cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmc_spi.c (42573B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Access SD/MMC cards through SPI master controllers
      4 *
      5 * (C) Copyright 2005, Intec Automation,
      6 *		Mike Lavender (mike@steroidmicros)
      7 * (C) Copyright 2006-2007, David Brownell
      8 * (C) Copyright 2007, Axis Communications,
      9 *		Hans-Peter Nilsson (hp@axis.com)
     10 * (C) Copyright 2007, ATRON electronic GmbH,
     11 *		Jan Nikitenko <jan.nikitenko@gmail.com>
     12 */
     13#include <linux/sched.h>
     14#include <linux/delay.h>
     15#include <linux/slab.h>
     16#include <linux/module.h>
     17#include <linux/bio.h>
     18#include <linux/dma-mapping.h>
     19#include <linux/crc7.h>
     20#include <linux/crc-itu-t.h>
     21#include <linux/scatterlist.h>
     22
     23#include <linux/mmc/host.h>
     24#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
     25#include <linux/mmc/slot-gpio.h>
     26
     27#include <linux/spi/spi.h>
     28#include <linux/spi/mmc_spi.h>
     29
     30#include <asm/unaligned.h>
     31
     32
     33/* NOTES:
     34 *
     35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
     36 *   controller, although some of them do have hardware support for
     37 *   SPI protocol.  The main reason for such configs would be mmc-ish
     38 *   cards like DataFlash, which don't support that "native" protocol.
     39 *
     40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
     41 *   switch between driver stacks, and in any case if "native" mode
     42 *   is available, it will be faster and hence preferable.
     43 *
     44 * - MMC depends on a different chipselect management policy than the
     45 *   SPI interface currently supports for shared bus segments:  it needs
     46 *   to issue multiple spi_message requests with the chipselect active,
     47 *   using the results of one message to decide the next one to issue.
     48 *
     49 *   Pending updates to the programming interface, this driver expects
     50 *   that it not share the bus with other drivers (precluding conflicts).
     51 *
     52 * - We tell the controller to keep the chipselect active from the
     53 *   beginning of an mmc_host_ops.request until the end.  So beware
     54 *   of SPI controller drivers that mis-handle the cs_change flag!
     55 *
     56 *   However, many cards seem OK with chipselect flapping up/down
     57 *   during that time ... at least on unshared bus segments.
     58 */
     59
     60
     61/*
     62 * Local protocol constants, internal to data block protocols.
     63 */
     64
     65/* Response tokens used to ack each block written: */
     66#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
     67#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
     68#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
     69#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
     70
     71/* Read and write blocks start with these tokens and end with crc;
     72 * on error, read tokens act like a subset of R2_SPI_* values.
     73 */
     74#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
     75#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
     76#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
     77
     78#define MMC_SPI_BLOCKSIZE	512
     79
     80#define MMC_SPI_R1B_TIMEOUT_MS	3000
     81#define MMC_SPI_INIT_TIMEOUT_MS	3000
     82
     83/* One of the critical speed parameters is the amount of data which may
     84 * be transferred in one command. If this value is too low, the SD card
     85 * controller has to do multiple partial block writes (argggh!). With
     86 * today (2008) SD cards there is little speed gain if we transfer more
     87 * than 64 KBytes at a time. So use this value until there is any indication
     88 * that we should do more here.
     89 */
     90#define MMC_SPI_BLOCKSATONCE	128
     91
     92/****************************************************************************/
     93
     94/*
     95 * Local Data Structures
     96 */
     97
     98/* "scratch" is per-{command,block} data exchanged with the card */
     99struct scratch {
    100	u8			status[29];
    101	u8			data_token;
    102	__be16			crc_val;
    103};
    104
    105struct mmc_spi_host {
    106	struct mmc_host		*mmc;
    107	struct spi_device	*spi;
    108
    109	unsigned char		power_mode;
    110	u16			powerup_msecs;
    111
    112	struct mmc_spi_platform_data	*pdata;
    113
    114	/* for bulk data transfers */
    115	struct spi_transfer	token, t, crc, early_status;
    116	struct spi_message	m;
    117
    118	/* for status readback */
    119	struct spi_transfer	status;
    120	struct spi_message	readback;
    121
    122	/* underlying DMA-aware controller, or null */
    123	struct device		*dma_dev;
    124
    125	/* buffer used for commands and for message "overhead" */
    126	struct scratch		*data;
    127	dma_addr_t		data_dma;
    128
    129	/* Specs say to write ones most of the time, even when the card
    130	 * has no need to read its input data; and many cards won't care.
    131	 * This is our source of those ones.
    132	 */
    133	void			*ones;
    134	dma_addr_t		ones_dma;
    135};
    136
    137
    138/****************************************************************************/
    139
    140/*
    141 * MMC-over-SPI protocol glue, used by the MMC stack interface
    142 */
    143
    144static inline int mmc_cs_off(struct mmc_spi_host *host)
    145{
    146	/* chipselect will always be inactive after setup() */
    147	return spi_setup(host->spi);
    148}
    149
    150static int
    151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
    152{
    153	int status;
    154
    155	if (len > sizeof(*host->data)) {
    156		WARN_ON(1);
    157		return -EIO;
    158	}
    159
    160	host->status.len = len;
    161
    162	if (host->dma_dev)
    163		dma_sync_single_for_device(host->dma_dev,
    164				host->data_dma, sizeof(*host->data),
    165				DMA_FROM_DEVICE);
    166
    167	status = spi_sync_locked(host->spi, &host->readback);
    168
    169	if (host->dma_dev)
    170		dma_sync_single_for_cpu(host->dma_dev,
    171				host->data_dma, sizeof(*host->data),
    172				DMA_FROM_DEVICE);
    173
    174	return status;
    175}
    176
    177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
    178			unsigned n, u8 byte)
    179{
    180	u8 *cp = host->data->status;
    181	unsigned long start = jiffies;
    182
    183	do {
    184		int		status;
    185		unsigned	i;
    186
    187		status = mmc_spi_readbytes(host, n);
    188		if (status < 0)
    189			return status;
    190
    191		for (i = 0; i < n; i++) {
    192			if (cp[i] != byte)
    193				return cp[i];
    194		}
    195
    196		/* If we need long timeouts, we may release the CPU */
    197		cond_resched();
    198	} while (time_is_after_jiffies(start + timeout));
    199	return -ETIMEDOUT;
    200}
    201
    202static inline int
    203mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
    204{
    205	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
    206}
    207
    208static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
    209{
    210	return mmc_spi_skip(host, timeout, 1, 0xff);
    211}
    212
    213
    214/*
    215 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
    216 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
    217 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
    218 *
    219 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
    220 * newer cards R7 (IF_COND).
