cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

grufault.c (23116B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * SN Platform GRU Driver
      4 *
      5 *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
      6 *
      7 * This file contains code that handles TLB misses within the GRU.
      8 * These misses are reported either via interrupts or user polling of
      9 * the user CB.
     10 *
     11 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
     12 */
     13
     14#include <linux/kernel.h>
     15#include <linux/errno.h>
     16#include <linux/spinlock.h>
     17#include <linux/mm.h>
     18#include <linux/hugetlb.h>
     19#include <linux/device.h>
     20#include <linux/io.h>
     21#include <linux/uaccess.h>
     22#include <linux/security.h>
     23#include <linux/sync_core.h>
     24#include <linux/prefetch.h>
     25#include "gru.h"
     26#include "grutables.h"
     27#include "grulib.h"
     28#include "gru_instructions.h"
     29#include <asm/uv/uv_hub.h>
     30
     31/* Return codes for vtop functions */
     32#define VTOP_SUCCESS               0
     33#define VTOP_INVALID               -1
     34#define VTOP_RETRY                 -2
     35
     36
     37/*
     38 * Test if a physical address is a valid GRU GSEG address
     39 */
     40static inline int is_gru_paddr(unsigned long paddr)
     41{
     42	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
     43}
     44
     45/*
     46 * Find the vma of a GRU segment. Caller must hold mmap_lock.
     47 */
     48struct vm_area_struct *gru_find_vma(unsigned long vaddr)
     49{
     50	struct vm_area_struct *vma;
     51
     52	vma = vma_lookup(current->mm, vaddr);
     53	if (vma && vma->vm_ops == &gru_vm_ops)
     54		return vma;
     55	return NULL;
     56}
     57
     58/*
     59 * Find and lock the gts that contains the specified user vaddr.
     60 *
     61 * Returns:
     62 * 	- *gts with the mmap_lock locked for read and the GTS locked.
     63 *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
     64 */
     65
     66static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
     67{
     68	struct mm_struct *mm = current->mm;
     69	struct vm_area_struct *vma;
     70	struct gru_thread_state *gts = NULL;
     71
     72	mmap_read_lock(mm);
     73	vma = gru_find_vma(vaddr);
     74	if (vma)
     75		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
     76	if (gts)
     77		mutex_lock(&gts->ts_ctxlock);
     78	else
     79		mmap_read_unlock(mm);
     80	return gts;
     81}
     82
     83static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
     84{
     85	struct mm_struct *mm = current->mm;
     86	struct vm_area_struct *vma;
     87	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
     88
     89	mmap_write_lock(mm);
     90	vma = gru_find_vma(vaddr);
     91	if (!vma)
     92		goto err;
     93
     94	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
     95	if (IS_ERR(gts))
     96		goto err;
     97	mutex_lock(&gts->ts_ctxlock);
     98	mmap_write_downgrade(mm);
     99	return gts;
    100
    101err:
    102	mmap_write_unlock(mm);
    103	return gts;
    104}
    105
    106/*
    107 * Unlock a GTS that was previously locked with gru_find_lock_gts().
    108 */
    109static void gru_unlock_gts(struct gru_thread_state *gts)
    110{
    111	mutex_unlock(&gts->ts_ctxlock);
    112	mmap_read_unlock(current->mm);
    113}
    114
    115/*
    116 * Set a CB.istatus to active using a user virtual address. This must be done
    117 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
    118 * If the line is evicted, the status may be lost. The in-cache update
    119 * is necessary to prevent the user from seeing a stale cb.istatus that will
    120 * change as soon as the TFH restart is complete. Races may cause an
    121 * occasional failure to clear the cb.istatus, but that is ok.
    122 */
    123static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
    124{
    125	if (cbk) {
    126		cbk->istatus = CBS_ACTIVE;
    127	}
    128}
    129
    130/*
    131 * Read & clear a TFM
    132 *
    133 * The GRU has an array of fault maps. A map is private to a cpu
    134 * Only one cpu will be accessing a cpu's fault map.
