core.c (59436B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/drivers/mmc/core/core.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 9 */ 10#include <linux/module.h> 11#include <linux/init.h> 12#include <linux/interrupt.h> 13#include <linux/completion.h> 14#include <linux/device.h> 15#include <linux/delay.h> 16#include <linux/pagemap.h> 17#include <linux/err.h> 18#include <linux/leds.h> 19#include <linux/scatterlist.h> 20#include <linux/log2.h> 21#include <linux/pm_runtime.h> 22#include <linux/pm_wakeup.h> 23#include <linux/suspend.h> 24#include <linux/fault-inject.h> 25#include <linux/random.h> 26#include <linux/slab.h> 27#include <linux/of.h> 28 29#include <linux/mmc/card.h> 30#include <linux/mmc/host.h> 31#include <linux/mmc/mmc.h> 32#include <linux/mmc/sd.h> 33#include <linux/mmc/slot-gpio.h> 34 35#define CREATE_TRACE_POINTS 36#include <trace/events/mmc.h> 37 38#include "core.h" 39#include "card.h" 40#include "crypto.h" 41#include "bus.h" 42#include "host.h" 43#include "sdio_bus.h" 44#include "pwrseq.h" 45 46#include "mmc_ops.h" 47#include "sd_ops.h" 48#include "sdio_ops.h" 49 50/* The max erase timeout, used when host->max_busy_timeout isn't specified */ 51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 52#define SD_DISCARD_TIMEOUT_MS (250) 53 54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 55 56/* 57 * Enabling software CRCs on the data blocks can be a significant (30%) 58 * performance cost, and for other reasons may not always be desired. 59 * So we allow it it to be disabled. 60 */ 61bool use_spi_crc = 1; 62module_param(use_spi_crc, bool, 0); 63 64static int mmc_schedule_delayed_work(struct delayed_work *work, 65 unsigned long delay) 66{ 67 /* 68 * We use the system_freezable_wq, because of two reasons. 69 * First, it allows several works (not the same work item) to be 70 * executed simultaneously. Second, the queue becomes frozen when 71 * userspace becomes frozen during system PM. 72 */ 73 return queue_delayed_work(system_freezable_wq, work, delay); 74} 75 76#ifdef CONFIG_FAIL_MMC_REQUEST 77 78/* 79 * Internal function. Inject random data errors. 80 * If mmc_data is NULL no errors are injected. 81 */ 82static void mmc_should_fail_request(struct mmc_host *host, 83 struct mmc_request *mrq) 84{ 85 struct mmc_command *cmd = mrq->cmd; 86 struct mmc_data *data = mrq->data; 87 static const int data_errors[] = { 88 -ETIMEDOUT, 89 -EILSEQ, 90 -EIO, 91 }; 92 93 if (!data) 94 return; 95 96 if ((cmd && cmd->error) || data->error || 97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 98 return; 99 100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 102} 103 104#else /* CONFIG_FAIL_MMC_REQUEST */ 105 106static inline void mmc_should_fail_request(struct mmc_host *host, 107 struct mmc_request *mrq) 108{ 109} 110 111#endif /* CONFIG_FAIL_MMC_REQUEST */ 112 113static inline void mmc_complete_cmd(struct mmc_request *mrq) 114{ 115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 116 complete_all(&mrq->cmd_completion); 117} 118 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 120{ 121 if (!mrq->cap_cmd_during_tfr) 122 return; 123 124 mmc_complete_cmd(mrq); 125 126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 127 mmc_hostname(host), mrq->cmd->opcode); 128} 129EXPORT_SYMBOL(mmc_command_done); 130 131/** 132 * mmc_request_done - finish processing an MMC request 133 * @host: MMC host which completed request 134 * @mrq: MMC request which request 135 * 136 * MMC drivers should call this function when they have completed 137 * their processing of a request. 138 */ 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 140{ 141 struct mmc_command *cmd = mrq->cmd; 142 int err = cmd->error; 143 144 /* Flag re-tuning needed on CRC errors */ 145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK && 146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 && 147 !host->retune_crc_disable && 148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 149 (mrq->data && mrq->data->error == -EILSEQ) || 150 (mrq->stop && mrq->stop->error == -EILSEQ))) 151 mmc_retune_needed(host); 152 153 if (err && cmd->retries && mmc_host_is_spi(host)) { 154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 155 cmd->retries = 0; 156 } 157 158 if (host->ongoing_mrq == mrq) 159 host->ongoing_mrq = NULL; 160 161 mmc_complete_cmd(mrq); 162 163 trace_mmc_request_done(host, mrq); 164 165 /* 166 * We list various conditions for the command to be considered 167 * properly done: 168 * 169 * - There was no error, OK fine then 170 * - We are not doing some kind of retry 171 * - The card was removed (...so just complete everything no matter 172 * if there are errors or retries) 173 */ 174 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 175 mmc_should_fail_request(host, mrq); 176 177 if (!host->ongoing_mrq) 178 led_trigger_event(host->led, LED_OFF); 179 180 if (mrq->sbc) { 181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 182 mmc_hostname(host), mrq->sbc->opcode, 183 mrq->sbc->error, 184 mrq->sbc->resp[0], mrq->sbc->resp[1], 185 mrq->sbc->resp[2], mrq->sbc->resp[3]); 186 } 187 188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 189 mmc_hostname(host), cmd->opcode, err, 190 cmd->resp[0], cmd->resp[1], 191 cmd->resp[2], cmd->resp[3]); 192 193 if (mrq->data) { 194 pr_debug("%s: %d bytes transferred: %d\n", 195 mmc_hostname(host), 196 mrq->data->bytes_xfered, mrq->data->error); 197 } 198 199 if (mrq->stop) { 200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 201 mmc_hostname(host), mrq->stop->opcode, 202 mrq->stop->error, 203 mrq->stop->resp[0], mrq->stop->resp[1], 204 mrq->stop->resp[2], mrq->stop->resp[3]); 205 } 206 } 207 /* 208 * Request starter must handle retries - see 209 * mmc_wait_for_req_done(). 210 */ 211 if (mrq->done) 212 mrq->done(mrq); 213} 214 215EXPORT_SYMBOL(mmc_request_done); 216 217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 218{ 219 int err; 220 221 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 222 err = mmc_retune(host); 223 if (err) { 224 mrq->cmd->error = err; 225 mmc_request_done(host, mrq); 226 return; 227 } 228 229 /* 230 * For sdio rw commands we must wait for card busy otherwise some 231 * sdio devices won't work properly. 232 * And bypass I/O abort, reset and bus suspend operations. 233 */ 234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 235 host->ops->card_busy) { 236 int tries = 500; /* Wait aprox 500ms at maximum */ 237 238 while (host->ops->card_busy(host) && --tries) 239 mmc_delay(1); 240 241 if (tries == 0) { 242 mrq->cmd->error = -EBUSY; 243 mmc_request_done(host, mrq); 244 return; 245 } 246 } 247 248 if (mrq->cap_cmd_during_tfr) { 249 host->ongoing_mrq = mrq; 250 /* 251 * Retry path could come through here without having waiting on 252 * cmd_completion, so ensure it is reinitialised. 253 */ 254 reinit_completion(&mrq->cmd_completion); 255 } 256 257 trace_mmc_request_start(host, mrq); 258 259 if (host->cqe_on) 260 host->cqe_ops->cqe_off(host); 261 262 host->ops->request(host, mrq); 263} 264 265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 266 bool cqe) 267{ 268 if (mrq->sbc) { 269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 270 mmc_hostname(host), mrq->sbc->opcode, 271 mrq->sbc->arg, mrq->sbc->flags); 272 } 273 274 if (mrq->cmd) { 275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 276 mmc_hostname(host), cqe ? "CQE direct " : "", 277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 278 } else if (cqe) { 279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 281 } 282 283 if (mrq->data) { 284 pr_debug("%s: blksz %d blocks %d flags %08x " 285 "tsac %d ms nsac %d\n", 286 mmc_hostname(host), mrq->data->blksz, 287 mrq->data->blocks, mrq->data->flags, 288 mrq->data->timeout_ns / 1000000, 289 mrq->data->timeout_clks); 290 } 291 292 if (mrq->stop) { 293 pr_debug("%s: CMD%u arg %08x flags %08x\n", 294 mmc_hostname(host), mrq->stop->opcode, 295 mrq->stop->arg, mrq->stop->flags); 296 } 297} 298 299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 300{ 301 unsigned int i, sz = 0; 302 struct scatterlist *sg; 303 304 if (mrq->cmd) { 305 