cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sdhci-msm.c (86122B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
      4 *
      5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
      6 */
      7
      8#include <linux/module.h>
      9#include <linux/of_device.h>
     10#include <linux/delay.h>
     11#include <linux/mmc/mmc.h>
     12#include <linux/pm_runtime.h>
     13#include <linux/pm_opp.h>
     14#include <linux/slab.h>
     15#include <linux/iopoll.h>
     16#include <linux/qcom_scm.h>
     17#include <linux/regulator/consumer.h>
     18#include <linux/interconnect.h>
     19#include <linux/pinctrl/consumer.h>
     20#include <linux/reset.h>
     21
     22#include "sdhci-pltfm.h"
     23#include "cqhci.h"
     24
     25#define CORE_MCI_VERSION		0x50
     26#define CORE_VERSION_MAJOR_SHIFT	28
     27#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
     28#define CORE_VERSION_MINOR_MASK		0xff
     29
     30#define CORE_MCI_GENERICS		0x70
     31#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
     32
     33#define HC_MODE_EN		0x1
     34#define CORE_POWER		0x0
     35#define CORE_SW_RST		BIT(7)
     36#define FF_CLK_SW_RST_DIS	BIT(13)
     37
     38#define CORE_PWRCTL_BUS_OFF	BIT(0)
     39#define CORE_PWRCTL_BUS_ON	BIT(1)
     40#define CORE_PWRCTL_IO_LOW	BIT(2)
     41#define CORE_PWRCTL_IO_HIGH	BIT(3)
     42#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
     43#define CORE_PWRCTL_BUS_FAIL    BIT(1)
     44#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
     45#define CORE_PWRCTL_IO_FAIL     BIT(3)
     46#define REQ_BUS_OFF		BIT(0)
     47#define REQ_BUS_ON		BIT(1)
     48#define REQ_IO_LOW		BIT(2)
     49#define REQ_IO_HIGH		BIT(3)
     50#define INT_MASK		0xf
     51#define MAX_PHASES		16
     52#define CORE_DLL_LOCK		BIT(7)
     53#define CORE_DDR_DLL_LOCK	BIT(11)
     54#define CORE_DLL_EN		BIT(16)
     55#define CORE_CDR_EN		BIT(17)
     56#define CORE_CK_OUT_EN		BIT(18)
     57#define CORE_CDR_EXT_EN		BIT(19)
     58#define CORE_DLL_PDN		BIT(29)
     59#define CORE_DLL_RST		BIT(30)
     60#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
     61
     62#define CORE_DDR_CAL_EN		BIT(0)
     63#define CORE_FLL_CYCLE_CNT	BIT(18)
     64#define CORE_DLL_CLOCK_DISABLE	BIT(21)
     65
     66#define DLL_USR_CTL_POR_VAL	0x10800
     67#define ENABLE_DLL_LOCK_STATUS	BIT(26)
     68#define FINE_TUNE_MODE_EN	BIT(27)
     69#define BIAS_OK_SIGNAL		BIT(29)
     70
     71#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
     72#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
     73
     74#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
     75#define CORE_CLK_PWRSAVE	BIT(1)
     76#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
     77#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
     78#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
     79#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
     80#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
     81#define CORE_HC_SELECT_IN_EN	BIT(18)
     82#define CORE_HC_SELECT_IN_HS400	(6 << 19)
     83#define CORE_HC_SELECT_IN_MASK	(7 << 19)
     84
     85#define CORE_3_0V_SUPPORT	BIT(25)
     86#define CORE_1_8V_SUPPORT	BIT(26)
     87#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
     88
     89#define CORE_CSR_CDC_CTLR_CFG0		0x130
     90#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
     91#define CORE_HW_AUTOCAL_ENA		BIT(17)
     92
     93#define CORE_CSR_CDC_CTLR_CFG1		0x134
     94#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
     95#define CORE_TIMER_ENA			BIT(16)
     96
     97#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
     98#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
     99#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
    100#define CORE_CDC_OFFSET_CFG		0x14C
    101#define CORE_CSR_CDC_DELAY_CFG		0x150
    102#define CORE_CDC_SLAVE_DDA_CFG		0x160
    103#define CORE_CSR_CDC_STATUS0		0x164
    104#define CORE_CALIBRATION_DONE		BIT(0)
    105
    106#define CORE_CDC_ERROR_CODE_MASK	0x7000000
    107
    108#define CORE_CSR_CDC_GEN_CFG		0x178
    109#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
    110#define CORE_CDC_SWITCH_RC_EN		BIT(1)
    111
    112#define CORE_CDC_T4_DLY_SEL		BIT(0)
    113#define CORE_CMDIN_RCLK_EN		BIT(1)
    114#define CORE_START_CDC_TRAFFIC		BIT(6)
    115
    116#define CORE_PWRSAVE_DLL	BIT(3)
    117
    118#define DDR_CONFIG_POR_VAL	0x80040873
    119
    120
    121#define INVALID_TUNING_PHASE	-1
    122#define SDHCI_MSM_MIN_CLOCK	400000
    123#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
    124
    125#define CDR_SELEXT_SHIFT	20
    126#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
    127#define CMUX_SHIFT_PHASE_SHIFT	24
    128#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
    129
    130#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
    131
    132/* Timeout value to avoid infinite waiting for pwr_irq */
    133#define MSM_PWR_IRQ_TIMEOUT_MS 5000
    134
    135/* Max load for eMMC Vdd-io supply */
    136#define MMC_VQMMC_MAX_LOAD_UA	325000
    137
    138#define msm_host_readl(msm_host, host, offset) \
    139	msm_host->var_ops->msm_readl_relaxed(host, offset)
    140
    141#define msm_host_writel(msm_host, val, host, offset) \
    142	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
    143
    144/* CQHCI vendor specific registers */
    145#define CQHCI_VENDOR_CFG1	0xA00
    146#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
    147
    148struct sdhci_msm_offset {
    149	u32 core_hc_mode;
    150	u32 core_mci_data_cnt;
    151	u32 core_mci_status;
    152	u32 core_mci_fifo_cnt;
    153	u32 core_mci_version;
    154	u32 core_generics;
    155	u32 core_testbus_config;
    156	u32 core_testbus_sel2_bit;
    157	u32 core_testbus_ena;
    158	u32 core_testbus_sel2;
    159	u32 core_pwrctl_status;
    160	u32 core_pwrctl_mask;
    161	u32 core_pwrctl_clear;
    162	u32 core_pwrctl_ctl;
    163	u32 core_sdcc_debug_reg;
    164	u32 core_dll_config;
    165	u32 core_dll_status;
    166	u32 core_vendor_spec;
    167	u32 core_vendor_spec_adma_err_addr0;
    168	u32 core_vendor_spec_adma_err_addr1;
    169	u32 core_vendor_spec_func2;
    170	u32 core_vendor_spec_capabilities0;
    171	u32 core_ddr_200_cfg;
    172	u32 core_vendor_spec3;
    173	u32 core_dll_config_2;
    174	u32 core_dll_config_3;
    175	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
    176	u32 core_ddr_config;
    177	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
    178};
    179
    180static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
    181	.core_mci_data_cnt = 0x35c,
    182	.core_mci_status = 0x324,
    183	.core_mci_fifo_cnt = 0x308,
    184	.core_mci_version = 0x318,
    185	.core_generics = 0x320,
    186	.core_testbus_config = 0x32c,
    187	.core_testbus_sel2_bit = 3,
    188	.core_testbus_ena = (1 << 31),
    189	.core_testbus_sel2 = (1 << 3),
    190	.core_pwrctl_status = 0x240,
    191	.core_pwrctl_mask = 0x244,
    192	.core_pwrctl_clear = 0x248,
    193	.core_pwrctl_ctl = 0x24c,
    194	.core_sdcc_debug_reg = 0x358,
    195	.core_dll_config = 0x200,
    196	.core_dll_status = 0x208,
    197	.core_vendor_spec = 0x20c,
    198	.core_vendor_spec_adma_err_addr0 = 0x214,
    199	.core_vendor_spec_adma_err_addr1 = 0x218,
    200	.core_vendor_spec_func2 = 0x210,
    201	.core_vendor_spec_capabilities0 = 0x21c,
    202	.core_ddr_200_cfg = 0x224,
    203	.core_vendor_spec3 = 0x250,
    204	.core_dll_config_2 = 0x254,
    205	.core_dll_config_3 = 0x258,
    206	.core_ddr_config = 0x25c,
    207	.core_dll_usr_ctl = 0x388,
    208};
    209
    210static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
    211	.core_hc_mode = 0x78,
    212	.core_mci_data_cnt = 0x30,
    213	.core_mci_status = 0x34,
    214	.core_mci_fifo_cnt = 0x44,
    215	.core_mci_version = 0x050,
    216	.core_generics = 0x70,
    217	.core_testbus_config = 0x0cc,
    218	.core_testbus_sel2_bit = 4,
    219	.core_testbus_ena = (1 << 3),
    220	.core_testbus_sel2 = (1 << 4),
    221	.core_pwrctl_status = 0xdc,
    222	.core_pwrctl_mask = 0xe0,
    223	.core_pwrctl_clear = 0xe4,
    224	.core_pwrctl_ctl = 0xe8,
    225	.core_sdcc_debug_reg = 0x124,
    226	.core_dll_config = 0x100,
    227	.core_dll_status = 0x108,
    228	.core_vendor_spec = 0x10c,
    229	.core_vendor_spec_adma_err_addr0 = 0x114,
    230	.core_vendor_spec_adma_err_addr1 = 0x118,
    231	.core_vendor_spec_func2 = 0x110,
    232	.core_vendor_spec_capabilities0 = 0x11c,
    233	.core_ddr_200_cfg = 0x184,
    234	.core_vendor_spec3 = 0x1b0,
    235	.core_dll_config_2 = 0x1b4,
    236	.core_ddr_config_old = 0x1b8,
    237	.core_ddr_config = 0x1bc,
    238};
    239
    240struct sdhci_msm_variant_ops {
    241	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
    242	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
    243			u32 offset);
    244};
    245
    246/*
    247 * From V5, register spaces have changed. Wrap this info in a structure
    248 * and choose the data_structure based on version info mentioned in DT.
    249 */
    250struct sdhci_msm_variant_info {
    251	bool mci_removed;
    252	bool restore_dll_config;
    253	const struct sdhci_msm_variant_ops *var_ops;
    254	const struct sdhci_msm_offset *offset;
    255};
    256
    257struct sdhci_msm_host {
    258	struct platform_device *pdev;
    259	void __iomem *core_mem;	/* MSM SDCC mapped address */
    260	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
    261	int pwr_irq;		/* power irq */
    262	struct clk *bus_clk;	/* SDHC bus voter clock */
    263	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
    264	/* core, iface, cal, sleep, and ice clocks */
    265	struct clk_bulk_data bulk_clks[5];
    266	unsigned long clk_rate;
    267	struct mmc_host *mmc;
    268	bool use_14lpp_dll_reset;
    269	bool tuning_done;
    270	bool calibration_done;
    271	u8 saved_tuning_phase;
    272	bool use_cdclp533;
    273	u32 curr_pwr_state;
    274	u32 curr_io_level;
    275	wait_queue_head_t pwr_irq_wait;
    276	bool pwr_irq_flag;
    277	u32 caps_0;
    278	bool mci_removed;
    279	bool restore_dll_config;
    280	const struct sdhci_msm_variant_ops *var_ops;
    281	const struct sdhci_msm_offset *offset;
    282	bool use_cdr;
    283	u32 transfer_mode;
    284	bool updated_ddr_cfg;
    285	bool uses_tassadar_dll;
    286	u32 dll_config;
    287	u32 ddr_config;
    288	bool vqmmc_enabled;
    289};
    290
    291static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
    292{
    293	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    294	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    295
    296	return msm_host->offset;
    297}
    298
    299/*
    300 * APIs to read/write to vendor specific registers which were there in the
    301 * core_mem region before MCI was removed.
