sh_mmcif.c (41889B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * MMCIF eMMC driver. 4 * 5 * Copyright (C) 2010 Renesas Solutions Corp. 6 * Yusuke Goda <yusuke.goda.sx@renesas.com> 7 */ 8 9/* 10 * The MMCIF driver is now processing MMC requests asynchronously, according 11 * to the Linux MMC API requirement. 12 * 13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 14 * data, and optional stop. To achieve asynchronous processing each of these 15 * stages is split into two halves: a top and a bottom half. The top half 16 * initialises the hardware, installs a timeout handler to handle completion 17 * timeouts, and returns. In case of the command stage this immediately returns 18 * control to the caller, leaving all further processing to run asynchronously. 19 * All further request processing is performed by the bottom halves. 20 * 21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 22 * thread, a DMA completion callback, if DMA is used, a timeout work, and 23 * request- and stage-specific handler methods. 24 * 25 * Each bottom half run begins with either a hardware interrupt, a DMA callback 26 * invocation, or a timeout work run. In case of an error or a successful 27 * processing completion, the MMC core is informed and the request processing is 28 * finished. In case processing has to continue, i.e., if data has to be read 29 * from or written to the card, or if a stop command has to be sent, the next 30 * top half is called, which performs the necessary hardware handling and 31 * reschedules the timeout work. This returns the driver state machine into the 32 * bottom half waiting state. 33 */ 34 35#include <linux/bitops.h> 36#include <linux/clk.h> 37#include <linux/completion.h> 38#include <linux/delay.h> 39#include <linux/dma-mapping.h> 40#include <linux/dmaengine.h> 41#include <linux/mmc/card.h> 42#include <linux/mmc/core.h> 43#include <linux/mmc/host.h> 44#include <linux/mmc/mmc.h> 45#include <linux/mmc/sdio.h> 46#include <linux/mmc/slot-gpio.h> 47#include <linux/mod_devicetable.h> 48#include <linux/mutex.h> 49#include <linux/of_device.h> 50#include <linux/pagemap.h> 51#include <linux/platform_data/sh_mmcif.h> 52#include <linux/platform_device.h> 53#include <linux/pm_qos.h> 54#include <linux/pm_runtime.h> 55#include <linux/sh_dma.h> 56#include <linux/spinlock.h> 57#include <linux/module.h> 58 59#define DRIVER_NAME "sh_mmcif" 60 61/* CE_CMD_SET */ 62#define CMD_MASK 0x3f000000 63#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 64#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 65#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 66#define CMD_SET_RBSY (1 << 21) /* R1b */ 67#define CMD_SET_CCSEN (1 << 20) 68#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 69#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 70#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 71#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 72#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 73#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 74#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 75#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 76#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 77#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 78#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 79#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 80#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 81#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 82#define CMD_SET_CCSH (1 << 5) 83#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 84#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 85#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 86#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 87 88/* CE_CMD_CTRL */ 89#define CMD_CTRL_BREAK (1 << 0) 90 91/* CE_BLOCK_SET */ 92#define BLOCK_SIZE_MASK 0x0000ffff 93 94/* CE_INT */ 95#define INT_CCSDE (1 << 29) 96#define INT_CMD12DRE (1 << 26) 97#define INT_CMD12RBE (1 << 25) 98#define INT_CMD12CRE (1 << 24) 99#define INT_DTRANE (1 << 23) 100#define INT_BUFRE (1 << 22) 101#define INT_BUFWEN (1 << 21) 102#define INT_BUFREN (1 << 20) 103#define INT_CCSRCV (1 << 19) 104#define INT_RBSYE (1 << 17) 105#define INT_CRSPE (1 << 16) 106#define INT_CMDVIO (1 << 15) 107#define INT_BUFVIO (1 << 14) 108#define INT_WDATERR (1 << 11) 109#define INT_RDATERR (1 << 10) 110#define INT_RIDXERR (1 << 9) 111#define INT_RSPERR (1 << 8) 112#define INT_CCSTO (1 << 5) 113#define INT_CRCSTO (1 << 4) 114#define INT_WDATTO (1 << 3) 115#define INT_RDATTO (1 << 2) 116#define INT_RBSYTO (1 << 1) 117#define INT_RSPTO (1 << 0) 118#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 121 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 122 123#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 126 127#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) 128 129/* CE_INT_MASK */ 130#define MASK_ALL 0x00000000 131#define MASK_MCCSDE (1 << 29) 132#define MASK_MCMD12DRE (1 << 26) 133#define MASK_MCMD12RBE (1 << 25) 134#define MASK_MCMD12CRE (1 << 24) 135#define MASK_MDTRANE (1 << 23) 136#define MASK_MBUFRE (1 << 22) 137#define MASK_MBUFWEN (1 << 21) 138#define MASK_MBUFREN (1 << 20) 139#define MASK_MCCSRCV (1 << 19) 140#define MASK_MRBSYE (1 << 17) 141#define MASK_MCRSPE (1 << 16) 142#define MASK_MCMDVIO (1 << 15) 143#define MASK_MBUFVIO (1 << 14) 144#define MASK_MWDATERR (1 << 11) 145#define MASK_MRDATERR (1 << 10) 146#define MASK_MRIDXERR (1 << 9) 147#define MASK_MRSPERR (1 << 8) 148#define MASK_MCCSTO (1 << 5) 149#define MASK_MCRCSTO (1 << 4) 150#define MASK_MWDATTO (1 << 3) 151#define MASK_MRDATTO (1 << 2) 152#define MASK_MRBSYTO (1 << 1) 153#define MASK_MRSPTO (1 << 0) 