mrq->cmd->error = 0; 306 mrq->cmd->mrq = mrq; 307 mrq->cmd->data = mrq->data; 308 } 309 if (mrq->sbc) { 310 mrq->sbc->error = 0; 311 mrq->sbc->mrq = mrq; 312 } 313 if (mrq->data) { 314 if (mrq->data->blksz > host->max_blk_size || 315 mrq->data->blocks > host->max_blk_count || 316 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 317 return -EINVAL; 318 319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 320 sz += sg->length; 321 if (sz != mrq->data->blocks * mrq->data->blksz) 322 return -EINVAL; 323 324 mrq->data->error = 0; 325 mrq->data->mrq = mrq; 326 if (mrq->stop) { 327 mrq->data->stop = mrq->stop; 328 mrq->stop->error = 0; 329 mrq->stop->mrq = mrq; 330 } 331 } 332 333 return 0; 334} 335 336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 337{ 338 int err; 339 340 init_completion(&mrq->cmd_completion); 341 342 mmc_retune_hold(host); 343 344 if (mmc_card_removed(host->card)) 345 return -ENOMEDIUM; 346 347 mmc_mrq_pr_debug(host, mrq, false); 348 349 WARN_ON(!host->claimed); 350 351 err = mmc_mrq_prep(host, mrq); 352 if (err) 353 return err; 354 355 led_trigger_event(host->led, LED_FULL); 356 __mmc_start_request(host, mrq); 357 358 return 0; 359} 360EXPORT_SYMBOL(mmc_start_request); 361 362static void mmc_wait_done(struct mmc_request *mrq) 363{ 364 complete(&mrq->completion); 365} 366 367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 368{ 369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 370 371 /* 372 * If there is an ongoing transfer, wait for the command line to become 373 * available. 374 */ 375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 376 wait_for_completion(&ongoing_mrq->cmd_completion); 377} 378 379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 380{ 381 int err; 382 383 mmc_wait_ongoing_tfr_cmd(host); 384 385 init_completion(&mrq->completion); 386 mrq->done = mmc_wait_done; 387 388 err = mmc_start_request(host, mrq); 389 if (err) { 390 mrq->cmd->error = err; 391 mmc_complete_cmd(mrq); 392 complete(&mrq->completion); 393 } 394 395 return err; 396} 397 398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 399{ 400 struct mmc_command *cmd; 401 402 while (1) { 403 wait_for_completion(&mrq->completion); 404 405 cmd = mrq->cmd; 406 407 if (!cmd->error || !cmd->retries || 408 mmc_card_removed(host->card)) 409 break; 410 411 mmc_retune_recheck(host); 412 413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 414 mmc_hostname(host), cmd->opcode, cmd->error); 415 cmd->retries--; 416 cmd->error = 0; 417 __mmc_start_request(host, mrq); 418 } 419 420 mmc_retune_release(host); 421} 422EXPORT_SYMBOL(mmc_wait_for_req_done); 423 424/* 425 * mmc_cqe_start_req - Start a CQE request. 426 * @host: MMC host to start the request 427 * @mrq: request to start 428 * 429 * Start the request, re-tuning if needed and it is possible. Returns an error 430 * code if the request fails to start or -EBUSY if CQE is busy. 431 */ 432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 433{ 434 int err; 435 436 /* 437 * CQE cannot process re-tuning commands. Caller must hold retuning 438 * while CQE is in use. Re-tuning can happen here only when CQE has no 439 * active requests i.e. this is the first. Note, re-tuning will call 440 * ->cqe_off(). 441 */ 442 err = mmc_retune(host); 443 if (err) 444 goto out_err; 445 446 mrq->host = host; 447 448 mmc_mrq_pr_debug(host, mrq, true); 449 450 err = mmc_mrq_prep(host, mrq); 451 if (err) 452 goto out_err; 453 454 err = host->cqe_ops->cqe_request(host, mrq); 455 if (err) 456 goto out_err; 457 458 trace_mmc_request_start(host, mrq); 459 460 return 0; 461 462out_err: 463 if (mrq->cmd) { 464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 465 mmc_hostname(host), mrq->cmd->opcode, err); 466 } else { 467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 468 mmc_hostname(host), mrq->tag, err); 469 } 470 return err; 471} 472EXPORT_SYMBOL(mmc_cqe_start_req); 473 474/** 475 * mmc_cqe_request_done - CQE has finished processing an MMC request 476 * @host: MMC host which completed request 477 * @mrq: MMC request which completed 478 * 479 * CQE drivers should call this function when they have completed 480 * their processing of a request. 481 */ 482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 483{ 484 mmc_should_fail_request(host, mrq); 485 486 /* Flag re-tuning needed on CRC errors */ 487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 488 (mrq->data && mrq->data->error == -EILSEQ)) 489 mmc_retune_needed(host); 490 491 trace_mmc_request_done(host, mrq); 492 493 if (mrq->cmd) { 494 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 496 } else { 497 pr_debug("%s: CQE transfer done tag %d\n", 498 mmc_hostname(host), mrq->tag); 499 } 500 501 if (mrq->data) { 502 pr_debug("%s: %d bytes transferred: %d\n", 503 mmc_hostname(host), 504 mrq->data->bytes_xfered, mrq->data->error); 505 } 506 507 mrq->done(mrq); 508} 509EXPORT_SYMBOL(mmc_cqe_request_done); 510 511/** 512 * mmc_cqe_post_req - CQE post process of a completed MMC request 513 * @host: MMC host 514 * @mrq: MMC request to be processed 515 */ 516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 517{ 518 if (host->cqe_ops->cqe_post_req) 519 host->cqe_ops->cqe_post_req(host, mrq); 520} 521EXPORT_SYMBOL(mmc_cqe_post_req); 522 523/* Arbitrary 1 second timeout */ 524#define MMC_CQE_RECOVERY_TIMEOUT 1000 525 526/* 527 * mmc_cqe_recovery - Recover from CQE errors. 528 * @host: MMC host to recover 529 * 530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 531 * in eMMC, and discarding the queue in CQE. CQE must call 532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 533 * fails to discard its queue. 534 */ 535int mmc_cqe_recovery(struct mmc_host *host) 536{ 537 struct mmc_command cmd; 538 int err; 539 540 mmc_retune_hold_now(host); 541 542 /* 543 * Recovery is expected seldom, if at all, but it reduces performance, 544 * so make sure it is not completely silent. 545 */ 546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 547 548 host->cqe_ops->cqe_recovery_start(host); 549 550 memset(&cmd, 0, sizeof(cmd)); 551 cmd.opcode = MMC_STOP_TRANSMISSION; 552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 555 mmc_wait_for_cmd(host, &cmd, 0); 556 557 memset(&cmd, 0, sizeof(cmd)); 558 cmd.opcode = MMC_CMDQ_TASK_MGMT; 559 cmd.arg = 1; /* Discard entire queue */ 560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 563 err = mmc_wait_for_cmd(host, &cmd, 0); 564 565 host->cqe_ops->cqe_recovery_finish(host); 566 567 mmc_retune_release(host); 568 569 return err; 570} 571EXPORT_SYMBOL(mmc_cqe_recovery); 572 573/** 574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 575 * @host: MMC host 576 * @mrq: MMC request 577 * 578 * mmc_is_req_done() is used with requests that have 579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 580 * starting a request and before waiting for it to complete. That is, 581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 582 * and before mmc_wait_for_req_done(). If it is called at other times the 583 * result is not meaningful. 584 */ 585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 586{ 587 return completion_done(&mrq->completion); 588} 589EXPORT_SYMBOL(mmc_is_req_done); 590 591/** 592 * mmc_wait_for_req - start a request and wait for completion 593 * @host: MMC host to start command 594 * @mrq: MMC request to start 595 * 596 * Start a new MMC custom command request for a host, and wait 597 * for the command to complete. In the case of 'cap_cmd_during_tfr' 598 * requests, the transfer is ongoing and the caller can issue further 599 * commands that do not use the data lines, and then wait by calling 600 * mmc_wait_for_req_done(). 601 * Does not attempt to parse the response. 602 */ 603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 604{ 605 __mmc_start_req(host, mrq); 606 607 if (!mrq->cap_cmd_during_tfr) 608 mmc_wait_for_req_done(host, mrq); 609} 610EXPORT_SYMBOL(mmc_wait_for_req); 611 612/** 613 * mmc_wait_for_cmd - start a command and wait for completion 614 * @host: MMC host to start command 615 * @cmd: MMC command to start 616 * @retries: maximum number of retries 617 * 618 * Start a new MMC command for a host, and wait for the command 619 * to complete. Return any error that occurred while the command 620 * was executing. Do not attempt to parse the response. 