    135 *
    136 * This function scans the cpu-private fault map & clears all bits that
    137 * are set. The function returns a bitmap that indicates the bits that
    138 * were cleared. Note that sense the maps may be updated asynchronously by
    139 * the GRU, atomic operations must be used to clear bits.
    140 */
    141static void get_clear_fault_map(struct gru_state *gru,
    142				struct gru_tlb_fault_map *imap,
    143				struct gru_tlb_fault_map *dmap)
    144{
    145	unsigned long i, k;
    146	struct gru_tlb_fault_map *tfm;
    147
    148	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
    149	prefetchw(tfm);		/* Helps on hardware, required for emulator */
    150	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
    151		k = tfm->fault_bits[i];
    152		if (k)
    153			k = xchg(&tfm->fault_bits[i], 0UL);
    154		imap->fault_bits[i] = k;
    155		k = tfm->done_bits[i];
    156		if (k)
    157			k = xchg(&tfm->done_bits[i], 0UL);
    158		dmap->fault_bits[i] = k;
    159	}
    160
    161	/*
    162	 * Not functionally required but helps performance. (Required
    163	 * on emulator)
    164	 */
    165	gru_flush_cache(tfm);
    166}
    167
    168/*
    169 * Atomic (interrupt context) & non-atomic (user context) functions to
    170 * convert a vaddr into a physical address. The size of the page
    171 * is returned in pageshift.
    172 * 	returns:
    173 * 		  0 - successful
    174 * 		< 0 - error code
    175 * 		  1 - (atomic only) try again in non-atomic context
    176 */
    177static int non_atomic_pte_lookup(struct vm_area_struct *vma,
    178				 unsigned long vaddr, int write,
    179				 unsigned long *paddr, int *pageshift)
    180{
    181	struct page *page;
    182
    183#ifdef CONFIG_HUGETLB_PAGE
    184	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
    185#else
    186	*pageshift = PAGE_SHIFT;
    187#endif
    188	if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
    189		return -EFAULT;
    190	*paddr = page_to_phys(page);
    191	put_page(page);
    192	return 0;
    193}
    194
    195/*
    196 * atomic_pte_lookup
    197 *
    198 * Convert a user virtual address to a physical address
    199 * Only supports Intel large pages (2MB only) on x86_64.
    200 *	ZZZ - hugepage support is incomplete
    201 *
    202 * NOTE: mmap_lock is already held on entry to this function. This
    203 * guarantees existence of the page tables.
    204 */
    205static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
    206	int write, unsigned long *paddr, int *pageshift)
    207{
    208	pgd_t *pgdp;
    209	p4d_t *p4dp;
    210	pud_t *pudp;
    211	pmd_t *pmdp;
    212	pte_t pte;
    213
    214	pgdp = pgd_offset(vma->vm_mm, vaddr);
    215	if (unlikely(pgd_none(*pgdp)))
    216		goto err;
    217
    218	p4dp = p4d_offset(pgdp, vaddr);
    219	if (unlikely(p4d_none(*p4dp)))
    220		goto err;
    221
    222	pudp = pud_offset(p4dp, vaddr);
    223	if (unlikely(pud_none(*pudp)))
    224		goto err;
    225
    226	pmdp = pmd_offset(pudp, vaddr);
    227	if (unlikely(pmd_none(*pmdp)))
    228		goto err;
    229#ifdef CONFIG_X86_64
    230	if (unlikely(pmd_large(*pmdp)))
    231		pte = *(pte_t *) pmdp;
    232	else
    233#endif
    234		pte = *pte_offset_kernel(pmdp, vaddr);
    235
    236	if (unlikely(!pte_present(pte) ||
    237		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
    238		return 1;
    239
    240	*paddr = pte_pfn(pte) << PAGE_SHIFT;
    241#ifdef CONFIG_HUGETLB_PAGE
    242	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
    243#else
    244	*pageshift = PAGE_SHIFT;
    245#endif
    246	return 0;
    247
    248err:
    249	return 1;
    250}
    251
    252static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
    253		    int write, int atomic, unsigned long *gpa, int *pageshift)
    254{
    255	struct mm_struct *mm = gts->ts_mm;
    256	struct vm_area_struct *vma;
    257	unsigned long paddr;
    258	int ret, ps;
    259
    260	vma = find_vma(mm, vaddr);
    261	if (!vma)
    262		goto inval;
    263
    264	/*
    265	 * Atomic lookup is faster & usually works even if called in non-atomic
    266	 * context.
