cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmci_stm32_sdmmc.c (15416B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
      4 * Author: Ludovic.barre@st.com for STMicroelectronics.
      5 */
      6#include <linux/bitfield.h>
      7#include <linux/delay.h>
      8#include <linux/dma-mapping.h>
      9#include <linux/iopoll.h>
     10#include <linux/mmc/host.h>
     11#include <linux/mmc/card.h>
     12#include <linux/of_address.h>
     13#include <linux/reset.h>
     14#include <linux/scatterlist.h>
     15#include "mmci.h"
     16
     17#define SDMMC_LLI_BUF_LEN	PAGE_SIZE
     18#define SDMMC_IDMA_BURST	BIT(MMCI_STM32_IDMABNDT_SHIFT)
     19
     20#define DLYB_CR			0x0
     21#define DLYB_CR_DEN		BIT(0)
     22#define DLYB_CR_SEN		BIT(1)
     23
     24#define DLYB_CFGR		0x4
     25#define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
     26#define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
     27#define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
     28#define DLYB_CFGR_LNGF		BIT(31)
     29
     30#define DLYB_NB_DELAY		11
     31#define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
     32#define DLYB_CFGR_UNIT_MAX	127
     33
     34#define DLYB_LNG_TIMEOUT_US	1000
     35#define SDMMC_VSWEND_TIMEOUT_US 10000
     36
     37struct sdmmc_lli_desc {
     38	u32 idmalar;
     39	u32 idmabase;
     40	u32 idmasize;
     41};
     42
     43struct sdmmc_idma {
     44	dma_addr_t sg_dma;
     45	void *sg_cpu;
     46	dma_addr_t bounce_dma_addr;
     47	void *bounce_buf;
     48	bool use_bounce_buffer;
     49};
     50
     51struct sdmmc_dlyb {
     52	void __iomem *base;
     53	u32 unit;
     54	u32 max;
     55};
     56
     57static int sdmmc_idma_validate_data(struct mmci_host *host,
     58				    struct mmc_data *data)
     59{
     60	struct sdmmc_idma *idma = host->dma_priv;
     61	struct device *dev = mmc_dev(host->mmc);
     62	struct scatterlist *sg;
     63	int i;
     64
     65	/*
     66	 * idma has constraints on idmabase & idmasize for each element
     67	 * excepted the last element which has no constraint on idmasize
     68	 */
     69	idma->use_bounce_buffer = false;
     70	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
     71		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
     72		    !IS_ALIGNED(sg->length, SDMMC_IDMA_BURST)) {
     73			dev_dbg(mmc_dev(host->mmc),
     74				"unaligned scatterlist: ofst:%x length:%d\n",
     75				data->sg->offset, data->sg->length);
     76			goto use_bounce_buffer;
     77		}
     78	}
     79
     80	if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
     81		dev_dbg(mmc_dev(host->mmc),
     82			"unaligned last scatterlist: ofst:%x length:%d\n",
     83			data->sg->offset, data->sg->length);
     84		goto use_bounce_buffer;
     85	}
     86
     87	return 0;
     88
     89use_bounce_buffer:
     90	if (!idma->bounce_buf) {
     91		idma->bounce_buf = dmam_alloc_coherent(dev,
     92						       host->mmc->max_req_size,
     93						       &idma->bounce_dma_addr,
     94						       GFP_KERNEL);
     95		if (!idma->bounce_buf) {
     96			dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
     97			return -ENOMEM;
     98		}
     99	}
    100
    101	idma->use_bounce_buffer = true;
    102
    103	return 0;
    104}
    105
    106static int _sdmmc_idma_prep_data(struct mmci_host *host,
    107				 struct mmc_data *data)
    108{
    109	struct sdmmc_idma *idma = host->dma_priv;
    110
    111	if (idma->use_bounce_buffer) {
    112		if (data->flags & MMC_DATA_WRITE) {
    113			unsigned int xfer_bytes = data->blksz * data->blocks;
    114
    115			sg_copy_to_buffer(data->sg, data->sg_len,
    116					  idma->bounce_buf, xfer_bytes);
    117			dma_wmb();
    118		}
    119	} else {
    120		int n_elem;
    121
    122		n_elem = dma_map_sg(mmc_dev(host->mmc),
    123				    data->sg,
    124				    data->sg_len,
    125				    mmc_get_dma_dir(data));
    126
    127		if (!n_elem) {
    128			dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
    129			return -EINVAL;
    130		}
    131	}
    132	return 0;
    133}
    134
    135static int sdmmc_idma_prep_data(struct mmci_host *host,
    136				struct mmc_data *data, bool next)
    137{
    138	/* Check if job is already prepared. */
    139	if (!next && data->host_cookie == host->next_cookie)
    140		return 0;
    141
    142	return _sdmmc_idma_prep_data(host, data);