621 */ 622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 623{ 624 struct mmc_request mrq = {}; 625 626 WARN_ON(!host->claimed); 627 628 memset(cmd->resp, 0, sizeof(cmd->resp)); 629 cmd->retries = retries; 630 631 mrq.cmd = cmd; 632 cmd->data = NULL; 633 634 mmc_wait_for_req(host, &mrq); 635 636 return cmd->error; 637} 638 639EXPORT_SYMBOL(mmc_wait_for_cmd); 640 641/** 642 * mmc_set_data_timeout - set the timeout for a data command 643 * @data: data phase for command 644 * @card: the MMC card associated with the data transfer 645 * 646 * Computes the data timeout parameters according to the 647 * correct algorithm given the card type. 648 */ 649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 650{ 651 unsigned int mult; 652 653 /* 654 * SDIO cards only define an upper 1 s limit on access. 655 */ 656 if (mmc_card_sdio(card)) { 657 data->timeout_ns = 1000000000; 658 data->timeout_clks = 0; 659 return; 660 } 661 662 /* 663 * SD cards use a 100 multiplier rather than 10 664 */ 665 mult = mmc_card_sd(card) ? 100 : 10; 666 667 /* 668 * Scale up the multiplier (and therefore the timeout) by 669 * the r2w factor for writes. 670 */ 671 if (data->flags & MMC_DATA_WRITE) 672 mult <<= card->csd.r2w_factor; 673 674 data->timeout_ns = card->csd.taac_ns * mult; 675 data->timeout_clks = card->csd.taac_clks * mult; 676 677 /* 678 * SD cards also have an upper limit on the timeout. 679 */ 680 if (mmc_card_sd(card)) { 681 unsigned int timeout_us, limit_us; 682 683 timeout_us = data->timeout_ns / 1000; 684 if (card->host->ios.clock) 685 timeout_us += data->timeout_clks * 1000 / 686 (card->host->ios.clock / 1000); 687 688 if (data->flags & MMC_DATA_WRITE) 689 /* 690 * The MMC spec "It is strongly recommended 691 * for hosts to implement more than 500ms 692 * timeout value even if the card indicates 693 * the 250ms maximum busy length." Even the 694 * previous value of 300ms is known to be 695 * insufficient for some cards. 696 */ 697 limit_us = 3000000; 698 else 699 limit_us = 100000; 700 701 /* 702 * SDHC cards always use these fixed values. 703 */ 704 if (timeout_us > limit_us) { 705 data->timeout_ns = limit_us * 1000; 706 data->timeout_clks = 0; 707 } 708 709 /* assign limit value if invalid */ 710 if (timeout_us == 0) 711 data->timeout_ns = limit_us * 1000; 712 } 713 714 /* 715 * Some cards require longer data read timeout than indicated in CSD. 716 * Address this by setting the read timeout to a "reasonably high" 717 * value. For the cards tested, 600ms has proven enough. If necessary, 718 * this value can be increased if other problematic cards require this. 719 */ 720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 721 data->timeout_ns = 600000000; 722 data->timeout_clks = 0; 723 } 724 725 /* 726 * Some cards need very high timeouts if driven in SPI mode. 727 * The worst observed timeout was 900ms after writing a 728 * continuous stream of data until the internal logic 729 * overflowed. 730 */ 731 if (mmc_host_is_spi(card->host)) { 732 if (data->flags & MMC_DATA_WRITE) { 733 if (data->timeout_ns < 1000000000) 734 data->timeout_ns = 1000000000; /* 1s */ 735 } else { 736 if (data->timeout_ns < 100000000) 737 data->timeout_ns = 100000000; /* 100ms */ 738 } 739 } 740} 741EXPORT_SYMBOL(mmc_set_data_timeout); 742 743/* 744 * Allow claiming an already claimed host if the context is the same or there is 745 * no context but the task is the same. 746 */ 747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 748 struct task_struct *task) 749{ 750 return host->claimer == ctx || 751 (!ctx && task && host->claimer->task == task); 752} 753 754static inline void mmc_ctx_set_claimer(struct mmc_host *host, 755 struct mmc_ctx *ctx, 756 struct task_struct *task) 757{ 758 if (!host->claimer) { 759 if (ctx) 760 host->claimer = ctx; 761 else 762 host->claimer = &host->default_ctx; 763 } 764 if (task) 765 host->claimer->task = task; 766} 767 768/** 769 * __mmc_claim_host - exclusively claim a host 770 * @host: mmc host to claim 771 * @ctx: context that claims the host or NULL in which case the default 772 * context will be used 773 * @abort: whether or not the operation should be aborted 774 * 775 * Claim a host for a set of operations. If @abort is non null and 776 * dereference a non-zero value then this will return prematurely with 777 * that non-zero value without acquiring the lock. Returns zero 778 * with the lock held otherwise. 779 */ 780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 781 atomic_t *abort) 782{ 783 struct task_struct *task = ctx ? NULL : current; 784 DECLARE_WAITQUEUE(wait, current); 785 unsigned long flags; 786 int stop; 787 bool pm = false; 788 789 might_sleep(); 790 791 add_wait_queue(&host->wq, &wait); 792 spin_lock_irqsave(&host->lock, flags); 793 while (1) { 794 set_current_state(TASK_UNINTERRUPTIBLE); 795 stop = abort ? atomic_read(abort) : 0; 796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 797 break; 798 spin_unlock_irqrestore(&host->lock, flags); 799 schedule(); 800 spin_lock_irqsave(&host->lock, flags); 801 } 802 set_current_state(TASK_RUNNING); 803 if (!stop) { 804 host->claimed = 1; 805 mmc_ctx_set_claimer(host, ctx, task); 806 host->claim_cnt += 1; 807 if (host->claim_cnt == 1) 808 pm = true; 809 } else 810 wake_up(&host->wq); 811 spin_unlock_irqrestore(&host->lock, flags); 812 remove_wait_queue(&host->wq, &wait); 813 814 if (pm) 815 pm_runtime_get_sync(mmc_dev(host)); 816 817 return stop; 818} 819EXPORT_SYMBOL(__mmc_claim_host); 820 821/** 822 * mmc_release_host - release a host 823 * @host: mmc host to release 824 * 825 * Release a MMC host, allowing others to claim the host 826 * for their operations. 827 */ 828void mmc_release_host(struct mmc_host *host) 829{ 830 unsigned long flags; 831 832 WARN_ON(!host->claimed); 833 834 spin_lock_irqsave(&host->lock, flags); 835 if (--host->claim_cnt) { 836 /* Release for nested claim */ 837 spin_unlock_irqrestore(&host->lock, flags); 838 } else { 839 host->claimed = 0; 840 host->claimer->task = NULL; 841 host->claimer = NULL; 842 spin_unlock_irqrestore(&host->lock, flags); 843 wake_up(&host->wq); 844 pm_runtime_mark_last_busy(mmc_dev(host)); 845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) 846 pm_runtime_put_sync_suspend(mmc_dev(host)); 847 else 848 pm_runtime_put_autosuspend(mmc_dev(host)); 849 } 850} 851EXPORT_SYMBOL(mmc_release_host); 852 853/* 854 * This is a helper function, which fetches a runtime pm reference for the 855 * card device and also claims the host. 856 */ 857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 858{ 859 pm_runtime_get_sync(&card->dev); 860 __mmc_claim_host(card->host, ctx, NULL); 861} 862EXPORT_SYMBOL(mmc_get_card); 863 864/* 865 * This is a helper function, which releases the host and drops the runtime 866 * pm reference for the card device. 867 */ 868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 869{ 870 struct mmc_host *host = card->host; 871 872 WARN_ON(ctx && host->claimer != ctx); 873 874 mmc_release_host(host); 875 pm_runtime_mark_last_busy(&card->dev); 876 pm_runtime_put_autosuspend(&card->dev); 877} 878EXPORT_SYMBOL(mmc_put_card); 879 880/* 881 * Internal function that does the actual ios call to the host driver, 882 * optionally printing some debug output. 883 */ 884static inline void mmc_set_ios(struct mmc_host *host) 885{ 886 struct mmc_ios *ios = &host->ios; 887 888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 889 "width %u timing %u\n", 890 mmc_hostname(host), ios->clock, ios->bus_mode, 891 ios->power_mode, ios->chip_select, ios->vdd, 892 1 << ios->bus_width, ios->timing); 893 894 host->ops->set_ios(host, ios); 895} 896 897/* 898 * Control chip select pin on a host. 899 */ 900void mmc_set_chip_select(struct mmc_host *host, int mode) 901{ 902 host->ios.chip_select = mode; 903 mmc_set_ios(host); 904} 905 906/* 907 * Sets the host clock to the highest possible frequency that 908 * is below "hz". 