    267	 */
    268	rmb();	/* Must/check ms_range_active before loading PTEs */
    269	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
    270	if (ret) {
    271		if (atomic)
    272			goto upm;
    273		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
    274			goto inval;
    275	}
    276	if (is_gru_paddr(paddr))
    277		goto inval;
    278	paddr = paddr & ~((1UL << ps) - 1);
    279	*gpa = uv_soc_phys_ram_to_gpa(paddr);
    280	*pageshift = ps;
    281	return VTOP_SUCCESS;
    282
    283inval:
    284	return VTOP_INVALID;
    285upm:
    286	return VTOP_RETRY;
    287}
    288
    289
    290/*
    291 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
    292 * CBE cacheline so that the line will be written back to home agent.
    293 * Otherwise the line may be silently dropped. This has no impact
    294 * except on performance.
    295 */
    296static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
    297{
    298	if (unlikely(cbe)) {
    299		cbe->cbrexecstatus = 0;         /* make CL dirty */
    300		gru_flush_cache(cbe);
    301	}
    302}
    303
    304/*
    305 * Preload the TLB with entries that may be required. Currently, preloading
    306 * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
    307 * the end of the bcopy tranfer, whichever is smaller.
    308 */
    309static void gru_preload_tlb(struct gru_state *gru,
    310			struct gru_thread_state *gts, int atomic,
    311			unsigned long fault_vaddr, int asid, int write,
    312			unsigned char tlb_preload_count,
    313			struct gru_tlb_fault_handle *tfh,
    314			struct gru_control_block_extended *cbe)
    315{
    316	unsigned long vaddr = 0, gpa;
    317	int ret, pageshift;
    318
    319	if (cbe->opccpy != OP_BCOPY)
    320		return;
    321
    322	if (fault_vaddr == cbe->cbe_baddr0)
    323		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
    324	else if (fault_vaddr == cbe->cbe_baddr1)
    325		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
    326
    327	fault_vaddr &= PAGE_MASK;
    328	vaddr &= PAGE_MASK;
    329	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
    330
    331	while (vaddr > fault_vaddr) {
    332		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
    333		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
    334					  GRU_PAGESIZE(pageshift)))
    335			return;
    336		gru_dbg(grudev,
    337			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
    338			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
    339			vaddr, asid, write, pageshift, gpa);
    340		vaddr -= PAGE_SIZE;
    341		STAT(tlb_preload_page);
    342	}
    343}
    344
    345/*
    346 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
    347 *	Input:
    348 *		cb    Address of user CBR. Null if not running in user context
    349 * 	Return:
    350 * 		  0 = dropin, exception, or switch to UPM successful
    351 * 		  1 = range invalidate active
    352 * 		< 0 = error code
    353 *
    354 */
    355static int gru_try_dropin(struct gru_state *gru,
    356			  struct gru_thread_state *gts,
    357			  struct gru_tlb_fault_handle *tfh,
    358			  struct gru_instruction_bits *cbk)
    359{
    360	struct gru_control_block_extended *cbe = NULL;
    361	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
    362	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
    363	unsigned long gpa = 0, vaddr = 0;
    364
    365	/*
    366	 * NOTE: The GRU contains magic hardware that eliminates races between
    367	 * TLB invalidates and TLB dropins. If an invalidate occurs
    368	 * in the window between reading the TFH and the subsequent TLB dropin,
    369	 * the dropin is ignored. This eliminates the need for additional locks.
    370	 */
    371
    372	/*
    373	 * Prefetch the CBE if doing TLB preloading
    374	 */
    375	if (unlikely(tlb_preload_count)) {
    376		cbe = gru_tfh_to_cbe(tfh);
    377		prefetchw(cbe);
    378	}
    379
    380	/*
    381	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
    382	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
    383	 * is a transient state.
