cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xpc_partition.c (14134B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
      7 * Copyright (c) 2004-2008 Silicon Graphics, Inc.  All Rights Reserved.
      8 */
      9
     10/*
     11 * Cross Partition Communication (XPC) partition support.
     12 *
     13 *	This is the part of XPC that detects the presence/absence of
     14 *	other partitions. It provides a heartbeat and monitors the
     15 *	heartbeats of other partitions.
     16 *
     17 */
     18
     19#include <linux/device.h>
     20#include <linux/hardirq.h>
     21#include <linux/slab.h>
     22#include "xpc.h"
     23#include <asm/uv/uv_hub.h>
     24
     25/* XPC is exiting flag */
     26int xpc_exiting;
     27
     28/* this partition's reserved page pointers */
     29struct xpc_rsvd_page *xpc_rsvd_page;
     30static unsigned long *xpc_part_nasids;
     31unsigned long *xpc_mach_nasids;
     32
     33static int xpc_nasid_mask_nbytes;	/* #of bytes in nasid mask */
     34int xpc_nasid_mask_nlongs;	/* #of longs in nasid mask */
     35
     36struct xpc_partition *xpc_partitions;
     37
     38/*
     39 * Guarantee that the kmalloc'd memory is cacheline aligned.
     40 */
     41void *
     42xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
     43{
     44	/* see if kmalloc will give us cachline aligned memory by default */
     45	*base = kmalloc(size, flags);
     46	if (*base == NULL)
     47		return NULL;
     48
     49	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
     50		return *base;
     51
     52	kfree(*base);
     53
     54	/* nope, we'll have to do it ourselves */
     55	*base = kmalloc(size + L1_CACHE_BYTES, flags);
     56	if (*base == NULL)
     57		return NULL;
     58
     59	return (void *)L1_CACHE_ALIGN((u64)*base);
     60}
     61
     62/*
     63 * Given a nasid, get the physical address of the  partition's reserved page
     64 * for that nasid. This function returns 0 on any error.
     65 */
     66static unsigned long
     67xpc_get_rsvd_page_pa(int nasid)
     68{
     69	enum xp_retval ret;
     70	u64 cookie = 0;
     71	unsigned long rp_pa = nasid;	/* seed with nasid */
     72	size_t len = 0;
     73	size_t buf_len = 0;
     74	void *buf = NULL;
     75	void *buf_base = NULL;
     76	enum xp_retval (*get_partition_rsvd_page_pa)
     77		(void *, u64 *, unsigned long *, size_t *) =
     78		xpc_arch_ops.get_partition_rsvd_page_pa;
     79
     80	while (1) {
     81
     82		/* !!! rp_pa will need to be _gpa on UV.
     83		 * ??? So do we save it into the architecture specific parts
     84		 * ??? of the xpc_partition structure? Do we rename this
     85		 * ??? function or have two versions? Rename rp_pa for UV to
     86		 * ??? rp_gpa?
     87		 */
     88		ret = get_partition_rsvd_page_pa(buf, &cookie, &rp_pa, &len);
     89
     90		dev_dbg(xpc_part, "SAL returned with ret=%d, cookie=0x%016lx, "
     91			"address=0x%016lx, len=0x%016lx\n", ret,
     92			(unsigned long)cookie, rp_pa, len);
     93
     94		if (ret != xpNeedMoreInfo)
     95			break;
     96
     97		if (len > buf_len) {
     98			kfree(buf_base);
     99			buf_len = L1_CACHE_ALIGN(len);
    100			buf = xpc_kmalloc_cacheline_aligned(buf_len, GFP_KERNEL,
    101							    &buf_base);
    102			if (buf_base == NULL) {
    103				dev_err(xpc_part, "unable to kmalloc "
    104					"len=0x%016lx\n", buf_len);
    105				ret = xpNoMemory;
    106				break;
    107			}
    108		}
    109
    110		ret = xp_remote_memcpy(xp_pa(buf), rp_pa, len);
    111		if (ret != xpSuccess) {
    112			dev_dbg(xpc_part, "xp_remote_memcpy failed %d\n", ret);
    113			break;
    114		}
    115	}
    116
    117	kfree(buf_base);
    118
    119	if (ret != xpSuccess)
    120		rp_pa = 0;
    121
    122	dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa);
    123	return rp_pa;
    124}
    125
    126/*
    127 * Fill the partition reserved page with the information needed by
    128 * other partitions to discover we are alive and establish initial
    129 * communications.