909 */ 910void mmc_set_clock(struct mmc_host *host, unsigned int hz) 911{ 912 WARN_ON(hz && hz < host->f_min); 913 914 if (hz > host->f_max) 915 hz = host->f_max; 916 917 host->ios.clock = hz; 918 mmc_set_ios(host); 919} 920 921int mmc_execute_tuning(struct mmc_card *card) 922{ 923 struct mmc_host *host = card->host; 924 u32 opcode; 925 int err; 926 927 if (!host->ops->execute_tuning) 928 return 0; 929 930 if (host->cqe_on) 931 host->cqe_ops->cqe_off(host); 932 933 if (mmc_card_mmc(card)) 934 opcode = MMC_SEND_TUNING_BLOCK_HS200; 935 else 936 opcode = MMC_SEND_TUNING_BLOCK; 937 938 err = host->ops->execute_tuning(host, opcode); 939 if (!err) { 940 mmc_retune_clear(host); 941 mmc_retune_enable(host); 942 return 0; 943 } 944 945 /* Only print error when we don't check for card removal */ 946 if (!host->detect_change) 947 pr_err("%s: tuning execution failed: %d\n", 948 mmc_hostname(host), err); 949 950 return err; 951} 952 953/* 954 * Change the bus mode (open drain/push-pull) of a host. 955 */ 956void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 957{ 958 host->ios.bus_mode = mode; 959 mmc_set_ios(host); 960} 961 962/* 963 * Change data bus width of a host. 964 */ 965void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 966{ 967 host->ios.bus_width = width; 968 mmc_set_ios(host); 969} 970 971/* 972 * Set initial state after a power cycle or a hw_reset. 973 */ 974void mmc_set_initial_state(struct mmc_host *host) 975{ 976 if (host->cqe_on) 977 host->cqe_ops->cqe_off(host); 978 979 mmc_retune_disable(host); 980 981 if (mmc_host_is_spi(host)) 982 host->ios.chip_select = MMC_CS_HIGH; 983 else 984 host->ios.chip_select = MMC_CS_DONTCARE; 985 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 986 host->ios.bus_width = MMC_BUS_WIDTH_1; 987 host->ios.timing = MMC_TIMING_LEGACY; 988 host->ios.drv_type = 0; 989 host->ios.enhanced_strobe = false; 990 991 /* 992 * Make sure we are in non-enhanced strobe mode before we 993 * actually enable it in ext_csd. 994 */ 995 if ((host->caps2 & MMC_CAP2_HS400_ES) && 996 host->ops->hs400_enhanced_strobe) 997 host->ops->hs400_enhanced_strobe(host, &host->ios); 998 999 mmc_set_ios(host); 1000 1001 mmc_crypto_set_initial_state(host); 1002} 1003 1004/** 1005 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1006 * @vdd: voltage (mV) 1007 * @low_bits: prefer low bits in boundary cases 1008 * 1009 * This function returns the OCR bit number according to the provided @vdd 1010 * value. If conversion is not possible a negative errno value returned. 1011 * 1012 * Depending on the @low_bits flag the function prefers low or high OCR bits 1013 * on boundary voltages. For example, 1014 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1015 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1016 * 1017 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1018 */ 1019static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1020{ 1021 const int max_bit = ilog2(MMC_VDD_35_36); 1022 int bit; 1023 1024 if (vdd < 1650 || vdd > 3600) 1025 return -EINVAL; 1026 1027 if (vdd >= 1650 && vdd <= 1950) 1028 return ilog2(MMC_VDD_165_195); 1029 1030 if (low_bits) 1031 vdd -= 1; 1032 1033 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1034 bit = (vdd - 2000) / 100 + 8; 1035 if (bit > max_bit) 1036 return max_bit; 1037 return bit; 1038} 1039 1040/** 1041 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1042 * @vdd_min: minimum voltage value (mV) 1043 * @vdd_max: maximum voltage value (mV) 1044 * 1045 * This function returns the OCR mask bits according to the provided @vdd_min 1046 * and @vdd_max values. If conversion is not possible the function returns 0. 1047 * 1048 * Notes wrt boundary cases: 1049 * This function sets the OCR bits for all boundary voltages, for example 1050 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1051 * MMC_VDD_34_35 mask. 1052 */ 1053u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1054{ 1055 u32 mask = 0; 1056 1057 if (vdd_max < vdd_min) 1058 return 0; 1059 1060 /* Prefer high bits for the boundary vdd_max values. */ 1061 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1062 if (vdd_max < 0) 1063 return 0; 1064 1065 /* Prefer low bits for the boundary vdd_min values. */ 1066 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1067 if (vdd_min < 0) 1068 return 0; 1069 1070 /* Fill the mask, from max bit to min bit. */ 1071 while (vdd_max >= vdd_min) 1072 mask |= 1 << vdd_max--; 1073 1074 return mask; 1075} 1076 1077static int mmc_of_get_func_num(struct device_node *node) 1078{ 1079 u32 reg; 1080 int ret; 1081 1082 ret = of_property_read_u32(node, "reg", ®); 1083 if (ret < 0) 1084 return ret; 1085 1086 return reg; 1087} 1088 1089struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1090 unsigned func_num) 1091{ 1092 struct device_node *node; 1093 1094 if (!host->parent || !host->parent->of_node) 1095 return NULL; 1096 1097 for_each_child_of_node(host->parent->of_node, node) { 1098 if (mmc_of_get_func_num(node) == func_num) 1099 return node; 1100 } 1101 1102 return NULL; 1103} 1104 1105/* 1106 * Mask off any voltages we don't support and select 1107 * the lowest voltage 1108 */ 1109u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1110{ 1111 int bit; 1112 1113 /* 1114 * Sanity check the voltages that the card claims to 1115 * support. 1116 */ 1117 if (ocr & 0x7F) { 1118 dev_warn(mmc_dev(host), 1119 "card claims to support voltages below defined range\n"); 1120 ocr &= ~0x7F; 1121 } 1122 1123 ocr &= host->ocr_avail; 1124 if (!ocr) { 1125 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1126 return 0; 1127 } 1128 1129 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1130 bit = ffs(ocr) - 1; 1131 ocr &= 3 << bit; 1132 mmc_power_cycle(host, ocr); 1133 } else { 1134 bit = fls(ocr) - 1; 1135 ocr &= 3 << bit; 1136 if (bit != host->ios.vdd) 1137 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1138 } 1139 1140 return ocr; 1141} 1142 1143int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1144{ 1145 int err = 0; 1146 int old_signal_voltage = host->ios.signal_voltage; 1147 1148 host->ios.signal_voltage = signal_voltage; 1149 if (host->ops->start_signal_voltage_switch) 1150 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1151 1152 if (err) 1153 host->ios.signal_voltage = old_signal_voltage; 1154 1155 return err; 1156 1157} 1158 1159void mmc_set_initial_signal_voltage(struct mmc_host *host) 1160{ 1161 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1162 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1163 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1164 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1165 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1166 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1167 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1168} 1169 1170int mmc_host_set_uhs_voltage(struct mmc_host *host) 1171{ 1172 u32 clock; 1173 1174 /* 1175 * During a signal voltage level switch, the clock must be gated 1176 * for 5 ms according to the SD spec 1177 */ 1178 clock = host->ios.clock; 1179 host->ios.clock = 0; 1180 mmc_set_ios(host); 1181 1182 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1183 return -EAGAIN; 1184 1185 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1186 mmc_delay(10); 1187 host->ios.clock = clock; 1188 mmc_set_ios(host); 1189 1190 return 0; 1191} 1192 1193int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1194{ 1195 struct mmc_command cmd = {}; 1196 int err = 0; 1197 1198 /* 1199 * If we cannot switch voltages, return failure so the caller 1200 * can continue without UHS mode 1201 */ 1202 if (!host->ops->start_signal_voltage_switch) 1203 return -EPERM; 1204 if (!host->ops->card_busy) 1205 pr_warn("%s: cannot verify signal voltage switch\n", 1206 mmc_hostname(host)); 1207 1208 cmd.opcode = SD_SWITCH_VOLTAGE; 1209 cmd.arg = 0; 1210 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1211 1212 err = mmc_wait_for_cmd(host, &cmd, 0); 1213 if (err) 1214 goto power_cycle; 1215 1216 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1217 return -EIO; 