154 155#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 157 MASK_MCRCSTO | MASK_MWDATTO | \ 158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 159 160#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 161 MASK_MBUFREN | MASK_MBUFWEN | \ 162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 163 MASK_MCMD12RBE | MASK_MCMD12CRE) 164 165/* CE_HOST_STS1 */ 166#define STS1_CMDSEQ (1 << 31) 167 168/* CE_HOST_STS2 */ 169#define STS2_CRCSTE (1 << 31) 170#define STS2_CRC16E (1 << 30) 171#define STS2_AC12CRCE (1 << 29) 172#define STS2_RSPCRC7E (1 << 28) 173#define STS2_CRCSTEBE (1 << 27) 174#define STS2_RDATEBE (1 << 26) 175#define STS2_AC12REBE (1 << 25) 176#define STS2_RSPEBE (1 << 24) 177#define STS2_AC12IDXE (1 << 23) 178#define STS2_RSPIDXE (1 << 22) 179#define STS2_CCSTO (1 << 15) 180#define STS2_RDATTO (1 << 14) 181#define STS2_DATBSYTO (1 << 13) 182#define STS2_CRCSTTO (1 << 12) 183#define STS2_AC12BSYTO (1 << 11) 184#define STS2_RSPBSYTO (1 << 10) 185#define STS2_AC12RSPTO (1 << 9) 186#define STS2_RSPTO (1 << 8) 187#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 189#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 190 STS2_DATBSYTO | STS2_CRCSTTO | \ 191 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 192 STS2_AC12RSPTO | STS2_RSPTO) 193 194#define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */ 195#define CLKDEV_MMC_DATA 20000000 /* 20 MHz */ 196#define CLKDEV_INIT 400000 /* 400 kHz */ 197 198enum sh_mmcif_state { 199 STATE_IDLE, 200 STATE_REQUEST, 201 STATE_IOS, 202 STATE_TIMEOUT, 203}; 204 205enum sh_mmcif_wait_for { 206 MMCIF_WAIT_FOR_REQUEST, 207 MMCIF_WAIT_FOR_CMD, 208 MMCIF_WAIT_FOR_MREAD, 209 MMCIF_WAIT_FOR_MWRITE, 210 MMCIF_WAIT_FOR_READ, 211 MMCIF_WAIT_FOR_WRITE, 212 MMCIF_WAIT_FOR_READ_END, 213 MMCIF_WAIT_FOR_WRITE_END, 214 MMCIF_WAIT_FOR_STOP, 215}; 216 217/* 218 * difference for each SoC 219 */ 220struct sh_mmcif_host { 221 struct mmc_host *mmc; 222 struct mmc_request *mrq; 223 struct platform_device *pd; 224 struct clk *clk; 225 int bus_width; 226 unsigned char timing; 227 bool sd_error; 228 bool dying; 229 long timeout; 230 void __iomem *addr; 231 u32 *pio_ptr; 232 spinlock_t lock; /* protect sh_mmcif_host::state */ 233 enum sh_mmcif_state state; 234 enum sh_mmcif_wait_for wait_for; 235 struct delayed_work timeout_work; 236 size_t blocksize; 237 int sg_idx; 238 int sg_blkidx; 239 bool power; 240 bool ccs_enable; /* Command Completion Signal support */ 241 bool clk_ctrl2_enable; 242 struct mutex thread_lock; 243 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ 244 245 /* DMA support */ 246 struct dma_chan *chan_rx; 247 struct dma_chan *chan_tx; 248 struct completion dma_complete; 249 bool dma_active; 250}; 251 252static const struct of_device_id sh_mmcif_of_match[] = { 253 { .compatible = "renesas,sh-mmcif" }, 254 { } 255}; 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); 257 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev) 259 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 261 unsigned int reg, u32 val) 262{ 263 writel(val | readl(host->addr + reg), host->addr + reg); 264} 265 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 267 unsigned int reg, u32 val) 268{ 269 writel(~val & readl(host->addr + reg), host->addr + reg); 270} 271 272static void sh_mmcif_dma_complete(void *arg) 273{ 274 struct sh_mmcif_host *host = arg; 275 struct mmc_request *mrq = host->mrq; 276 struct device *dev = sh_mmcif_host_to_dev(host); 277 278 dev_dbg(dev, "Command completed\n"); 279 280 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 281 dev_name(dev))) 282 return; 283 284 complete(&host->dma_complete); 285} 286 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 288{ 289 struct mmc_data *data = host->mrq->data; 290 struct scatterlist *sg = data->sg; 291 struct dma_async_tx_descriptor *desc = NULL; 292 struct dma_chan *chan = host->chan_rx; 293 struct device *dev = sh_mmcif_host_to_dev(host); 294 dma_cookie_t cookie = -EINVAL; 295 int ret; 296 297 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 298 DMA_FROM_DEVICE); 299 if (ret > 0) { 300 host->dma_active = true; 301 desc = dmaengine_prep_slave_sg(chan, sg, ret, 302 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 303 } 304 305 if (desc) { 306 desc->callback = sh_mmcif_dma_complete; 307 desc->callback_param = host; 308 cookie = dmaengine_submit(desc); 309 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 310 dma_async_issue_pending(chan); 311 } 312 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 313 __func__, data->sg_len, ret, cookie); 314 315 if (!desc) { 316 /* DMA failed, fall back to PIO */ 317 if (ret >= 0) 318 ret = -EIO; 319 host->chan_rx = NULL; 320 host->dma_active = false; 321 dma_release_channel(chan); 322 /* Free the Tx channel too */ 323 chan = host->chan_tx; 324 if (chan) { 325 host->chan_tx = NULL; 326 dma_release_channel(chan); 327 } 328 dev_warn(dev, 329 "DMA failed: %d, falling back to PIO\n", ret); 330 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 331 } 332 333 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 334 desc, cookie, data->sg_len); 335} 336 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 338{ 339 struct mmc_data *data = host->mrq->data; 340 struct scatterlist *sg = data->sg; 341 struct dma_async_tx_descriptor *desc = NULL; 342 struct dma_chan *chan = host->chan_tx; 343 struct device *dev = sh_mmcif_host_to_dev(host); 344 dma_cookie_t cookie = -EINVAL; 345 int ret; 346 347 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 348 DMA_TO_DEVICE); 349 if (ret > 0) { 350 host->dma_active = true; 351 desc = dmaengine_prep_slave_sg(chan, sg, ret, 352 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 