    221 */
    222
    223static char *maptype(struct mmc_command *cmd)
    224{
    225	switch (mmc_spi_resp_type(cmd)) {
    226	case MMC_RSP_SPI_R1:	return "R1";
    227	case MMC_RSP_SPI_R1B:	return "R1B";
    228	case MMC_RSP_SPI_R2:	return "R2/R5";
    229	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
    230	default:		return "?";
    231	}
    232}
    233
    234/* return zero, else negative errno after setting cmd->error */
    235static int mmc_spi_response_get(struct mmc_spi_host *host,
    236		struct mmc_command *cmd, int cs_on)
    237{
    238	unsigned long timeout_ms;
    239	u8	*cp = host->data->status;
    240	u8	*end = cp + host->t.len;
    241	int	value = 0;
    242	int	bitshift;
    243	u8 	leftover = 0;
    244	unsigned short rotator;
    245	int 	i;
    246	char	tag[32];
    247
    248	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
    249		cmd->opcode, maptype(cmd));
    250
    251	/* Except for data block reads, the whole response will already
    252	 * be stored in the scratch buffer.  It's somewhere after the
    253	 * command and the first byte we read after it.  We ignore that
    254	 * first byte.  After STOP_TRANSMISSION command it may include
    255	 * two data bits, but otherwise it's all ones.
    256	 */
    257	cp += 8;
    258	while (cp < end && *cp == 0xff)
    259		cp++;
    260
    261	/* Data block reads (R1 response types) may need more data... */
    262	if (cp == end) {
    263		cp = host->data->status;
    264		end = cp+1;
    265
    266		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
    267		 * status byte ... and we already scanned 2 bytes.
    268		 *
    269		 * REVISIT block read paths use nasty byte-at-a-time I/O
    270		 * so it can always DMA directly into the target buffer.
    271		 * It'd probably be better to memcpy() the first chunk and
    272		 * avoid extra i/o calls...
    273		 *
    274		 * Note we check for more than 8 bytes, because in practice,
    275		 * some SD cards are slow...
    276		 */
    277		for (i = 2; i < 16; i++) {
    278			value = mmc_spi_readbytes(host, 1);
    279			if (value < 0)
    280				goto done;
    281			if (*cp != 0xff)
    282				goto checkstatus;
    283		}
    284		value = -ETIMEDOUT;
    285		goto done;
    286	}
    287
    288checkstatus:
    289	bitshift = 0;
    290	if (*cp & 0x80)	{
    291		/* Houston, we have an ugly card with a bit-shifted response */
    292		rotator = *cp++ << 8;
    293		/* read the next byte */
    294		if (cp == end) {
    295			value = mmc_spi_readbytes(host, 1);
    296			if (value < 0)
    297				goto done;
    298			cp = host->data->status;
    299			end = cp+1;
    300		}
    301		rotator |= *cp++;
    302		while (rotator & 0x8000) {
    303			bitshift++;
    304			rotator <<= 1;
    305		}
    306		cmd->resp[0] = rotator >> 8;
    307		leftover = rotator;
    308	} else {
    309		cmd->resp[0] = *cp++;
    310	}
    311	cmd->error = 0;
    312
    313	/* Status byte: the entire seven-bit R1 response.  */
    314	if (cmd->resp[0] != 0) {
    315		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
    316				& cmd->resp[0])
    317			value = -EFAULT; /* Bad address */
    318		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
    319			value = -ENOSYS; /* Function not implemented */
    320		else if (R1_SPI_COM_CRC & cmd->resp[0])
    321			value = -EILSEQ; /* Illegal byte sequence */
    322		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
    323				& cmd->resp[0])
    324			value = -EIO;    /* I/O error */
    325		/* else R1_SPI_IDLE, "it's resetting" */
    326	}
    327
    328	switch (mmc_spi_resp_type(cmd)) {
    329
    330	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
    331	 * and less-common stuff like various erase operations.
    332	 */
    333	case MMC_RSP_SPI_R1B:
    334		/* maybe we read all the busy tokens already */
    335		while (cp < end && *cp == 0)
    336			cp++;
    337		if (cp == end) {
    338			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
    339				MMC_SPI_R1B_TIMEOUT_MS;
    340			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
    341		}
    342		break;
    343
    344	/* SPI R2 == R1 + second status byte; SEND_STATUS
    345	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
    346	 */
    347	case MMC_RSP_SPI_R2:
    348		/* read the next byte */
    349		if (cp == end) {
    350			value = mmc_spi_readbytes(host, 1);
    351			if (value < 0)
    352				goto done;
    353			cp = host->data->status;
    354			end = cp+1;
    355		}
    356		if (bitshift) {
    357			rotator = leftover << 8;
    358			rotator |= *cp << bitshift;
    359			cmd->resp[0] |= (rotator & 0xFF00);
    360		} else {
    361			cmd->resp[0] |= *cp << 8;
    362		}
    363		break;
    364
    365	/* SPI R3, R4, or R7 == R1 + 4 bytes */
    366	case MMC_RSP_SPI_R3:
    367		rotator = leftover << 8;
    368		cmd->resp[1] = 0;
    369		for (i = 0; i < 4; i++) {
    370			cmd->resp[1] <<= 8;
    371			/* read the next byte */
    372			if (cp == end) {
    373				value = mmc_spi_readbytes(host, 1);
    374				if (value < 0)
    375					goto done;
    376				cp = host->data->status;
    377				end = cp+1;
    378			}
    379			if (bitshift) {
    380				rotator |= *cp++ << bitshift;
    381				cmd->resp[1] |= (rotator >> 8);
    382				rotator <<= 8;
    383			} else {
    384				cmd->resp[1] |= *cp++;
    385			}
    386		}
    387		break;
    388
    389	/* SPI R1 == just one status byte */
    390	case MMC_RSP_SPI_R1:
    391		break;
    392
    393	default:
    394		dev_dbg(&host->spi->dev, "bad response type %04x\n",
    395			mmc_spi_resp_type(cmd));
    396		if (value >= 0)
    397			value = -EINVAL;
    398		goto done;
    399	}
    400
    401	if (value < 0)
    402		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
    403			tag, cmd->resp[0], cmd->resp[1]);
    404
    405	/* disable chipselect on errors and some success cases */
    406	if (value >= 0 && cs_on)
    407		return value;
    408done:
    409	if (value < 0)
    410		cmd->error = value;
    411	mmc_cs_off(host);
    412	return value;
    413}
    414
    415/* Issue command and read its response.
    416 * Returns zero on success, negative for error.