    302 */
    303static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
    304		u32 offset)
    305{
    306	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    307	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    308
    309	return readl_relaxed(msm_host->core_mem + offset);
    310}
    311
    312static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
    313		u32 offset)
    314{
    315	return readl_relaxed(host->ioaddr + offset);
    316}
    317
    318static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
    319		struct sdhci_host *host, u32 offset)
    320{
    321	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    322	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    323
    324	writel_relaxed(val, msm_host->core_mem + offset);
    325}
    326
    327static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
    328		struct sdhci_host *host, u32 offset)
    329{
    330	writel_relaxed(val, host->ioaddr + offset);
    331}
    332
    333static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
    334{
    335	struct mmc_ios ios = host->mmc->ios;
    336	/*
    337	 * The SDHC requires internal clock frequency to be double the
    338	 * actual clock that will be set for DDR mode. The controller
    339	 * uses the faster clock(100/400MHz) for some of its parts and
    340	 * send the actual required clock (50/200MHz) to the card.
    341	 */
    342	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
    343	    ios.timing == MMC_TIMING_MMC_DDR52 ||
    344	    ios.timing == MMC_TIMING_MMC_HS400 ||
    345	    host->flags & SDHCI_HS400_TUNING)
    346		return 2;
    347	return 1;
    348}
    349
    350static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
    351					    unsigned int clock)
    352{
    353	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    354	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    355	struct mmc_ios curr_ios = host->mmc->ios;
    356	struct clk *core_clk = msm_host->bulk_clks[0].clk;
    357	unsigned long achieved_rate;
    358	unsigned int desired_rate;
    359	unsigned int mult;
    360	int rc;
    361
    362	mult = msm_get_clock_mult_for_bus_mode(host);
    363	desired_rate = clock * mult;
    364	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
    365	if (rc) {
    366		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
    367		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
    368		return;
    369	}
    370
    371	/*
    372	 * Qualcomm clock drivers by default round clock _up_ if they can't
    373	 * make the requested rate.  This is not good for SD.  Yell if we
    374	 * encounter it.
    375	 */
    376	achieved_rate = clk_get_rate(core_clk);
    377	if (achieved_rate > desired_rate)
    378		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
    379			mmc_hostname(host->mmc), desired_rate, achieved_rate);
    380	host->mmc->actual_clock = achieved_rate / mult;
    381
    382	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
    383	msm_host->clk_rate = desired_rate;
    384
    385	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
    386		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
    387}
    388
    389/* Platform specific tuning */
    390static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
    391{
    392	u32 wait_cnt = 50;
    393	u8 ck_out_en;
    394	struct mmc_host *mmc = host->mmc;
    395	const struct sdhci_msm_offset *msm_offset =
    396					sdhci_priv_msm_offset(host);
    397
    398	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
    399	ck_out_en = !!(readl_relaxed(host->ioaddr +
    400			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
    401
    402	while (ck_out_en != poll) {
    403		if (--wait_cnt == 0) {
    404			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
    405			       mmc_hostname(mmc), poll);
    406			return -ETIMEDOUT;
    407		}
    408		udelay(1);
    409
    410		ck_out_en = !!(readl_relaxed(host->ioaddr +
    411			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
    412	}
    413
    414	return 0;
    415}
    416
    417static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
    418{
    419	int rc;
    420	static const u8 grey_coded_phase_table[] = {
    421		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
    422		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
    423	};
    424	unsigned long flags;
    425	u32 config;
    426	struct mmc_host *mmc = host->mmc;
    427	const struct sdhci_msm_offset *msm_offset =
    428					sdhci_priv_msm_offset(host);
    429
    430	if (phase > 0xf)
    431		return -EINVAL;
    432
    433	spin_lock_irqsave(&host->lock, flags);
    434
    435	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    436	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
    437	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
    438	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    439
    440	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
    441	rc = msm_dll_poll_ck_out_en(host, 0);
    442	if (rc)
    443		goto err_out;
    444
    445	/*
    446	 * Write the selected DLL clock output phase (0 ... 15)
    447	 * to CDR_SELEXT bit field of DLL_CONFIG register.
    448	 */
    449	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    450	config &= ~CDR_SELEXT_MASK;
    451	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
    452	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    453
    454	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    455	config |= CORE_CK_OUT_EN;
    456	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    457
    458	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
    459	rc = msm_dll_poll_ck_out_en(host, 1);
    460	if (rc)
    461		goto err_out;
    462
    463	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    464	config |= CORE_CDR_EN;
    465	config &= ~CORE_CDR_EXT_EN;
    466	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    467	goto out;
    468
    469err_out:
    470	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
    471	       mmc_hostname(mmc), phase);
    472out:
    473	spin_unlock_irqrestore(&host->lock, flags);
    474	return rc;
    475}
    476
    477/*
    478 * Find out the greatest range of consecuitive selected
    479 * DLL clock output phases that can be used as sampling
    480 * setting for SD3.0 UHS-I card read operation (in SDR104
    481 * timing mode) or for eMMC4.5 card read operation (in
    482 * HS400/HS200 timing mode).
    483 * Select the 3/4 of the range and configure the DLL with the
    484 * selected DLL clock output phase.
    485 */
    486
    487static int msm_find_most_appropriate_phase(struct sdhci_host *host,
    488					   u8 *phase_table, u8 total_phases)
    489{
    490	int ret;
    491	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
    492	u8 phases_per_row[MAX_PHASES] = { 0 };
    493	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
    494	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
    495	bool phase_0_found = false, phase_15_found = false;
    496	struct mmc_host *mmc = host->mmc;
    497
    498	if (!total_phases || (total_phases > MAX_PHASES)) {
    499		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
    500		       mmc_hostname(mmc), total_phases);
    501		return -EINVAL;
    502	}
    503
    504	for (cnt = 0; cnt < total_phases; cnt++) {
    505		ranges[row_index][col_index] = phase_table[cnt];
    506		phases_per_row[row_index] += 1;
    507		col_index++;
    508
    509		if ((cnt + 1) == total_phases) {
    510			continue;
    511		/* check if next phase in phase_table is consecutive or not */
    512		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
    513			row_index++;
    514			col_index = 0;
    515		}
    516	}
    517
    518	if (row_index >= MAX_PHASES)
    519		return -EINVAL;
    520
    521	/* Check if phase-0 is present in first valid window? */
    522	if (!ranges[0][0]) {
    523		phase_0_found = true;
    524		phase_0_raw_index = 0;
    525		/* Check if cycle exist between 2 valid windows */
    526		for (cnt = 1; cnt <= row_index; cnt++) {
    527			if (phases_per_row[cnt]) {
    528				for (i = 0; i < phases_per_row[cnt]; i++) {
    529					if (ranges[cnt][i] == 15) {
    530						phase_15_found = true;
    531						phase_15_raw_index = cnt;
    532						break;
    533					}
    534				}
    535			}
    536		}
    537	}
    538
    539	/* If 2 valid windows form cycle then merge them as single window */
    540	if (phase_0_found && phase_15_found) {
    541		/* number of phases in raw where phase 0 is present */
    542		u8 phases_0 = phases_per_row[phase_0_raw_index];
    543		/* number of phases in raw where phase 15 is present */
    544		u8 phases_15 = phases_per_row[phase_15_raw_index];
    545
    546		if (phases_0 + phases_15 >= MAX_PHASES)
    547			/*
    548			 * If there are more than 1 phase windows then total
    549			 * number of phases in both the windows should not be
    550			 * more than or equal to MAX_PHASES.
    551			 */
    552			return -EINVAL;
    553
    554		/* Merge 2 cyclic windows */
    555		i = phases_15;
    556		for (cnt = 0; cnt < phases_0; cnt++) {
    557			ranges[phase_15_raw_index][i] =
    558			    ranges[phase_0_raw_index][cnt];
    559			if (++i >= MAX_PHASES)
    560				break;
    561		}
    562
    563		phases_per_row[phase_0_raw_index] = 0;
    564		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
    565	}
    566
    567	for (cnt = 0; cnt <= row_index; cnt++) {
    568		if (phases_per_row[cnt] > curr_max) {
    569			curr_max = phases_per_row[cnt];
    570			selected_row_index = cnt;
    571		}
    572	}
    573
    574	i = (curr_max * 3) / 4;
    575	if (i)
    576		i--;
    577
    578	ret = ranges[selected_row_index][i];
    579
    580	if (ret >= MAX_PHASES) {
    581		ret = -EINVAL;
    582		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
    583		       mmc_hostname(mmc), ret);
    584	}
    585
    586	return ret;
    587}
    588
    589static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
    590{
    591	u32 mclk_freq = 0, config;
    592	const struct sdhci_msm_offset *msm_offset =
    593					sdhci_priv_msm_offset(host);
    594
    595	/* Program the MCLK value to MCLK_FREQ bit field */
    596	if (host->clock <= 112000000)
    597		mclk_freq = 0;
    598	else if (host->clock <= 125000000)
    599		mclk_freq = 1;
    600	else if (host->clock <= 137000000)
    601		mclk_freq = 2;
    602	else if (host->clock <= 150000000)
    603		mclk_freq = 3;
    604	else if (host->clock <= 162000000)
    605		mclk_freq = 4;
    606	else if (host->clock <= 175000000)
    607		mclk_freq = 5;
    608	else if (host->clock <= 187000000)
    609		mclk_freq = 6;
    610	else if (host->clock <= 200000000)
    611		mclk_freq = 7;
    612
    613	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    614	config &= ~CMUX_SHIFT_PHASE_MASK;
    615	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
    616	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    617}
    618
    619/* Initialize the DLL (Programmable Delay Line) */
    620static int msm_init_cm_dll(struct sdhci_host *host)
    621{
    622	struct mmc_host *mmc = host->mmc;
    623	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    624	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    625	int wait_cnt = 50;
    626	unsigned long flags, xo_clk = 0;
    627	u32 config;
    628	const struct sdhci_msm_offset *msm_offset =
    629					msm_host->offset;
    630
    631	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
    632		xo_clk = clk_get_rate(msm_host->xo_clk);
    633
    634	spin_lock_irqsave(&host->lock, flags);
    635
    636	/*
    637	 * Make sure that clock is always enabled when DLL
    638	 * tuning is in progress. Keeping PWRSAVE ON may
    639	 * turn off the clock.
    640	 */
    641	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
    642	config &= ~CORE_CLK_PWRSAVE;
    643	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
    644
    645	if (msm_host->dll_config)
    646		writel_relaxed(msm_host->dll_config,
    647				host->ioaddr + msm_offset->core_dll_config);
    648
    649	if (msm_host->use_14lpp_dll_reset) {
    650		config = readl_relaxed(host->ioaddr +
    651				msm_offset->core_dll_config);
    652		config &= ~CORE_CK_OUT_EN;
    653		writel_relaxed(config, host->ioaddr +
    654				msm_offset->core_dll_config);
    655
    656		config = readl_relaxed(host->ioaddr +
    657				msm_offset->core_dll_config_2);
    658		config |= CORE_DLL_CLOCK_DISABLE;
    659		writel_relaxed(config, host->ioaddr +
    660				msm_offset->core_dll_config_2);
    661	}
    662
    663	config = readl_relaxed(host->ioaddr +
    664			msm_offset->core_dll_config);
    665	config |= CORE_DLL_RST;
    666	writel_relaxed(config, host->ioaddr +
    667			msm_offset->core_dll_config);
    668
    669	config = readl_relaxed(host->ioaddr +
    670			msm_offset->core_dll_config);
    671	config |= CORE_DLL_PDN;
    672	writel_relaxed(config, host->ioaddr +
    673			msm_offset->core_dll_config);
    674
    675	if (!msm_host->dll_config)
    676		msm_cm_dll_set_freq(host);
    677
    678	if (msm_host->use_14lpp_dll_reset &&
    679	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
    680		u32 mclk_freq = 0;
    681
    682		config = readl_relaxed(host->ioaddr +
    683				msm_offset->core_dll_config_2);
    684		config &= CORE_FLL_CYCLE_CNT;
    685		if (config)
    686			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
    687					xo_clk);
    688		else
    689			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
    690					xo_clk);
    691
    692		config = readl_relaxed(host->ioaddr +
    693				msm_offset->core_dll_config_2);
    694		config &= ~(0xFF << 10);
    695		config |= mclk_freq << 10;
    696
    697		writel_relaxed(config, host->ioaddr +
    698				msm_offset->core_dll_config_2);
    699		/* wait for 5us before enabling DLL clock */
    700		udelay(5);
    701	}
    702
    703	config = readl_relaxed(host->ioaddr +
    704			msm_offset->core_dll_config);
    705	config &= ~CORE_DLL_RST;
    706	writel_relaxed(config, host->ioaddr +
    707			msm_offset->core_dll_config);
    708
    709	config = readl_relaxed(host->ioaddr +
    710			msm_offset->core_dll_config);
    711	config &= ~CORE_DLL_PDN;
    712	writel_relaxed(config, host->ioaddr +
    713			msm_offset->core_dll_config);
    714
    715	if (msm_host->use_14lpp_dll_reset) {
    716		if (!msm_host->dll_config)
    717			msm_cm_dll_set_freq(host);
    718		config = readl_relaxed(host->ioaddr +
    719				msm_offset->core_dll_config_2);
    720		config &= ~CORE_DLL_CLOCK_DISABLE;
    721		writel_relaxed(config, host->ioaddr +
    722				msm_offset->core_dll_config_2);
    723	}
    724
    725	/*
    726	 * Configure DLL user control register to enable DLL status.
