cfi_cmdset_0020.c (38268B)
1/* 2 * Common Flash Interface support: 3 * ST Advanced Architecture Command Set (ID 0x0020) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> 8 * - completely revamped method functions so they are aware and 9 * independent of the flash geometry (buswidth, interleave, etc.) 10 * - scalability vs code size is completely set at compile-time 11 * (see include/linux/mtd/cfi.h for selection) 12 * - optimized write buffer method 13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others 14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture 15 * (command set 0x0020) 16 * - added a writev function 17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de> 18 * - Plugged memory leak in cfi_staa_writev(). 19 */ 20 21#include <linux/module.h> 22#include <linux/types.h> 23#include <linux/kernel.h> 24#include <linux/sched.h> 25#include <asm/io.h> 26#include <asm/byteorder.h> 27 28#include <linux/errno.h> 29#include <linux/slab.h> 30#include <linux/delay.h> 31#include <linux/interrupt.h> 32#include <linux/mtd/map.h> 33#include <linux/mtd/cfi.h> 34#include <linux/mtd/mtd.h> 35 36 37static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); 38static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 39static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 40 unsigned long count, loff_t to, size_t *retlen); 41static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); 42static void cfi_staa_sync (struct mtd_info *); 43static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 44static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 45static int cfi_staa_suspend (struct mtd_info *); 46static void cfi_staa_resume (struct mtd_info *); 47 48static void cfi_staa_destroy(struct mtd_info *); 49 50struct mtd_info *cfi_cmdset_0020(struct map_info *, int); 51 52static struct mtd_info *cfi_staa_setup (struct map_info *); 53 54static struct mtd_chip_driver cfi_staa_chipdrv = { 55 .probe = NULL, /* Not usable directly */ 56 .destroy = cfi_staa_destroy, 57 .name = "cfi_cmdset_0020", 58 .module = THIS_MODULE 59}; 60 61/* #define DEBUG_LOCK_BITS */ 62//#define DEBUG_CFI_FEATURES 63 64#ifdef DEBUG_CFI_FEATURES 65static void cfi_tell_features(struct cfi_pri_intelext *extp) 66{ 67 int i; 68 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 69 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 70 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 71 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 72 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 73 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 74 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 75 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 76 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 77 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 78 for (i=9; i<32; i++) { 79 if (extp->FeatureSupport & (1<<i)) 80 printk(" - Unknown Bit %X: supported\n", i); 81 } 82 83 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 84 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 85 for (i=1; i<8; i++) { 86 if (extp->SuspendCmdSupport & (1<<i)) 87 printk(" - Unknown Bit %X: supported\n", i); 88 } 89 90 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 91 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 92 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 93 for (i=2; i<16; i++) { 94 if (extp->BlkStatusRegMask & (1<<i)) 95 printk(" - Unknown Bit %X Active: yes\n",i); 96 } 97 98 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 99 extp->VccOptimal >> 8, extp->VccOptimal & 0xf); 100 if (extp->VppOptimal) 101 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 102 extp->VppOptimal >> 8, extp->VppOptimal & 0xf); 103} 104#endif 105 106/* This routine is made available to other mtd code via 107 * inter_module_register. It must only be accessed through 108 * inter_module_get which will bump the use count of this module. The 109 * addresses passed back in cfi are valid as long as the use count of 110 * this module is non-zero, i.e. between inter_module_get and 111 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. 