    417 *
    418 * On error, caller must cope with mmc core retry mechanism.  That
    419 * means immediate low-level resubmit, which affects the bus lock...
    420 */
    421static int
    422mmc_spi_command_send(struct mmc_spi_host *host,
    423		struct mmc_request *mrq,
    424		struct mmc_command *cmd, int cs_on)
    425{
    426	struct scratch		*data = host->data;
    427	u8			*cp = data->status;
    428	int			status;
    429	struct spi_transfer	*t;
    430
    431	/* We can handle most commands (except block reads) in one full
    432	 * duplex I/O operation before either starting the next transfer
    433	 * (data block or command) or else deselecting the card.
    434	 *
    435	 * First, write 7 bytes:
    436	 *  - an all-ones byte to ensure the card is ready
    437	 *  - opcode byte (plus start and transmission bits)
    438	 *  - four bytes of big-endian argument
    439	 *  - crc7 (plus end bit) ... always computed, it's cheap
    440	 *
    441	 * We init the whole buffer to all-ones, which is what we need
    442	 * to write while we're reading (later) response data.
    443	 */
    444	memset(cp, 0xff, sizeof(data->status));
    445
    446	cp[1] = 0x40 | cmd->opcode;
    447	put_unaligned_be32(cmd->arg, cp + 2);
    448	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
    449	cp += 7;
    450
    451	/* Then, read up to 13 bytes (while writing all-ones):
    452	 *  - N(CR) (== 1..8) bytes of all-ones
    453	 *  - status byte (for all response types)
    454	 *  - the rest of the response, either:
    455	 *      + nothing, for R1 or R1B responses
    456	 *	+ second status byte, for R2 responses
    457	 *	+ four data bytes, for R3 and R7 responses
    458	 *
    459	 * Finally, read some more bytes ... in the nice cases we know in
    460	 * advance how many, and reading 1 more is always OK:
    461	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
    462	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
    463	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
    464	 *
    465	 * So in those cases one full duplex I/O of at most 21 bytes will
    466	 * handle the whole command, leaving the card ready to receive a
    467	 * data block or new command.  We do that whenever we can, shaving
    468	 * CPU and IRQ costs (especially when using DMA or FIFOs).
    469	 *
    470	 * There are two other cases, where it's not generally practical
    471	 * to rely on a single I/O:
    472	 *
    473	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
    474	 *
    475	 *    In this case we can *try* to fit it into one I/O, then
    476	 *    maybe read more data later.
    477	 *
    478	 *  - Data block reads are more troublesome, since a variable
    479	 *    number of padding bytes precede the token and data.
    480	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
    481	 *      + N(AC) (== 1..many) bytes of all-ones
    482	 *
    483	 *    In this case we currently only have minimal speedups here:
    484	 *    when N(CR) == 1 we can avoid I/O in response_get().
    485	 */
    486	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
    487		cp += 2;	/* min(N(CR)) + status */
    488		/* R1 */
    489	} else {
    490		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
    491		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
    492			cp++;
    493		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
    494			cp += 4;
    495		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
    496			cp = data->status + sizeof(data->status);
    497		/* else:  R1 (most commands) */
    498	}
    499
    500	dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
    501		cmd->opcode, maptype(cmd));
    502
    503	/* send command, leaving chipselect active */
    504	spi_message_init(&host->m);
    505
    506	t = &host->t;
    507	memset(t, 0, sizeof(*t));
    508	t->tx_buf = t->rx_buf = data->status;
    509	t->tx_dma = t->rx_dma = host->data_dma;
    510	t->len = cp - data->status;
    511	t->cs_change = 1;
    512	spi_message_add_tail(t, &host->m);
    513
    514	if (host->dma_dev) {
    515		host->m.is_dma_mapped = 1;
    516		dma_sync_single_for_device(host->dma_dev,
    517				host->data_dma, sizeof(*host->data),
    518				DMA_BIDIRECTIONAL);
    519	}
    520	status = spi_sync_locked(host->spi, &host->m);
    521
    522	if (host->dma_dev)
    523		dma_sync_single_for_cpu(host->dma_dev,
    524				host->data_dma, sizeof(*host->data),
    525				DMA_BIDIRECTIONAL);
    526	if (status < 0) {
    527		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
    528		cmd->error = status;
    529		return status;
    530	}
    531
    532	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
    533	return mmc_spi_response_get(host, cmd, cs_on);
    534}
    535
    536/* Build data message with up to four separate transfers.  For TX, we
    537 * start by writing the data token.  And in most cases, we finish with
    538 * a status transfer.
    539 *
    540 * We always provide TX data for data and CRC.  The MMC/SD protocol
    541 * requires us to write ones; but Linux defaults to writing zeroes;
    542 * so we explicitly initialize it to all ones on RX paths.
    543 *
    544 * We also handle DMA mapping, so the underlying SPI controller does
    545 * not need to (re)do it for each message.
    546 */
    547static void
    548mmc_spi_setup_data_message(
    549	struct mmc_spi_host	*host,
    550	bool			multiple,
    551	enum dma_data_direction	direction)
    552{
    553	struct spi_transfer	*t;
    554	struct scratch		*scratch = host->data;
    555	dma_addr_t		dma = host->data_dma;
    556
    557	spi_message_init(&host->m);
    558	if (dma)
    559		host->m.is_dma_mapped = 1;
    560
    561	/* for reads, readblock() skips 0xff bytes before finding
    562	 * the token; for writes, this transfer issues that token.
    563	 */
    564	if (direction == DMA_TO_DEVICE) {
    565		t = &host->token;
    566		memset(t, 0, sizeof(*t));
    567		t->len = 1;
    568		if (multiple)
    569			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
    570		else
    571			scratch->data_token = SPI_TOKEN_SINGLE;
    572		t->tx_buf = &scratch->data_token;
    573		if (dma)
    574			t->tx_dma = dma + offsetof(struct scratch, data_token);
    575		spi_message_add_tail(t, &host->m);
    576	}
    577
    578	/* Body of transfer is buffer, then CRC ...
    579	 * either TX-only, or RX with TX-ones.