    384	 */
    385	if (tfh->status != TFHSTATUS_EXCEPTION) {
    386		gru_flush_cache(tfh);
    387		sync_core();
    388		if (tfh->status != TFHSTATUS_EXCEPTION)
    389			goto failnoexception;
    390		STAT(tfh_stale_on_fault);
    391	}
    392	if (tfh->state == TFHSTATE_IDLE)
    393		goto failidle;
    394	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
    395		goto failfmm;
    396
    397	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
    398	vaddr = tfh->missvaddr;
    399	asid = tfh->missasid;
    400	indexway = tfh->indexway;
    401	if (asid == 0)
    402		goto failnoasid;
    403
    404	rmb();	/* TFH must be cache resident before reading ms_range_active */
    405
    406	/*
    407	 * TFH is cache resident - at least briefly. Fail the dropin
    408	 * if a range invalidate is active.
    409	 */
    410	if (atomic_read(&gts->ts_gms->ms_range_active))
    411		goto failactive;
    412
    413	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
    414	if (ret == VTOP_INVALID)
    415		goto failinval;
    416	if (ret == VTOP_RETRY)
    417		goto failupm;
    418
    419	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
    420		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
    421		if (atomic || !gru_update_cch(gts)) {
    422			gts->ts_force_cch_reload = 1;
    423			goto failupm;
    424		}
    425	}
    426
    427	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
    428		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
    429		gru_flush_cache_cbe(cbe);
    430	}
    431
    432	gru_cb_set_istatus_active(cbk);
    433	gts->ustats.tlbdropin++;
    434	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
    435			  GRU_PAGESIZE(pageshift));
    436	gru_dbg(grudev,
    437		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
    438		" rw %d, ps %d, gpa 0x%lx\n",
    439		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
    440		indexway, write, pageshift, gpa);
    441	STAT(tlb_dropin);
    442	return 0;
    443
    444failnoasid:
    445	/* No asid (delayed unload). */
    446	STAT(tlb_dropin_fail_no_asid);
    447	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
    448	if (!cbk)
    449		tfh_user_polling_mode(tfh);
    450	else
    451		gru_flush_cache(tfh);
    452	gru_flush_cache_cbe(cbe);
    453	return -EAGAIN;
    454
    455failupm:
    456	/* Atomic failure switch CBR to UPM */
    457	tfh_user_polling_mode(tfh);
    458	gru_flush_cache_cbe(cbe);
    459	STAT(tlb_dropin_fail_upm);
    460	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
    461	return 1;
    462
    463failfmm:
    464	/* FMM state on UPM call */
    465	gru_flush_cache(tfh);
    466	gru_flush_cache_cbe(cbe);
    467	STAT(tlb_dropin_fail_fmm);
    468	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
    469	return 0;
    470
    471failnoexception:
    472	/* TFH status did not show exception pending */
    473	gru_flush_cache(tfh);
    474	gru_flush_cache_cbe(cbe);
    475	if (cbk)
    476		gru_flush_cache(cbk);
    477	STAT(tlb_dropin_fail_no_exception);
    478	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
    479		tfh, tfh->status, tfh->state);
    480	return 0;
    481
    482failidle:
    483	/* TFH state was idle  - no miss pending */
    484	gru_flush_cache(tfh);
    485	gru_flush_cache_cbe(cbe);
    486	if (cbk)
    487		gru_flush_cache(cbk);
    488	STAT(tlb_dropin_fail_idle);
    489	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
    490	return 0;
    491
    492failinval:
    493	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
    494	tfh_exception(tfh);
    495	gru_flush_cache_cbe(cbe);
    496	STAT(tlb_dropin_fail_invalid);
    497	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
    498	return -EFAULT;
    499
    500failactive:
    501	/* Range invalidate active. Switch to UPM iff atomic */
    502	if (!cbk)
    503		tfh_user_polling_mode(tfh);
    504	else
    505		gru_flush_cache(tfh);
    506	gru_flush_cache_cbe(cbe);
    507	STAT(tlb_dropin_fail_range_active);
    508	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
    509		tfh, vaddr);
    510	return 1;
    511}
    512
    513/*
    514 * Process an external interrupt from the GRU. This interrupt is
    515 * caused by a TLB miss.