    727	 * This setting is applicable to SDCC v5.1 onwards only.
    728	 */
    729	if (msm_host->uses_tassadar_dll) {
    730		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
    731			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
    732		writel_relaxed(config, host->ioaddr +
    733				msm_offset->core_dll_usr_ctl);
    734
    735		config = readl_relaxed(host->ioaddr +
    736				msm_offset->core_dll_config_3);
    737		config &= ~0xFF;
    738		if (msm_host->clk_rate < 150000000)
    739			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
    740		else
    741			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
    742		writel_relaxed(config, host->ioaddr +
    743			msm_offset->core_dll_config_3);
    744	}
    745
    746	config = readl_relaxed(host->ioaddr +
    747			msm_offset->core_dll_config);
    748	config |= CORE_DLL_EN;
    749	writel_relaxed(config, host->ioaddr +
    750			msm_offset->core_dll_config);
    751
    752	config = readl_relaxed(host->ioaddr +
    753			msm_offset->core_dll_config);
    754	config |= CORE_CK_OUT_EN;
    755	writel_relaxed(config, host->ioaddr +
    756			msm_offset->core_dll_config);
    757
    758	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
    759	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
    760		 CORE_DLL_LOCK)) {
    761		/* max. wait for 50us sec for LOCK bit to be set */
    762		if (--wait_cnt == 0) {
    763			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
    764			       mmc_hostname(mmc));
    765			spin_unlock_irqrestore(&host->lock, flags);
    766			return -ETIMEDOUT;
    767		}
    768		udelay(1);
    769	}
    770
    771	spin_unlock_irqrestore(&host->lock, flags);
    772	return 0;
    773}
    774
    775static void msm_hc_select_default(struct sdhci_host *host)
    776{
    777	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    778	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    779	u32 config;
    780	const struct sdhci_msm_offset *msm_offset =
    781					msm_host->offset;
    782
    783	if (!msm_host->use_cdclp533) {
    784		config = readl_relaxed(host->ioaddr +
    785				msm_offset->core_vendor_spec3);
    786		config &= ~CORE_PWRSAVE_DLL;
    787		writel_relaxed(config, host->ioaddr +
    788				msm_offset->core_vendor_spec3);
    789	}
    790
    791	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
    792	config &= ~CORE_HC_MCLK_SEL_MASK;
    793	config |= CORE_HC_MCLK_SEL_DFLT;
    794	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
    795
    796	/*
    797	 * Disable HC_SELECT_IN to be able to use the UHS mode select
    798	 * configuration from Host Control2 register for all other
    799	 * modes.
    800	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
    801	 * in VENDOR_SPEC_FUNC
    802	 */
    803	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
    804	config &= ~CORE_HC_SELECT_IN_EN;
    805	config &= ~CORE_HC_SELECT_IN_MASK;
    806	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
    807
    808	/*
    809	 * Make sure above writes impacting free running MCLK are completed
    810	 * before changing the clk_rate at GCC.
    811	 */
    812	wmb();
    813}
    814
    815static void msm_hc_select_hs400(struct sdhci_host *host)
    816{
    817	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    818	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    819	struct mmc_ios ios = host->mmc->ios;
    820	u32 config, dll_lock;
    821	int rc;
    822	const struct sdhci_msm_offset *msm_offset =
    823					msm_host->offset;
    824
    825	/* Select the divided clock (free running MCLK/2) */
    826	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
    827	config &= ~CORE_HC_MCLK_SEL_MASK;
    828	config |= CORE_HC_MCLK_SEL_HS400;
    829
    830	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
    831	/*
    832	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
    833	 * register
    834	 */
    835	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
    836	    !msm_host->calibration_done) {
    837		config = readl_relaxed(host->ioaddr +
    838				msm_offset->core_vendor_spec);
    839		config |= CORE_HC_SELECT_IN_HS400;
    840		config |= CORE_HC_SELECT_IN_EN;
    841		writel_relaxed(config, host->ioaddr +
    842				msm_offset->core_vendor_spec);
    843	}
    844	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
    845		/*
    846		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
    847		 * core_dll_status to be set. This should get set
    848		 * within 15 us at 200 MHz.
    849		 */
    850		rc = readl_relaxed_poll_timeout(host->ioaddr +
    851						msm_offset->core_dll_status,
    852						dll_lock,
    853						(dll_lock &
    854						(CORE_DLL_LOCK |
    855						CORE_DDR_DLL_LOCK)), 10,
    856						1000);
    857		if (rc == -ETIMEDOUT)
    858			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
    859			       mmc_hostname(host->mmc), dll_lock);
    860	}
    861	/*
    862	 * Make sure above writes impacting free running MCLK are completed
    863	 * before changing the clk_rate at GCC.
    864	 */
    865	wmb();
    866}
    867
    868/*
    869 * sdhci_msm_hc_select_mode :- In general all timing modes are
    870 * controlled via UHS mode select in Host Control2 register.
    871 * eMMC specific HS200/HS400 doesn't have their respective modes
    872 * defined here, hence we use these values.
    873 *
    874 * HS200 - SDR104 (Since they both are equivalent in functionality)
    875 * HS400 - This involves multiple configurations
    876 *		Initially SDR104 - when tuning is required as HS200
    877 *		Then when switching to DDR @ 400MHz (HS400) we use
    878 *		the vendor specific HC_SELECT_IN to control the mode.
    879 *
    880 * In addition to controlling the modes we also need to select the
    881 * correct input clock for DLL depending on the mode.
    882 *
    883 * HS400 - divided clock (free running MCLK/2)
    884 * All other modes - default (free running MCLK)
    885 */
    886static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
    887{
    888	struct mmc_ios ios = host->mmc->ios;
    889
    890	if (ios.timing == MMC_TIMING_MMC_HS400 ||
    891	    host->flags & SDHCI_HS400_TUNING)
    892		msm_hc_select_hs400(host);
    893	else
    894		msm_hc_select_default(host);
    895}
    896
    897static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
    898{
    899	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
    900	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
    901	u32 config, calib_done;
    902	int ret;
    903	const struct sdhci_msm_offset *msm_offset =
    904					msm_host->offset;
    905
    906	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
    907
    908	/*
    909	 * Retuning in HS400 (DDR mode) will fail, just reset the
    910	 * tuning block and restore the saved tuning phase.
    911	 */
    912	ret = msm_init_cm_dll(host);
    913	if (ret)
    914		goto out;
    915
    916	/* Set the selected phase in delay line hw block */
    917	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
    918	if (ret)
    919		goto out;
    920
    921	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
    922	config |= CORE_CMD_DAT_TRACK_SEL;
    923	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
    924
    925	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
    926	config &= ~CORE_CDC_T4_DLY_SEL;
    927	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
    928
    929	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
    930	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
    931	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
    932
    933	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
    934	config |= CORE_CDC_SWITCH_RC_EN;
    935	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
    936
    937	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
    938	config &= ~CORE_START_CDC_TRAFFIC;
    939	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
    940
    941	/* Perform CDC Register Initialization Sequence */
    942
    943	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    944	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
    945	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
    946	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
    947	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
    948	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
    949	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
    950	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
    951	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
    952
    953	/* CDC HW Calibration */
    954
    955	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    956	config |= CORE_SW_TRIG_FULL_CALIB;
    957	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    958
    959	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    960	config &= ~CORE_SW_TRIG_FULL_CALIB;
    961	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    962
    963	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    964	config |= CORE_HW_AUTOCAL_ENA;
    965	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
    966
    967	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
    968	config |= CORE_TIMER_ENA;
    969	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
    970
    971	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
    972					 calib_done,
    973					 (calib_done & CORE_CALIBRATION_DONE),
    974					 1, 50);
    975
    976	if (ret == -ETIMEDOUT) {
    977		pr_err("%s: %s: CDC calibration was not completed\n",
    978		       mmc_hostname(host->mmc), __func__);
    979		goto out;
    980	}
    981
    982	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
    983			& CORE_CDC_ERROR_CODE_MASK;
    984	if (ret) {
    985		pr_err("%s: %s: CDC error code %d\n",
    986		       mmc_hostname(host->mmc), __func__, ret);
    987		ret = -EINVAL;
    988		goto out;
    989	}
    990
    991	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
    992	config |= CORE_START_CDC_TRAFFIC;
    993	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
    994out:
    995	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
    996		 __func__, ret);
    997	return ret;
    998}
    999
   1000static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
   1001{
   1002	struct mmc_host *mmc = host->mmc;
   1003	u32 dll_status, config, ddr_cfg_offset;
   1004	int ret;
   1005	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1006	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1007	const struct sdhci_msm_offset *msm_offset =
   1008					sdhci_priv_msm_offset(host);
   1009
   1010	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
   1011
   1012	/*
   1013	 * Currently the core_ddr_config register defaults to desired
   1014	 * configuration on reset. Currently reprogramming the power on
   1015	 * reset (POR) value in case it might have been modified by
   1016	 * bootloaders. In the future, if this changes, then the desired
   1017	 * values will need to be programmed appropriately.
   1018	 */
   1019	if (msm_host->updated_ddr_cfg)
   1020		ddr_cfg_offset = msm_offset->core_ddr_config;
   1021	else
   1022		ddr_cfg_offset = msm_offset->core_ddr_config_old;
   1023	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
   1024
   1025	if (mmc->ios.enhanced_strobe) {
   1026		config = readl_relaxed(host->ioaddr +
   1027				msm_offset->core_ddr_200_cfg);
   1028		config |= CORE_CMDIN_RCLK_EN;
   1029		writel_relaxed(config, host->ioaddr +
   1030				msm_offset->core_ddr_200_cfg);
   1031	}
   1032
   1033	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
   1034	config |= CORE_DDR_CAL_EN;
   1035	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
   1036
   1037	ret = readl_relaxed_poll_timeout(host->ioaddr +
   1038					msm_offset->core_dll_status,
   1039					dll_status,
   1040					(dll_status & CORE_DDR_DLL_LOCK),
   1041					10, 1000);
   1042
   1043	if (ret == -ETIMEDOUT) {
   1044		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
   1045		       mmc_hostname(host->mmc), __func__);
   1046		goto out;
   1047	}
   1048
   1049	/*
   1050	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
   1051	 * When MCLK is gated OFF, it is not gated for less than 0.5us
   1052	 * and MCLK must be switched on for at-least 1us before DATA
   1053	 * starts coming. Controllers with 14lpp and later tech DLL cannot
   1054	 * guarantee above requirement. So PWRSAVE_DLL should not be
   1055	 * turned on for host controllers using this DLL.
   1056	 */
   1057	if (!msm_host->use_14lpp_dll_reset) {
   1058		config = readl_relaxed(host->ioaddr +
   1059				msm_offset->core_vendor_spec3);
   1060		config |= CORE_PWRSAVE_DLL;
   1061		writel_relaxed(config, host->ioaddr +
   1062				msm_offset->core_vendor_spec3);
   1063	}
   1064
   1065	/*
   1066	 * Drain writebuffer to ensure above DLL calibration
   1067	 * and PWRSAVE DLL is enabled.