    580	 */
    581	t = &host->t;
    582	memset(t, 0, sizeof(*t));
    583	t->tx_buf = host->ones;
    584	t->tx_dma = host->ones_dma;
    585	/* length and actual buffer info are written later */
    586	spi_message_add_tail(t, &host->m);
    587
    588	t = &host->crc;
    589	memset(t, 0, sizeof(*t));
    590	t->len = 2;
    591	if (direction == DMA_TO_DEVICE) {
    592		/* the actual CRC may get written later */
    593		t->tx_buf = &scratch->crc_val;
    594		if (dma)
    595			t->tx_dma = dma + offsetof(struct scratch, crc_val);
    596	} else {
    597		t->tx_buf = host->ones;
    598		t->tx_dma = host->ones_dma;
    599		t->rx_buf = &scratch->crc_val;
    600		if (dma)
    601			t->rx_dma = dma + offsetof(struct scratch, crc_val);
    602	}
    603	spi_message_add_tail(t, &host->m);
    604
    605	/*
    606	 * A single block read is followed by N(EC) [0+] all-ones bytes
    607	 * before deselect ... don't bother.
    608	 *
    609	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
    610	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
    611	 * collect that single byte, so readblock() doesn't need to.
    612	 *
    613	 * For a write, the one-byte data response follows immediately, then
    614	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
    615	 * Then single block reads may deselect, and multiblock ones issue
    616	 * the next token (next data block, or STOP_TRAN).  We can try to
    617	 * minimize I/O ops by using a single read to collect end-of-busy.
    618	 */
    619	if (multiple || direction == DMA_TO_DEVICE) {
    620		t = &host->early_status;
    621		memset(t, 0, sizeof(*t));
    622		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
    623		t->tx_buf = host->ones;
    624		t->tx_dma = host->ones_dma;
    625		t->rx_buf = scratch->status;
    626		if (dma)
    627			t->rx_dma = dma + offsetof(struct scratch, status);
    628		t->cs_change = 1;
    629		spi_message_add_tail(t, &host->m);
    630	}
    631}
    632
    633/*
    634 * Write one block:
    635 *  - caller handled preceding N(WR) [1+] all-ones bytes
    636 *  - data block
    637 *	+ token
    638 *	+ data bytes
    639 *	+ crc16
    640 *  - an all-ones byte ... card writes a data-response byte
    641 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
    642 *
    643 * Return negative errno, else success.
    644 */
    645static int
    646mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
    647	unsigned long timeout)
    648{
    649	struct spi_device	*spi = host->spi;
    650	int			status, i;
    651	struct scratch		*scratch = host->data;
    652	u32			pattern;
    653
    654	if (host->mmc->use_spi_crc)
    655		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
    656	if (host->dma_dev)
    657		dma_sync_single_for_device(host->dma_dev,
    658				host->data_dma, sizeof(*scratch),
    659				DMA_BIDIRECTIONAL);
    660
    661	status = spi_sync_locked(spi, &host->m);
    662
    663	if (status != 0) {
    664		dev_dbg(&spi->dev, "write error (%d)\n", status);
    665		return status;
    666	}
    667
    668	if (host->dma_dev)
    669		dma_sync_single_for_cpu(host->dma_dev,
    670				host->data_dma, sizeof(*scratch),
    671				DMA_BIDIRECTIONAL);
    672
    673	/*
    674	 * Get the transmission data-response reply.  It must follow
    675	 * immediately after the data block we transferred.  This reply
    676	 * doesn't necessarily tell whether the write operation succeeded;
    677	 * it just says if the transmission was ok and whether *earlier*
    678	 * writes succeeded; see the standard.
    679	 *
    680	 * In practice, there are (even modern SDHC-)cards which are late
    681	 * in sending the response, and miss the time frame by a few bits,
    682	 * so we have to cope with this situation and check the response
    683	 * bit-by-bit. Arggh!!!
    684	 */
    685	pattern = get_unaligned_be32(scratch->status);
    686
    687	/* First 3 bit of pattern are undefined */
    688	pattern |= 0xE0000000;
    689
    690	/* left-adjust to leading 0 bit */
    691	while (pattern & 0x80000000)
    692		pattern <<= 1;
    693	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
    694	pattern >>= 27;
    695
    696	switch (pattern) {
    697	case SPI_RESPONSE_ACCEPTED:
    698		status = 0;
    699		break;
    700	case SPI_RESPONSE_CRC_ERR:
    701		/* host shall then issue MMC_STOP_TRANSMISSION */
    702		status = -EILSEQ;
    703		break;
    704	case SPI_RESPONSE_WRITE_ERR:
    705		/* host shall then issue MMC_STOP_TRANSMISSION,
    706		 * and should MMC_SEND_STATUS to sort it out
    707		 */
    708		status = -EIO;
    709		break;
    710	default:
    711		status = -EPROTO;
    712		break;
    713	}
    714	if (status != 0) {
    715		dev_dbg(&spi->dev, "write error %02x (%d)\n",
    716			scratch->status[0], status);
    717		return status;
    718	}
    719
    720	t->tx_buf += t->len;
    721	if (host->dma_dev)
    722		t->tx_dma += t->len;
    723
    724	/* Return when not busy.  If we didn't collect that status yet,
    725	 * we'll need some more I/O.
    726	 */
    727	for (i = 4; i < sizeof(scratch->status); i++) {
    728		/* card is non-busy if the most recent bit is 1 */
    729		if (scratch->status[i] & 0x01)
    730			return 0;
    731	}
    732	return mmc_spi_wait_unbusy(host, timeout);
    733}
    734
    735/*
    736 * Read one block:
    737 *  - skip leading all-ones bytes ... either
    738 *      + N(AC) [1..f(clock,CSD)] usually, else
    739 *      + N(CX) [0..8] when reading CSD or CID
    740 *  - data block
    741 *	+ token ... if error token, no data or crc
    742 *	+ data bytes
    743 *	+ crc16
    744 *
    745 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
    746 * before dropping chipselect.
    747 *
    748 * For multiblock reads, caller either reads the next block or issues a
    749 * STOP_TRANSMISSION command.
    750 */
    751static int
    752mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
    753	unsigned long timeout)
    754{
    755	struct spi_device	*spi = host->spi;
    756	int			status;
    757	struct scratch		*scratch = host->data;
    758	unsigned int 		bitshift;
    759	u8			leftover;
    760
    761	/* At least one SD card sends an all-zeroes byte when N(CX)
    762	 * applies, before the all-ones bytes ... just cope with that.
    763	 */
    764	status = mmc_spi_readbytes(host, 1);
    765	if (status < 0)
    766		return status;
    767	status = scratch->status[0];
    768	if (status == 0xff || status == 0)
    769		status = mmc_spi_readtoken(host, timeout);
    770
    771	if (status < 0) {
    772		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
    773		return status;
    774	}
    775
    776	/* The token may be bit-shifted...
    777	 * the first 0-bit precedes the data stream.