    516 * Note that this is the interrupt handler that is registered with linux
    517 * interrupt handlers.
    518 */
    519static irqreturn_t gru_intr(int chiplet, int blade)
    520{
    521	struct gru_state *gru;
    522	struct gru_tlb_fault_map imap, dmap;
    523	struct gru_thread_state *gts;
    524	struct gru_tlb_fault_handle *tfh = NULL;
    525	struct completion *cmp;
    526	int cbrnum, ctxnum;
    527
    528	STAT(intr);
    529
    530	gru = &gru_base[blade]->bs_grus[chiplet];
    531	if (!gru) {
    532		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
    533			raw_smp_processor_id(), chiplet);
    534		return IRQ_NONE;
    535	}
    536	get_clear_fault_map(gru, &imap, &dmap);
    537	gru_dbg(grudev,
    538		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
    539		smp_processor_id(), chiplet, gru->gs_gid,
    540		imap.fault_bits[0], imap.fault_bits[1],
    541		dmap.fault_bits[0], dmap.fault_bits[1]);
    542
    543	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
    544		STAT(intr_cbr);
    545		cmp = gru->gs_blade->bs_async_wq;
    546		if (cmp)
    547			complete(cmp);
    548		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
    549			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
    550	}
    551
    552	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
    553		STAT(intr_tfh);
    554		tfh = get_tfh_by_index(gru, cbrnum);
    555		prefetchw(tfh);	/* Helps on hdw, required for emulator */
    556
    557		/*
    558		 * When hardware sets a bit in the faultmap, it implicitly
    559		 * locks the GRU context so that it cannot be unloaded.
    560		 * The gts cannot change until a TFH start/writestart command
    561		 * is issued.
    562		 */
    563		ctxnum = tfh->ctxnum;
    564		gts = gru->gs_gts[ctxnum];
    565
    566		/* Spurious interrupts can cause this. Ignore. */
    567		if (!gts) {
    568			STAT(intr_spurious);
    569			continue;
    570		}
    571
    572		/*
    573		 * This is running in interrupt context. Trylock the mmap_lock.
    574		 * If it fails, retry the fault in user context.
    575		 */
    576		gts->ustats.fmm_tlbmiss++;
    577		if (!gts->ts_force_cch_reload &&
    578					mmap_read_trylock(gts->ts_mm)) {
    579			gru_try_dropin(gru, gts, tfh, NULL);
    580			mmap_read_unlock(gts->ts_mm);
    581		} else {
    582			tfh_user_polling_mode(tfh);
    583			STAT(intr_mm_lock_failed);
    584		}
    585	}
    586	return IRQ_HANDLED;
    587}
    588
    589irqreturn_t gru0_intr(int irq, void *dev_id)
    590{
    591	return gru_intr(0, uv_numa_blade_id());
    592}
    593
    594irqreturn_t gru1_intr(int irq, void *dev_id)
    595{
    596	return gru_intr(1, uv_numa_blade_id());
    597}
    598
    599irqreturn_t gru_intr_mblade(int irq, void *dev_id)
    600{
    601	int blade;
    602
    603	for_each_possible_blade(blade) {
    604		if (uv_blade_nr_possible_cpus(blade))
    605			continue;
    606		gru_intr(0, blade);
    607		gru_intr(1, blade);
    608	}
    609	return IRQ_HANDLED;
    610}
    611
    612
    613static int gru_user_dropin(struct gru_thread_state *gts,
    614			   struct gru_tlb_fault_handle *tfh,
    615			   void *cb)
    616{
    617	struct gru_mm_struct *gms = gts->ts_gms;
    618	int ret;
    619
    620	gts->ustats.upm_tlbmiss++;
    621	while (1) {
    622		wait_event(gms->ms_wait_queue,
    623			   atomic_read(&gms->ms_range_active) == 0);
    624		prefetchw(tfh);	/* Helps on hdw, required for emulator */
    625		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
    626		if (ret <= 0)
    627			return ret;
    628		STAT(call_os_wait_queue);
    629	}
    630}
    631
    632/*
    633 * This interface is called as a result of a user detecting a "call OS" bit
    634 * in a user CB. Normally means that a TLB fault has occurred.