   1068	 */
   1069	wmb();
   1070out:
   1071	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
   1072		 __func__, ret);
   1073	return ret;
   1074}
   1075
   1076static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
   1077{
   1078	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1079	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1080	struct mmc_host *mmc = host->mmc;
   1081	int ret;
   1082	u32 config;
   1083	const struct sdhci_msm_offset *msm_offset =
   1084					msm_host->offset;
   1085
   1086	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
   1087
   1088	/*
   1089	 * Retuning in HS400 (DDR mode) will fail, just reset the
   1090	 * tuning block and restore the saved tuning phase.
   1091	 */
   1092	ret = msm_init_cm_dll(host);
   1093	if (ret)
   1094		goto out;
   1095
   1096	if (!mmc->ios.enhanced_strobe) {
   1097		/* Set the selected phase in delay line hw block */
   1098		ret = msm_config_cm_dll_phase(host,
   1099					      msm_host->saved_tuning_phase);
   1100		if (ret)
   1101			goto out;
   1102		config = readl_relaxed(host->ioaddr +
   1103				msm_offset->core_dll_config);
   1104		config |= CORE_CMD_DAT_TRACK_SEL;
   1105		writel_relaxed(config, host->ioaddr +
   1106				msm_offset->core_dll_config);
   1107	}
   1108
   1109	if (msm_host->use_cdclp533)
   1110		ret = sdhci_msm_cdclp533_calibration(host);
   1111	else
   1112		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
   1113out:
   1114	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
   1115		 __func__, ret);
   1116	return ret;
   1117}
   1118
   1119static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
   1120{
   1121	struct mmc_ios *ios = &host->mmc->ios;
   1122
   1123	/*
   1124	 * Tuning is required for SDR104, HS200 and HS400 cards and
   1125	 * if clock frequency is greater than 100MHz in these modes.
   1126	 */
   1127	if (host->clock <= CORE_FREQ_100MHZ ||
   1128	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
   1129	    ios->timing == MMC_TIMING_MMC_HS200 ||
   1130	    ios->timing == MMC_TIMING_UHS_SDR104) ||
   1131	    ios->enhanced_strobe)
   1132		return false;
   1133
   1134	return true;
   1135}
   1136
   1137static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
   1138{
   1139	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1140	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1141	int ret;
   1142
   1143	/*
   1144	 * SDR DLL comes into picture only for timing modes which needs
   1145	 * tuning.
   1146	 */
   1147	if (!sdhci_msm_is_tuning_needed(host))
   1148		return 0;
   1149
   1150	/* Reset the tuning block */
   1151	ret = msm_init_cm_dll(host);
   1152	if (ret)
   1153		return ret;
   1154
   1155	/* Restore the tuning block */
   1156	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
   1157
   1158	return ret;
   1159}
   1160
   1161static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
   1162{
   1163	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
   1164	u32 config, oldconfig = readl_relaxed(host->ioaddr +
   1165					      msm_offset->core_dll_config);
   1166
   1167	config = oldconfig;
   1168	if (enable) {
   1169		config |= CORE_CDR_EN;
   1170		config &= ~CORE_CDR_EXT_EN;
   1171	} else {
   1172		config &= ~CORE_CDR_EN;
   1173		config |= CORE_CDR_EXT_EN;
   1174	}
   1175
   1176	if (config != oldconfig) {
   1177		writel_relaxed(config, host->ioaddr +
   1178			       msm_offset->core_dll_config);
   1179	}
   1180}
   1181
   1182static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
   1183{
   1184	struct sdhci_host *host = mmc_priv(mmc);
   1185	int tuning_seq_cnt = 10;
   1186	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
   1187	int rc;
   1188	struct mmc_ios ios = host->mmc->ios;
   1189	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1190	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1191
   1192	if (!sdhci_msm_is_tuning_needed(host)) {
   1193		msm_host->use_cdr = false;
   1194		sdhci_msm_set_cdr(host, false);
   1195		return 0;
   1196	}
   1197
   1198	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
   1199	msm_host->use_cdr = true;
   1200
   1201	/*
   1202	 * Clear tuning_done flag before tuning to ensure proper
   1203	 * HS400 settings.
   1204	 */
   1205	msm_host->tuning_done = 0;
   1206
   1207	/*
   1208	 * For HS400 tuning in HS200 timing requires:
   1209	 * - select MCLK/2 in VENDOR_SPEC
   1210	 * - program MCLK to 400MHz (or nearest supported) in GCC
   1211	 */
   1212	if (host->flags & SDHCI_HS400_TUNING) {
   1213		sdhci_msm_hc_select_mode(host);
   1214		msm_set_clock_rate_for_bus_mode(host, ios.clock);
   1215		host->flags &= ~SDHCI_HS400_TUNING;
   1216	}
   1217
   1218retry:
   1219	/* First of all reset the tuning block */
   1220	rc = msm_init_cm_dll(host);
   1221	if (rc)
   1222		return rc;
   1223
   1224	phase = 0;
   1225	do {
   1226		/* Set the phase in delay line hw block */
   1227		rc = msm_config_cm_dll_phase(host, phase);
   1228		if (rc)
   1229			return rc;
   1230
   1231		rc = mmc_send_tuning(mmc, opcode, NULL);
   1232		if (!rc) {
   1233			/* Tuning is successful at this tuning point */
   1234			tuned_phases[tuned_phase_cnt++] = phase;
   1235			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
   1236				 mmc_hostname(mmc), phase);
   1237		}
   1238	} while (++phase < ARRAY_SIZE(tuned_phases));
   1239
   1240	if (tuned_phase_cnt) {
   1241		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
   1242			/*
   1243			 * All phases valid is _almost_ as bad as no phases
   1244			 * valid.  Probably all phases are not really reliable
   1245			 * but we didn't detect where the unreliable place is.
   1246			 * That means we'll essentially be guessing and hoping
   1247			 * we get a good phase.  Better to try a few times.
   1248			 */
   1249			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
   1250				mmc_hostname(mmc));
   1251			if (--tuning_seq_cnt) {
   1252				tuned_phase_cnt = 0;
   1253				goto retry;
   1254			}
   1255		}
   1256
   1257		rc = msm_find_most_appropriate_phase(host, tuned_phases,
   1258						     tuned_phase_cnt);
   1259		if (rc < 0)
   1260			return rc;
   1261		else
   1262			phase = rc;
   1263
   1264		/*
   1265		 * Finally set the selected phase in delay
   1266		 * line hw block.
   1267		 */
   1268		rc = msm_config_cm_dll_phase(host, phase);
   1269		if (rc)
   1270			return rc;
   1271		msm_host->saved_tuning_phase = phase;
   1272		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
   1273			 mmc_hostname(mmc), phase);
   1274	} else {
   1275		if (--tuning_seq_cnt)
   1276			goto retry;
   1277		/* Tuning failed */
   1278		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
   1279		       mmc_hostname(mmc));
   1280		rc = -EIO;
   1281	}
   1282
   1283	if (!rc)
   1284		msm_host->tuning_done = true;
   1285	return rc;
   1286}
   1287
   1288/*
   1289 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
   1290 * This needs to be done for both tuning and enhanced_strobe mode.
   1291 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
   1292 * fixed feedback clock is used.
   1293 */
   1294static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
   1295{
   1296	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1297	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1298	int ret;
   1299
   1300	if (host->clock > CORE_FREQ_100MHZ &&
   1301	    (msm_host->tuning_done || ios->enhanced_strobe) &&
   1302	    !msm_host->calibration_done) {
   1303		ret = sdhci_msm_hs400_dll_calibration(host);
   1304		if (!ret)
   1305			msm_host->calibration_done = true;
   1306		else
   1307			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
   1308			       mmc_hostname(host->mmc), ret);
   1309	}
   1310}
   1311
   1312static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
   1313					unsigned int uhs)
   1314{
   1315	struct mmc_host *mmc = host->mmc;
   1316	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1317	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1318	u16 ctrl_2;
   1319	u32 config;
   1320	const struct sdhci_msm_offset *msm_offset =
   1321					msm_host->offset;
   1322
   1323	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
   1324	/* Select Bus Speed Mode for host */
   1325	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
   1326	switch (uhs) {
   1327	case MMC_TIMING_UHS_SDR12:
   1328		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
   1329		break;
   1330	case MMC_TIMING_UHS_SDR25:
   1331		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
   1332		break;
   1333	case MMC_TIMING_UHS_SDR50:
   1334		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
   1335		break;
   1336	case MMC_TIMING_MMC_HS400:
   1337	case MMC_TIMING_MMC_HS200:
   1338	case MMC_TIMING_UHS_SDR104:
   1339		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
   1340		break;
   1341	case MMC_TIMING_UHS_DDR50:
   1342	case MMC_TIMING_MMC_DDR52:
   1343		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
   1344		break;
   1345	}
   1346
   1347	/*
   1348	 * When clock frequency is less than 100MHz, the feedback clock must be
   1349	 * provided and DLL must not be used so that tuning can be skipped. To
   1350	 * provide feedback clock, the mode selection can be any value less
   1351	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
   1352	 */
   1353	if (host->clock <= CORE_FREQ_100MHZ) {
   1354		if (uhs == MMC_TIMING_MMC_HS400 ||
   1355		    uhs == MMC_TIMING_MMC_HS200 ||
   1356		    uhs == MMC_TIMING_UHS_SDR104)
   1357			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
   1358		/*
   1359		 * DLL is not required for clock <= 100MHz
   1360		 * Thus, make sure DLL it is disabled when not required
   1361		 */
   1362		config = readl_relaxed(host->ioaddr +
   1363				msm_offset->core_dll_config);
   1364		config |= CORE_DLL_RST;
   1365		writel_relaxed(config, host->ioaddr +
   1366				msm_offset->core_dll_config);
   1367
   1368		config = readl_relaxed(host->ioaddr +
   1369				msm_offset->core_dll_config);
   1370		config |= CORE_DLL_PDN;
   1371		writel_relaxed(config, host->ioaddr +
   1372				msm_offset->core_dll_config);
   1373
   1374		/*
   1375		 * The DLL needs to be restored and CDCLP533 recalibrated
   1376		 * when the clock frequency is set back to 400MHz.
   1377		 */
   1378		msm_host->calibration_done = false;
   1379	}
   1380
   1381	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
   1382		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
   1383	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
   1384
   1385	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
   1386		sdhci_msm_hs400(host, &mmc->ios);
   1387}
   1388
   1389static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
   1390{
   1391	struct platform_device *pdev = msm_host->pdev;
   1392	int ret;
   1393
   1394	if (level)
   1395		ret = pinctrl_pm_select_default_state(&pdev->dev);
   1396	else
   1397		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
   1398
   1399	return ret;
   1400}
   1401
   1402static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
   1403{
   1404	if (IS_ERR(mmc->supply.vmmc))
   1405		return 0;
   1406
   1407	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
   1408}
   1409
   1410static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
   1411			      struct mmc_host *mmc, bool level)
   1412{
   1413	int ret;
   1414	struct mmc_ios ios;
   1415
   1416	if (msm_host->vqmmc_enabled == level)
   1417		return 0;
   1418
   1419	if (level) {
   1420		/* Set the IO voltage regulator to default voltage level */
   1421		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
   1422			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
   1423		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
   1424			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
   1425
   1426		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
   1427			ret = mmc_regulator_set_vqmmc(mmc, &ios);
   1428			if (ret < 0) {
   1429				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
   1430					mmc_hostname(mmc), ret);
   1431				goto out;
   1432			}
   1433		}
   1434		ret = regulator_enable(mmc->supply.vqmmc);
   1435	} else {
   1436		ret = regulator_disable(mmc->supply.vqmmc);
   1437	}
   1438
   1439	if (ret)
   1440		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
   1441			mmc_hostname(mmc), level ? "en":"dis", ret);
   1442	else
   1443		msm_host->vqmmc_enabled = level;
   1444out:
   1445	return ret;
   1446}
   1447
   1448static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
   1449			      struct mmc_host *mmc, bool hpm)
   1450{
   1451	int load, ret;
   1452
   1453	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
   1454	ret = regulator_set_load(mmc->supply.vqmmc, load);
   1455	if (ret)
   1456		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
   1457			mmc_hostname(mmc), ret);
   1458	return ret;
   1459}
   1460
   1461static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
   1462			      struct mmc_host *mmc, bool level)
   1463{
   1464	int ret;
   1465	bool always_on;
   1466
   1467	if (IS_ERR(mmc->supply.vqmmc) ||
   1468			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
   1469		return 0;
   1470	/*
   1471	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
   1472	 * and HPM modes by setting the corresponding load.