    143}
    144
    145static void sdmmc_idma_unprep_data(struct mmci_host *host,
    146				   struct mmc_data *data, int err)
    147{
    148	struct sdmmc_idma *idma = host->dma_priv;
    149
    150	if (idma->use_bounce_buffer) {
    151		if (data->flags & MMC_DATA_READ) {
    152			unsigned int xfer_bytes = data->blksz * data->blocks;
    153
    154			sg_copy_from_buffer(data->sg, data->sg_len,
    155					    idma->bounce_buf, xfer_bytes);
    156		}
    157	} else {
    158		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
    159			     mmc_get_dma_dir(data));
    160	}
    161}
    162
    163static int sdmmc_idma_setup(struct mmci_host *host)
    164{
    165	struct sdmmc_idma *idma;
    166	struct device *dev = mmc_dev(host->mmc);
    167
    168	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
    169	if (!idma)
    170		return -ENOMEM;
    171
    172	host->dma_priv = idma;
    173
    174	if (host->variant->dma_lli) {
    175		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
    176						   &idma->sg_dma, GFP_KERNEL);
    177		if (!idma->sg_cpu) {
    178			dev_err(dev, "Failed to alloc IDMA descriptor\n");
    179			return -ENOMEM;
    180		}
    181		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
    182			sizeof(struct sdmmc_lli_desc);
    183		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
    184
    185		host->mmc->max_req_size = SZ_1M;
    186	} else {
    187		host->mmc->max_segs = 1;
    188		host->mmc->max_seg_size = host->mmc->max_req_size;
    189	}
    190
    191	return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
    192}
    193
    194static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
    195
    196{
    197	struct sdmmc_idma *idma = host->dma_priv;
    198	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
    199	struct mmc_data *data = host->data;
    200	struct scatterlist *sg;
    201	int i;
    202
    203	if (!host->variant->dma_lli || data->sg_len == 1 ||
    204	    idma->use_bounce_buffer) {
    205		u32 dma_addr;
    206
    207		if (idma->use_bounce_buffer)
    208			dma_addr = idma->bounce_dma_addr;
    209		else
    210			dma_addr = sg_dma_address(data->sg);
    211
    212		writel_relaxed(dma_addr,
    213			       host->base + MMCI_STM32_IDMABASE0R);
    214		writel_relaxed(MMCI_STM32_IDMAEN,
    215			       host->base + MMCI_STM32_IDMACTRLR);
    216		return 0;
    217	}
    218
    219	for_each_sg(data->sg, sg, data->sg_len, i) {
    220		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
    221		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
    222			| MMCI_STM32_ABR;
    223		desc[i].idmabase = sg_dma_address(sg);
    224		desc[i].idmasize = sg_dma_len(sg);
    225	}
    226
    227	/* notice the end of link list */
    228	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
    229
    230	dma_wmb();
    231	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
    232	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
    233	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
    234	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
    235	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
    236		       host->base + MMCI_STM32_IDMACTRLR);
    237
    238	return 0;
    239}
    240
    241static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
    242{
    243	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
    244
    245	if (!data->host_cookie)
    246		sdmmc_idma_unprep_data(host, data, 0);
    247}
    248
    249static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
    250{
    251	unsigned int clk = 0, ddr = 0;
    252
    253	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
    254	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
    255		ddr = MCI_STM32_CLK_DDR;
    256
    257	/*
    258	 * cclk = mclk / (2 * clkdiv)
    259	 * clkdiv 0 => bypass
    260	 * in ddr mode bypass is not possible
    261	 */
    262	if (desired) {
    263		if (desired >= host->mclk && !ddr) {
    264			host->cclk = host->mclk;
    265		} else {
    266			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
    267			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
    268				clk = MCI_STM32_CLK_CLKDIV_MSK;
    269			host->cclk = host->mclk / (2 * clk);
    270		}
    271	} else {
    272		/*
    273		 * while power-on phase the clock can't be define to 0,
    274		 * Only power-off and power-cyc deactivate the clock.