112 */ 113struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) 114{ 115 struct cfi_private *cfi = map->fldrv_priv; 116 int i; 117 118 if (cfi->cfi_mode) { 119 /* 120 * It's a real CFI chip, not one for which the probe 121 * routine faked a CFI structure. So we read the feature 122 * table from it. 123 */ 124 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 125 struct cfi_pri_intelext *extp; 126 127 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); 128 if (!extp) 129 return NULL; 130 131 if (extp->MajorVersion != '1' || 132 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { 133 printk(KERN_ERR " Unknown ST Microelectronics" 134 " Extended Query version %c.%c.\n", 135 extp->MajorVersion, extp->MinorVersion); 136 kfree(extp); 137 return NULL; 138 } 139 140 /* Do some byteswapping if necessary */ 141 extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport); 142 extp->BlkStatusRegMask = cfi32_to_cpu(map, 143 extp->BlkStatusRegMask); 144 145#ifdef DEBUG_CFI_FEATURES 146 /* Tell the user about it in lots of lovely detail */ 147 cfi_tell_features(extp); 148#endif 149 150 /* Install our own private info structure */ 151 cfi->cmdset_priv = extp; 152 } 153 154 for (i=0; i< cfi->numchips; i++) { 155 cfi->chips[i].word_write_time = 128; 156 cfi->chips[i].buffer_write_time = 128; 157 cfi->chips[i].erase_time = 1024; 158 cfi->chips[i].ref_point_counter = 0; 159 init_waitqueue_head(&(cfi->chips[i].wq)); 160 } 161 162 return cfi_staa_setup(map); 163} 164EXPORT_SYMBOL_GPL(cfi_cmdset_0020); 165 166static struct mtd_info *cfi_staa_setup(struct map_info *map) 167{ 168 struct cfi_private *cfi = map->fldrv_priv; 169 struct mtd_info *mtd; 170 unsigned long offset = 0; 171 int i,j; 172 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 173 174 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 176 177 if (!mtd) { 178 kfree(cfi->cmdset_priv); 179 return NULL; 180 } 181 182 mtd->priv = map; 183 mtd->type = MTD_NORFLASH; 184 mtd->size = devsize * cfi->numchips; 185 186 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 187 mtd->eraseregions = kmalloc_array(mtd->numeraseregions, 188 sizeof(struct mtd_erase_region_info), 189 GFP_KERNEL); 190 if (!mtd->eraseregions) { 191 kfree(cfi->cmdset_priv); 192 kfree(mtd); 193 return NULL; 194 } 195 196 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 197 unsigned long ernum, ersize; 198 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 199 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 200 201 if (mtd->erasesize < ersize) { 202 mtd->erasesize = ersize; 203 } 204 for (j=0; j<cfi->numchips; j++) { 205 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 206 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 208 } 209 offset += (ersize * ernum); 210 } 211 212 if (offset != devsize) { 213 /* Argh */ 214 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 215 kfree(mtd->eraseregions); 216 kfree(cfi->cmdset_priv); 217 kfree(mtd); 218 return NULL; 219 } 220 221 for (i=0; i<mtd->numeraseregions;i++){ 222 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n", 223 i, (unsigned long long)mtd->eraseregions[i].offset, 224 mtd->eraseregions[i].erasesize, 225 mtd->eraseregions[i].numblocks); 226 } 227 228 /* Also select the correct geometry setup too */ 229 mtd->_erase = cfi_staa_erase_varsize; 230 mtd->_read = cfi_staa_read; 231 mtd->_write = cfi_staa_write_buffers; 232 mtd->_writev = cfi_staa_writev; 