1218 1219 /* 1220 * The card should drive cmd and dat[0:3] low immediately 1221 * after the response of cmd11, but wait 1 ms to be sure 1222 */ 1223 mmc_delay(1); 1224 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1225 err = -EAGAIN; 1226 goto power_cycle; 1227 } 1228 1229 if (mmc_host_set_uhs_voltage(host)) { 1230 /* 1231 * Voltages may not have been switched, but we've already 1232 * sent CMD11, so a power cycle is required anyway 1233 */ 1234 err = -EAGAIN; 1235 goto power_cycle; 1236 } 1237 1238 /* Wait for at least 1 ms according to spec */ 1239 mmc_delay(1); 1240 1241 /* 1242 * Failure to switch is indicated by the card holding 1243 * dat[0:3] low 1244 */ 1245 if (host->ops->card_busy && host->ops->card_busy(host)) 1246 err = -EAGAIN; 1247 1248power_cycle: 1249 if (err) { 1250 pr_debug("%s: Signal voltage switch failed, " 1251 "power cycling card\n", mmc_hostname(host)); 1252 mmc_power_cycle(host, ocr); 1253 } 1254 1255 return err; 1256} 1257 1258/* 1259 * Select timing parameters for host. 1260 */ 1261void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1262{ 1263 host->ios.timing = timing; 1264 mmc_set_ios(host); 1265} 1266 1267/* 1268 * Select appropriate driver type for host. 1269 */ 1270void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1271{ 1272 host->ios.drv_type = drv_type; 1273 mmc_set_ios(host); 1274} 1275 1276int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1277 int card_drv_type, int *drv_type) 1278{ 1279 struct mmc_host *host = card->host; 1280 int host_drv_type = SD_DRIVER_TYPE_B; 1281 1282 *drv_type = 0; 1283 1284 if (!host->ops->select_drive_strength) 1285 return 0; 1286 1287 /* Use SD definition of driver strength for hosts */ 1288 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1289 host_drv_type |= SD_DRIVER_TYPE_A; 1290 1291 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1292 host_drv_type |= SD_DRIVER_TYPE_C; 1293 1294 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1295 host_drv_type |= SD_DRIVER_TYPE_D; 1296 1297 /* 1298 * The drive strength that the hardware can support 1299 * depends on the board design. Pass the appropriate 1300 * information and let the hardware specific code 1301 * return what is possible given the options 1302 */ 1303 return host->ops->select_drive_strength(card, max_dtr, 1304 host_drv_type, 1305 card_drv_type, 1306 drv_type); 1307} 1308 1309/* 1310 * Apply power to the MMC stack. This is a two-stage process. 1311 * First, we enable power to the card without the clock running. 1312 * We then wait a bit for the power to stabilise. Finally, 1313 * enable the bus drivers and clock to the card. 1314 * 1315 * We must _NOT_ enable the clock prior to power stablising. 1316 * 1317 * If a host does all the power sequencing itself, ignore the 1318 * initial MMC_POWER_UP stage. 1319 */ 1320void mmc_power_up(struct mmc_host *host, u32 ocr) 1321{ 1322 if (host->ios.power_mode == MMC_POWER_ON) 1323 return; 1324 1325 mmc_pwrseq_pre_power_on(host); 1326 1327 host->ios.vdd = fls(ocr) - 1; 1328 host->ios.power_mode = MMC_POWER_UP; 1329 /* Set initial state and call mmc_set_ios */ 1330 mmc_set_initial_state(host); 1331 1332 mmc_set_initial_signal_voltage(host); 1333 1334 /* 1335 * This delay should be sufficient to allow the power supply 1336 * to reach the minimum voltage. 1337 */ 1338 mmc_delay(host->ios.power_delay_ms); 1339 1340 mmc_pwrseq_post_power_on(host); 1341 1342 host->ios.clock = host->f_init; 1343 1344 host->ios.power_mode = MMC_POWER_ON; 1345 mmc_set_ios(host); 1346 1347 /* 1348 * This delay must be at least 74 clock sizes, or 1 ms, or the 1349 * time required to reach a stable voltage. 1350 */ 1351 mmc_delay(host->ios.power_delay_ms); 1352} 1353 1354void mmc_power_off(struct mmc_host *host) 1355{ 1356 if (host->ios.power_mode == MMC_POWER_OFF) 1357 return; 1358 1359 mmc_pwrseq_power_off(host); 1360 1361 host->ios.clock = 0; 1362 host->ios.vdd = 0; 1363 1364 host->ios.power_mode = MMC_POWER_OFF; 1365 /* Set initial state and call mmc_set_ios */ 1366 mmc_set_initial_state(host); 1367 1368 /* 1369 * Some configurations, such as the 802.11 SDIO card in the OLPC 1370 * XO-1.5, require a short delay after poweroff before the card 1371 * can be successfully turned on again. 1372 */ 1373 mmc_delay(1); 1374} 1375 1376void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1377{ 1378 mmc_power_off(host); 1379 /* Wait at least 1 ms according to SD spec */ 1380 mmc_delay(1); 1381 mmc_power_up(host, ocr); 1382} 1383 1384/* 1385 * Assign a mmc bus handler to a host. Only one bus handler may control a 1386 * host at any given time. 1387 */ 1388void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1389{ 1390 host->bus_ops = ops; 1391} 1392 1393/* 1394 * Remove the current bus handler from a host. 1395 */ 1396void mmc_detach_bus(struct mmc_host *host) 1397{ 1398 host->bus_ops = NULL; 1399} 1400 1401void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) 1402{ 1403 /* 1404 * Prevent system sleep for 5s to allow user space to consume the 1405 * corresponding uevent. This is especially useful, when CD irq is used 1406 * as a system wakeup, but doesn't hurt in other cases. 1407 */ 1408 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) 1409 __pm_wakeup_event(host->ws, 5000); 1410 1411 host->detect_change = 1; 1412 mmc_schedule_delayed_work(&host->detect, delay); 1413} 1414 1415/** 1416 * mmc_detect_change - process change of state on a MMC socket 1417 * @host: host which changed state. 1418 * @delay: optional delay to wait before detection (jiffies) 1419 * 1420 * MMC drivers should call this when they detect a card has been 1421 * inserted or removed. The MMC layer will confirm that any 1422 * present card is still functional, and initialize any newly 1423 * inserted. 1424 */ 1425void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1426{ 1427 _mmc_detect_change(host, delay, true); 1428} 1429EXPORT_SYMBOL(mmc_detect_change); 1430 1431void mmc_init_erase(struct mmc_card *card) 1432{ 1433 unsigned int sz; 1434 1435 if (is_power_of_2(card->erase_size)) 1436 card->erase_shift = ffs(card->erase_size) - 1; 1437 else 1438 card->erase_shift = 0; 1439 1440 /* 1441 * It is possible to erase an arbitrarily large area of an SD or MMC 1442 * card. That is not desirable because it can take a long time 1443 * (minutes) potentially delaying more important I/O, and also the 1444 * timeout calculations become increasingly hugely over-estimated. 1445 * Consequently, 'pref_erase' is defined as a guide to limit erases 1446 * to that size and alignment. 1447 * 1448 * For SD cards that define Allocation Unit size, limit erases to one 1449 * Allocation Unit at a time. 1450 * For MMC, have a stab at ai good value and for modern cards it will 1451 * end up being 4MiB. Note that if the value is too small, it can end 1452 * up taking longer to erase. Also note, erase_size is already set to 1453 * High Capacity Erase Size if available when this function is called. 1454 */ 1455 if (mmc_card_sd(card) && card->ssr.au) { 1456 card->pref_erase = card->ssr.au; 1457 card->erase_shift = ffs(card->ssr.au) - 1; 1458 } else if (card->erase_size) { 1459 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1460 if (sz < 128) 1461 card->pref_erase = 512 * 1024 / 512; 1462 else if (sz < 512) 1463 card->pref_erase = 1024 * 1024 / 512; 1464 else if (sz < 1024) 1465 card->pref_erase = 2 * 1024 * 1024 / 512; 1466 else 1467 card->pref_erase = 4 * 1024 * 1024 / 512; 1468 if (card->pref_erase < card->erase_size) 1469 card->pref_erase = card->erase_size; 1470 else { 1471 sz = card->pref_erase % card->erase_size; 1472 if (sz) 1473 card->pref_erase += card->erase_size - sz; 1474 } 1475 } else 1476 card->pref_erase = 0; 1477} 1478 1479static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1480 unsigned int arg, unsigned int qty) 1481{ 1482 unsigned int erase_timeout; 1483 1484 if (arg == MMC_DISCARD_ARG || 1485 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1486 erase_timeout = card->ext_csd.trim_timeout; 1487 } else if (card->ext_csd.erase_group_def & 1) { 1488 /* High Capacity Erase Group Size uses HC timeouts */ 1489 if (arg == MMC_TRIM_ARG) 1490 erase_timeout = card->ext_csd.trim_timeout; 1491 else 1492 erase_timeout = card->ext_csd.hc_erase_timeout; 1493 } else { 1494 /* CSD Erase Group Size uses write timeout */ 1495 unsigned int mult = (10 << card->csd.r2w_factor); 1496 unsigned int timeout_clks = card->csd.taac_clks * mult; 1497 unsigned int timeout_us; 1498 1499 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1500 if (card->csd.taac_ns < 1000000) 1501 timeout_us = (card->csd.taac_ns * mult) / 1000; 1502 else 1503 timeout_us = (card->csd.taac_ns / 1000) * mult; 1504 1505 /* 1506 * ios.clock is only a target. The real clock rate might be 1507 * less but not that much less, so fudge it by multiplying by 2. 