353 } 354 355 if (desc) { 356 desc->callback = sh_mmcif_dma_complete; 357 desc->callback_param = host; 358 cookie = dmaengine_submit(desc); 359 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 360 dma_async_issue_pending(chan); 361 } 362 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 363 __func__, data->sg_len, ret, cookie); 364 365 if (!desc) { 366 /* DMA failed, fall back to PIO */ 367 if (ret >= 0) 368 ret = -EIO; 369 host->chan_tx = NULL; 370 host->dma_active = false; 371 dma_release_channel(chan); 372 /* Free the Rx channel too */ 373 chan = host->chan_rx; 374 if (chan) { 375 host->chan_rx = NULL; 376 dma_release_channel(chan); 377 } 378 dev_warn(dev, 379 "DMA failed: %d, falling back to PIO\n", ret); 380 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 381 } 382 383 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, 384 desc, cookie); 385} 386 387static struct dma_chan * 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) 389{ 390 dma_cap_mask_t mask; 391 392 dma_cap_zero(mask); 393 dma_cap_set(DMA_SLAVE, mask); 394 if (slave_id <= 0) 395 return NULL; 396 397 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); 398} 399 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, 401 struct dma_chan *chan, 402 enum dma_transfer_direction direction) 403{ 404 struct resource *res; 405 struct dma_slave_config cfg = { 0, }; 406 407 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 408 if (!res) 409 return -EINVAL; 410 411 cfg.direction = direction; 412 413 if (direction == DMA_DEV_TO_MEM) { 414 cfg.src_addr = res->start + MMCIF_CE_DATA; 415 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 416 } else { 417 cfg.dst_addr = res->start + MMCIF_CE_DATA; 418 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 419 } 420 421 return dmaengine_slave_config(chan, &cfg); 422} 423 424static void sh_mmcif_request_dma(struct sh_mmcif_host *host) 425{ 426 struct device *dev = sh_mmcif_host_to_dev(host); 427 host->dma_active = false; 428 429 /* We can only either use DMA for both Tx and Rx or not use it at all */ 430 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { 431 struct sh_mmcif_plat_data *pdata = dev->platform_data; 432 433 host->chan_tx = sh_mmcif_request_dma_pdata(host, 434 pdata->slave_id_tx); 435 host->chan_rx = sh_mmcif_request_dma_pdata(host, 436 pdata->slave_id_rx); 437 } else { 438 host->chan_tx = dma_request_chan(dev, "tx"); 439 if (IS_ERR(host->chan_tx)) 440 host->chan_tx = NULL; 441 host->chan_rx = dma_request_chan(dev, "rx"); 442 if (IS_ERR(host->chan_rx)) 443 host->chan_rx = NULL; 444 } 445 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, 446 host->chan_rx); 447 448 if (!host->chan_tx || !host->chan_rx || 449 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || 450 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) 451 goto error; 452 453 return; 454 455error: 456 if (host->chan_tx) 457 dma_release_channel(host->chan_tx); 458 if (host->chan_rx) 459 dma_release_channel(host->chan_rx); 460 host->chan_tx = host->chan_rx = NULL; 461} 462 463static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 464{ 465 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 466 /* Descriptors are freed automatically */ 467 if (host->chan_tx) { 468 struct dma_chan *chan = host->chan_tx; 469 host->chan_tx = NULL; 470 dma_release_channel(chan); 471 } 472 if (host->chan_rx) { 473 struct dma_chan *chan = host->chan_rx; 474 host->chan_rx = NULL; 475 dma_release_channel(chan); 476 } 477 478 host->dma_active = false; 479} 480 481static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 482{ 483 struct device *dev = sh_mmcif_host_to_dev(host); 484 struct sh_mmcif_plat_data *p = dev->platform_data; 485 bool sup_pclk = p ? p->sup_pclk : false; 486 unsigned int current_clk = clk_get_rate(host->clk); 487 unsigned int clkdiv; 488 489 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 490 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 491 492 if (!clk) 493 return; 494 495 if (host->clkdiv_map) { 496 unsigned int freq, best_freq, myclk, div, diff_min, diff; 497 int i; 498 499 clkdiv = 0; 500 diff_min = ~0; 501 best_freq = 0; 502 for (i = 31; i >= 0; i--) { 503 if (!((1 << i) & host->clkdiv_map)) 504 continue; 505 506 /* 507 * clk = parent_freq / div 508 * -> parent_freq = clk x div 509 */ 510 511 div = 1 << (i + 1); 512 freq = clk_round_rate(host->clk, clk * div); 513 myclk = freq / div; 514 diff = (myclk > clk) ? myclk - clk : clk - myclk; 515 516 if (diff <= diff_min) { 517 best_freq = freq; 518 clkdiv = i; 519 diff_min = diff; 520 } 521 } 522 523 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", 524 (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv); 525 526 clk_set_rate(host->clk, best_freq); 527 clkdiv = clkdiv << 16; 528 } else if (sup_pclk && clk == current_clk) { 529 clkdiv = CLK_SUP_PCLK; 530 } else { 531 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; 532 } 533 534 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); 535 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 536} 537 538static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 539{ 540 u32 tmp; 541 542 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 543 544 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 545 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 546 if (host->ccs_enable) 547 tmp |= SCCSTO_29; 548 if (host->clk_ctrl2_enable) 549 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); 550 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 551 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); 552 /* byte swap on */ 553 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 554} 555 