    635 * 	cb - user virtual address of the CB
    636 */
    637int gru_handle_user_call_os(unsigned long cb)
    638{
    639	struct gru_tlb_fault_handle *tfh;
    640	struct gru_thread_state *gts;
    641	void *cbk;
    642	int ucbnum, cbrnum, ret = -EINVAL;
    643
    644	STAT(call_os);
    645
    646	/* sanity check the cb pointer */
    647	ucbnum = get_cb_number((void *)cb);
    648	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
    649		return -EINVAL;
    650
    651	gts = gru_find_lock_gts(cb);
    652	if (!gts)
    653		return -EINVAL;
    654	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
    655
    656	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
    657		goto exit;
    658
    659	gru_check_context_placement(gts);
    660
    661	/*
    662	 * CCH may contain stale data if ts_force_cch_reload is set.
    663	 */
    664	if (gts->ts_gru && gts->ts_force_cch_reload) {
    665		gts->ts_force_cch_reload = 0;
    666		gru_update_cch(gts);
    667	}
    668
    669	ret = -EAGAIN;
    670	cbrnum = thread_cbr_number(gts, ucbnum);
    671	if (gts->ts_gru) {
    672		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
    673		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
    674				gts->ts_ctxnum, ucbnum);
    675		ret = gru_user_dropin(gts, tfh, cbk);
    676	}
    677exit:
    678	gru_unlock_gts(gts);
    679	return ret;
    680}
    681
    682/*
    683 * Fetch the exception detail information for a CB that terminated with
    684 * an exception.
    685 */
    686int gru_get_exception_detail(unsigned long arg)
    687{
    688	struct control_block_extended_exc_detail excdet;
    689	struct gru_control_block_extended *cbe;
    690	struct gru_thread_state *gts;
    691	int ucbnum, cbrnum, ret;
    692
    693	STAT(user_exception);
    694	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
    695		return -EFAULT;
    696
    697	gts = gru_find_lock_gts(excdet.cb);
    698	if (!gts)
    699		return -EINVAL;
    700
    701	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
    702	ucbnum = get_cb_number((void *)excdet.cb);
    703	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
    704		ret = -EINVAL;
    705	} else if (gts->ts_gru) {
    706		cbrnum = thread_cbr_number(gts, ucbnum);
    707		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
    708		gru_flush_cache(cbe);	/* CBE not coherent */
    709		sync_core();		/* make sure we are have current data */
    710		excdet.opc = cbe->opccpy;
    711		excdet.exopc = cbe->exopccpy;
    712		excdet.ecause = cbe->ecause;
    713		excdet.exceptdet0 = cbe->idef1upd;
    714		excdet.exceptdet1 = cbe->idef3upd;
    715		excdet.cbrstate = cbe->cbrstate;
    716		excdet.cbrexecstatus = cbe->cbrexecstatus;
    717		gru_flush_cache_cbe(cbe);
    718		ret = 0;
    719	} else {
    720		ret = -EAGAIN;
    721	}
    722	gru_unlock_gts(gts);
    723
    724	gru_dbg(grudev,
    725		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
    726		"exdet0 0x%lx, exdet1 0x%x\n",
    727		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
    728		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
    729	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
    730		ret = -EFAULT;
    731	return ret;
    732}
    733
    734/*
    735 * User request to unload a context. Content is saved for possible reload.