   1473	 *
   1474	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
   1475	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
   1476	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
   1477	 * Vqmmc should remain ON, So just set the load instead of turning it
   1478	 * off/on.
   1479	 */
   1480	always_on = !mmc_card_is_removable(mmc) &&
   1481			mmc->card && mmc_card_mmc(mmc->card);
   1482
   1483	if (always_on)
   1484		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
   1485	else
   1486		ret = msm_toggle_vqmmc(msm_host, mmc, level);
   1487
   1488	return ret;
   1489}
   1490
   1491static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
   1492{
   1493	init_waitqueue_head(&msm_host->pwr_irq_wait);
   1494}
   1495
   1496static inline void sdhci_msm_complete_pwr_irq_wait(
   1497		struct sdhci_msm_host *msm_host)
   1498{
   1499	wake_up(&msm_host->pwr_irq_wait);
   1500}
   1501
   1502/*
   1503 * sdhci_msm_check_power_status API should be called when registers writes
   1504 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
   1505 * To what state the register writes will change the IO lines should be passed
   1506 * as the argument req_type. This API will check whether the IO line's state
   1507 * is already the expected state and will wait for power irq only if
   1508 * power irq is expected to be triggered based on the current IO line state
   1509 * and expected IO line state.
   1510 */
   1511static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
   1512{
   1513	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1514	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1515	bool done = false;
   1516	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
   1517	const struct sdhci_msm_offset *msm_offset =
   1518					msm_host->offset;
   1519
   1520	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
   1521			mmc_hostname(host->mmc), __func__, req_type,
   1522			msm_host->curr_pwr_state, msm_host->curr_io_level);
   1523
   1524	/*
   1525	 * The power interrupt will not be generated for signal voltage
   1526	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
   1527	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
   1528	 * it as always set.
   1529	 */
   1530	if (!msm_host->mci_removed)
   1531		val = msm_host_readl(msm_host, host,
   1532				msm_offset->core_generics);
   1533	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
   1534	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
   1535		return;
   1536	}
   1537
   1538	/*
   1539	 * The IRQ for request type IO High/LOW will be generated when -
   1540	 * there is a state change in 1.8V enable bit (bit 3) of
   1541	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
   1542	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
   1543	 * to set it to 3.3V before card detection happens, the
   1544	 * IRQ doesn't get triggered as there is no state change in this bit.
   1545	 * The driver already handles this case by changing the IO voltage
   1546	 * level to high as part of controller power up sequence. Hence, check
   1547	 * for host->pwr to handle a case where IO voltage high request is
   1548	 * issued even before controller power up.
   1549	 */
   1550	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
   1551		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
   1552				mmc_hostname(host->mmc), req_type);
   1553		return;
   1554	}
   1555	if ((req_type & msm_host->curr_pwr_state) ||
   1556			(req_type & msm_host->curr_io_level))
   1557		done = true;
   1558	/*
   1559	 * This is needed here to handle cases where register writes will
   1560	 * not change the current bus state or io level of the controller.
   1561	 * In this case, no power irq will be triggerred and we should
   1562	 * not wait.
   1563	 */
   1564	if (!done) {
   1565		if (!wait_event_timeout(msm_host->pwr_irq_wait,
   1566				msm_host->pwr_irq_flag,
   1567				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
   1568			dev_warn(&msm_host->pdev->dev,
   1569				 "%s: pwr_irq for req: (%d) timed out\n",
   1570				 mmc_hostname(host->mmc), req_type);
   1571	}
   1572	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
   1573			__func__, req_type);
   1574}
   1575
   1576static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
   1577{
   1578	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1579	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1580	const struct sdhci_msm_offset *msm_offset =
   1581					msm_host->offset;
   1582
   1583	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
   1584		mmc_hostname(host->mmc),
   1585		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
   1586		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
   1587		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
   1588}
   1589
   1590static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
   1591{
   1592	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1593	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1594	struct mmc_host *mmc = host->mmc;
   1595	u32 irq_status, irq_ack = 0;
   1596	int retry = 10, ret;
   1597	u32 pwr_state = 0, io_level = 0;
   1598	u32 config;
   1599	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
   1600
   1601	irq_status = msm_host_readl(msm_host, host,
   1602			msm_offset->core_pwrctl_status);
   1603	irq_status &= INT_MASK;
   1604
   1605	msm_host_writel(msm_host, irq_status, host,
   1606			msm_offset->core_pwrctl_clear);
   1607
   1608	/*
   1609	 * There is a rare HW scenario where the first clear pulse could be
   1610	 * lost when actual reset and clear/read of status register is
   1611	 * happening at a time. Hence, retry for at least 10 times to make
   1612	 * sure status register is cleared. Otherwise, this will result in
   1613	 * a spurious power IRQ resulting in system instability.
   1614	 */
   1615	while (irq_status & msm_host_readl(msm_host, host,
   1616				msm_offset->core_pwrctl_status)) {
   1617		if (retry == 0) {
   1618			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
   1619					mmc_hostname(host->mmc), irq_status);
   1620			sdhci_msm_dump_pwr_ctrl_regs(host);
   1621			WARN_ON(1);
   1622			break;
   1623		}
   1624		msm_host_writel(msm_host, irq_status, host,
   1625			msm_offset->core_pwrctl_clear);
   1626		retry--;
   1627		udelay(10);
   1628	}
   1629
   1630	/* Handle BUS ON/OFF*/
   1631	if (irq_status & CORE_PWRCTL_BUS_ON) {
   1632		pwr_state = REQ_BUS_ON;
   1633		io_level = REQ_IO_HIGH;
   1634	}
   1635	if (irq_status & CORE_PWRCTL_BUS_OFF) {
   1636		pwr_state = REQ_BUS_OFF;
   1637		io_level = REQ_IO_LOW;
   1638	}
   1639
   1640	if (pwr_state) {
   1641		ret = sdhci_msm_set_vmmc(mmc);
   1642		if (!ret)
   1643			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
   1644					pwr_state & REQ_BUS_ON);
   1645		if (!ret)
   1646			ret = sdhci_msm_set_pincfg(msm_host,
   1647					pwr_state & REQ_BUS_ON);
   1648		if (!ret)
   1649			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
   1650		else
   1651			irq_ack |= CORE_PWRCTL_BUS_FAIL;
   1652	}
   1653
   1654	/* Handle IO LOW/HIGH */
   1655	if (irq_status & CORE_PWRCTL_IO_LOW)
   1656		io_level = REQ_IO_LOW;
   1657
   1658	if (irq_status & CORE_PWRCTL_IO_HIGH)
   1659		io_level = REQ_IO_HIGH;
   1660
   1661	if (io_level)
   1662		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
   1663
   1664	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
   1665		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
   1666		if (ret < 0) {
   1667			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
   1668					mmc_hostname(mmc), ret,
   1669					mmc->ios.signal_voltage, mmc->ios.vdd,
   1670					irq_status);
   1671			irq_ack |= CORE_PWRCTL_IO_FAIL;
   1672		}
   1673	}
   1674
   1675	/*
   1676	 * The driver has to acknowledge the interrupt, switch voltages and
   1677	 * report back if it succeded or not to this register. The voltage
   1678	 * switches are handled by the sdhci core, so just report success.
   1679	 */
   1680	msm_host_writel(msm_host, irq_ack, host,
   1681			msm_offset->core_pwrctl_ctl);
   1682
   1683	/*
   1684	 * If we don't have info regarding the voltage levels supported by
   1685	 * regulators, don't change the IO PAD PWR SWITCH.
   1686	 */
   1687	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
   1688		u32 new_config;
   1689		/*
   1690		 * We should unset IO PAD PWR switch only if the register write
   1691		 * can set IO lines high and the regulator also switches to 3 V.
   1692		 * Else, we should keep the IO PAD PWR switch set.
   1693		 * This is applicable to certain targets where eMMC vccq supply
   1694		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
   1695		 * IO PAD PWR switch must be kept set to reflect actual
   1696		 * regulator voltage. This way, during initialization of
   1697		 * controllers with only 1.8V, we will set the IO PAD bit
   1698		 * without waiting for a REQ_IO_LOW.
   1699		 */
   1700		config = readl_relaxed(host->ioaddr +
   1701				msm_offset->core_vendor_spec);
   1702		new_config = config;
   1703
   1704		if ((io_level & REQ_IO_HIGH) &&
   1705				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
   1706			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
   1707		else if ((io_level & REQ_IO_LOW) ||
   1708				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
   1709			new_config |= CORE_IO_PAD_PWR_SWITCH;
   1710
   1711		if (config ^ new_config)
   1712			writel_relaxed(new_config, host->ioaddr +
   1713					msm_offset->core_vendor_spec);
   1714	}
   1715
   1716	if (pwr_state)
   1717		msm_host->curr_pwr_state = pwr_state;
   1718	if (io_level)
   1719		msm_host->curr_io_level = io_level;
   1720
   1721	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
   1722		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
   1723		irq_ack);
   1724}
   1725
   1726static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
   1727{
   1728	struct sdhci_host *host = (struct sdhci_host *)data;
   1729	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1730	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1731
   1732	sdhci_msm_handle_pwr_irq(host, irq);
   1733	msm_host->pwr_irq_flag = 1;
   1734	sdhci_msm_complete_pwr_irq_wait(msm_host);
   1735
   1736
   1737	return IRQ_HANDLED;
   1738}
   1739
   1740static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
   1741{
   1742	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1743	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1744	struct clk *core_clk = msm_host->bulk_clks[0].clk;
   1745
   1746	return clk_round_rate(core_clk, ULONG_MAX);
   1747}
   1748
   1749static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
   1750{
   1751	return SDHCI_MSM_MIN_CLOCK;
   1752}
   1753
   1754/*
   1755 * __sdhci_msm_set_clock - sdhci_msm clock control.
   1756 *
   1757 * Description:
   1758 * MSM controller does not use internal divider and
   1759 * instead directly control the GCC clock as per
   1760 * HW recommendation.
   1761 **/
   1762static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
   1763{
   1764	u16 clk;
   1765
   1766	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
   1767
   1768	if (clock == 0)
   1769		return;
   1770
   1771	/*
   1772	 * MSM controller do not use clock divider.
   1773	 * Thus read SDHCI_CLOCK_CONTROL and only enable
   1774	 * clock with no divider value programmed.