    130 */
    131int
    132xpc_setup_rsvd_page(void)
    133{
    134	int ret;
    135	struct xpc_rsvd_page *rp;
    136	unsigned long rp_pa;
    137	unsigned long new_ts_jiffies;
    138
    139	/* get the local reserved page's address */
    140
    141	preempt_disable();
    142	rp_pa = xpc_get_rsvd_page_pa(xp_cpu_to_nasid(smp_processor_id()));
    143	preempt_enable();
    144	if (rp_pa == 0) {
    145		dev_err(xpc_part, "SAL failed to locate the reserved page\n");
    146		return -ESRCH;
    147	}
    148	rp = (struct xpc_rsvd_page *)__va(xp_socket_pa(rp_pa));
    149
    150	if (rp->SAL_version < 3) {
    151		/* SAL_versions < 3 had a SAL_partid defined as a u8 */
    152		rp->SAL_partid &= 0xff;
    153	}
    154	BUG_ON(rp->SAL_partid != xp_partition_id);
    155
    156	if (rp->SAL_partid < 0 || rp->SAL_partid >= xp_max_npartitions) {
    157		dev_err(xpc_part, "the reserved page's partid of %d is outside "
    158			"supported range (< 0 || >= %d)\n", rp->SAL_partid,
    159			xp_max_npartitions);
    160		return -EINVAL;
    161	}
    162
    163	rp->version = XPC_RP_VERSION;
    164	rp->max_npartitions = xp_max_npartitions;
    165
    166	/* establish the actual sizes of the nasid masks */
    167	if (rp->SAL_version == 1) {
    168		/* SAL_version 1 didn't set the nasids_size field */
    169		rp->SAL_nasids_size = 128;
    170	}
    171	xpc_nasid_mask_nbytes = rp->SAL_nasids_size;
    172	xpc_nasid_mask_nlongs = BITS_TO_LONGS(rp->SAL_nasids_size *
    173					      BITS_PER_BYTE);
    174
    175	/* setup the pointers to the various items in the reserved page */
    176	xpc_part_nasids = XPC_RP_PART_NASIDS(rp);
    177	xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp);
    178
    179	ret = xpc_arch_ops.setup_rsvd_page(rp);
    180	if (ret != 0)
    181		return ret;
    182
    183	/*
    184	 * Set timestamp of when reserved page was setup by XPC.
    185	 * This signifies to the remote partition that our reserved
    186	 * page is initialized.
    187	 */
    188	new_ts_jiffies = jiffies;
    189	if (new_ts_jiffies == 0 || new_ts_jiffies == rp->ts_jiffies)
    190		new_ts_jiffies++;
    191	rp->ts_jiffies = new_ts_jiffies;
    192
    193	xpc_rsvd_page = rp;
    194	return 0;
    195}
    196
    197void
    198xpc_teardown_rsvd_page(void)
    199{
    200	/* a zero timestamp indicates our rsvd page is not initialized */
    201	xpc_rsvd_page->ts_jiffies = 0;
    202}
    203
    204/*
    205 * Get a copy of a portion of the remote partition's rsvd page.
    206 *
    207 * remote_rp points to a buffer that is cacheline aligned for BTE copies and
    208 * is large enough to contain a copy of their reserved page header and
    209 * part_nasids mask.