556static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 557{ 558 struct device *dev = sh_mmcif_host_to_dev(host); 559 u32 state1, state2; 560 int ret, timeout; 561 562 host->sd_error = false; 563 564 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 565 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 566 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); 567 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); 568 569 if (state1 & STS1_CMDSEQ) { 570 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 571 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 572 for (timeout = 10000; timeout; timeout--) { 573 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 574 & STS1_CMDSEQ)) 575 break; 576 mdelay(1); 577 } 578 if (!timeout) { 579 dev_err(dev, 580 "Forced end of command sequence timeout err\n"); 581 return -EIO; 582 } 583 sh_mmcif_sync_reset(host); 584 dev_dbg(dev, "Forced end of command sequence\n"); 585 return -EIO; 586 } 587 588 if (state2 & STS2_CRC_ERR) { 589 dev_err(dev, " CRC error: state %u, wait %u\n", 590 host->state, host->wait_for); 591 ret = -EIO; 592 } else if (state2 & STS2_TIMEOUT_ERR) { 593 dev_err(dev, " Timeout: state %u, wait %u\n", 594 host->state, host->wait_for); 595 ret = -ETIMEDOUT; 596 } else { 597 dev_dbg(dev, " End/Index error: state %u, wait %u\n", 598 host->state, host->wait_for); 599 ret = -EIO; 600 } 601 return ret; 602} 603 604static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) 605{ 606 struct mmc_data *data = host->mrq->data; 607 608 host->sg_blkidx += host->blocksize; 609 610 /* data->sg->length must be a multiple of host->blocksize? */ 611 BUG_ON(host->sg_blkidx > data->sg->length); 612 613 if (host->sg_blkidx == data->sg->length) { 614 host->sg_blkidx = 0; 615 if (++host->sg_idx < data->sg_len) 616 host->pio_ptr = sg_virt(++data->sg); 617 } else { 618 host->pio_ptr = p; 619 } 620 621 return host->sg_idx != data->sg_len; 622} 623 624static void sh_mmcif_single_read(struct sh_mmcif_host *host, 625 struct mmc_request *mrq) 626{ 627 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 628 BLOCK_SIZE_MASK) + 3; 629 630 host->wait_for = MMCIF_WAIT_FOR_READ; 631 632 /* buf read enable */ 633 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 634} 635 636static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 637{ 638 struct device *dev = sh_mmcif_host_to_dev(host); 639 struct mmc_data *data = host->mrq->data; 640 u32 *p = sg_virt(data->sg); 641 int i; 642 643 if (host->sd_error) { 644 data->error = sh_mmcif_error_manage(host); 645 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 646 return false; 647 } 648 649 for (i = 0; i < host->blocksize / 4; i++) 650 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 651 652 /* buffer read end */ 653 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 654 host->wait_for = MMCIF_WAIT_FOR_READ_END; 655 656 return true; 657} 658 659static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 660 struct mmc_request *mrq) 661{ 662 struct mmc_data *data = mrq->data; 663 664 if (!data->sg_len || !data->sg->length) 665 return; 666 667 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 668 BLOCK_SIZE_MASK; 669 670 host->wait_for = MMCIF_WAIT_FOR_MREAD; 671 host->sg_idx = 0; 672 host->sg_blkidx = 0; 673 host->pio_ptr = sg_virt(data->sg); 674 675 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 676} 677 678static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 679{ 680 struct device *dev = sh_mmcif_host_to_dev(host); 681 struct mmc_data *data = host->mrq->data; 682 u32 *p = host->pio_ptr; 683 int i; 684 685 if (host->sd_error) { 686 data->error = sh_mmcif_error_manage(host); 687 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 688 return false; 689 } 690 691 BUG_ON(!data->sg->length); 692 693 for (i = 0; i < host->blocksize / 4; i++) 694 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 695 696 if (!sh_mmcif_next_block(host, p)) 697 return false; 698 699 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 700 701 return true; 702} 703 704static void sh_mmcif_single_write(struct sh_mmcif_host *host, 705 struct mmc_request *mrq) 706{ 707 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 708 BLOCK_SIZE_MASK) + 3; 709 710 host->wait_for = MMCIF_WAIT_FOR_WRITE; 711 712 /* buf write enable */ 713 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 714} 715 716static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 717{ 718 struct device *dev = sh_mmcif_host_to_dev(host); 719 struct mmc_data *data = host->mrq->data; 720 u32 *p = sg_virt(data->sg); 721 int i; 722 723 if (host->sd_error) { 724 data->error = sh_mmcif_error_manage(host); 725 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 726 return false; 727 } 728 729 for (i = 0; i < host->blocksize / 4; i++) 730 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 731 732 /* buffer write end */ 733 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 734 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 735 736 return true; 737} 738 739static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 740 struct mmc_request *mrq) 741{ 742 struct mmc_data *data = mrq->data; 743 744 if (!data->sg_len || !data->sg->length) 745 return; 746 747 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 748 BLOCK_SIZE_MASK; 749 750 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 751 host->sg_idx = 0; 752 host->sg_blkidx = 0; 753 host->pio_ptr = sg_virt(data->sg); 754 755 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 756} 757 758static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 759{ 760 struct device *dev = sh_mmcif_host_to_dev(host); 761 struct mmc_data *data = host->mrq->data; 