233 mtd->_sync = cfi_staa_sync; 234 mtd->_lock = cfi_staa_lock; 235 mtd->_unlock = cfi_staa_unlock; 236 mtd->_suspend = cfi_staa_suspend; 237 mtd->_resume = cfi_staa_resume; 238 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE; 239 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ 240 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 241 map->fldrv = &cfi_staa_chipdrv; 242 __module_get(THIS_MODULE); 243 mtd->name = map->name; 244 return mtd; 245} 246 247 248static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 249{ 250 map_word status, status_OK; 251 unsigned long timeo; 252 DECLARE_WAITQUEUE(wait, current); 253 int suspended = 0; 254 unsigned long cmd_addr; 255 struct cfi_private *cfi = map->fldrv_priv; 256 257 adr += chip->start; 258 259 /* Ensure cmd read/writes are aligned. */ 260 cmd_addr = adr & ~(map_bankwidth(map)-1); 261 262 /* Let's determine this according to the interleave only once */ 263 status_OK = CMD(0x80); 264 265 timeo = jiffies + HZ; 266 retry: 267 mutex_lock(&chip->mutex); 268 269 /* Check that the chip's ready to talk to us. 270 * If it's in FL_ERASING state, suspend it and make it talk now. 271 */ 272 switch (chip->state) { 273 case FL_ERASING: 274 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) 275 goto sleep; /* We don't support erase suspend */ 276 277 map_write (map, CMD(0xb0), cmd_addr); 278 /* If the flash has finished erasing, then 'erase suspend' 279 * appears to make some (28F320) flash devices switch to 280 * 'read' mode. Make sure that we switch to 'read status' 281 * mode so we get the right data. --rmk 282 */ 283 map_write(map, CMD(0x70), cmd_addr); 284 chip->oldstate = FL_ERASING; 285 chip->state = FL_ERASE_SUSPENDING; 286 // printk("Erase suspending at 0x%lx\n", cmd_addr); 287 for (;;) { 288 status = map_read(map, cmd_addr); 289 if (map_word_andequal(map, status, status_OK, status_OK)) 290 break; 291 292 if (time_after(jiffies, timeo)) { 293 /* Urgh */ 294 map_write(map, CMD(0xd0), cmd_addr); 295 /* make sure we're in 'read status' mode */ 296 map_write(map, CMD(0x70), cmd_addr); 297 chip->state = FL_ERASING; 298 wake_up(&chip->wq); 299 mutex_unlock(&chip->mutex); 300 printk(KERN_ERR "Chip not ready after erase " 301 "suspended: status = 0x%lx\n", status.x[0]); 302 return -EIO; 303 } 304 305 mutex_unlock(&chip->mutex); 306 cfi_udelay(1); 307 mutex_lock(&chip->mutex); 308 } 309 310 suspended = 1; 311 map_write(map, CMD(0xff), cmd_addr); 312 chip->state = FL_READY; 313 break; 314 315#if 0 316 case FL_WRITING: 317 /* Not quite yet */ 318#endif 319 320 case FL_READY: 321 break; 322 323 case FL_CFI_QUERY: 324 case FL_JEDEC_QUERY: 325 map_write(map, CMD(0x70), cmd_addr); 326 chip->state = FL_STATUS; 327 fallthrough; 328 case FL_STATUS: 329 status = map_read(map, cmd_addr); 330 if (map_word_andequal(map, status, status_OK, status_OK)) { 331 map_write(map, CMD(0xff), cmd_addr); 332 chip->state = FL_READY; 333 break; 334 } 335 336 /* Urgh. Chip not yet ready to talk to us. */ 337 if (time_after(jiffies, timeo)) { 338 mutex_unlock(&chip->mutex); 339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); 340 return -EIO; 341 } 342 343 /* Latency issues. Drop the lock, wait a while and retry */ 344 mutex_unlock(&chip->mutex); 345 cfi_udelay(1); 346 goto retry; 347 348 default: 349 sleep: 350 /* Stick ourselves on a wait queue to be woken when 351 someone changes the status */ 352 set_current_state(TASK_UNINTERRUPTIBLE); 353 add_wait_queue(&chip->wq, &wait); 354 mutex_unlock(&chip->mutex); 355 schedule(); 356 remove_wait_queue(&chip->wq, &wait); 357 timeo = jiffies + HZ; 358 goto retry; 359 } 360 361 map_copy_from(map, buf, adr, len); 362 363 if (suspended) { 364 chip->state = chip->oldstate; 365 /* What if one interleaved chip has