    778	 */
    779	bitshift = 7;
    780	while (status & 0x80) {
    781		status <<= 1;
    782		bitshift--;
    783	}
    784	leftover = status << 1;
    785
    786	if (host->dma_dev) {
    787		dma_sync_single_for_device(host->dma_dev,
    788				host->data_dma, sizeof(*scratch),
    789				DMA_BIDIRECTIONAL);
    790		dma_sync_single_for_device(host->dma_dev,
    791				t->rx_dma, t->len,
    792				DMA_FROM_DEVICE);
    793	}
    794
    795	status = spi_sync_locked(spi, &host->m);
    796	if (status < 0) {
    797		dev_dbg(&spi->dev, "read error %d\n", status);
    798		return status;
    799	}
    800
    801	if (host->dma_dev) {
    802		dma_sync_single_for_cpu(host->dma_dev,
    803				host->data_dma, sizeof(*scratch),
    804				DMA_BIDIRECTIONAL);
    805		dma_sync_single_for_cpu(host->dma_dev,
    806				t->rx_dma, t->len,
    807				DMA_FROM_DEVICE);
    808	}
    809
    810	if (bitshift) {
    811		/* Walk through the data and the crc and do
    812		 * all the magic to get byte-aligned data.
    813		 */
    814		u8 *cp = t->rx_buf;
    815		unsigned int len;
    816		unsigned int bitright = 8 - bitshift;
    817		u8 temp;
    818		for (len = t->len; len; len--) {
    819			temp = *cp;
    820			*cp++ = leftover | (temp >> bitshift);
    821			leftover = temp << bitright;
    822		}
    823		cp = (u8 *) &scratch->crc_val;
    824		temp = *cp;
    825		*cp++ = leftover | (temp >> bitshift);
    826		leftover = temp << bitright;
    827		temp = *cp;
    828		*cp = leftover | (temp >> bitshift);
    829	}
    830
    831	if (host->mmc->use_spi_crc) {
    832		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
    833
    834		be16_to_cpus(&scratch->crc_val);
    835		if (scratch->crc_val != crc) {
    836			dev_dbg(&spi->dev,
    837				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
    838				scratch->crc_val, crc, t->len);
    839			return -EILSEQ;
    840		}
    841	}
    842
    843	t->rx_buf += t->len;
    844	if (host->dma_dev)
    845		t->rx_dma += t->len;
    846
    847	return 0;
    848}
    849
    850/*
    851 * An MMC/SD data stage includes one or more blocks, optional CRCs,
    852 * and inline handshaking.  That handhaking makes it unlike most
    853 * other SPI protocol stacks.
    854 */
    855static void
    856mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
    857		struct mmc_data *data, u32 blk_size)
    858{
    859	struct spi_device	*spi = host->spi;
    860	struct device		*dma_dev = host->dma_dev;
    861	struct spi_transfer	*t;
    862	enum dma_data_direction	direction = mmc_get_dma_dir(data);
    863	struct scatterlist	*sg;
    864	unsigned		n_sg;
    865	bool			multiple = (data->blocks > 1);
    866	const char		*write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
    867	u32			clock_rate;
    868	unsigned long		timeout;
    869
    870	mmc_spi_setup_data_message(host, multiple, direction);
    871	t = &host->t;
    872
    873	if (t->speed_hz)
    874		clock_rate = t->speed_hz;
    875	else
    876		clock_rate = spi->max_speed_hz;
    877
    878	timeout = data->timeout_ns / 1000 +
    879		  data->timeout_clks * 1000000 / clock_rate;
    880	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
    881
    882	/* Handle scatterlist segments one at a time, with synch for
    883	 * each 512-byte block
    884	 */
    885	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
    886		int			status = 0;
    887		dma_addr_t		dma_addr = 0;
    888		void			*kmap_addr;
    889		unsigned		length = sg->length;
    890		enum dma_data_direction	dir = direction;
    891
    892		/* set up dma mapping for controller drivers that might
    893		 * use DMA ... though they may fall back to PIO
    894		 */
    895		if (dma_dev) {
    896			/* never invalidate whole *shared* pages ... */
    897			if ((sg->offset != 0 || length != PAGE_SIZE)
    898					&& dir == DMA_FROM_DEVICE)
    899				dir = DMA_BIDIRECTIONAL;
    900
    901			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
    902						PAGE_SIZE, dir);
    903			if (dma_mapping_error(dma_dev, dma_addr)) {
    904				data->error = -EFAULT;
    905				break;
    906			}
    907			if (direction == DMA_TO_DEVICE)
    908				t->tx_dma = dma_addr + sg->offset;
    909			else
    910				t->rx_dma = dma_addr + sg->offset;
    911		}
    912
    913		/* allow pio too; we don't allow highmem */
    914		kmap_addr = kmap(sg_page(sg));
    915		if (direction == DMA_TO_DEVICE)
    916			t->tx_buf = kmap_addr + sg->offset;
    917		else
    918			t->rx_buf = kmap_addr + sg->offset;
    919
    920		/* transfer each block, and update request status */
    921		while (length) {
    922			t->len = min(length, blk_size);
    923
    924			dev_dbg(&spi->dev, "    %s block, %d bytes\n", write_or_read, t->len);
    925
    926			if (direction == DMA_TO_DEVICE)
    927				status = mmc_spi_writeblock(host, t, timeout);
    928			else
    929				status = mmc_spi_readblock(host, t, timeout);
    930			if (status < 0)
    931				break;
    932
    933			data->bytes_xfered += t->len;
    934			length -= t->len;
    935
    936			if (!multiple)
    937				break;
    938		}
    939
    940		/* discard mappings */
    941		if (direction == DMA_FROM_DEVICE)
    942			flush_dcache_page(sg_page(sg));
    943		kunmap(sg_page(sg));
    944		if (dma_dev)
    945			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
    946
    947		if (status < 0) {
    948			data->error = status;
    949			dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
    950			break;
    951		}
    952	}
    953
    954	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
    955	 * can be issued before multiblock writes.  Unlike its more widely
    956	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
    957	 * that can affect the STOP_TRAN logic.   Complete (and current)
    958	 * MMC specs should sort that out before Linux starts using CMD23.
    959	 */
    960	if (direction == DMA_TO_DEVICE && multiple) {
    961		struct scratch	*scratch = host->data;
    962		int		tmp;
    963		const unsigned	statlen = sizeof(scratch->status);
    964
    965		dev_dbg(&spi->dev, "    STOP_TRAN\n");
    966
    967		/* Tweak the per-block message we set up earlier by morphing
    968		 * it to hold single buffer with the token followed by some
    969		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
    970		 * "not busy any longer" status, and leave chip selected.