    736 */
    737static int gru_unload_all_contexts(void)
    738{
    739	struct gru_thread_state *gts;
    740	struct gru_state *gru;
    741	int gid, ctxnum;
    742
    743	if (!capable(CAP_SYS_ADMIN))
    744		return -EPERM;
    745	foreach_gid(gid) {
    746		gru = GID_TO_GRU(gid);
    747		spin_lock(&gru->gs_lock);
    748		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
    749			gts = gru->gs_gts[ctxnum];
    750			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
    751				spin_unlock(&gru->gs_lock);
    752				gru_unload_context(gts, 1);
    753				mutex_unlock(&gts->ts_ctxlock);
    754				spin_lock(&gru->gs_lock);
    755			}
    756		}
    757		spin_unlock(&gru->gs_lock);
    758	}
    759	return 0;
    760}
    761
    762int gru_user_unload_context(unsigned long arg)
    763{
    764	struct gru_thread_state *gts;
    765	struct gru_unload_context_req req;
    766
    767	STAT(user_unload_context);
    768	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
    769		return -EFAULT;
    770
    771	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
    772
    773	if (!req.gseg)
    774		return gru_unload_all_contexts();
    775
    776	gts = gru_find_lock_gts(req.gseg);
    777	if (!gts)
    778		return -EINVAL;
    779
    780	if (gts->ts_gru)
    781		gru_unload_context(gts, 1);
    782	gru_unlock_gts(gts);
    783
    784	return 0;
    785}
    786
    787/*
    788 * User request to flush a range of virtual addresses from the GRU TLB
    789 * (Mainly for testing).
    790 */
    791int gru_user_flush_tlb(unsigned long arg)
    792{
    793	struct gru_thread_state *gts;
    794	struct gru_flush_tlb_req req;
    795	struct gru_mm_struct *gms;
    796
    797	STAT(user_flush_tlb);
    798	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
    799		return -EFAULT;
    800
    801	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
    802		req.vaddr, req.len);
    803
    804	gts = gru_find_lock_gts(req.gseg);
    805	if (!gts)
    806		return -EINVAL;
    807
    808	gms = gts->ts_gms;
    809	gru_unlock_gts(gts);
    810	gru_flush_tlb_range(gms, req.vaddr, req.len);
    811
    812	return 0;
    813}
    814
    815/*
    816 * Fetch GSEG statisticss
    817 */
    818long gru_get_gseg_statistics(unsigned long arg)
    819{
    820	struct gru_thread_state *gts;
    821	struct gru_get_gseg_statistics_req req;
    822
    823	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
    824		return -EFAULT;
    825
    826	/*
    827	 * The library creates arrays of contexts for threaded programs.
    828	 * If no gts exists in the array, the context has never been used & all
    829	 * statistics are implicitly 0.
    830	 */
    831	gts = gru_find_lock_gts(req.gseg);
    832	if (gts) {
    833		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
    834		gru_unlock_gts(gts);
    835	} else {
    836		memset(&req.stats, 0, sizeof(gts->ustats));
    837	}
    838
    839	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
    840		return -EFAULT;
    841
    842	return 0;
    843}
    844
    845/*
    846 * Register the current task as the user of the GSEG slice.
    847 * Needed for TLB fault interrupt targeting.
    848 */
    849int gru_set_context_option(unsigned long arg)
    850{
    851	struct gru_thread_state *gts;
    852	struct gru_set_context_option_req req;
    853	int ret = 0;
    854
    855	STAT(set_context_option);
    856	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
    857		return -EFAULT;
    858	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
    859
    860	gts = gru_find_lock_gts(req.gseg);
    861	if (!gts) {
    862		gts = gru_alloc_locked_gts(req.gseg);
    863		if (IS_ERR(gts))
    864			return PTR_ERR(gts);
    865	}
    866
    867	switch (req.op) {
    868	case sco_blade_chiplet:
    869		/* Select blade/chiplet for GRU context */
    870		if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
    871		    req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
    872		    (req.val1 >= 0 && !gru_base[req.val1])) {
    873			ret = -EINVAL;
    874		} else {
    875			gts->ts_user_blade_id = req.val1;
    876			gts->ts_user_chiplet_id = req.val0;
    877			gru_check_context_placement(gts);
    878		}
    879		break;
    880	case sco_gseg_owner:
    881 		/* Register the current task as the GSEG owner */
    882		gts->ts_tgid_owner = current->tgid;
    883		break;
    884	case sco_cch_req_slice:
    885 		/* Set the CCH slice option */
    886		gts->ts_cch_req_slice = req.val1 & 3;
    887		break;
    888	default:
    889		ret = -EINVAL;
    890	}
    891	gru_unlock_gts(gts);
    892
    893	return ret;
    894}