1508 */ 1509 timeout_clks <<= 1; 1510 timeout_us += (timeout_clks * 1000) / 1511 (card->host->ios.clock / 1000); 1512 1513 erase_timeout = timeout_us / 1000; 1514 1515 /* 1516 * Theoretically, the calculation could underflow so round up 1517 * to 1ms in that case. 1518 */ 1519 if (!erase_timeout) 1520 erase_timeout = 1; 1521 } 1522 1523 /* Multiplier for secure operations */ 1524 if (arg & MMC_SECURE_ARGS) { 1525 if (arg == MMC_SECURE_ERASE_ARG) 1526 erase_timeout *= card->ext_csd.sec_erase_mult; 1527 else 1528 erase_timeout *= card->ext_csd.sec_trim_mult; 1529 } 1530 1531 erase_timeout *= qty; 1532 1533 /* 1534 * Ensure at least a 1 second timeout for SPI as per 1535 * 'mmc_set_data_timeout()' 1536 */ 1537 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1538 erase_timeout = 1000; 1539 1540 return erase_timeout; 1541} 1542 1543static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1544 unsigned int arg, 1545 unsigned int qty) 1546{ 1547 unsigned int erase_timeout; 1548 1549 /* for DISCARD none of the below calculation applies. 1550 * the busy timeout is 250msec per discard command. 1551 */ 1552 if (arg == SD_DISCARD_ARG) 1553 return SD_DISCARD_TIMEOUT_MS; 1554 1555 if (card->ssr.erase_timeout) { 1556 /* Erase timeout specified in SD Status Register (SSR) */ 1557 erase_timeout = card->ssr.erase_timeout * qty + 1558 card->ssr.erase_offset; 1559 } else { 1560 /* 1561 * Erase timeout not specified in SD Status Register (SSR) so 1562 * use 250ms per write block. 1563 */ 1564 erase_timeout = 250 * qty; 1565 } 1566 1567 /* Must not be less than 1 second */ 1568 if (erase_timeout < 1000) 1569 erase_timeout = 1000; 1570 1571 return erase_timeout; 1572} 1573 1574static unsigned int mmc_erase_timeout(struct mmc_card *card, 1575 unsigned int arg, 1576 unsigned int qty) 1577{ 1578 if (mmc_card_sd(card)) 1579 return mmc_sd_erase_timeout(card, arg, qty); 1580 else 1581 return mmc_mmc_erase_timeout(card, arg, qty); 1582} 1583 1584static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1585 unsigned int to, unsigned int arg) 1586{ 1587 struct mmc_command cmd = {}; 1588 unsigned int qty = 0, busy_timeout = 0; 1589 bool use_r1b_resp; 1590 int err; 1591 1592 mmc_retune_hold(card->host); 1593 1594 /* 1595 * qty is used to calculate the erase timeout which depends on how many 1596 * erase groups (or allocation units in SD terminology) are affected. 1597 * We count erasing part of an erase group as one erase group. 1598 * For SD, the allocation units are always a power of 2. For MMC, the 1599 * erase group size is almost certainly also power of 2, but it does not 1600 * seem to insist on that in the JEDEC standard, so we fall back to 1601 * division in that case. SD may not specify an allocation unit size, 1602 * in which case the timeout is based on the number of write blocks. 1603 * 1604 * Note that the timeout for secure trim 2 will only be correct if the 1605 * number of erase groups specified is the same as the total of all 1606 * preceding secure trim 1 commands. Since the power may have been 1607 * lost since the secure trim 1 commands occurred, it is generally 1608 * impossible to calculate the secure trim 2 timeout correctly. 1609 */ 1610 if (card->erase_shift) 1611 qty += ((to >> card->erase_shift) - 1612 (from >> card->erase_shift)) + 1; 1613 else if (mmc_card_sd(card)) 1614 qty += to - from + 1; 1615 else 1616 qty += ((to / card->erase_size) - 1617 (from / card->erase_size)) + 1; 1618 1619 if (!mmc_card_blockaddr(card)) { 1620 from <<= 9; 1621 to <<= 9; 1622 } 1623 1624 if (mmc_card_sd(card)) 1625 cmd.opcode = SD_ERASE_WR_BLK_START; 1626 else 1627 cmd.opcode = MMC_ERASE_GROUP_START; 1628 cmd.arg = from; 1629 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1630 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1631 if (err) { 1632 pr_err("mmc_erase: group start error %d, " 1633 "status %#x\n", err, cmd.resp[0]); 1634 err = -EIO; 1635 goto out; 1636 } 1637 1638 memset(&cmd, 0, sizeof(struct mmc_command)); 1639 if (mmc_card_sd(card)) 1640 cmd.opcode = SD_ERASE_WR_BLK_END; 1641 else 1642 cmd.opcode = MMC_ERASE_GROUP_END; 1643 cmd.arg = to; 1644 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1645 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1646 if (err) { 1647 pr_err("mmc_erase: group end error %d, status %#x\n", 1648 err, cmd.resp[0]); 1649 err = -EIO; 1650 goto out; 1651 } 1652 1653 memset(&cmd, 0, sizeof(struct mmc_command)); 1654 cmd.opcode = MMC_ERASE; 1655 cmd.arg = arg; 1656 busy_timeout = mmc_erase_timeout(card, arg, qty); 1657 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); 1658 1659 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1660 if (err) { 1661 pr_err("mmc_erase: erase error %d, status %#x\n", 1662 err, cmd.resp[0]); 1663 err = -EIO; 1664 goto out; 1665 } 1666 1667 if (mmc_host_is_spi(card->host)) 1668 goto out; 1669 1670 /* 1671 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 1672 * shall be avoided. 1673 */ 1674 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 1675 goto out; 1676 1677 /* Let's poll to find out when the erase operation completes. */ 1678 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); 1679 1680out: 1681 mmc_retune_release(card->host); 1682 return err; 1683} 1684 1685static unsigned int mmc_align_erase_size(struct mmc_card *card, 1686 unsigned int *from, 1687 unsigned int *to, 1688 unsigned int nr) 1689{ 1690 unsigned int from_new = *from, nr_new = nr, rem; 1691 1692 /* 1693 * When the 'card->erase_size' is power of 2, we can use round_up/down() 1694 * to align the erase size efficiently. 1695 */ 1696 if (is_power_of_2(card->erase_size)) { 1697 unsigned int temp = from_new; 1698 1699 from_new = round_up(temp, card->erase_size); 1700 rem = from_new - temp; 1701 1702 if (nr_new > rem) 1703 nr_new -= rem; 1704 else 1705 return 0; 1706 1707 nr_new = round_down(nr_new, card->erase_size); 1708 } else { 1709 rem = from_new % card->erase_size; 1710 if (rem) { 1711 rem = card->erase_size - rem; 1712 from_new += rem; 1713 if (nr_new > rem) 1714 nr_new -= rem; 1715 else 1716 return 0; 1717 } 1718 1719 rem = nr_new % card->erase_size; 1720 if (rem) 1721 nr_new -= rem; 1722 } 1723 1724 if (nr_new == 0) 1725 return 0; 1726 1727 *to = from_new + nr_new; 1728 *from = from_new; 1729 1730 return nr_new; 1731} 1732 1733/** 1734 * mmc_erase - erase sectors. 1735 * @card: card to erase 1736 * @from: first sector to erase 1737 * @nr: number of sectors to erase 1738 * @arg: erase command argument 1739 * 1740 * Caller must claim host before calling this function. 1741 */ 1742int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1743 unsigned int arg) 1744{ 1745 unsigned int rem, to = from + nr; 1746 int err; 1747 1748 if (!