   1775	 */
   1776	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
   1777	sdhci_enable_clk(host, clk);
   1778}
   1779
   1780/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
   1781static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
   1782{
   1783	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   1784	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   1785
   1786	if (!clock) {
   1787		host->mmc->actual_clock = msm_host->clk_rate = 0;
   1788		goto out;
   1789	}
   1790
   1791	sdhci_msm_hc_select_mode(host);
   1792
   1793	msm_set_clock_rate_for_bus_mode(host, clock);
   1794out:
   1795	__sdhci_msm_set_clock(host, clock);
   1796}
   1797
   1798/*****************************************************************************\
   1799 *                                                                           *
   1800 * Inline Crypto Engine (ICE) support                                        *
   1801 *                                                                           *
   1802\*****************************************************************************/
   1803
   1804#ifdef CONFIG_MMC_CRYPTO
   1805
   1806#define AES_256_XTS_KEY_SIZE			64
   1807
   1808/* QCOM ICE registers */
   1809
   1810#define QCOM_ICE_REG_VERSION			0x0008
   1811
   1812#define QCOM_ICE_REG_FUSE_SETTING		0x0010
   1813#define QCOM_ICE_FUSE_SETTING_MASK		0x1
   1814#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
   1815#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
   1816
   1817#define QCOM_ICE_REG_BIST_STATUS		0x0070
   1818#define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
   1819
   1820#define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
   1821
   1822#define sdhci_msm_ice_writel(host, val, reg)	\
   1823	writel((val), (host)->ice_mem + (reg))
   1824#define sdhci_msm_ice_readl(host, reg)	\
   1825	readl((host)->ice_mem + (reg))
   1826
   1827static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
   1828{
   1829	struct device *dev = mmc_dev(msm_host->mmc);
   1830	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
   1831	int major = regval >> 24;
   1832	int minor = (regval >> 16) & 0xFF;
   1833	int step = regval & 0xFFFF;
   1834
   1835	/* For now this driver only supports ICE version 3. */
   1836	if (major != 3) {
   1837		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
   1838			 major, minor, step);
   1839		return false;
   1840	}
   1841
   1842	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
   1843		 major, minor, step);
   1844
   1845	/* If fuses are blown, ICE might not work in the standard way. */
   1846	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
   1847	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
   1848		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
   1849		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
   1850		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
   1851		return false;
   1852	}
   1853	return true;
   1854}
   1855
   1856static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
   1857{
   1858	return devm_clk_get(dev, "ice");
   1859}
   1860
   1861static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
   1862			      struct cqhci_host *cq_host)
   1863{
   1864	struct mmc_host *mmc = msm_host->mmc;
   1865	struct device *dev = mmc_dev(mmc);
   1866	struct resource *res;
   1867
   1868	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
   1869		return 0;
   1870
   1871	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
   1872					   "ice");
   1873	if (!res) {
   1874		dev_warn(dev, "ICE registers not found\n");
   1875		goto disable;
   1876	}
   1877
   1878	if (!qcom_scm_ice_available()) {
   1879		dev_warn(dev, "ICE SCM interface not found\n");
   1880		goto disable;
   1881	}
   1882
   1883	msm_host->ice_mem = devm_ioremap_resource(dev, res);
   1884	if (IS_ERR(msm_host->ice_mem))
   1885		return PTR_ERR(msm_host->ice_mem);
   1886
   1887	if (!sdhci_msm_ice_supported(msm_host))
   1888		goto disable;
   1889
   1890	mmc->caps2 |= MMC_CAP2_CRYPTO;
   1891	return 0;
   1892
   1893disable:
   1894	dev_warn(dev, "Disabling inline encryption support\n");
   1895	return 0;
   1896}
   1897
   1898static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
   1899{
   1900	u32 regval;
   1901
   1902	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
   1903	/*
   1904	 * Enable low power mode sequence
   1905	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
   1906	 */
   1907	regval |= 0x7000;
   1908	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
   1909}
   1910
   1911static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
   1912{
   1913	u32 regval;
   1914
   1915	/* ICE Optimizations Enable Sequence */
   1916	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
   1917	regval |= 0xD807100;
   1918	/* ICE HPG requires delay before writing */
   1919	udelay(5);
   1920	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
   1921	udelay(5);
   1922}
   1923
   1924/*
   1925 * Wait until the ICE BIST (built-in self-test) has completed.
   1926 *
   1927 * This may be necessary before ICE can be used.
   1928 *
   1929 * Note that we don't really care whether the BIST passed or failed; we really
   1930 * just want to make sure that it isn't still running.  This is because (a) the
   1931 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
   1932 * documented to reject crypto requests if the BIST fails, so we needn't do it
   1933 * in software too, and (c) properly testing storage encryption requires testing
   1934 * the full storage stack anyway, and not relying on hardware-level self-tests.
   1935 */
   1936static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
   1937{
   1938	u32 regval;
   1939	int err;
   1940
   1941	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
   1942				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
   1943				 50, 5000);
   1944	if (err)
   1945		dev_err(mmc_dev(msm_host->mmc),
   1946			"Timed out waiting for ICE self-test to complete\n");
   1947	return err;
   1948}
   1949
   1950static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
   1951{
   1952	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
   1953		return;
   1954	sdhci_msm_ice_low_power_mode_enable(msm_host);
   1955	sdhci_msm_ice_optimization_enable(msm_host);
   1956	sdhci_msm_ice_wait_bist_status(msm_host);
   1957}
   1958
   1959static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
   1960{
   1961	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
   1962		return 0;
   1963	return sdhci_msm_ice_wait_bist_status(msm_host);
   1964}
   1965
   1966/*
   1967 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
   1968 * vendor-specific SCM calls for this; it doesn't support the standard way.
   1969 */
   1970static int sdhci_msm_program_key(struct cqhci_host *cq_host,
   1971				 const union cqhci_crypto_cfg_entry *cfg,
   1972				 int slot)
   1973{
   1974	struct device *dev = mmc_dev(cq_host->mmc);
   1975	union cqhci_crypto_cap_entry cap;
   1976	union {
   1977		u8 bytes[AES_256_XTS_KEY_SIZE];
   1978		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
   1979	} key;
   1980	int i;
   1981	int err;
   1982
   1983	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
   1984		return qcom_scm_ice_invalidate_key(slot);
   1985
   1986	/* Only AES-256-XTS has been tested so far. */
   1987	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
   1988	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
   1989	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
   1990		dev_err_ratelimited(dev,
   1991				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
   1992				    cap.algorithm_id, cap.key_size);
   1993		return -EINVAL;
   1994	}
   1995
   1996	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
   1997
   1998	/*
   1999	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
   2000	 * do the same, in order for the final key be correct.
   2001	 */
   2002	for (i = 0; i < ARRAY_SIZE(key.words); i++)
   2003		__cpu_to_be32s(&key.words[i]);
   2004
   2005	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
   2006				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
   2007				   cfg->data_unit_size);
   2008	memzero_explicit(&key, sizeof(key));
   2009	return err;
   2010}
   2011#else /* CONFIG_MMC_CRYPTO */
   2012static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
   2013{
   2014	return NULL;
   2015}
   2016
   2017static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
   2018				     struct cqhci_host *cq_host)
   2019{
   2020	return 0;
   2021}
   2022
   2023static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
   2024{
   2025}
   2026
   2027static inline int __maybe_unused
   2028sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
   2029{
   2030	return 0;
   2031}
   2032#endif /* !CONFIG_MMC_CRYPTO */
   2033
   2034/*****************************************************************************\
   2035 *                                                                           *
   2036 * MSM Command Queue Engine (CQE)                                            *
   2037 *                                                                           *
   2038\*****************************************************************************/
   2039
   2040static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
   2041{
   2042	int cmd_error = 0;
   2043	int data_error = 0;
   2044
   2045	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
   2046		return intmask;
   2047
   2048	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
   2049	return 0;
   2050}
   2051
   2052static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
   2053{
   2054	struct sdhci_host *host = mmc_priv(mmc);
   2055	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2056	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2057
   2058	sdhci_cqe_enable(mmc);
   2059	sdhci_msm_ice_enable(msm_host);
   2060}
   2061
   2062static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
   2063{
   2064	struct sdhci_host *host = mmc_priv(mmc);
   2065	unsigned long flags;
   2066	u32 ctrl;
   2067
   2068	/*
   2069	 * When CQE is halted, the legacy SDHCI path operates only
   2070	 * on 16-byte descriptors in 64bit mode.
   2071	 */
   2072	if (host->flags & SDHCI_USE_64_BIT_DMA)
   2073		host->desc_sz = 16;
   2074
   2075	spin_lock_irqsave(&host->lock, flags);
   2076
   2077	/*
   2078	 * During CQE command transfers, command complete bit gets latched.
   2079	 * So s/w should clear command complete interrupt status when CQE is
   2080	 * either halted or disabled. Otherwise unexpected SDCHI legacy
   2081	 * interrupt gets triggered when CQE is halted/disabled.
   2082	 */
   2083	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
   2084	ctrl |= SDHCI_INT_RESPONSE;
   2085	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
   2086	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
   2087
   2088	spin_unlock_irqrestore(&host->lock, flags);
   2089
   2090	sdhci_cqe_disable(mmc, recovery);
   2091}
   2092
   2093static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
   2094{
   2095	u32 count, start = 15;
   2096
   2097	__sdhci_set_timeout(host, cmd);
   2098	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
   2099	/*
   2100	 * Update software timeout value if its value is less than hardware data
   2101	 * timeout value. Qcom SoC hardware data timeout value was calculated
   2102	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
   2103	 */
   2104	if (cmd && cmd->data && host->clock > 400000 &&
   2105	    host->clock <= 50000000 &&
   2106	    ((1 << (count + start)) > (10 * host->clock)))
   2107		host->data_timeout = 22LL * NSEC_PER_SEC;
   2108}
   2109
   2110static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
   2111	.enable		= sdhci_msm_cqe_enable,
   2112	.disable	= sdhci_msm_cqe_disable,
   2113#ifdef CONFIG_MMC_CRYPTO
   2114	.program_key	= sdhci_msm_program_key,
   2115#endif
   2116};
   2117
   2118static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
   2119				struct platform_device *pdev)
   2120{
   2121	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2122	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2123	struct cqhci_host *cq_host;
   2124	bool dma64;
   2125	u32 cqcfg;
   2126	int ret;
   2127
   2128	/*
   2129	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
   2130	 * So ensure ADMA table is allocated for 16byte descriptors.
   2131	 */
   2132	if (host->caps & SDHCI_CAN_64BIT)
   2133		host->alloc_desc_sz = 16;
   2134
   2135	ret = sdhci_setup_host(host);
   2136	if (ret)
   2137		return ret;
   2138
   2139	cq_host = cqhci_pltfm_init(pdev);
   2140	if (IS_ERR(cq_host)) {
   2141		ret = PTR_ERR(cq_host);
   2142		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
   2143		goto cleanup;
   2144	}
   2145
   2146	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
   2147	cq_host->ops = &sdhci_msm_cqhci_ops;
   2148
   2149	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
   2150
   2151	ret = sdhci_msm_ice_init(msm_host, cq_host);
   2152	if (ret)
   2153		goto cleanup;
   2154
   2155	ret = cqhci_init(cq_host, host->mmc, dma64);
   2156	if (ret) {
   2157		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
   2158				mmc_hostname(host->mmc), ret);
   2159		goto cleanup;
   2160	}
   2161
   2162	/* Disable cqe reset due to cqe enable signal */
   2163	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
   2164	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
   2165	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
   2166
   2167	/*
   2168	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
   2169	 * So limit desc_sz to 12 so that the data commands that are sent
   2170	 * during card initialization (before CQE gets enabled) would
   2171	 * get executed without any issues.
   2172	 */
   2173	if (host->flags & SDHCI_USE_64_BIT_DMA)
   2174		host->desc_sz = 12;
   2175
   2176	ret = __sdhci_add_host(host);
   2177	if (ret)
   2178		goto cleanup;
   2179
   2180	dev_info(&pdev->dev, "%s: CQE init: success\n",
   2181			mmc_hostname(host->mmc));
   2182	return ret;
   2183
   2184cleanup:
   2185	sdhci_cleanup_host(host);
   2186	return ret;
   2187}
   2188
   2189/*
   2190 * Platform specific register write functions. This is so that, if any
   2191 * register write needs to be followed up by platform specific actions,
   2192 * they can be added here. These functions can go to sleep when writes
   2193 * to certain registers are done.
   2194 * These functions are relying on sdhci_set_ios not using spinlock.