    210 */
    211enum xp_retval
    212xpc_get_remote_rp(int nasid, unsigned long *discovered_nasids,
    213		  struct xpc_rsvd_page *remote_rp, unsigned long *remote_rp_pa)
    214{
    215	int l;
    216	enum xp_retval ret;
    217
    218	/* get the reserved page's physical address */
    219
    220	*remote_rp_pa = xpc_get_rsvd_page_pa(nasid);
    221	if (*remote_rp_pa == 0)
    222		return xpNoRsvdPageAddr;
    223
    224	/* pull over the reserved page header and part_nasids mask */
    225	ret = xp_remote_memcpy(xp_pa(remote_rp), *remote_rp_pa,
    226			       XPC_RP_HEADER_SIZE + xpc_nasid_mask_nbytes);
    227	if (ret != xpSuccess)
    228		return ret;
    229
    230	if (discovered_nasids != NULL) {
    231		unsigned long *remote_part_nasids =
    232		    XPC_RP_PART_NASIDS(remote_rp);
    233
    234		for (l = 0; l < xpc_nasid_mask_nlongs; l++)
    235			discovered_nasids[l] |= remote_part_nasids[l];
    236	}
    237
    238	/* zero timestamp indicates the reserved page has not been setup */
    239	if (remote_rp->ts_jiffies == 0)
    240		return xpRsvdPageNotSet;
    241
    242	if (XPC_VERSION_MAJOR(remote_rp->version) !=
    243	    XPC_VERSION_MAJOR(XPC_RP_VERSION)) {
    244		return xpBadVersion;
    245	}
    246
    247	/* check that both remote and local partids are valid for each side */
    248	if (remote_rp->SAL_partid < 0 ||
    249	    remote_rp->SAL_partid >= xp_max_npartitions ||
    250	    remote_rp->max_npartitions <= xp_partition_id) {
    251		return xpInvalidPartid;
    252	}
    253
    254	if (remote_rp->SAL_partid == xp_partition_id)
    255		return xpLocalPartid;
    256
    257	return xpSuccess;
    258}
    259
    260/*
    261 * See if the other side has responded to a partition deactivate request
    262 * from us. Though we requested the remote partition to deactivate with regard
    263 * to us, we really only need to wait for the other side to disengage from us.
    264 */
    265static int __xpc_partition_disengaged(struct xpc_partition *part,
    266				      bool from_timer)
    267{
    268	short partid = XPC_PARTID(part);
    269	int disengaged;
    270
    271	disengaged = !xpc_arch_ops.partition_engaged(partid);
    272	if (part->disengage_timeout) {
    273		if (!disengaged) {
    274			if (time_is_after_jiffies(part->disengage_timeout)) {
    275				/* timelimit hasn't been reached yet */
    276				return 0;
    277			}
    278
    279			/*
    280			 * Other side hasn't responded to our deactivate
    281			 * request in a timely fashion, so assume it's dead.
    282			 */
    283
    284			dev_info(xpc_part, "deactivate request to remote "
    285				 "partition %d timed out\n", partid);
    286			xpc_disengage_timedout = 1;
    287			xpc_arch_ops.assume_partition_disengaged(partid);
    288			disengaged = 1;
    289		}
    290		part->disengage_timeout = 0;
    291
    292		/* Cancel the timer function if not called from it */
    293		if (!from_timer)
    294			del_timer_sync(&part->disengage_timer);
    295
    296		DBUG_ON(part->act_state != XPC_P_AS_DEACTIVATING &&
    297			part->act_state != XPC_P_AS_INACTIVE);
    298		if (part->act_state != XPC_P_AS_INACTIVE)
    299			xpc_wakeup_channel_mgr(part);
    300
    301		xpc_arch_ops.cancel_partition_deactivation_request(part);
    302	}
    303	return disengaged;
    304}
    305
    306int xpc_partition_disengaged(struct xpc_partition *part)
    307{
    308	return __xpc_partition_disengaged(part, false);
    309}
    310
    311int xpc_partition_disengaged_from_timer(struct xpc_partition *part)
    312{
    313	return __xpc_partition_disengaged(part, true);
    314}
    315
    316/*
    317 * Mark specified partition as active.