762 u32 *p = host->pio_ptr; 763 int i; 764 765 if (host->sd_error) { 766 data->error = sh_mmcif_error_manage(host); 767 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 768 return false; 769 } 770 771 BUG_ON(!data->sg->length); 772 773 for (i = 0; i < host->blocksize / 4; i++) 774 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 775 776 if (!sh_mmcif_next_block(host, p)) 777 return false; 778 779 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 780 781 return true; 782} 783 784static void sh_mmcif_get_response(struct sh_mmcif_host *host, 785 struct mmc_command *cmd) 786{ 787 if (cmd->flags & MMC_RSP_136) { 788 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 789 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 790 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 791 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 792 } else 793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 794} 795 796static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 797 struct mmc_command *cmd) 798{ 799 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 800} 801 802static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 803 struct mmc_request *mrq) 804{ 805 struct device *dev = sh_mmcif_host_to_dev(host); 806 struct mmc_data *data = mrq->data; 807 struct mmc_command *cmd = mrq->cmd; 808 u32 opc = cmd->opcode; 809 u32 tmp = 0; 810 811 /* Response Type check */ 812 switch (mmc_resp_type(cmd)) { 813 case MMC_RSP_NONE: 814 tmp |= CMD_SET_RTYP_NO; 815 break; 816 case MMC_RSP_R1: 817 case MMC_RSP_R3: 818 tmp |= CMD_SET_RTYP_6B; 819 break; 820 case MMC_RSP_R1B: 821 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B; 822 break; 823 case MMC_RSP_R2: 824 tmp |= CMD_SET_RTYP_17B; 825 break; 826 default: 827 dev_err(dev, "Unsupported response type.\n"); 828 break; 829 } 830 831 /* WDAT / DATW */ 832 if (data) { 833 tmp |= CMD_SET_WDAT; 834 switch (host->bus_width) { 835 case MMC_BUS_WIDTH_1: 836 tmp |= CMD_SET_DATW_1; 837 break; 838 case MMC_BUS_WIDTH_4: 839 tmp |= CMD_SET_DATW_4; 840 break; 841 case MMC_BUS_WIDTH_8: 842 tmp |= CMD_SET_DATW_8; 843 break; 844 default: 845 dev_err(dev, "Unsupported bus width.\n"); 846 break; 847 } 848 switch (host->timing) { 849 case MMC_TIMING_MMC_DDR52: 850 /* 851 * MMC core will only set this timing, if the host 852 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR 853 * capability. MMCIF implementations with this 854 * capability, e.g. sh73a0, will have to set it 855 * in their platform data. 856 */ 857 tmp |= CMD_SET_DARS; 858 break; 859 } 860 } 861 /* DWEN */ 862 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 863 tmp |= CMD_SET_DWEN; 864 /* CMLTE/CMD12EN */ 865 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 866 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 867 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 868 data->blocks << 16); 869 } 870 /* RIDXC[1:0] check bits */ 871 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 872 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 873 tmp |= CMD_SET_RIDXC_BITS; 874 /* RCRC7C[1:0] check bits */ 875 if (opc == MMC_SEND_OP_COND) 876 tmp |= CMD_SET_CRC7C_BITS; 877 /* RCRC7C[1:0] internal CRC7 */ 878 if (opc == MMC_ALL_SEND_CID || 879 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 880 tmp |= CMD_SET_CRC7C_INTERNAL; 881 882 return (opc << 24) | tmp; 883} 884 885static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 886 struct mmc_request *mrq, u32 opc) 887{ 888 struct device *dev = sh_mmcif_host_to_dev(host); 889 890 switch (opc) { 891 case MMC_READ_MULTIPLE_BLOCK: 892 sh_mmcif_multi_read(host, mrq); 893 return 0; 894 case MMC_WRITE_MULTIPLE_BLOCK: 895 sh_mmcif_multi_write(host, mrq); 896 return 0; 897 case MMC_WRITE_BLOCK: 898 sh_mmcif_single_write(host, mrq); 899 return 0; 900 case MMC_READ_SINGLE_BLOCK: 901 case MMC_SEND_EXT_CSD: 902 sh_mmcif_single_read(host, mrq); 903 return 0; 904 default: 905 dev_err(dev, "Unsupported CMD%d\n", opc); 906 return -EINVAL; 907 } 908} 909 910static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 911 struct mmc_request *mrq) 912{ 913 struct mmc_command *cmd = mrq->cmd; 914 u32 opc; 915 u32 mask = 0; 916 unsigned long flags; 917 918 if (cmd->flags & MMC_RSP_BUSY) 919 mask = MASK_START_CMD | MASK_MRBSYE; 920 else 921 mask = MASK_START_CMD | MASK_MCRSPE; 922 923 if (host->ccs_enable) 924 mask |= MASK_MCCSTO; 925 926 if (mrq->data) { 927 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 928 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 929 mrq->data->blksz); 930 } 931 opc = sh_mmcif_set_cmd(host, mrq); 932 933 if (host->ccs_enable) 934 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 935 else 936 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); 937 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 938 /* set arg */ 939 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 940 /* set cmd */ 941 spin_lock_irqsave(&host->lock, flags); 942 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 943 944 host->wait_for = MMCIF_WAIT_FOR_CMD; 945 schedule_delayed_work(&host->timeout_work, host->timeout); 946 spin_unlock_irqrestore(&host->lock, flags); 947} 948 949static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 950 struct mmc_request *mrq) 951{ 952 struct device *dev = sh_mmcif_host_to_dev(host); 953 954 switch (mrq->cmd->opcode) { 955 case MMC_READ_MULTIPLE_BLOCK: 956 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 957 break; 958 case MMC_WRITE_MULTIPLE_BLOCK: 959 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 960 break; 961 default: 962 dev_err(dev, "unsupported stop cmd\n"); 963 mrq->stop->error = sh_mmcif_error_manage(host); 964 return; 965 } 966 967 host->wait_for = MMCIF_WAIT_FOR_STOP; 968} 969 970static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 971{ 972 struct sh_mmcif_host *host = mmc_priv(mmc); 973 struct device *dev = sh_mmcif_host_to_dev(host); 974 unsigned long flags; 975 976 spin_lock_irqsave(&host->lock, flags); 977 if (host->state != STATE_IDLE) { 978 dev_dbg(dev, "%s() rejected, state %u\n", 979 __func__, host->state); 980 spin_unlock_irqrestore(&host->lock, flags); 981 mrq->cmd->error = -EAGAIN; 982 mmc_request_done(mmc, mrq); 983 return; 984 } 985 986 host->state = STATE_REQUEST; 987 spin_unlock_irqrestore(&host->lock, flags); 988 989 host->mrq = mrq; 990 991 sh_mmcif_start_cmd(host, mrq); 992} 993 994static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) 995{ 996 struct device *dev = sh_mmcif_host_to_dev(host); 997 998 if (host->mmc->f_max) { 999 unsigned int f_max, f_min = 0, f_min_old; 1000 1001 f_max = host->mmc->f_max; 1002 for (f_min_old = f_max; f_min_old > 2;) { 1003 f_min = clk_round_rate(host->clk, f_min_old / 2); 1004 if (f_min == f_min_old) 1005 break; 1006 f_min_old = f_min; 1007 } 1008 1009 /* 1010 * This driver assumes this SoC is R-Car Gen2 or later 1011 */ 1012 host->clkdiv_map = 0x3ff; 1013 1014 host->mmc->f_max = f_max >> ffs(host->clkdiv_map); 1015 host->mmc->f_min = f_min >> fls(host->clkdiv_map); 1016 } else { 1017 unsigned int clk = clk_get_rate(host->clk); 1018 1019 host->mmc->f_max = clk / 2; 1020 host->mmc->f_min = clk / 512; 1021 } 1022 1023 dev_dbg(dev, "clk max/min = %d/%d\n", 1024 host->mmc->f_max, host->mmc->f_min); 1025} 1026 1027static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1028{ 1029 struct sh_mmcif_host *host = mmc_priv(mmc); 1030 struct device *dev = sh_mmcif_host_to_dev(host); 1031 unsigned long flags; 1032 1033 spin_lock_irqsave(&host->lock, flags); 1034 if (host->state != STATE_IDLE) { 1035 dev_dbg(dev, "%s() rejected, state %u\n", 1036 __func__, host->state); 1037 spin_unlock_irqrestore(&host->lock, flags); 1038 return; 1039 } 1040 1041 host->state = STATE_IOS; 1042 spin_unlock_irqrestore(&host->lock, flags); 1043 1044 switch (ios->power_mode) { 1045 case MMC_POWER_UP: 1046 if (!IS_ERR(mmc->supply.vmmc)) 1047 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1048 if (!host->power) { 1049 clk_prepare_enable(host->clk); 1050 pm_runtime_get_sync(dev); 1051 sh_mmcif_sync_reset(host); 1052 sh_mmcif_request_dma(host); 1053 host->power = true; 1054 } 1055 break; 1056 case MMC_POWER_OFF: 1057 if (!IS_ERR(mmc->supply.vmmc)) 1058 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1059 if (host->power) { 1060 sh_mmcif_clock_control(host, 0); 1061 sh_mmcif_release_dma(host); 1062 pm_runtime_put(dev); 1063 clk_disable_unprepare(host->clk); 1064 host->power = false; 1065 } 1066 break; 1067 case MMC_POWER_ON: 1068 sh_mmcif_clock_control(host, ios->clock); 1069 break; 1070 } 1071 1072 host->timing = ios->timing; 1073 host->bus_width = ios->bus_width; 1074 host->state = STATE_IDLE; 1075} 1076 1077static const struct mmc_host_ops sh_mmcif_ops = { 1078 .request = sh_mmcif_request, 1079 .set_ios = sh_mmcif_set_ios, 1080 .get_cd = mmc_gpio_get_cd, 1081}; 1082 1083static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1084{ 1085 struct mmc_command *cmd = host->mrq->cmd; 1086 struct mmc_data *data = host->mrq->data; 1087 struct device *dev = sh_mmcif_host_to_dev(host); 1088 long time; 1089 1090 if (host->sd_error) { 1091 switch (cmd->opcode) { 1092 case MMC_ALL_SEND_CID: 1093 case MMC_SELECT_CARD: 1094 case MMC_APP_CMD: 1095 cmd->error = -ETIMEDOUT; 1096 break; 1097 default: 1098 cmd->error = sh_mmcif_error_manage(host); 1099 break; 1100 } 1101 dev_dbg(dev, "CMD%d error %d\n", 1102 cmd->opcode, cmd->error); 1103 host->sd_error = false; 1104 return false; 1105 } 1106 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1107 cmd->error = 0; 1108 return false; 1109 } 1110 1111 sh_mmcif_get_response(host, cmd); 1112 1113 if (!data) 1114 return false; 1115 1116 /* 1117 * Completion can be signalled from DMA callback and error, so, have to 1118 * reset here, before setting .dma_active 1119 */ 1120 init_completion(&host->dma_complete); 1121 1122 if (data->flags & MMC_DATA_READ) { 1123 if (host->chan_rx) 1124 sh_mmcif_start_dma_rx(host); 1125 } else { 1126 if (host->chan_tx) 1127 sh_mmcif_start_dma_tx(host); 1128 } 1129 1130 if (!host->dma_active) { 1131 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1132 return !data->error; 1133 } 1134 1135 /* Running in the IRQ thread, can sleep */ 1136 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1137 host->timeout); 1138 1139 if (data->flags & MMC_DATA_READ) 1140 dma_unmap_sg(host->chan_rx->device->dev, 1141 data->sg, data->sg_len, 1142 DMA_FROM_DEVICE); 1143 else 1144 dma_unmap_sg(host->chan_tx->device->dev, 1145 data->sg, data->sg_len, 1146 DMA_TO_DEVICE); 1147 1148 if (host->sd_error) { 1149 dev_err(host->mmc->parent, 1150 "Error IRQ while waiting for DMA completion!\n"); 1151 /* Woken up by an error IRQ: abort DMA */ 1152 data->error = sh_mmcif_error_manage(host); 1153 } else if (!time) { 1154 dev_err(host->mmc->parent, "DMA timeout!\n"); 1155 data->error = -ETIMEDOUT; 1156 } else if (time < 0) { 1157 dev_err(host->mmc->parent, 1158 "wait_for_completion_...() error %ld!