finished and the 366 other hasn't? The old code would leave the finished 367 one in READY mode. That's bad, and caused -EROFS 368 errors to be returned from do_erase_oneblock because 369 that's the only bit it checked for at the time. 370 As the state machine appears to explicitly allow 371 sending the 0x70 (Read Status) command to an erasing 372 chip and expecting it to be ignored, that's what we 373 do. */ 374 map_write(map, CMD(0xd0), cmd_addr); 375 map_write(map, CMD(0x70), cmd_addr); 376 } 377 378 wake_up(&chip->wq); 379 mutex_unlock(&chip->mutex); 380 return 0; 381} 382 383static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 384{ 385 struct map_info *map = mtd->priv; 386 struct cfi_private *cfi = map->fldrv_priv; 387 unsigned long ofs; 388 int chipnum; 389 int ret = 0; 390 391 /* ofs: offset within the first chip that the first read should start */ 392 chipnum = (from >> cfi->chipshift); 393 ofs = from - (chipnum << cfi->chipshift); 394 395 while (len) { 396 unsigned long thislen; 397 398 if (chipnum >= cfi->numchips) 399 break; 400 401 if ((len + ofs -1) >> cfi->chipshift) 402 thislen = (1<<cfi->chipshift) - ofs; 403 else 404 thislen = len; 405 406 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 407 if (ret) 408 break; 409 410 *retlen += thislen; 411 len -= thislen; 412 buf += thislen; 413 414 ofs = 0; 415 chipnum++; 416 } 417 return ret; 418} 419 420static int do_write_buffer(struct map_info *map, struct flchip *chip, 421 unsigned long adr, const u_char *buf, int len) 422{ 423 struct cfi_private *cfi = map->fldrv_priv; 424 map_word status, status_OK; 425 unsigned long cmd_adr, timeo; 426 DECLARE_WAITQUEUE(wait, current); 427 int wbufsize, z; 428 429 /* M58LW064A requires bus alignment for buffer wriets -- saw */ 430 if (adr & (map_bankwidth(map)-1)) 431 return -EINVAL; 432 433 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 434 adr += chip->start; 435 cmd_adr = adr & ~(wbufsize-1); 436 437 /* Let's determine this according to the interleave only once */ 438 status_OK = CMD(0x80); 439 440 timeo = jiffies + HZ; 441 retry: 442 443#ifdef DEBUG_CFI_FEATURES 444 printk("%s: chip->state[%d]\n", __func__, chip->state); 445#endif 446 mutex_lock(&chip->mutex); 447 448 /* Check that the chip's ready to talk to us. 449 * Later, we can actually think about interrupting it 450 * if it's in FL_ERASING state. 451 * Not just yet, though. 452 */ 453 switch (chip->state) { 454 case FL_READY: 455 break; 456 457 case FL_CFI_QUERY: 458 case FL_JEDEC_QUERY: 459 map_write(map, CMD(0x70), cmd_adr); 460 chip->state = FL_STATUS; 461#ifdef DEBUG_CFI_FEATURES 462 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr)); 463#endif 464 fallthrough; 465 case FL_STATUS: 466 status = map_read(map, cmd_adr); 467 if (map_word_andequal(map, status, status_OK, status_OK)) 468 break; 469 /* Urgh. Chip not yet ready to talk to us. */ 470 if (time_after(jiffies, timeo)) { 471 mutex_unlock(&chip->mutex); 472 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", 473 status.x[0], map_read(map, cmd_adr).x[0]); 474 return -EIO; 475 } 476 477 /* Latency issues. Drop the lock, wait a while and retry */ 478 mutex_unlock(&chip->mutex); 479 cfi_udelay(1); 480 goto retry; 481 482 default: 483 /* Stick ourselves on a wait queue to be woken when 484 someone changes the status */ 485 set_current_state(TASK_UNINTERRUPTIBLE); 486 add_wait_queue(&chip->wq, &wait); 487 mutex_unlock(&chip->mutex); 488 schedule(); 489 remove_wait_queue(&chip->wq, &wait); 490 timeo = jiffies + HZ; 491 goto retry; 492 } 493 494 ENABLE_VPP(map); 495 map_write(map, CMD(0xe8), cmd_adr); 496 chip->state = FL_WRITING_TO_BUFFER; 497 498 z = 0; 499 for (;;) { 500 status = map_read(map, cmd_adr); 501 if (map_word_andequal(map, status, status_OK, status_OK)) 