    318 */
    319enum xp_retval
    320xpc_mark_partition_active(struct xpc_partition *part)
    321{
    322	unsigned long irq_flags;
    323	enum xp_retval ret;
    324
    325	dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part));
    326
    327	spin_lock_irqsave(&part->act_lock, irq_flags);
    328	if (part->act_state == XPC_P_AS_ACTIVATING) {
    329		part->act_state = XPC_P_AS_ACTIVE;
    330		ret = xpSuccess;
    331	} else {
    332		DBUG_ON(part->reason == xpSuccess);
    333		ret = part->reason;
    334	}
    335	spin_unlock_irqrestore(&part->act_lock, irq_flags);
    336
    337	return ret;
    338}
    339
    340/*
    341 * Start the process of deactivating the specified partition.
    342 */
    343void
    344xpc_deactivate_partition(const int line, struct xpc_partition *part,
    345			 enum xp_retval reason)
    346{
    347	unsigned long irq_flags;
    348
    349	spin_lock_irqsave(&part->act_lock, irq_flags);
    350
    351	if (part->act_state == XPC_P_AS_INACTIVE) {
    352		XPC_SET_REASON(part, reason, line);
    353		spin_unlock_irqrestore(&part->act_lock, irq_flags);
    354		if (reason == xpReactivating) {
    355			/* we interrupt ourselves to reactivate partition */
    356			xpc_arch_ops.request_partition_reactivation(part);
    357		}
    358		return;
    359	}
    360	if (part->act_state == XPC_P_AS_DEACTIVATING) {
    361		if ((part->reason == xpUnloading && reason != xpUnloading) ||
    362		    reason == xpReactivating) {
    363			XPC_SET_REASON(part, reason, line);
    364		}
    365		spin_unlock_irqrestore(&part->act_lock, irq_flags);
    366		return;
    367	}
    368
    369	part->act_state = XPC_P_AS_DEACTIVATING;
    370	XPC_SET_REASON(part, reason, line);
    371
    372	spin_unlock_irqrestore(&part->act_lock, irq_flags);
    373
    374	/* ask remote partition to deactivate with regard to us */
    375	xpc_arch_ops.request_partition_deactivation(part);
    376
    377	/* set a timelimit on the disengage phase of the deactivation request */
    378	part->disengage_timeout = jiffies + (xpc_disengage_timelimit * HZ);
    379	part->disengage_timer.expires = part->disengage_timeout;
    380	add_timer(&part->disengage_timer);
    381
    382	dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n",
    383		XPC_PARTID(part), reason);
    384
    385	xpc_partition_going_down(part, reason);
    386}
    387
    388/*
    389 * Mark specified partition as inactive.
    390 */
    391void
    392xpc_mark_partition_inactive(struct xpc_partition *part)
    393{
    394	unsigned long irq_flags;
    395
    396	dev_dbg(xpc_part, "setting partition %d to INACTIVE\n",
    397		XPC_PARTID(part));
    398
    399	spin_lock_irqsave(&part->act_lock, irq_flags);
    400	part->act_state = XPC_P_AS_INACTIVE;
    401	spin_unlock_irqrestore(&part->act_lock, irq_flags);
    402	part->remote_rp_pa = 0;
    403}
    404
    405/*
    406 * SAL has provided a partition and machine mask.  The partition mask
    407 * contains a bit for each even nasid in our partition.  The machine
    408 * mask contains a bit for each even nasid in the entire machine.
    409 *
    410 * Using those two bit arrays, we can determine which nasids are
    411 * known in the machine.  Each should also have a reserved page
    412 * initialized if they are available for partitioning.
