalloc(len, GFP_KERNEL);
     55	if (!data)
     56		return;
     57
     58	pr_info("Attempting slab linear overflow ...\n");
     59	OPTIMIZER_HIDE_VAR(data);
     60	data[1024 / sizeof(u32)] = 0x12345678;
     61	kfree(data);
     62}
     63
     64static void lkdtm_WRITE_AFTER_FREE(void)
     65{
     66	int *base, *again;
     67	size_t len = 1024;
     68	/*
     69	 * The slub allocator uses the first word to store the free
     70	 * pointer in some configurations. Use the middle of the
     71	 * allocation to avoid running into the freelist
     72	 */
     73	size_t offset = (len / sizeof(*base)) / 2;
     74
     75	base = kmalloc(len, GFP_KERNEL);
     76	if (!base)
     77		return;
     78	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
     79	pr_info("Attempting bad write to freed memory at %p\n",
     80		&base[offset]);
     81	kfree(base);
     82	base[offset] = 0x0abcdef0;
     83	/* Attempt to notice the overwrite. */
     84	again = kmalloc(len, GFP_KERNEL);
     85	kfree(again);
     86	if (again != base)
     87		pr_info("Hmm, didn't get the same memory range.\n");
     88}
     89
     90static void lkdtm_READ_AFTER_FREE(void)
     91{
     92	int *base, *val, saw;
     93	size_t len = 1024;
     94	/*
     95	 * The slub allocator will use the either the first word or
     96	 * the middle of the allocation to store the free pointer,
     97	 * depending on configurations. Store in the second word to
     98	 * avoid running into the freelist.
     99	 */
    100	size_t offset = sizeof(*base);
    101
    102	base = kmalloc(len, GFP_KERNEL);
    103	if (!base) {
    104		pr_info("Unable to allocate base memory.\n");
    105		return;
    106	}
    107
    108	val = kmalloc(len, GFP_KERNEL);
    109	if (!val) {
    110		pr_info("Unable to allocate val memory.\n");
    111		kfree(base);
    112		return;
    113	}
    114
    115	*val = 0x12345678;
    116	base[offset] = *val;
    117	pr_info("Value in memory before free: %x\n", base[offset]);
    118
    119	kfree(base);
    120
    121	pr_info("Attempting bad read from freed memory\n");
    122	saw = base[offset];
    123	if (saw != *val) {
    124		/* Good! Poisoning happened, so declare a win. */
    125		pr_info("Memory correctly poisoned (%x)\n", saw);
    126	} else {
    127		pr_err("FAIL: Memory was not poisoned!\n");
    128		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
    129	}
    130
    131	kfree(val);
    132}
    133
    134static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
    135{
    136	unsigned long p = __get_free_page(GFP_KERNEL);
    137	if (!p) {
    138		pr_info("Unable to allocate free page\n");
    139		return;
    140	}
    141
    142	pr_info("Writing to the buddy page before free\n");
    143	memset((void *)p, 0x3, PAGE_SIZE);
    144	free_page(p);
    145	schedule();
    146	pr_info("Attempting bad write to the buddy page after free\n");
    147	memset((void *)p, 0x78, PAGE_SIZE);
    148	/* Attempt to notice the overwrite. */
    149	p = __get_free_page(GFP_KERNEL);
    150	free_page(p);
    151	schedule();
    152}
    153
    154static void lkdtm_READ_BUDDY_AFTER_FREE(void)
    155{
    156	unsigned long p = __get_free_page(GFP_KERNEL);
    157	int saw, *val;
    158	int *base;
    159
    160	if (!p) {
    161		pr_info("Unable to allocate free page\n");
    162		return;
    163	}
    164
    165	val = kmalloc(1024, GFP_KERNEL);
    166	if (!val) {
    167		pr_info("Unable to allocate val memory.\n");
    168		free_page(p);
    169		return;
    170	}
    171
    172	base = (int *)p;
    173
    174	*val = 0x12345678;
    175	base[0] = *val;
    176	pr_info("Value in memory before free: %x\n", base[0]);
    177	free_page(p);
    178	pr_info("Attempting to read from freed memory\n");
    179	saw = base[0];
    180	if (saw != *val) {
    181		/* Good! Poisoning happened, so declare a win. */
    182		pr_info("Memory correctly poisoned (%x)\n", saw);
    183	} else {
    184		pr_err("FAIL: Buddy page was not poisoned!\n");
    185		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
    186	}
    187
    188	kfree(val);
    189}
    190
    191static void lkdtm_SLAB_INIT_ON_ALLOC(void)
    192{
    193	u8 *first;
    194	u8 *val;
    195
    196	first = kmalloc(512, GFP_KERNEL);
    197	if (!first) {
    198		pr_info("Unable to allocate 512 bytes the first time.\n");