(card->csd.cmdclass & CCC_ERASE)) 1749 return -EOPNOTSUPP; 1750 1751 if (!card->erase_size) 1752 return -EOPNOTSUPP; 1753 1754 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) 1755 return -EOPNOTSUPP; 1756 1757 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && 1758 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1759 return -EOPNOTSUPP; 1760 1761 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) && 1762 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1763 return -EOPNOTSUPP; 1764 1765 if (arg == MMC_SECURE_ERASE_ARG) { 1766 if (from % card->erase_size || nr % card->erase_size) 1767 return -EINVAL; 1768 } 1769 1770 if (arg == MMC_ERASE_ARG) 1771 nr = mmc_align_erase_size(card, &from, &to, nr); 1772 1773 if (nr == 0) 1774 return 0; 1775 1776 if (to <= from) 1777 return -EINVAL; 1778 1779 /* 'from' and 'to' are inclusive */ 1780 to -= 1; 1781 1782 /* 1783 * Special case where only one erase-group fits in the timeout budget: 1784 * If the region crosses an erase-group boundary on this particular 1785 * case, we will be trimming more than one erase-group which, does not 1786 * fit in the timeout budget of the controller, so we need to split it 1787 * and call mmc_do_erase() twice if necessary. This special case is 1788 * identified by the card->eg_boundary flag. 1789 */ 1790 rem = card->erase_size - (from % card->erase_size); 1791 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 1792 err = mmc_do_erase(card, from, from + rem - 1, arg); 1793 from += rem; 1794 if ((err) || (to <= from)) 1795 return err; 1796 } 1797 1798 return mmc_do_erase(card, from, to, arg); 1799} 1800EXPORT_SYMBOL(mmc_erase); 1801 1802int mmc_can_erase(struct mmc_card *card) 1803{ 1804 if (card->csd.cmdclass & CCC_ERASE && card->erase_size) 1805 return 1; 1806 return 0; 1807} 1808EXPORT_SYMBOL(mmc_can_erase); 1809 1810int mmc_can_trim(struct mmc_card *card) 1811{ 1812 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 1813 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 1814 return 1; 1815 return 0; 1816} 1817EXPORT_SYMBOL(mmc_can_trim); 1818 1819int mmc_can_discard(struct mmc_card *card) 1820{ 1821 /* 1822 * As there's no way to detect the discard support bit at v4.5 1823 * use the s/w feature support filed. 1824 */ 1825 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1826 return 1; 1827 return 0; 1828} 1829EXPORT_SYMBOL(mmc_can_discard); 1830 1831int mmc_can_sanitize(struct mmc_card *card) 1832{ 1833 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1834 return 0; 1835 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1836 return 1; 1837 return 0; 1838} 1839 1840int mmc_can_secure_erase_trim(struct mmc_card *card) 1841{ 1842 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 1843 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 1844 return 1; 1845 return 0; 1846} 1847EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1848 1849int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1850 unsigned int nr) 1851{ 1852 if (!card->erase_size) 1853 return 0; 1854 if (from % card->erase_size || nr % card->erase_size) 1855 return 0; 1856 return 1; 1857} 1858EXPORT_SYMBOL(mmc_erase_group_aligned); 1859 1860static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1861 unsigned int arg) 1862{ 1863 struct mmc_host *host = card->host; 1864 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 1865 unsigned int last_timeout = 0; 1866 unsigned int max_busy_timeout = host->max_busy_timeout ? 1867 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 1868 1869 if (card->erase_shift) { 1870 max_qty = UINT_MAX >> card->erase_shift; 1871 min_qty = card->pref_erase >> card->erase_shift; 1872 } else if (mmc_card_sd(card)) { 1873 max_qty = UINT_MAX; 1874 min_qty = card->pref_erase; 1875 } else { 1876 max_qty = UINT_MAX / card->erase_size; 1877 min_qty = card->pref_erase / card->erase_size; 1878 } 1879 1880 /* 1881 * We should not only use 'host->max_busy_timeout' as the limitation 1882 * when deciding the max discard sectors. We should set a balance value 1883 * to improve the erase speed, and it can not get too long timeout at 1884 * the same time. 1885 * 1886 * Here we set 'card->pref_erase' as the minimal discard sectors no 1887 * matter what size of 'host->max_busy_timeout', but if the 1888 * 'host->max_busy_timeout' is large enough for more discard sectors, 1889 * then we can continue to increase the max discard sectors until we 1890 * get a balance value. In cases when the 'host->max_busy_timeout' 1891 * isn't specified, use the default max erase timeout. 1892 */ 1893 do { 1894 y = 0; 1895 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1896 timeout = mmc_erase_timeout(card, arg, qty + x); 1897 1898 if (qty + x > min_qty && timeout > max_busy_timeout) 1899 break; 1900 1901 if (timeout < last_timeout) 1902 break; 1903 last_timeout = timeout; 1904 y = x; 1905 } 1906 qty += y; 1907 } while (y); 1908 1909 if (!qty) 1910 return 0; 1911 1912 /* 1913 * When specifying a sector range to trim, chances are we might cross 1914 * an erase-group boundary even if the amount of sectors is less than 1915 * one erase-group. 1916 * If we can only fit one erase-group in the controller timeout budget, 1917 * we have to care that erase-group boundaries are not crossed by a 1918 * single trim operation. We flag that special case with "eg_boundary". 1919 * In all other cases we can just decrement qty and pretend that we 1920 * always touch (qty + 1) erase-groups as a simple optimization. 1921 */ 1922 if (qty == 1) 1923 card->eg_boundary = 1; 1924 else 1925 qty--; 1926 1927 /* Convert qty to sectors */ 1928 if (card->erase_shift) 1929 max_discard = qty << card->erase_shift; 1930 else if (mmc_card_sd(card)) 1931 max_discard = qty + 1; 1932 else 1933 max_discard = qty * card->erase_size; 1934 1935 return max_discard; 1936} 1937 1938unsigned int mmc_calc_max_discard(struct mmc_card *card) 1939{ 1940 struct mmc_host *host = card->host; 1941 unsigned int max_discard, max_trim; 1942 1943 /* 1944 * Without erase_group_def set, MMC erase timeout depends on clock 1945 * frequence which can change. In that case, the best choice is 1946 * just the preferred erase size. 1947 */ 1948 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1949 return card->pref_erase; 1950 1951 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1952 if (mmc_can_trim(card)) { 1953 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1954 if (max_trim < max_discard || max_discard == 0) 1955 max_discard = max_trim; 1956 } else if (max_discard < card->erase_size) { 1957 max_discard = 0; 1958 } 1959 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1960 mmc_hostname(host), max_discard, host->max_busy_timeout ? 1961 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 1962 return max_discard; 1963} 1964EXPORT_SYMBOL(mmc_calc_max_discard); 1965 1966bool mmc_card_is_blockaddr(struct mmc_card *card) 1967{ 1968 return card ? mmc_card_blockaddr(card) : false; 1969} 1970EXPORT_SYMBOL(mmc_card_is_blockaddr); 1971 1972int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1973{ 1974 struct mmc_command cmd = {}; 1975 1976 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 1977 mmc_card_hs400(card) || mmc_card_hs400es(card)) 1978 return 0; 1979 1980 cmd.opcode = MMC_SET_BLOCKLEN; 1981 cmd.arg = blocklen; 1982 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1983 return mmc_wait_for_cmd(card->host, &cmd, 5); 1984} 1985EXPORT_SYMBOL(mmc_set_blocklen); 1986 1987static void mmc_hw_reset_for_init(struct mmc_host *host) 1988{ 1989 mmc_pwrseq_reset(host); 1990 1991 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) 1992 return; 1993 host->ops->card_hw_reset(host); 1994} 1995 1996/** 1997 * mmc_hw_reset - reset the card in hardware 1998 * @card: card to be reset 1999 * 2000 * Hard reset the card. This function is only for upper layers, like the 2001 * block layer or card drivers. You cannot use it in host drivers (struct 2002 * mmc_card might be gone then). 2003 * 2004 * Return: 0 on success, -errno on failure 2005 */ 2006int mmc_hw_reset(struct mmc_card *card) 2007{ 2008 struct mmc_host *host = card->host; 2009 int ret; 2010 2011 ret = host->bus_ops->hw_reset(host); 2012 if (ret < 0) 2013 pr_warn("%s: tried to HW reset card, got error %d\n", 2014 mmc_hostname(host), ret); 2015 2016 return ret; 2017} 2018EXPORT_SYMBOL(mmc_hw_reset); 2019 2020int mmc_sw_reset(struct mmc_card *card) 2021{ 2022 struct mmc_host *host = card->host; 2023 int ret; 2024 2025 if (!host->bus_ops->sw_reset) 2026 return -EOPNOTSUPP; 2027 2028 ret = host->bus_ops->sw_reset(host); 2029 if (ret) 2030 pr_warn("%s: tried to SW reset card, got error %d\n", 2031 mmc_hostname(host), ret); 2032 2033 return ret; 2034} 2035EXPORT_SYMBOL(mmc_sw_reset); 2036 2037static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2038{ 2039 host->f_init = freq; 2040 2041 pr_debug("%s: %s: trying to init card at %u Hz\n", 2042 mmc_hostname(host), __func__, host->f_init); 2043 2044 mmc_power_up(host, host->ocr_avail); 2045 2046 /* 2047 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2048 * do a hardware reset if possible. 