    275		 * if desired clock is 0, set max divider
    276		 */
    277		clk = MCI_STM32_CLK_CLKDIV_MSK;
    278		host->cclk = host->mclk / (2 * clk);
    279	}
    280
    281	/* Set actual clock for debug */
    282	if (host->mmc->ios.power_mode == MMC_POWER_ON)
    283		host->mmc->actual_clock = host->cclk;
    284	else
    285		host->mmc->actual_clock = 0;
    286
    287	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
    288		clk |= MCI_STM32_CLK_WIDEBUS_4;
    289	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
    290		clk |= MCI_STM32_CLK_WIDEBUS_8;
    291
    292	clk |= MCI_STM32_CLK_HWFCEN;
    293	clk |= host->clk_reg_add;
    294	clk |= ddr;
    295
    296	/*
    297	 * SDMMC_FBCK is selected when an external Delay Block is needed
    298	 * with SDR104 or HS200.
    299	 */
    300	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
    301		clk |= MCI_STM32_CLK_BUSSPEED;
    302		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
    303		    host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
    304			clk &= ~MCI_STM32_CLK_SEL_MSK;
    305			clk |= MCI_STM32_CLK_SELFBCK;
    306		}
    307	}
    308
    309	mmci_write_clkreg(host, clk);
    310}
    311
    312static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
    313{
    314	if (!dlyb || !dlyb->base)
    315		return;
    316
    317	/* Output clock = Input clock */
    318	writel_relaxed(0, dlyb->base + DLYB_CR);
    319}
    320
    321static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
    322{
    323	struct mmc_ios ios = host->mmc->ios;
    324	struct sdmmc_dlyb *dlyb = host->variant_priv;
    325
    326	/* adds OF options */
    327	pwr = host->pwr_reg_add;
    328
    329	sdmmc_dlyb_input_ck(dlyb);
    330
    331	if (ios.power_mode == MMC_POWER_OFF) {
    332		/* Only a reset could power-off sdmmc */
    333		reset_control_assert(host->rst);
    334		udelay(2);
    335		reset_control_deassert(host->rst);
    336
    337		/*
    338		 * Set the SDMMC in Power-cycle state.
    339		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
    340		 * are driven low, to prevent the Card from being supplied
    341		 * through the signal lines.
    342		 */
    343		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
    344	} else if (ios.power_mode == MMC_POWER_ON) {
    345		/*
    346		 * After power-off (reset): the irq mask defined in probe
    347		 * functionis lost
    348		 * ault irq mask (probe) must be activated
    349		 */
    350		writel(MCI_IRQENABLE | host->variant->start_err,
    351		       host->base + MMCIMASK0);
    352
    353		/* preserves voltage switch bits */
    354		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
    355					MCI_STM32_VSWITCH);
    356
    357		/*
    358		 * After a power-cycle state, we must set the SDMMC in
    359		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
    360		 * driven high. Then we can set the SDMMC to Power-on state
    361		 */
    362		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
    363		mdelay(1);
    364		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
    365	}
    366}
    367
    368static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
    369{
    370	u32 datactrl;
    371
    372	datactrl = mmci_dctrl_blksz(host);
    373
    374	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
    375	    host->data->blocks == 1)
    376		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
    377	else if (host->data->stop && !host->mrq->sbc)
    378		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
    379	else
    380		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
    381
    382	return datactrl;
    383}
    384
    385static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
    386{
    387	void __iomem *base = host->base;
    388	u32 busy_d0, busy_d0end, mask, sdmmc_status;
    389
    390	mask = readl_relaxed(base + MMCIMASK0);
    391	sdmmc_status = readl_relaxed(base + MMCISTATUS);
    392	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
    393	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
    394
    395	/* complete if there is an error or busy_d0end */
    396	if ((status & err_msk) || busy_d0end)
    397		goto complete;
    398
    399	/*
    400	 * On response the busy signaling is reflected in the BUSYD0 flag.
    401	 * if busy_d0 is in-progress we must activate busyd0end interrupt
    402	 * to wait this completion. Else this request has no busy step.