    413 */
    414void
    415xpc_discovery(void)
    416{
    417	void *remote_rp_base;
    418	struct xpc_rsvd_page *remote_rp;
    419	unsigned long remote_rp_pa;
    420	int region;
    421	int region_size;
    422	int max_regions;
    423	int nasid;
    424	unsigned long *discovered_nasids;
    425	enum xp_retval ret;
    426
    427	remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE +
    428						  xpc_nasid_mask_nbytes,
    429						  GFP_KERNEL, &remote_rp_base);
    430	if (remote_rp == NULL)
    431		return;
    432
    433	discovered_nasids = kcalloc(xpc_nasid_mask_nlongs, sizeof(long),
    434				    GFP_KERNEL);
    435	if (discovered_nasids == NULL) {
    436		kfree(remote_rp_base);
    437		return;
    438	}
    439
    440	/*
    441	 * The term 'region' in this context refers to the minimum number of
    442	 * nodes that can comprise an access protection grouping. The access
    443	 * protection is in regards to memory, IOI and IPI.
    444	 */
    445	region_size = xp_region_size;
    446
    447	if (is_uv_system())
    448		max_regions = 256;
    449	else {
    450		max_regions = 64;
    451
    452		switch (region_size) {
    453		case 128:
    454			max_regions *= 2;
    455			fallthrough;
    456		case 64:
    457			max_regions *= 2;
    458			fallthrough;
    459		case 32:
    460			max_regions *= 2;
    461			region_size = 16;
    462		}
    463	}
    464
    465	for (region = 0; region < max_regions; region++) {
    466
    467		if (xpc_exiting)
    468			break;
    469
    470		dev_dbg(xpc_part, "searching region %d\n", region);
    471
    472		for (nasid = (region * region_size * 2);
    473		     nasid < ((region + 1) * region_size * 2); nasid += 2) {
    474
    475			if (xpc_exiting)
    476				break;
    477
    478			dev_dbg(xpc_part, "checking nasid %d\n", nasid);
    479
    480			if (test_bit(nasid / 2, xpc_part_nasids)) {
    481				dev_dbg(xpc_part, "PROM indicates Nasid %d is "
    482					"part of the local partition; skipping "
    483					"region\n", nasid);
    484				break;
    485			}
    486
    487			if (!(test_bit(nasid / 2, xpc_mach_nasids))) {
    488				dev_dbg(xpc_part, "PROM indicates Nasid %d was "
    489					"not on Numa-Link network at reset\n",
    490					nasid);
    491				continue;
    492			}
    493
    494			if (test_bit(nasid / 2, discovered_nasids)) {
    495				dev_dbg(xpc_part, "Nasid %d is part of a "
    496					"partition which was previously "
    497					"discovered\n", nasid);
    498				continue;
    499			}
    500
    501			/* pull over the rsvd page header & part_nasids mask */
    502
    503			ret = xpc_get_remote_rp(nasid, discovered_nasids,
    504						remote_rp, &remote_rp_pa);
    505			if (ret != xpSuccess) {
    506				dev_dbg(xpc_part, "unable to get reserved page "
    507					"from nasid %d, reason=%d\n", nasid,
    508					ret);
    509
    510				if (ret == xpLocalPartid)
    511					break;
    512
    513				continue;
    514			}
    515
    516			xpc_arch_ops.request_partition_activation(remote_rp,
    517							 remote_rp_pa, nasid);
    518		}
    519	}
    520
    521	kfree(discovered_nasids);
    522	kfree(remote_rp_base);
    523}
    524
    525/*
    526 * Given a partid, get the nasids owned by that partition from the
    527 * remote partition's reserved page.
    528 */
    529enum xp_retval
    530xpc_initiate_partid_to_nasids(short partid, void *nasid_mask)
    531{
    532	struct xpc_partition *part;
    533	unsigned long part_nasid_pa;
    534
    535	part = &xpc_partitions[partid];
    536	if (part->remote_rp_pa == 0)
    537		return xpPartitionDown;
    538
    539	memset(nasid_mask, 0, xpc_nasid_mask_nbytes);
    540
    541	part_nasid_pa = (unsigned long)XPC_RP_PART_NASIDS(part->remote_rp_pa);
    542
    543	return xp_remote_memcpy(xp_pa(nasid_mask), part_nasid_pa,
    544				xpc_nasid_mask_nbytes);
    545}