    971		 */
    972		INIT_LIST_HEAD(&host->m.transfers);
    973		list_add(&host->early_status.transfer_list,
    974				&host->m.transfers);
    975
    976		memset(scratch->status, 0xff, statlen);
    977		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
    978
    979		host->early_status.tx_buf = host->early_status.rx_buf;
    980		host->early_status.tx_dma = host->early_status.rx_dma;
    981		host->early_status.len = statlen;
    982
    983		if (host->dma_dev)
    984			dma_sync_single_for_device(host->dma_dev,
    985					host->data_dma, sizeof(*scratch),
    986					DMA_BIDIRECTIONAL);
    987
    988		tmp = spi_sync_locked(spi, &host->m);
    989
    990		if (host->dma_dev)
    991			dma_sync_single_for_cpu(host->dma_dev,
    992					host->data_dma, sizeof(*scratch),
    993					DMA_BIDIRECTIONAL);
    994
    995		if (tmp < 0) {
    996			if (!data->error)
    997				data->error = tmp;
    998			return;
    999		}
   1000
   1001		/* Ideally we collected "not busy" status with one I/O,
   1002		 * avoiding wasteful byte-at-a-time scanning... but more
   1003		 * I/O is often needed.
   1004		 */
   1005		for (tmp = 2; tmp < statlen; tmp++) {
   1006			if (scratch->status[tmp] != 0)
   1007				return;
   1008		}
   1009		tmp = mmc_spi_wait_unbusy(host, timeout);
   1010		if (tmp < 0 && !data->error)
   1011			data->error = tmp;
   1012	}
   1013}
   1014
   1015/****************************************************************************/
   1016
   1017/*
   1018 * MMC driver implementation -- the interface to the MMC stack
   1019 */
   1020
   1021static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
   1022{
   1023	struct mmc_spi_host	*host = mmc_priv(mmc);
   1024	int			status = -EINVAL;
   1025	int			crc_retry = 5;
   1026	struct mmc_command	stop;
   1027
   1028#ifdef DEBUG
   1029	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
   1030	{
   1031		struct mmc_command	*cmd;
   1032		int			invalid = 0;
   1033
   1034		cmd = mrq->cmd;
   1035		if (!mmc_spi_resp_type(cmd)) {
   1036			dev_dbg(&host->spi->dev, "bogus command\n");
   1037			cmd->error = -EINVAL;
   1038			invalid = 1;
   1039		}
   1040
   1041		cmd = mrq->stop;
   1042		if (cmd && !mmc_spi_resp_type(cmd)) {
   1043			dev_dbg(&host->spi->dev, "bogus STOP command\n");
   1044			cmd->error = -EINVAL;
   1045			invalid = 1;
   1046		}
   1047
   1048		if (invalid) {
   1049			dump_stack();
   1050			mmc_request_done(host->mmc, mrq);
   1051			return;
   1052		}
   1053	}
   1054#endif
   1055
   1056	/* request exclusive bus access */
   1057	spi_bus_lock(host->spi->master);
   1058
   1059crc_recover:
   1060	/* issue command; then optionally data and stop */
   1061	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
   1062	if (status == 0 && mrq->data) {
   1063		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
   1064
   1065		/*
   1066		 * The SPI bus is not always reliable for large data transfers.
   1067		 * If an occasional crc error is reported by the SD device with
   1068		 * data read/write over SPI, it may be recovered by repeating
   1069		 * the last SD command again. The retry count is set to 5 to
   1070		 * ensure the driver passes stress tests.
   1071		 */
   1072		if (mrq->data->error == -EILSEQ && crc_retry) {
   1073			stop.opcode = MMC_STOP_TRANSMISSION;
   1074			stop.arg = 0;
   1075			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
   1076			status = mmc_spi_command_send(host, mrq, &stop, 0);
   1077			crc_retry--;
   1078			mrq->data->error = 0;
   1079			goto crc_recover;
   1080		}
   1081
   1082		if (mrq->stop)
   1083			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
   1084		else
   1085			mmc_cs_off(host);
   1086	}
   1087
   1088	/* release the bus */
   1089	spi_bus_unlock(host->spi->master);
   1090
   1091	mmc_request_done(host->mmc, mrq);
   1092}
   1093
   1094/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
   1095 *
   1096 * NOTE that here we can't know that the card has just been powered up;
   1097 * not all MMC/SD sockets support power switching.
   1098 *
   1099 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
   1100 * this doesn't seem to do the right thing at all...
   1101 */
   1102static void mmc_spi_initsequence(struct mmc_spi_host *host)
   1103{
   1104	/* Try to be very sure any previous command has completed;
   1105	 * wait till not-busy, skip debris from any old commands.
   1106	 */
   1107	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
   1108	mmc_spi_readbytes(host, 10);
   1109
   1110	/*
   1111	 * Do a burst with chipselect active-high.  We need to do this to
   1112	 * meet the requirement of 74 clock cycles with both chipselect
   1113	 * and CMD (MOSI) high before CMD0 ... after the card has been
   1114	 * powered up to Vdd(min), and so is ready to take commands.
   1115	 *
   1116	 * Some cards are particularly needy of this (e.g. Viking "SD256")
   1117	 * while most others don't seem to care.
   1118	 *
   1119	 * Note that this is one of the places MMC/SD plays games with the
   1120	 * SPI protocol.  Another is that when chipselect is released while
   1121	 * the card returns BUSY status, the clock must issue several cycles
   1122	 * with chipselect high before the card will stop driving its output.
   1123	 *
   1124	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
   1125	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
   1126	 * inverted by gpiolib, so if we want to ascertain to drive it high
   1127	 * we should toggle the default with an XOR as we do here.
   1128	 */
   1129	host->spi->mode ^= SPI_CS_HIGH;
   1130	if (spi_setup(host->spi) != 0) {
   1131		/* Just warn; most cards work without it. */
   1132		dev_warn(&host->spi->dev,
   1133				"can't change chip-select polarity\n");
   1134		host->spi->mode ^= SPI_CS_HIGH;
   1135	} else {
   1136		mmc_spi_readbytes(host, 18);
   1137
   1138		host->spi->mode ^= SPI_CS_HIGH;
   1139		if (spi_setup(host->spi) != 0) {
   1140			/* Wot, we can't get the same setup we had before? */
   1141			dev_err(&host->spi->dev,
   1142					"can't restore chip-select polarity\n");
   1143		}
   1144	}
   1145}
   1146
   1147static char *mmc_powerstring(u8 power_mode)
   1148{
   1149	switch (power_mode) {
   1150	case MMC_POWER_OFF: return "off";
   1151	case MMC_POWER_UP:  return "up";
   1152	case MMC_POWER_ON:  return "on";
   1153	}
   1154	return "?";
   1155}
   1156
   1157static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
   1158{
   1159	struct mmc_spi_host *host = mmc_priv(mmc);
   1160
   1161	if (host->power_mode != ios->power_mode) {
   1162		int		canpower;
   1163
   1164		canpower = host->pdata && host->pdata->setpower;
   1165
   1166		dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
   1167				mmc_powerstring(ios->power_mode),
   1168				ios->vdd,
   1169				canpower ? ", can switch" : "");
   1170
   1171		/* switch power on/off if possible, accounting for
   1172		 * max 250msec powerup time if needed.