    199		return;
    200	}
    201
    202	memset(first, 0xAB, 512);
    203	kfree(first);
    204
    205	val = kmalloc(512, GFP_KERNEL);
    206	if (!val) {
    207		pr_info("Unable to allocate 512 bytes the second time.\n");
    208		return;
    209	}
    210	if (val != first) {
    211		pr_warn("Reallocation missed clobbered memory.\n");
    212	}
    213
    214	if (memchr(val, 0xAB, 512) == NULL) {
    215		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
    216	} else {
    217		pr_err("FAIL: Slab was not initialized\n");
    218		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
    219	}
    220	kfree(val);
    221}
    222
    223static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
    224{
    225	u8 *first;
    226	u8 *val;
    227
    228	first = (u8 *)__get_free_page(GFP_KERNEL);
    229	if (!first) {
    230		pr_info("Unable to allocate first free page\n");
    231		return;
    232	}
    233
    234	memset(first, 0xAB, PAGE_SIZE);
    235	free_page((unsigned long)first);
    236
    237	val = (u8 *)__get_free_page(GFP_KERNEL);
    238	if (!val) {
    239		pr_info("Unable to allocate second free page\n");
    240		return;
    241	}
    242
    243	if (val != first) {
    244		pr_warn("Reallocation missed clobbered memory.\n");
    245	}
    246
    247	if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
    248		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
    249	} else {
    250		pr_err("FAIL: Slab was not initialized\n");
    251		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
    252	}
    253	free_page((unsigned long)val);
    254}
    255
    256static void lkdtm_SLAB_FREE_DOUBLE(void)
    257{
    258	int *val;
    259
    260	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
    261	if (!val) {
    262		pr_info("Unable to allocate double_free_cache memory.\n");
    263		return;
    264	}
    265
    266	/* Just make sure we got real memory. */
    267	*val = 0x12345678;
    268	pr_info("Attempting double slab free ...\n");
    269	kmem_cache_free(double_free_cache, val);
    270	kmem_cache_free(double_free_cache, val);
    271}
    272
    273static void lkdtm_SLAB_FREE_CROSS(void)
    274{
    275	int *val;
    276
    277	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
    278	if (!val) {
    279		pr_info("Unable to allocate a_cache memory.\n");
    280		return;
    281	}
    282
    283	/* Just make sure we got real memory. */
    284	*val = 0x12345679;
    285	pr_info("Attempting cross-cache slab free ...\n");
    286	kmem_cache_free(b_cache, val);
    287}
    288
    289static void lkdtm_SLAB_FREE_PAGE(void)
    290{
    291	unsigned long p = __get_free_page(GFP_KERNEL);
    292
    293	pr_info("Attempting non-Slab slab free ...\n");
    294	kmem_cache_free(NULL, (void *)p);
    295	free_page(p);
    296}
    297
    298/*
    299 * We have constructors to keep the caches distinctly separated without
    300 * needing to boot with "slab_nomerge".
    301 */
    302static void ctor_double_free(void *region)
    303{ }
    304static void ctor_a(void *region)
    305{ }
    306static void ctor_b(void *region)
    307{ }
    308
    309void __init lkdtm_heap_init(void)
    310{
    311	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
    312					      64, 0, 0, ctor_double_free);
    313	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
    314	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
    315}
    316
    317void __exit lkdtm_heap_exit(void)
    318{
    319	kmem_cache_destroy(double_free_cache);
    320	kmem_cache_destroy(a_cache);
    321	kmem_cache_destroy(b_cache);
    322}
    323
    324static struct crashtype crashtypes[] = {
    325	CRASHTYPE(SLAB_LINEAR_OVERFLOW),
    326	CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
    327	CRASHTYPE(WRITE_AFTER_FREE),
    328	CRASHTYPE(READ_AFTER_FREE),
    329	CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
    330	CRASHTYPE(READ_BUDDY_AFTER_FREE),
    331	CRASHTYPE(SLAB_INIT_ON_ALLOC),
    332	CRASHTYPE(BUDDY_INIT_ON_ALLOC),
    333	CRASHTYPE(SLAB_FREE_DOUBLE),
    334	CRASHTYPE(SLAB_FREE_CROSS),
    335	CRASHTYPE(SLAB_FREE_PAGE),
    336};
    337
    338struct crashtype_category heap_crashtypes = {
    339	.crashtypes = crashtypes,
    340	.len	    = ARRAY_SIZE(crashtypes),
    341};