    403	 */
    404	if (busy_d0) {
    405		if (!host->busy_status) {
    406			writel_relaxed(mask | host->variant->busy_detect_mask,
    407				       base + MMCIMASK0);
    408			host->busy_status = status &
    409				(MCI_CMDSENT | MCI_CMDRESPEND);
    410		}
    411		return false;
    412	}
    413
    414complete:
    415	if (host->busy_status) {
    416		writel_relaxed(mask & ~host->variant->busy_detect_mask,
    417			       base + MMCIMASK0);
    418		host->busy_status = 0;
    419	}
    420
    421	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
    422
    423	return true;
    424}
    425
    426static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
    427				int unit, int phase, bool sampler)
    428{
    429	u32 cfgr;
    430
    431	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
    432
    433	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
    434	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
    435	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
    436
    437	if (!sampler)
    438		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
    439}
    440
    441static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
    442{
    443	struct sdmmc_dlyb *dlyb = host->variant_priv;
    444	u32 cfgr;
    445	int i, lng, ret;
    446
    447	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
    448		sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);
    449
    450		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
    451						 (cfgr & DLYB_CFGR_LNGF),
    452						 1, DLYB_LNG_TIMEOUT_US);
    453		if (ret) {
    454			dev_warn(mmc_dev(host->mmc),
    455				 "delay line cfg timeout unit:%d cfgr:%d\n",
    456				 i, cfgr);
    457			continue;
    458		}
    459
    460		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
    461		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
    462			break;
    463	}
    464
    465	if (i > DLYB_CFGR_UNIT_MAX)
    466		return -EINVAL;
    467
    468	dlyb->unit = i;
    469	dlyb->max = __fls(lng);
    470
    471	return 0;
    472}
    473
    474static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
    475{
    476	struct sdmmc_dlyb *dlyb = host->variant_priv;
    477	int cur_len = 0, max_len = 0, end_of_len = 0;
    478	int phase;
    479
    480	for (phase = 0; phase <= dlyb->max; phase++) {
    481		sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
    482
    483		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
    484			cur_len = 0;
    485		} else {
    486			cur_len++;
    487			if (cur_len > max_len) {
    488				max_len = cur_len;
    489				end_of_len = phase;
    490			}
    491		}
    492	}
    493
    494	if (!max_len) {
    495		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
    496		return -EINVAL;
    497	}
    498
    499	writel_relaxed(0, dlyb->base + DLYB_CR);
    500
    501	phase = end_of_len - max_len / 2;
    502	sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
    503
    504	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
    505		dlyb->unit, dlyb->max, phase);
    506
    507	return 0;
    508}
    509
    510static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
    511{
    512	struct mmci_host *host = mmc_priv(mmc);
    513	struct sdmmc_dlyb *dlyb = host->variant_priv;
    514
    515	if (!dlyb || !dlyb->base)
    516		return -EINVAL;
    517
    518	if (sdmmc_dlyb_lng_tuning(host))
    519		return -EINVAL;
    520
    521	return sdmmc_dlyb_phase_tuning(host, opcode);
    522}
    523
    524static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
    525{
    526	/* clear the voltage switch completion flag */
    527	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
    528	/* enable Voltage switch procedure */
    529	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
    530}
    531
    532static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
    533				      struct mmc_ios *ios)
    534{
    535	unsigned long flags;
    536	u32 status;
    537	int ret = 0;
    538
    539	spin_lock_irqsave(&host->lock, flags);
    540	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
    541	    host->pwr_reg & MCI_STM32_VSWITCHEN) {
    542		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
    543		spin_unlock_irqrestore(&host->lock, flags);
    544
    545		/* wait voltage switch completion while 10ms */
    546		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
    547						 status,
    548						 (status & MCI_STM32_VSWEND),
    549						 10, SDMMC_VSWEND_TIMEOUT_US);
    550
    551		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
    552			       host->base + MMCICLEAR);
    553		spin_lock_irqsave(&host->lock, flags);
    554		mmci_write_pwrreg(host, host->pwr_reg &
    555				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
    556	}
    557	spin_unlock_irqrestore(&host->lock, flags);
    558
    559	return ret;
    560}
    561
    562static struct mmci_host_ops sdmmc_variant_ops = {
    563	.validate_data = sdmmc_idma_validate_data,
    564	.prep_data = sdmmc_idma_prep_data,
    565	.unprep_data = sdmmc_idma_unprep_data,
    566	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
    567	.dma_setup = sdmmc_idma_setup,
    568	.dma_start = sdmmc_idma_start,
    569	.dma_finalize = sdmmc_idma_finalize,
    570	.set_clkreg = mmci_sdmmc_set_clkreg,
    571	.set_pwrreg = mmci_sdmmc_set_pwrreg,
    572	.busy_complete = sdmmc_busy_complete,
    573	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
    574	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
    575};
    576
    577void sdmmc_variant_init(struct mmci_host *host)
    578{
    579	struct device_node *np = host->mmc->parent->of_node;
    580	void __iomem *base_dlyb;
    581	struct sdmmc_dlyb *dlyb;
    582
    583	host->ops = &sdmmc_variant_ops;
    584	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
    585
    586	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
    587	if (IS_ERR(base_dlyb))
    588		return;
    589
    590	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
    591	if (!dlyb)
    592		return;
    593
    594	dlyb->base = base_dlyb;
    595	host->variant_priv = dlyb;
    596	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
    597}