   1173		 */
   1174		if (canpower) {
   1175			switch (ios->power_mode) {
   1176			case MMC_POWER_OFF:
   1177			case MMC_POWER_UP:
   1178				host->pdata->setpower(&host->spi->dev,
   1179						ios->vdd);
   1180				if (ios->power_mode == MMC_POWER_UP)
   1181					msleep(host->powerup_msecs);
   1182			}
   1183		}
   1184
   1185		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
   1186		if (ios->power_mode == MMC_POWER_ON)
   1187			mmc_spi_initsequence(host);
   1188
   1189		/* If powering down, ground all card inputs to avoid power
   1190		 * delivery from data lines!  On a shared SPI bus, this
   1191		 * will probably be temporary; 6.4.2 of the simplified SD
   1192		 * spec says this must last at least 1msec.
   1193		 *
   1194		 *   - Clock low means CPOL 0, e.g. mode 0
   1195		 *   - MOSI low comes from writing zero
   1196		 *   - Chipselect is usually active low...
   1197		 */
   1198		if (canpower && ios->power_mode == MMC_POWER_OFF) {
   1199			int mres;
   1200			u8 nullbyte = 0;
   1201
   1202			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
   1203			mres = spi_setup(host->spi);
   1204			if (mres < 0)
   1205				dev_dbg(&host->spi->dev,
   1206					"switch to SPI mode 0 failed\n");
   1207
   1208			if (spi_write(host->spi, &nullbyte, 1) < 0)
   1209				dev_dbg(&host->spi->dev,
   1210					"put spi signals to low failed\n");
   1211
   1212			/*
   1213			 * Now clock should be low due to spi mode 0;
   1214			 * MOSI should be low because of written 0x00;
   1215			 * chipselect should be low (it is active low)
   1216			 * power supply is off, so now MMC is off too!
   1217			 *
   1218			 * FIXME no, chipselect can be high since the
   1219			 * device is inactive and SPI_CS_HIGH is clear...
   1220			 */
   1221			msleep(10);
   1222			if (mres == 0) {
   1223				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
   1224				mres = spi_setup(host->spi);
   1225				if (mres < 0)
   1226					dev_dbg(&host->spi->dev,
   1227						"switch back to SPI mode 3 failed\n");
   1228			}
   1229		}
   1230
   1231		host->power_mode = ios->power_mode;
   1232	}
   1233
   1234	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
   1235		int		status;
   1236
   1237		host->spi->max_speed_hz = ios->clock;
   1238		status = spi_setup(host->spi);
   1239		dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
   1240			host->spi->max_speed_hz, status);
   1241	}
   1242}
   1243
   1244static const struct mmc_host_ops mmc_spi_ops = {
   1245	.request	= mmc_spi_request,
   1246	.set_ios	= mmc_spi_set_ios,
   1247	.get_ro		= mmc_gpio_get_ro,
   1248	.get_cd		= mmc_gpio_get_cd,
   1249};
   1250
   1251
   1252/****************************************************************************/
   1253
   1254/*
   1255 * SPI driver implementation
   1256 */
   1257
   1258static irqreturn_t
   1259mmc_spi_detect_irq(int irq, void *mmc)
   1260{
   1261	struct mmc_spi_host *host = mmc_priv(mmc);
   1262	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
   1263
   1264	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
   1265	return IRQ_HANDLED;
   1266}
   1267
   1268#ifdef CONFIG_HAS_DMA
   1269static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
   1270{
   1271	struct spi_device *spi = host->spi;
   1272	struct device *dev;
   1273
   1274	if (!spi->master->dev.parent->dma_mask)
   1275		return 0;
   1276
   1277	dev = spi->master->dev.parent;
   1278
   1279	host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
   1280					DMA_TO_DEVICE);
   1281	if (dma_mapping_error(dev, host->ones_dma))
   1282		return -ENOMEM;
   1283
   1284	host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
   1285					DMA_BIDIRECTIONAL);
   1286	if (dma_mapping_error(dev, host->data_dma)) {
   1287		dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
   1288				 DMA_TO_DEVICE);
   1289		return -ENOMEM;
   1290	}
   1291
   1292	dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
   1293				DMA_BIDIRECTIONAL);
   1294
   1295	host->dma_dev = dev;
   1296	return 0;
   1297}
   1298
   1299static void mmc_spi_dma_free(struct mmc_spi_host *host)
   1300{
   1301	if (!host->dma_dev)
   1302		return;
   1303
   1304	dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
   1305			 DMA_TO_DEVICE);
   1306	dma_unmap_single(host->dma_dev, host->data_dma,	sizeof(*host->data),
   1307			 DMA_BIDIRECTIONAL);
   1308}
   1309#else
   1310static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
   1311static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
   1312#endif
   1313
   1314static int mmc_spi_probe(struct spi_device *spi)
   1315{
   1316	void			*ones;
   1317	struct mmc_host		*mmc;
   1318	struct mmc_spi_host	*host;
   1319	int			status;
   1320	bool			has_ro = false;
   1321
   1322	/* We rely on full duplex transfers, mostly to reduce
   1323	 * per-transfer overheads (by making fewer transfers).
   1324	 */
   1325	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
   1326		return -EINVAL;
   1327
   1328	/* MMC and SD specs only seem to care that sampling is on the
   1329	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
   1330	 * should be legit.  We'll use mode 0 since the steady state is 0,
   1331	 * which is appropriate for hotplugging, unless the platform data
   1332	 * specify mode 3 (if hardware is not compatible to mode 0).
   1333	 */
   1334	if (spi->mode != SPI_MODE_3)
   1335		spi->mode = SPI_MODE_0;
   1336	spi->bits_per_word = 8;
   1337
   1338	status = spi_setup(spi);
   1339	if (status < 0) {
   1340		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
   1341				spi->mode, spi->max_speed_hz / 1000,
   1342				status);
   1343		return status;
   1344	}
   1345
   1346	/* We need a supply of ones to transmit.  This is the only time
   1347	 * the CPU touches these, so cache coherency isn't a concern.
   1348	 *
   1349	 * NOTE if many systems use more than one MMC-over-SPI connector
   1350	 * it'd save some memory to share this.  That's evidently rare.