502 break; 503 504 mutex_unlock(&chip->mutex); 505 cfi_udelay(1); 506 mutex_lock(&chip->mutex); 507 508 if (++z > 100) { 509 /* Argh. Not ready for write to buffer */ 510 DISABLE_VPP(map); 511 map_write(map, CMD(0x70), cmd_adr); 512 chip->state = FL_STATUS; 513 mutex_unlock(&chip->mutex); 514 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); 515 return -EIO; 516 } 517 } 518 519 /* Write length of data to come */ 520 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); 521 522 /* Write data */ 523 for (z = 0; z < len; 524 z += map_bankwidth(map), buf += map_bankwidth(map)) { 525 map_word d; 526 d = map_word_load(map, buf); 527 map_write(map, d, adr+z); 528 } 529 /* GO GO GO */ 530 map_write(map, CMD(0xd0), cmd_adr); 531 chip->state = FL_WRITING; 532 533 mutex_unlock(&chip->mutex); 534 cfi_udelay(chip->buffer_write_time); 535 mutex_lock(&chip->mutex); 536 537 timeo = jiffies + (HZ/2); 538 z = 0; 539 for (;;) { 540 if (chip->state != FL_WRITING) { 541 /* Someone's suspended the write. Sleep */ 542 set_current_state(TASK_UNINTERRUPTIBLE); 543 add_wait_queue(&chip->wq, &wait); 544 mutex_unlock(&chip->mutex); 545 schedule(); 546 remove_wait_queue(&chip->wq, &wait); 547 timeo = jiffies + (HZ / 2); /* FIXME */ 548 mutex_lock(&chip->mutex); 549 continue; 550 } 551 552 status = map_read(map, cmd_adr); 553 if (map_word_andequal(map, status, status_OK, status_OK)) 554 break; 555 556 /* OK Still waiting */ 557 if (time_after(jiffies, timeo)) { 558 /* clear status */ 559 map_write(map, CMD(0x50), cmd_adr); 560 /* put back into read status register mode */ 561 map_write(map, CMD(0x70), adr); 562 chip->state = FL_STATUS; 563 DISABLE_VPP(map); 564 mutex_unlock(&chip->mutex); 565 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); 566 return -EIO; 567 } 568 569 /* Latency issues. Drop the lock, wait a while and retry */ 570 mutex_unlock(&chip->mutex); 571 cfi_udelay(1); 572 z++; 573 mutex_lock(&chip->mutex); 574 } 575 if (!z) { 576 chip->buffer_write_time--; 577 if (!chip->buffer_write_time) 578 chip->buffer_write_time++; 579 } 580 if (z > 1) 581 chip->buffer_write_time++; 582 583 /* Done and happy. */ 584 DISABLE_VPP(map); 585 chip->state = FL_STATUS; 586 587 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ 588 if (map_word_bitsset(map, status, CMD(0x3a))) { 589#ifdef DEBUG_CFI_FEATURES 590 printk("%s: 2 status[%lx]\n", __func__, status.x[0]); 591#endif 592 /* clear status */ 593 map_write(map, CMD(0x50), cmd_adr); 594 /* put back into read status register mode */ 595 map_write(map, CMD(0x70), adr); 596 wake_up(&chip->wq); 597 mutex_unlock(&chip->mutex); 598 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; 599 } 600 wake_up(&chip->wq); 601 mutex_unlock(&chip->mutex); 602 603 return 0; 604} 605 606static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, 607 size_t len, size_t *retlen, const u_char *buf) 608{ 609 struct map_info *map = mtd->priv; 610 struct cfi_private *cfi = map->fldrv_priv; 611 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 612 int ret; 613 int chipnum; 614 unsigned long ofs; 615 616 chipnum = to >> cfi->chipshift; 617 ofs = to - (chipnum << cfi->chipshift); 618 619#ifdef DEBUG_CFI_FEATURES 620 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map)); 621 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize); 622 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len); 623#endif 624 625 /* Write buffer is worth it only if more than one word to write... */ 626 while (len > 0) { 627 /* We must not cross write block boundaries */ 628 int size = wbufsize - (ofs & (wbufsize-1)); 629 630 if (size > len) 631 size = len; 632 633 ret = do_write_buffer(map, &cfi->chips[chipnum], 634 ofs, buf, size); 635 if (ret) 636 return ret; 637 638 ofs += size; 639 buf += size; 