   2195 */
   2196static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
   2197{
   2198	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2199	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2200	u32 req_type = 0;
   2201
   2202	switch (reg) {
   2203	case SDHCI_HOST_CONTROL2:
   2204		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
   2205			REQ_IO_HIGH;
   2206		break;
   2207	case SDHCI_SOFTWARE_RESET:
   2208		if (host->pwr && (val & SDHCI_RESET_ALL))
   2209			req_type = REQ_BUS_OFF;
   2210		break;
   2211	case SDHCI_POWER_CONTROL:
   2212		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
   2213		break;
   2214	case SDHCI_TRANSFER_MODE:
   2215		msm_host->transfer_mode = val;
   2216		break;
   2217	case SDHCI_COMMAND:
   2218		if (!msm_host->use_cdr)
   2219			break;
   2220		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
   2221		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
   2222		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
   2223			sdhci_msm_set_cdr(host, true);
   2224		else
   2225			sdhci_msm_set_cdr(host, false);
   2226		break;
   2227	}
   2228
   2229	if (req_type) {
   2230		msm_host->pwr_irq_flag = 0;
   2231		/*
   2232		 * Since this register write may trigger a power irq, ensure
   2233		 * all previous register writes are complete by this point.
   2234		 */
   2235		mb();
   2236	}
   2237	return req_type;
   2238}
   2239
   2240/* This function may sleep*/
   2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
   2242{
   2243	u32 req_type = 0;
   2244
   2245	req_type = __sdhci_msm_check_write(host, val, reg);
   2246	writew_relaxed(val, host->ioaddr + reg);
   2247
   2248	if (req_type)
   2249		sdhci_msm_check_power_status(host, req_type);
   2250}
   2251
   2252/* This function may sleep*/
   2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
   2254{
   2255	u32 req_type = 0;
   2256
   2257	req_type = __sdhci_msm_check_write(host, val, reg);
   2258
   2259	writeb_relaxed(val, host->ioaddr + reg);
   2260
   2261	if (req_type)
   2262		sdhci_msm_check_power_status(host, req_type);
   2263}
   2264
   2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
   2266{
   2267	struct mmc_host *mmc = msm_host->mmc;
   2268	struct regulator *supply = mmc->supply.vqmmc;
   2269	u32 caps = 0, config;
   2270	struct sdhci_host *host = mmc_priv(mmc);
   2271	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
   2272
   2273	if (!IS_ERR(mmc->supply.vqmmc)) {
   2274		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
   2275			caps |= CORE_1_8V_SUPPORT;
   2276		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
   2277			caps |= CORE_3_0V_SUPPORT;
   2278
   2279		if (!caps)
   2280			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
   2281					mmc_hostname(mmc));
   2282	}
   2283
   2284	if (caps) {
   2285		/*
   2286		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
   2287		 * bit can be used as required later on.
   2288		 */
   2289		u32 io_level = msm_host->curr_io_level;
   2290
   2291		config = readl_relaxed(host->ioaddr +
   2292				msm_offset->core_vendor_spec);
   2293		config |= CORE_IO_PAD_PWR_SWITCH_EN;
   2294
   2295		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
   2296			config &= ~CORE_IO_PAD_PWR_SWITCH;
   2297		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
   2298			config |= CORE_IO_PAD_PWR_SWITCH;
   2299
   2300		writel_relaxed(config,
   2301				host->ioaddr + msm_offset->core_vendor_spec);
   2302	}
   2303	msm_host->caps_0 |= caps;
   2304	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
   2305}
   2306
   2307static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
   2308{
   2309	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
   2310		cqhci_deactivate(host->mmc);
   2311	sdhci_reset(host, mask);
   2312}
   2313
   2314static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
   2315{
   2316	int ret;
   2317
   2318	ret = mmc_regulator_get_supply(msm_host->mmc);
   2319	if (ret)
   2320		return ret;
   2321
   2322	sdhci_msm_set_regulator_caps(msm_host);
   2323
   2324	return 0;
   2325}
   2326
   2327static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
   2328				      struct mmc_ios *ios)
   2329{
   2330	struct sdhci_host *host = mmc_priv(mmc);
   2331	u16 ctrl, status;
   2332
   2333	/*
   2334	 * Signal Voltage Switching is only applicable for Host Controllers
   2335	 * v3.00 and above.
   2336	 */
   2337	if (host->version < SDHCI_SPEC_300)
   2338		return 0;
   2339
   2340	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
   2341
   2342	switch (ios->signal_voltage) {
   2343	case MMC_SIGNAL_VOLTAGE_330:
   2344		if (!(host->flags & SDHCI_SIGNALING_330))
   2345			return -EINVAL;
   2346
   2347		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
   2348		ctrl &= ~SDHCI_CTRL_VDD_180;
   2349		break;
   2350	case MMC_SIGNAL_VOLTAGE_180:
   2351		if (!(host->flags & SDHCI_SIGNALING_180))
   2352			return -EINVAL;
   2353
   2354		/* Enable 1.8V Signal Enable in the Host Control2 register */
   2355		ctrl |= SDHCI_CTRL_VDD_180;
   2356		break;
   2357
   2358	default:
   2359		return -EINVAL;
   2360	}
   2361
   2362	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
   2363
   2364	/* Wait for 5ms */
   2365	usleep_range(5000, 5500);
   2366
   2367	/* regulator output should be stable within 5 ms */
   2368	status = ctrl & SDHCI_CTRL_VDD_180;
   2369	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
   2370	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
   2371		return 0;
   2372
   2373	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
   2374		mmc_hostname(mmc));
   2375
   2376	return -EAGAIN;
   2377}
   2378
   2379#define DRIVER_NAME "sdhci_msm"
   2380#define SDHCI_MSM_DUMP(f, x...) \
   2381	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
   2382
   2383static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
   2384{
   2385	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2386	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2387	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
   2388
   2389	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
   2390
   2391	SDHCI_MSM_DUMP(
   2392			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
   2393		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
   2394		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
   2395		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
   2396	SDHCI_MSM_DUMP(
   2397			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
   2398		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
   2399		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
   2400		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
   2401	SDHCI_MSM_DUMP(
   2402			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
   2403		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
   2404		readl_relaxed(host->ioaddr +
   2405			msm_offset->core_vendor_spec_func2),
   2406		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
   2407}
   2408
   2409static const struct sdhci_msm_variant_ops mci_var_ops = {
   2410	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
   2411	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
   2412};
   2413
   2414static const struct sdhci_msm_variant_ops v5_var_ops = {
   2415	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
   2416	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
   2417};
   2418
   2419static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
   2420	.var_ops = &mci_var_ops,
   2421	.offset = &sdhci_msm_mci_offset,
   2422};
   2423
   2424static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
   2425	.mci_removed = true,
   2426	.var_ops = &v5_var_ops,
   2427	.offset = &sdhci_msm_v5_offset,
   2428};
   2429
   2430static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
   2431	.mci_removed = true,
   2432	.restore_dll_config = true,
   2433	.var_ops = &v5_var_ops,
   2434	.offset = &sdhci_msm_v5_offset,
   2435};
   2436
   2437static const struct of_device_id sdhci_msm_dt_match[] = {
   2438	 /* Following two entries are deprecated (kept only for backward compatibility) */
   2439	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
   2440	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
   2441	/* Add entries for sdcc versions less than 5.0 here */
   2442	{.compatible = "qcom,apq8084-sdhci", .data = &sdhci_msm_mci_var},
   2443	{.compatible = "qcom,msm8226-sdhci", .data = &sdhci_msm_mci_var},
   2444	{.compatible = "qcom,msm8916-sdhci", .data = &sdhci_msm_mci_var},
   2445	{.compatible = "qcom,msm8953-sdhci", .data = &sdhci_msm_mci_var},
   2446	{.compatible = "qcom,msm8974-sdhci", .data = &sdhci_msm_mci_var},
   2447	{.compatible = "qcom,msm8992-sdhci", .data = &sdhci_msm_mci_var},
   2448	{.compatible = "qcom,msm8994-sdhci", .data = &sdhci_msm_mci_var},
   2449	{.compatible = "qcom,msm8996-sdhci", .data = &sdhci_msm_mci_var},
   2450	/*
   2451	 * Add entries for sdcc version 5.0 here. For SDCC version 5.0.0,
   2452	 * MCI registers are removed from SDCC interface and some registers
   2453	 * are moved to HC.
   2454	 */
   2455	{.compatible = "qcom,qcs404-sdhci", .data = &sdhci_msm_v5_var},
   2456	{.compatible = "qcom,sdx55-sdhci",  .data = &sdhci_msm_v5_var},
   2457	{.compatible = "qcom,sdx65-sdhci",  .data = &sdhci_msm_v5_var},
   2458	{.compatible = "qcom,sdm630-sdhci", .data = &sdhci_msm_v5_var},
   2459	{.compatible = "qcom,sm6125-sdhci", .data = &sdhci_msm_v5_var},
   2460	{.compatible = "qcom,sm6350-sdhci", .data = &sdhci_msm_v5_var},
   2461	{.compatible = "qcom,sm8150-sdhci", .data = &sdhci_msm_v5_var},
   2462	{.compatible = "qcom,sm8250-sdhci", .data = &sdhci_msm_v5_var},
   2463	{.compatible = "qcom,sc7280-sdhci", .data = &sdhci_msm_v5_var},
   2464	/* Add entries where soc specific handling is required, here */
   2465	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
   2466	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
   2467	{},
   2468};
   2469
   2470MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
   2471
   2472static const struct sdhci_ops sdhci_msm_ops = {
   2473	.reset = sdhci_msm_reset,
   2474	.set_clock = sdhci_msm_set_clock,
   2475	.get_min_clock = sdhci_msm_get_min_clock,
   2476	.get_max_clock = sdhci_msm_get_max_clock,
   2477	.set_bus_width = sdhci_set_bus_width,
   2478	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
   2479	.write_w = sdhci_msm_writew,
   2480	.write_b = sdhci_msm_writeb,
   2481	.irq	= sdhci_msm_cqe_irq,
   2482	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
   2483	.set_power = sdhci_set_power_noreg,
   2484	.set_timeout = sdhci_msm_set_timeout,
   2485};
   2486
   2487static const struct sdhci_pltfm_data sdhci_msm_pdata = {
   2488	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
   2489		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
   2490		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
   2491		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
   2492
   2493	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
   2494	.ops = &sdhci_msm_ops,
   2495};
   2496
   2497static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
   2498		struct sdhci_host *host)
   2499{
   2500	struct device_node *node = pdev->dev.of_node;
   2501	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2502	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2503
   2504	if (of_property_read_u32(node, "qcom,ddr-config",
   2505				&msm_host->ddr_config))
   2506		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
   2507
   2508	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
   2509}
   2510
   2511static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
   2512{
   2513	struct reset_control *reset;
   2514	int ret = 0;
   2515
   2516	reset = reset_control_get_optional_exclusive(dev, NULL);
   2517	if (IS_ERR(reset))
   2518		return dev_err_probe(dev, PTR_ERR(reset),
   2519				"unable to acquire core_reset\n");
   2520
   2521	if (!reset)
   2522		return ret;
   2523
   2524	ret = reset_control_assert(reset);
   2525	if (ret) {
   2526		reset_control_put(reset);
   2527		return dev_err_probe(dev, ret, "core_reset assert failed\n");
   2528	}
   2529
   2530	/*
   2531	 * The hardware requirement for delay between assert/deassert
   2532	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
   2533	 * ~125us (4/32768). To be on the safe side add 200us delay.
   2534	 */
   2535	usleep_range(200, 210);
   2536
   2537	ret = reset_control_deassert(reset);
   2538	if (ret) {
   2539		reset_control_put(reset);
   2540		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
   2541	}
   2542
   2543	usleep_range(200, 210);
   2544	reset_control_put(reset);
   2545
   2546	return ret;
   2547}
   2548
   2549static int sdhci_msm_probe(struct platform_device *pdev)
   2550{
   2551	struct sdhci_host *host;
   2552	struct sdhci_pltfm_host *pltfm_host;
   2553	struct sdhci_msm_host *msm_host;
   2554	struct clk *clk;
   2555	int ret;
   2556	u16 host_version, core_minor;
   2557	u32 core_version, config;
   2558	u8 core_major;
   2559	const struct sdhci_msm_offset *msm_offset;
   2560	const struct sdhci_msm_variant_info *var_info;
   2561	struct device_node *node = pdev->dev.of_node;
   2562
   2563	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
   2564	if (IS_ERR(host))
   2565		return PTR_ERR(host);
   2566
   2567	host->sdma_boundary = 0;
   2568	pltfm_host = sdhci_priv(host);
   2569	msm_host = sdhci_pltfm_priv(pltfm_host);
   2570	msm_host->mmc = host->mmc;
   2571	msm_host->pdev = pdev;
   2572
   2573	ret = mmc_of_parse(host->mmc);
   2574	if (ret)
   2575		goto pltfm_free;
   2576
   2577	/*
   2578	 * Based on the compatible string, load the required msm host info from
   2579	 * the data associated with the version info.