   1351	 */
   1352	status = -ENOMEM;
   1353	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
   1354	if (!ones)
   1355		goto nomem;
   1356	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
   1357
   1358	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
   1359	if (!mmc)
   1360		goto nomem;
   1361
   1362	mmc->ops = &mmc_spi_ops;
   1363	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
   1364	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
   1365	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
   1366	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
   1367
   1368	mmc->caps = MMC_CAP_SPI;
   1369
   1370	/* SPI doesn't need the lowspeed device identification thing for
   1371	 * MMC or SD cards, since it never comes up in open drain mode.
   1372	 * That's good; some SPI masters can't handle very low speeds!
   1373	 *
   1374	 * However, low speed SDIO cards need not handle over 400 KHz;
   1375	 * that's the only reason not to use a few MHz for f_min (until
   1376	 * the upper layer reads the target frequency from the CSD).
   1377	 */
   1378	mmc->f_min = 400000;
   1379	mmc->f_max = spi->max_speed_hz;
   1380
   1381	host = mmc_priv(mmc);
   1382	host->mmc = mmc;
   1383	host->spi = spi;
   1384
   1385	host->ones = ones;
   1386
   1387	dev_set_drvdata(&spi->dev, mmc);
   1388
   1389	/* Platform data is used to hook up things like card sensing
   1390	 * and power switching gpios.
   1391	 */
   1392	host->pdata = mmc_spi_get_pdata(spi);
   1393	if (host->pdata)
   1394		mmc->ocr_avail = host->pdata->ocr_mask;
   1395	if (!mmc->ocr_avail) {
   1396		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
   1397		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
   1398	}
   1399	if (host->pdata && host->pdata->setpower) {
   1400		host->powerup_msecs = host->pdata->powerup_msecs;
   1401		if (!host->powerup_msecs || host->powerup_msecs > 250)
   1402			host->powerup_msecs = 250;
   1403	}
   1404
   1405	/* preallocate dma buffers */
   1406	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
   1407	if (!host->data)
   1408		goto fail_nobuf1;
   1409
   1410	status = mmc_spi_dma_alloc(host);
   1411	if (status)
   1412		goto fail_dma;
   1413
   1414	/* setup message for status/busy readback */
   1415	spi_message_init(&host->readback);
   1416	host->readback.is_dma_mapped = (host->dma_dev != NULL);
   1417
   1418	spi_message_add_tail(&host->status, &host->readback);
   1419	host->status.tx_buf = host->ones;
   1420	host->status.tx_dma = host->ones_dma;
   1421	host->status.rx_buf = &host->data->status;
   1422	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
   1423	host->status.cs_change = 1;
   1424
   1425	/* register card detect irq */
   1426	if (host->pdata && host->pdata->init) {
   1427		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
   1428		if (status != 0)
   1429			goto fail_glue_init;
   1430	}
   1431
   1432	/* pass platform capabilities, if any */
   1433	if (host->pdata) {
   1434		mmc->caps |= host->pdata->caps;
   1435		mmc->caps2 |= host->pdata->caps2;
   1436	}
   1437
   1438	status = mmc_add_host(mmc);
   1439	if (status != 0)
   1440		goto fail_add_host;
   1441
   1442	/*
   1443	 * Index 0 is card detect
   1444	 * Old boardfiles were specifying 1 ms as debounce
   1445	 */
   1446	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
   1447	if (status == -EPROBE_DEFER)
   1448		goto fail_add_host;
   1449	if (!status) {
   1450		/*
   1451		 * The platform has a CD GPIO signal that may support
   1452		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
   1453		 * if polling is needed or not.
   1454		 */
   1455		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
   1456		mmc_gpiod_request_cd_irq(mmc);
   1457	}
   1458	mmc_detect_change(mmc, 0);
   1459
   1460	/* Index 1 is write protect/read only */
   1461	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
   1462	if (status == -EPROBE_DEFER)
   1463		goto fail_add_host;
   1464	if (!status)
   1465		has_ro = true;
   1466
   1467	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
   1468			dev_name(&mmc->class_dev),
   1469			host->dma_dev ? "" : ", no DMA",
   1470			has_ro ? "" : ", no WP",
   1471			(host->pdata && host->pdata->setpower)
   1472				? "" : ", no poweroff",
   1473			(mmc->caps & MMC_CAP_NEEDS_POLL)
   1474				? ", cd polling" : "");
   1475	return 0;
   1476
   1477fail_add_host:
   1478	mmc_remove_host(mmc);
   1479fail_glue_init:
   1480	mmc_spi_dma_free(host);
   1481fail_dma:
   1482	kfree(host->data);
   1483fail_nobuf1:
   1484	mmc_spi_put_pdata(spi);
   1485	mmc_free_host(mmc);
   1486nomem:
   1487	kfree(ones);
   1488	return status;
   1489}
   1490
   1491
   1492static void mmc_spi_remove(struct spi_device *spi)
   1493{
   1494	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
   1495	struct mmc_spi_host	*host = mmc_priv(mmc);
   1496
   1497	/* prevent new mmc_detect_change() calls */
   1498	if (host->pdata && host->pdata->exit)
   1499		host->pdata->exit(&spi->dev, mmc);
   1500
   1501	mmc_remove_host(mmc);
   1502
   1503	mmc_spi_dma_free(host);
   1504	kfree(host->data);
   1505	kfree(host->ones);
   1506
   1507	spi->max_speed_hz = mmc->f_max;
   1508	mmc_spi_put_pdata(spi);
   1509	mmc_free_host(mmc);
   1510}
   1511
   1512static const struct spi_device_id mmc_spi_dev_ids[] = {
   1513	{ "mmc-spi-slot"},
   1514	{ },
   1515};
   1516MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
   1517
   1518static const struct of_device_id mmc_spi_of_match_table[] = {
   1519	{ .compatible = "mmc-spi-slot", },
   1520	{},
   1521};
   1522MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
   1523
   1524static struct spi_driver mmc_spi_driver = {
   1525	.driver = {
   1526		.name =		"mmc_spi",
   1527		.of_match_table = mmc_spi_of_match_table,
   1528	},
   1529	.id_table =	mmc_spi_dev_ids,
   1530	.probe =	mmc_spi_probe,
   1531	.remove =	mmc_spi_remove,
   1532};
   1533
   1534module_spi_driver(mmc_spi_driver);
   1535
   1536MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
   1537MODULE_DESCRIPTION("SPI SD/MMC host driver");
   1538MODULE_LICENSE("GPL");
   1539MODULE_ALIAS("spi:mmc_spi");