2049 */ 2050 mmc_hw_reset_for_init(host); 2051 2052 /* 2053 * sdio_reset sends CMD52 to reset card. Since we do not know 2054 * if the card is being re-initialized, just send it. CMD52 2055 * should be ignored by SD/eMMC cards. 2056 * Skip it if we already know that we do not support SDIO commands 2057 */ 2058 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2059 sdio_reset(host); 2060 2061 mmc_go_idle(host); 2062 2063 if (!(host->caps2 & MMC_CAP2_NO_SD)) { 2064 if (mmc_send_if_cond_pcie(host, host->ocr_avail)) 2065 goto out; 2066 if (mmc_card_sd_express(host)) 2067 return 0; 2068 } 2069 2070 /* Order's important: probe SDIO, then SD, then MMC */ 2071 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2072 if (!mmc_attach_sdio(host)) 2073 return 0; 2074 2075 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2076 if (!mmc_attach_sd(host)) 2077 return 0; 2078 2079 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2080 if (!mmc_attach_mmc(host)) 2081 return 0; 2082 2083out: 2084 mmc_power_off(host); 2085 return -EIO; 2086} 2087 2088int _mmc_detect_card_removed(struct mmc_host *host) 2089{ 2090 int ret; 2091 2092 if (!host->card || mmc_card_removed(host->card)) 2093 return 1; 2094 2095 ret = host->bus_ops->alive(host); 2096 2097 /* 2098 * Card detect status and alive check may be out of sync if card is 2099 * removed slowly, when card detect switch changes while card/slot 2100 * pads are still contacted in hardware (refer to "SD Card Mechanical 2101 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2102 * detect work 200ms later for this case. 2103 */ 2104 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2105 mmc_detect_change(host, msecs_to_jiffies(200)); 2106 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2107 } 2108 2109 if (ret) { 2110 mmc_card_set_removed(host->card); 2111 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2112 } 2113 2114 return ret; 2115} 2116 2117int mmc_detect_card_removed(struct mmc_host *host) 2118{ 2119 struct mmc_card *card = host->card; 2120 int ret; 2121 2122 WARN_ON(!host->claimed); 2123 2124 if (!card) 2125 return 1; 2126 2127 if (!mmc_card_is_removable(host)) 2128 return 0; 2129 2130 ret = mmc_card_removed(card); 2131 /* 2132 * The card will be considered unchanged unless we have been asked to 2133 * detect a change or host requires polling to provide card detection. 2134 */ 2135 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2136 return ret; 2137 2138 host->detect_change = 0; 2139 if (!ret) { 2140 ret = _mmc_detect_card_removed(host); 2141 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2142 /* 2143 * Schedule a detect work as soon as possible to let a 2144 * rescan handle the card removal. 2145 */ 2146 cancel_delayed_work(&host->detect); 2147 _mmc_detect_change(host, 0, false); 2148 } 2149 } 2150 2151 return ret; 2152} 2153EXPORT_SYMBOL(mmc_detect_card_removed); 2154 2155int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) 2156{ 2157 unsigned int boot_sectors_num; 2158 2159 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) 2160 return -EOPNOTSUPP; 2161 2162 /* filter out unrelated cards */ 2163 if (card->ext_csd.rev < 3 || 2164 !mmc_card_mmc(card) || 2165 !mmc_card_is_blockaddr(card) || 2166 mmc_card_is_removable(card->host)) 2167 return -ENOENT; 2168 2169 /* 2170 * eMMC storage has two special boot partitions in addition to the 2171 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main 2172 * accesses, this means that the partition table addresses are shifted 2173 * by the size of boot partitions. In accordance with the eMMC 2174 * specification, the boot partition size is calculated as follows: 2175 * 2176 * boot partition size = 128K byte x BOOT_SIZE_MULT 2177 * 2178 * Calculate number of sectors occupied by the both boot partitions. 2179 */ 2180 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / 2181 SZ_512 * MMC_NUM_BOOT_PARTITION; 2182 2183 /* Defined by NVIDIA and used by Android devices. */ 2184 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; 2185 2186 return 0; 2187} 2188EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); 2189 2190void mmc_rescan(struct work_struct *work) 2191{ 2192 struct mmc_host *host = 2193 container_of(work, struct mmc_host, detect.work); 2194 int i; 2195 2196 if (host->rescan_disable) 2197 return; 2198 2199 /* If there is a non-removable card registered, only scan once */ 2200 if (!mmc_card_is_removable(host) && host->rescan_entered) 2201 return; 2202 host->rescan_entered = 1; 2203 2204 if (host->trigger_card_event && host->ops->card_event) { 2205 mmc_claim_host(host); 2206 host->ops->card_event(host); 2207 mmc_release_host(host); 2208 host->trigger_card_event = false; 2209 } 2210 2211 /* Verify a registered card to be functional, else remove it. */ 2212 if (host->bus_ops) 2213 host->bus_ops->detect(host); 2214 2215 host->detect_change = 0; 2216 2217 /* if there still is a card present, stop here */ 2218 if (host->bus_ops != NULL) 2219 goto out; 2220 2221 mmc_claim_host(host); 2222 if (mmc_card_is_removable(host) && host->ops->get_cd && 2223 host->ops->get_cd(host) == 0) { 2224 mmc_power_off(host); 2225 mmc_release_host(host); 2226 goto out; 2227 } 2228 2229 /* If an SD express card is present, then leave it as is. */ 2230 if (mmc_card_sd_express(host)) { 2231 mmc_release_host(host); 2232 goto out; 2233 } 2234 2235 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2236 unsigned int freq = freqs[i]; 2237 if (freq > host->f_max) { 2238 if (i + 1 < ARRAY_SIZE(freqs)) 2239 continue; 2240 freq = host->f_max; 2241 } 2242 if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) 2243 break; 2244 if (freqs[i] <= host->f_min) 2245 break; 2246 } 2247 mmc_release_host(host); 2248 2249 out: 2250 if (host->caps & MMC_CAP_NEEDS_POLL) 2251 mmc_schedule_delayed_work(&host->detect, HZ); 2252} 2253 2254void mmc_start_host(struct mmc_host *host) 2255{ 2256 host->f_init = max(min(freqs[0], host->f_max), host->f_min); 2257 host->rescan_disable = 0; 2258 2259 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2260 mmc_claim_host(host); 2261 mmc_power_up(host, host->ocr_avail); 2262 mmc_release_host(host); 2263 } 2264 2265 mmc_gpiod_request_cd_irq(host); 2266 _mmc_detect_change(host, 0, false); 2267} 2268 2269void __mmc_stop_host(struct mmc_host *host) 2270{ 2271 if (host->slot.cd_irq >= 0) { 2272 mmc_gpio_set_cd_wake(host, false); 2273 disable_irq(host->slot.cd_irq); 2274 } 2275 2276 host->rescan_disable = 1; 2277 cancel_delayed_work_sync(&host->detect); 2278} 2279 2280void mmc_stop_host(struct mmc_host *host) 2281{ 2282 __mmc_stop_host(host); 2283 2284 /* clear pm flags now and let card drivers set them as needed */ 2285 host->pm_flags = 0; 2286 2287 if (host->bus_ops) { 2288 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2289 host->bus_ops->remove(host); 2290 mmc_claim_host(host); 2291 mmc_detach_bus(host); 2292 mmc_power_off(host); 2293 mmc_release_host(host); 2294 return; 2295 } 2296 2297 mmc_claim_host(host); 2298 mmc_power_off(host); 2299 mmc_release_host(host); 2300} 2301 2302static int __init mmc_init(void) 2303{ 2304 int ret; 2305 2306 ret = mmc_register_bus(); 2307 if (ret) 2308 return ret; 2309 2310 ret = mmc_register_host_class(); 2311 if (ret) 2312 goto unregister_bus; 2313 2314 ret = sdio_register_bus(); 2315 if (ret) 2316 goto unregister_host_class; 2317 2318 return 0; 2319 2320unregister_host_class: 2321 mmc_unregister_host_class(); 2322unregister_bus: 2323 mmc_unregister_bus(); 2324 return ret; 2325} 2326 2327static void __exit mmc_exit(void) 2328{ 2329 sdio_unregister_bus(); 2330 mmc_unregister_host_class(); 2331 mmc_unregister_bus(); 2332} 2333 2334subsys_initcall(mmc_init); 2335module_exit(mmc_exit); 2336 2337MODULE_LICENSE("GPL");