   2580	 */
   2581	var_info = of_device_get_match_data(&pdev->dev);
   2582
   2583	msm_host->mci_removed = var_info->mci_removed;
   2584	msm_host->restore_dll_config = var_info->restore_dll_config;
   2585	msm_host->var_ops = var_info->var_ops;
   2586	msm_host->offset = var_info->offset;
   2587
   2588	msm_offset = msm_host->offset;
   2589
   2590	sdhci_get_of_property(pdev);
   2591	sdhci_msm_get_of_property(pdev, host);
   2592
   2593	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
   2594
   2595	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
   2596	if (ret)
   2597		goto pltfm_free;
   2598
   2599	/* Setup SDCC bus voter clock. */
   2600	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
   2601	if (!IS_ERR(msm_host->bus_clk)) {
   2602		/* Vote for max. clk rate for max. performance */
   2603		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
   2604		if (ret)
   2605			goto pltfm_free;
   2606		ret = clk_prepare_enable(msm_host->bus_clk);
   2607		if (ret)
   2608			goto pltfm_free;
   2609	}
   2610
   2611	/* Setup main peripheral bus clock */
   2612	clk = devm_clk_get(&pdev->dev, "iface");
   2613	if (IS_ERR(clk)) {
   2614		ret = PTR_ERR(clk);
   2615		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
   2616		goto bus_clk_disable;
   2617	}
   2618	msm_host->bulk_clks[1].clk = clk;
   2619
   2620	/* Setup SDC MMC clock */
   2621	clk = devm_clk_get(&pdev->dev, "core");
   2622	if (IS_ERR(clk)) {
   2623		ret = PTR_ERR(clk);
   2624		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
   2625		goto bus_clk_disable;
   2626	}
   2627	msm_host->bulk_clks[0].clk = clk;
   2628
   2629	 /* Check for optional interconnect paths */
   2630	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
   2631	if (ret)
   2632		goto bus_clk_disable;
   2633
   2634	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
   2635	if (ret)
   2636		goto bus_clk_disable;
   2637
   2638	/* OPP table is optional */
   2639	ret = devm_pm_opp_of_add_table(&pdev->dev);
   2640	if (ret && ret != -ENODEV) {
   2641		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
   2642		goto bus_clk_disable;
   2643	}
   2644
   2645	/* Vote for maximum clock rate for maximum performance */
   2646	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
   2647	if (ret)
   2648		dev_warn(&pdev->dev, "core clock boost failed\n");
   2649
   2650	clk = devm_clk_get(&pdev->dev, "cal");
   2651	if (IS_ERR(clk))
   2652		clk = NULL;
   2653	msm_host->bulk_clks[2].clk = clk;
   2654
   2655	clk = devm_clk_get(&pdev->dev, "sleep");
   2656	if (IS_ERR(clk))
   2657		clk = NULL;
   2658	msm_host->bulk_clks[3].clk = clk;
   2659
   2660	clk = sdhci_msm_ice_get_clk(&pdev->dev);
   2661	if (IS_ERR(clk))
   2662		clk = NULL;
   2663	msm_host->bulk_clks[4].clk = clk;
   2664
   2665	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
   2666				      msm_host->bulk_clks);
   2667	if (ret)
   2668		goto bus_clk_disable;
   2669
   2670	/*
   2671	 * xo clock is needed for FLL feature of cm_dll.
   2672	 * In case if xo clock is not mentioned in DT, warn and proceed.
   2673	 */
   2674	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
   2675	if (IS_ERR(msm_host->xo_clk)) {
   2676		ret = PTR_ERR(msm_host->xo_clk);
   2677		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
   2678	}
   2679
   2680	if (!msm_host->mci_removed) {
   2681		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
   2682		if (IS_ERR(msm_host->core_mem)) {
   2683			ret = PTR_ERR(msm_host->core_mem);
   2684			goto clk_disable;
   2685		}
   2686	}
   2687
   2688	/* Reset the vendor spec register to power on reset state */
   2689	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
   2690			host->ioaddr + msm_offset->core_vendor_spec);
   2691
   2692	if (!msm_host->mci_removed) {
   2693		/* Set HC_MODE_EN bit in HC_MODE register */
   2694		msm_host_writel(msm_host, HC_MODE_EN, host,
   2695				msm_offset->core_hc_mode);
   2696		config = msm_host_readl(msm_host, host,
   2697				msm_offset->core_hc_mode);
   2698		config |= FF_CLK_SW_RST_DIS;
   2699		msm_host_writel(msm_host, config, host,
   2700				msm_offset->core_hc_mode);
   2701	}
   2702
   2703	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
   2704	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
   2705		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
   2706			       SDHCI_VENDOR_VER_SHIFT));
   2707
   2708	core_version = msm_host_readl(msm_host, host,
   2709			msm_offset->core_mci_version);
   2710	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
   2711		      CORE_VERSION_MAJOR_SHIFT;
   2712	core_minor = core_version & CORE_VERSION_MINOR_MASK;
   2713	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
   2714		core_version, core_major, core_minor);
   2715
   2716	if (core_major == 1 && core_minor >= 0x42)
   2717		msm_host->use_14lpp_dll_reset = true;
   2718
   2719	/*
   2720	 * SDCC 5 controller with major version 1, minor version 0x34 and later
   2721	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
   2722	 */
   2723	if (core_major == 1 && core_minor < 0x34)
   2724		msm_host->use_cdclp533 = true;
   2725
   2726	/*
   2727	 * Support for some capabilities is not advertised by newer
   2728	 * controller versions and must be explicitly enabled.
   2729	 */
   2730	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
   2731		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
   2732		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
   2733		writel_relaxed(config, host->ioaddr +
   2734				msm_offset->core_vendor_spec_capabilities0);
   2735	}
   2736
   2737	if (core_major == 1 && core_minor >= 0x49)
   2738		msm_host->updated_ddr_cfg = true;
   2739
   2740	if (core_major == 1 && core_minor >= 0x71)
   2741		msm_host->uses_tassadar_dll = true;
   2742
   2743	ret = sdhci_msm_register_vreg(msm_host);
   2744	if (ret)
   2745		goto clk_disable;
   2746
   2747	/*
   2748	 * Power on reset state may trigger power irq if previous status of
   2749	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
   2750	 * interrupt in GIC, any pending power irq interrupt should be
   2751	 * acknowledged. Otherwise power irq interrupt handler would be
   2752	 * fired prematurely.
   2753	 */
   2754	sdhci_msm_handle_pwr_irq(host, 0);
   2755
   2756	/*
   2757	 * Ensure that above writes are propogated before interrupt enablement
   2758	 * in GIC.
   2759	 */
   2760	mb();
   2761
   2762	/* Setup IRQ for handling power/voltage tasks with PMIC */
   2763	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
   2764	if (msm_host->pwr_irq < 0) {
   2765		ret = msm_host->pwr_irq;
   2766		goto clk_disable;
   2767	}
   2768
   2769	sdhci_msm_init_pwr_irq_wait(msm_host);
   2770	/* Enable pwr irq interrupts */
   2771	msm_host_writel(msm_host, INT_MASK, host,
   2772		msm_offset->core_pwrctl_mask);
   2773
   2774	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
   2775					sdhci_msm_pwr_irq, IRQF_ONESHOT,
   2776					dev_name(&pdev->dev), host);
   2777	if (ret) {
   2778		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
   2779		goto clk_disable;
   2780	}
   2781
   2782	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
   2783
   2784	/* Set the timeout value to max possible */
   2785	host->max_timeout_count = 0xF;
   2786
   2787	pm_runtime_get_noresume(&pdev->dev);
   2788	pm_runtime_set_active(&pdev->dev);
   2789	pm_runtime_enable(&pdev->dev);
   2790	pm_runtime_set_autosuspend_delay(&pdev->dev,
   2791					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
   2792	pm_runtime_use_autosuspend(&pdev->dev);
   2793
   2794	host->mmc_host_ops.start_signal_voltage_switch =
   2795		sdhci_msm_start_signal_voltage_switch;
   2796	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
   2797	if (of_property_read_bool(node, "supports-cqe"))
   2798		ret = sdhci_msm_cqe_add_host(host, pdev);
   2799	else
   2800		ret = sdhci_add_host(host);
   2801	if (ret)
   2802		goto pm_runtime_disable;
   2803
   2804	pm_runtime_mark_last_busy(&pdev->dev);
   2805	pm_runtime_put_autosuspend(&pdev->dev);
   2806
   2807	return 0;
   2808
   2809pm_runtime_disable:
   2810	pm_runtime_disable(&pdev->dev);
   2811	pm_runtime_set_suspended(&pdev->dev);
   2812	pm_runtime_put_noidle(&pdev->dev);
   2813clk_disable:
   2814	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
   2815				   msm_host->bulk_clks);
   2816bus_clk_disable:
   2817	if (!IS_ERR(msm_host->bus_clk))
   2818		clk_disable_unprepare(msm_host->bus_clk);
   2819pltfm_free:
   2820	sdhci_pltfm_free(pdev);
   2821	return ret;
   2822}
   2823
   2824static int sdhci_msm_remove(struct platform_device *pdev)
   2825{
   2826	struct sdhci_host *host = platform_get_drvdata(pdev);
   2827	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2828	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2829	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
   2830		    0xffffffff);
   2831
   2832	sdhci_remove_host(host, dead);
   2833
   2834	pm_runtime_get_sync(&pdev->dev);
   2835	pm_runtime_disable(&pdev->dev);
   2836	pm_runtime_put_noidle(&pdev->dev);
   2837
   2838	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
   2839				   msm_host->bulk_clks);
   2840	if (!IS_ERR(msm_host->bus_clk))
   2841		clk_disable_unprepare(msm_host->bus_clk);
   2842	sdhci_pltfm_free(pdev);
   2843	return 0;
   2844}
   2845
   2846static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
   2847{
   2848	struct sdhci_host *host = dev_get_drvdata(dev);
   2849	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2850	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2851
   2852	/* Drop the performance vote */
   2853	dev_pm_opp_set_rate(dev, 0);
   2854	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
   2855				   msm_host->bulk_clks);
   2856
   2857	return 0;
   2858}
   2859
   2860static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
   2861{
   2862	struct sdhci_host *host = dev_get_drvdata(dev);
   2863	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
   2864	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
   2865	int ret;
   2866
   2867	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
   2868				       msm_host->bulk_clks);
   2869	if (ret)
   2870		return ret;
   2871	/*
   2872	 * Whenever core-clock is gated dynamically, it's needed to
   2873	 * restore the SDR DLL settings when the clock is ungated.
   2874	 */
   2875	if (msm_host->restore_dll_config && msm_host->clk_rate) {
   2876		ret = sdhci_msm_restore_sdr_dll_config(host);
   2877		if (ret)
   2878			return ret;
   2879	}
   2880
   2881	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
   2882
   2883	return sdhci_msm_ice_resume(msm_host);
   2884}
   2885
   2886static const struct dev_pm_ops sdhci_msm_pm_ops = {
   2887	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
   2888				pm_runtime_force_resume)
   2889	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
   2890			   sdhci_msm_runtime_resume,
   2891			   NULL)
   2892};
   2893
   2894static struct platform_driver sdhci_msm_driver = {
   2895	.probe = sdhci_msm_probe,
   2896	.remove = sdhci_msm_remove,
   2897	.driver = {
   2898		   .name = "sdhci_msm",
   2899		   .of_match_table = sdhci_msm_dt_match,
   2900		   .pm = &sdhci_msm_pm_ops,
   2901		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
   2902	},
   2903};
   2904
   2905module_platform_driver(sdhci_msm_driver);
   2906
   2907MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
   2908MODULE_LICENSE("GPL v2");