\n", time); 1159 data->error = time; 1160 } 1161 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1162 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1163 host->dma_active = false; 1164 1165 if (data->error) { 1166 data->bytes_xfered = 0; 1167 /* Abort DMA */ 1168 if (data->flags & MMC_DATA_READ) 1169 dmaengine_terminate_sync(host->chan_rx); 1170 else 1171 dmaengine_terminate_sync(host->chan_tx); 1172 } 1173 1174 return false; 1175} 1176 1177static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1178{ 1179 struct sh_mmcif_host *host = dev_id; 1180 struct mmc_request *mrq; 1181 struct device *dev = sh_mmcif_host_to_dev(host); 1182 bool wait = false; 1183 unsigned long flags; 1184 int wait_work; 1185 1186 spin_lock_irqsave(&host->lock, flags); 1187 wait_work = host->wait_for; 1188 spin_unlock_irqrestore(&host->lock, flags); 1189 1190 cancel_delayed_work_sync(&host->timeout_work); 1191 1192 mutex_lock(&host->thread_lock); 1193 1194 mrq = host->mrq; 1195 if (!mrq) { 1196 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1197 host->state, host->wait_for); 1198 mutex_unlock(&host->thread_lock); 1199 return IRQ_HANDLED; 1200 } 1201 1202 /* 1203 * All handlers return true, if processing continues, and false, if the 1204 * request has to be completed - successfully or not 1205 */ 1206 switch (wait_work) { 1207 case MMCIF_WAIT_FOR_REQUEST: 1208 /* We're too late, the timeout has already kicked in */ 1209 mutex_unlock(&host->thread_lock); 1210 return IRQ_HANDLED; 1211 case MMCIF_WAIT_FOR_CMD: 1212 /* Wait for data? */ 1213 wait = sh_mmcif_end_cmd(host); 1214 break; 1215 case MMCIF_WAIT_FOR_MREAD: 1216 /* Wait for more data? */ 1217 wait = sh_mmcif_mread_block(host); 1218 break; 1219 case MMCIF_WAIT_FOR_READ: 1220 /* Wait for data end? */ 1221 wait = sh_mmcif_read_block(host); 1222 break; 1223 case MMCIF_WAIT_FOR_MWRITE: 1224 /* Wait data to write? */ 1225 wait = sh_mmcif_mwrite_block(host); 1226 break; 1227 case MMCIF_WAIT_FOR_WRITE: 1228 /* Wait for data end? */ 1229 wait = sh_mmcif_write_block(host); 1230 break; 1231 case MMCIF_WAIT_FOR_STOP: 1232 if (host->sd_error) { 1233 mrq->stop->error = sh_mmcif_error_manage(host); 1234 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); 1235 break; 1236 } 1237 sh_mmcif_get_cmd12response(host, mrq->stop); 1238 mrq->stop->error = 0; 1239 break; 1240 case MMCIF_WAIT_FOR_READ_END: 1241 case MMCIF_WAIT_FOR_WRITE_END: 1242 if (host->sd_error) { 1243 mrq->data->error = sh_mmcif_error_manage(host); 1244 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); 1245 } 1246 break; 1247 default: 1248 BUG(); 1249 } 1250 1251 if (wait) { 1252 schedule_delayed_work(&host->timeout_work, host->timeout); 1253 /* Wait for more data */ 1254 mutex_unlock(&host->thread_lock); 1255 return IRQ_HANDLED; 1256 } 1257 1258 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1259 struct mmc_data *data = mrq->data; 1260 if (!mrq->cmd->error && data && !data->error) 1261 data->bytes_xfered = 1262 data->blocks * data->blksz; 1263 1264 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1265 sh_mmcif_stop_cmd(host, mrq); 1266 if (!mrq->stop->error) { 1267 schedule_delayed_work(&host->timeout_work, host->timeout); 1268 mutex_unlock(&host->thread_lock); 1269 return IRQ_HANDLED; 1270 } 1271 } 1272 } 1273 1274 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1275 host->state = STATE_IDLE; 1276 host->mrq = NULL; 1277 mmc_request_done(host->mmc, mrq); 1278 1279 mutex_unlock(&host->thread_lock); 1280 1281 return IRQ_HANDLED; 1282} 1283 1284static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1285{ 1286 struct sh_mmcif_host *host = dev_id; 1287 struct device *dev = sh_mmcif_host_to_dev(host); 1288 u32 state, mask; 1289 1290 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1291 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); 1292 if (host->ccs_enable) 1293 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); 1294 else 1295 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); 1296 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1297 1298 if (state & ~MASK_CLEAN) 1299 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", 1300 state); 1301 1302 if (state & INT_ERR_STS || state & ~INT_ALL) { 1303 host->sd_error = true; 1304 dev_dbg(dev, "int err state = 0x%08x\n", state); 1305 } 1306 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1307 if (!host->mrq) 1308 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); 1309 if (!host->dma_active) 1310 return IRQ_WAKE_THREAD; 1311 else if (host->sd_error) 1312 sh_mmcif_dma_complete(host); 1313 } else { 1314 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); 1315 } 1316 1317 return IRQ_HANDLED; 1318} 1319 1320static void sh_mmcif_timeout_work(struct work_struct *work) 1321{ 1322 struct delayed_work *d = to_delayed_work(work); 1323 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1324 struct mmc_request *mrq = host->mrq; 1325 struct device *dev = sh_mmcif_host_to_dev(host); 1326 unsigned long flags; 1327 1328 if (host->dying) 1329 /* Don't run after mmc_remove_host() */ 1330 return; 1331 1332 spin_lock_irqsave(&host->lock, flags); 1333 if (host->state == STATE_IDLE) { 1334 spin_unlock_irqrestore(&host->lock, flags); 1335 return; 1336 } 1337 1338 dev_err(dev, "Timeout waiting for %u on CMD%u\n", 1339 host->wait_for, mrq->cmd->opcode); 1340 1341 host->state = STATE_TIMEOUT; 1342 spin_unlock_irqrestore(&host->lock, flags); 1343 1344 /* 1345 * Handle races with cancel_delayed_work(), unless 1346 * cancel_delayed_work_sync() is used 1347 */ 1348 switch (host->wait_for) { 1349 case MMCIF_WAIT_FOR_CMD: 1350 mrq->cmd->error = sh_mmcif_error_manage(host); 1351 break; 1352 case MMCIF_WAIT_FOR_STOP: 1353 mrq->stop->error = sh_mmcif_error_manage(host); 1354 break; 1355 case MMCIF_WAIT_FOR_MREAD: 1356 case MMCIF_WAIT_FOR_MWRITE: 1357 case MMCIF_WAIT_FOR_READ: 1358 case MMCIF_WAIT_FOR_WRITE: 1359 case MMCIF_WAIT_FOR_READ_END: 1360 case MMCIF_WAIT_FOR_WRITE_END: 1361 mrq->data->error = sh_mmcif_error_manage(host); 1362 break; 1363 default: 1364 BUG(); 1365 } 1366 1367 host->state = STATE_IDLE; 1368 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1369 host->mrq = NULL; 1370 mmc_request_done(host->mmc, mrq); 1371} 1372 1373static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1374{ 1375 struct device *dev = sh_mmcif_host_to_dev(host); 1376 struct sh_mmcif_plat_data *pd = dev->platform_data; 1377 struct mmc_host *mmc = host->mmc; 1378 1379 mmc_regulator_get_supply(mmc); 1380 1381 if (!pd) 1382 return; 1383 1384 if (!mmc->ocr_avail) 1385 mmc->ocr_avail = pd->ocr; 1386 else if (pd->ocr) 1387 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1388} 1389 1390static int sh_mmcif_probe(struct platform_device *pdev) 1391{ 1392 int ret = 0, irq[2]; 1393 struct mmc_host *mmc; 1394 struct sh_mmcif_host *host; 1395 struct device *dev = &pdev->dev; 1396 struct sh_mmcif_plat_data *pd = dev->platform_data; 1397 void __iomem *reg; 1398 const char *name; 1399 1400 irq[0] = platform_get_irq(pdev, 0); 1401 irq[1] = platform_get_irq_optional(pdev, 1); 1402 if (irq[0] < 0) 1403 return -ENXIO; 1404 1405 reg = devm_platform_ioremap_resource(pdev, 0); 1406 if (IS_ERR(reg)) 1407 return PTR_ERR(reg); 1408 1409 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); 1410 if (!mmc) 1411 return -ENOMEM; 1412 1413 ret = mmc_of_parse(mmc); 1414 if (ret < 0) 1415 goto err_host; 1416 1417 host = mmc_priv(mmc); 1418 host->mmc = mmc; 1419 host->addr = reg; 1420 host->timeout = msecs_to_jiffies(10000); 1421 host->ccs_enable = true; 1422 host->clk_ctrl2_enable = false; 1423 1424 host->pd = pdev; 1425 1426 spin_lock_init(&host->lock); 1427 1428 mmc->ops = &sh_mmcif_ops; 1429 sh_mmcif_init_ocr(host); 1430 1431 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1432 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; 1433 mmc->max_busy_timeout = 10000; 1434 1435 if (pd && pd->caps) 1436 mmc->caps |= pd->caps; 1437 mmc->max_segs = 32; 1438 mmc->max_blk_size = 512; 1439 mmc->max_req_size = PAGE_SIZE * mmc->max_segs; 1440 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1441 mmc->max_seg_size = mmc->max_req_size; 1442 1443 platform_set_drvdata(pdev, host); 1444 1445 host->clk = devm_clk_get(dev, NULL); 1446 if (IS_ERR(host->clk)) { 1447 ret = PTR_ERR(host->clk); 1448 dev_err(dev, "cannot get clock: %d\n", ret); 1449 goto err_host; 1450 } 1451 1452 ret = clk_prepare_enable(host->clk); 1453 if (ret < 0) 1454 goto err_host; 1455 1456 sh_mmcif_clk_setup(host); 1457 1458 pm_runtime_enable(dev); 1459 host->power = false; 1460 1461 ret = pm_runtime_get_sync(dev); 1462 if (ret < 0) 1463 goto err_clk; 1464 1465 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); 1466 1467 sh_mmcif_sync_reset(host); 1468 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1469 1470 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; 1471 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, 1472 sh_mmcif_irqt, 0, name, host); 1473 if (ret) { 1474 dev_err(dev, "request_irq error (%s)\n", name); 1475 goto err_clk; 1476 } 1477 if (irq[1] >= 0) { 1478 ret = devm_request_threaded_irq(dev, irq[1], 1479 sh_mmcif_intr, sh_mmcif_irqt, 1480 0, "sh_mmc:int", host); 1481 if (ret) { 1482 dev_err(dev, "request_irq error (sh_mmc:int)\n"); 1483 goto err_clk; 1484 } 1485 } 1486 1487 mutex_init(&host->thread_lock); 1488 1489 ret = mmc_add_host(mmc); 1490 if (ret < 0) 1491 goto err_clk; 1492 1493 dev_pm_qos_expose_latency_limit(dev, 100); 1494 1495 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", 1496 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, 1497 clk_get_rate(host->clk) / 1000000UL); 1498 1499 pm_runtime_put(dev); 1500 clk_disable_unprepare(host->clk); 1501 return ret; 1502 1503err_clk: 1504 clk_disable_unprepare(host->clk); 1505 pm_runtime_put_sync(dev); 1506 pm_runtime_disable(dev); 1507err_host: 1508 mmc_free_host(mmc); 1509 return ret; 1510} 1511 1512static int sh_mmcif_remove(struct platform_device *pdev) 1513{ 1514 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1515 1516 host->dying = true; 1517 clk_prepare_enable(host->clk); 1518 pm_runtime_get_sync(&pdev->dev); 1519 1520 dev_pm_qos_hide_latency_limit(&pdev->dev); 1521 1522 mmc_remove_host(host->mmc); 1523 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1524 1525 /* 1526 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1527 * mmc_remove_host() call above. But swapping order doesn't help either 1528 * (a query on the linux-mmc mailing list didn't bring any replies). 1529 */ 1530 cancel_delayed_work_sync(&host->timeout_work); 1531 1532 clk_disable_unprepare(host->clk); 1533 mmc_free_host(host->mmc); 1534 pm_runtime_put_sync(&pdev->dev); 1535 pm_runtime_disable(&pdev->dev); 1536 1537 return 0; 1538} 1539 1540#ifdef CONFIG_PM_SLEEP 1541static int sh_mmcif_suspend(struct device *dev) 1542{ 1543 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1544 1545 pm_runtime_get_sync(dev); 1546 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1547 pm_runtime_put(dev); 1548 1549 return 0; 1550} 1551 1552static int sh_mmcif_resume(struct device *dev) 1553{ 1554 return 0; 1555} 1556#endif 1557 1558static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1559 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) 1560}; 1561 1562static struct platform_driver sh_mmcif_driver = { 1563 .probe = sh_mmcif_probe, 1564 .remove = sh_mmcif_remove, 1565 .driver = { 1566 .name = DRIVER_NAME, 1567 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1568 .pm = &sh_mmcif_dev_pm_ops, 1569 .of_match_table = sh_mmcif_of_match, 1570 }, 1571}; 1572 1573module_platform_driver(sh_mmcif_driver); 1574 1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1576MODULE_LICENSE("GPL v2"); 1577MODULE_ALIAS("platform:" DRIVER_NAME); 1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");