640 (*retlen) += size; 641 len -= size; 642 643 if (ofs >> cfi->chipshift) { 644 chipnum ++; 645 ofs = 0; 646 if (chipnum == cfi->numchips) 647 return 0; 648 } 649 } 650 651 return 0; 652} 653 654/* 655 * Writev for ECC-Flashes is a little more complicated. We need to maintain 656 * a small buffer for this. 657 * XXX: If the buffer size is not a multiple of 2, this will break 658 */ 659#define ECCBUF_SIZE (mtd->writesize) 660#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) 661#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) 662static int 663cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, 664 unsigned long count, loff_t to, size_t *retlen) 665{ 666 unsigned long i; 667 size_t totlen = 0, thislen; 668 int ret = 0; 669 size_t buflen = 0; 670 char *buffer; 671 672 if (!ECCBUF_SIZE) { 673 /* We should fall back to a general writev implementation. 674 * Until that is written, just break. 675 */ 676 return -EIO; 677 } 678 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); 679 if (!buffer) 680 return -ENOMEM; 681 682 for (i=0; i<count; i++) { 683 size_t elem_len = vecs[i].iov_len; 684 void *elem_base = vecs[i].iov_base; 685 if (!elem_len) /* FIXME: Might be unnecessary. Check that */ 686 continue; 687 if (buflen) { /* cut off head */ 688 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ 689 memcpy(buffer+buflen, elem_base, elem_len); 690 buflen += elem_len; 691 continue; 692 } 693 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); 694 ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen, 695 buffer); 696 totlen += thislen; 697 if (ret || thislen != ECCBUF_SIZE) 698 goto write_error; 699 elem_len -= thislen-buflen; 700 elem_base += thislen-buflen; 701 to += ECCBUF_SIZE; 702 } 703 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ 704 ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len), 705 &thislen, elem_base); 706 totlen += thislen; 707 if (ret || thislen != ECCBUF_DIV(elem_len)) 708 goto write_error; 709 to += thislen; 710 } 711 buflen = ECCBUF_MOD(elem_len); /* cut off tail */ 712 if (buflen) { 713 memset(buffer, 0xff, ECCBUF_SIZE); 714 memcpy(buffer, elem_base + thislen, buflen); 715 } 716 } 717 if (buflen) { /* flush last page, even if not full */ 718 /* This is sometimes intended behaviour, really */ 719 ret = mtd_write(mtd, to, buflen, &thislen, buffer); 720 totlen += thislen; 721 if (ret || thislen != ECCBUF_SIZE) 722 goto write_error; 723 } 724write_error: 725 if (retlen) 726 *retlen = totlen; 727 kfree(buffer); 728 return ret; 729} 730 731 732static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 733{ 734 struct cfi_private *cfi = map->fldrv_priv; 735 map_word status, status_OK; 736 unsigned long timeo; 737 int retries = 3; 738 DECLARE_WAITQUEUE(wait, current); 739 int ret = 0; 740 741 adr += chip->start; 742 743 /* Let's determine this according to the interleave only once */ 744 status_OK = CMD(0x80); 745 746 timeo = jiffies + HZ; 747retry: 748 mutex_lock(&chip->mutex); 749 750 /* Check that the chip's ready to talk to us. */ 751 switch (chip->state) { 752 case FL_CFI_QUERY: 753 case FL_JEDEC_QUERY: 754 case FL_READY: 755 map_write(map, CMD(0x70), adr); 756 chip->state = FL_STATUS; 757 fallthrough; 758 case FL_STATUS: 759 status = map_read(map, adr); 760 if (map_word_andequal(map, status, status_OK, status_OK)) 761 break; 762 763 /* Urgh. Chip not yet ready to talk to us. */ 764 if (time_after(jiffies, timeo)) { 765 mutex_unlock(&chip->mutex); 766 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); 767 return -EIO; 768 } 769 770 /* Latency issues. Drop the lock, wait a while and retry */ 771 mutex_unlock(&chip->mutex); 772 cfi_udelay(1); 773 goto retry; 774 775 default: 776 /* Stick ourselves on a wait queue to be woken when 777 someone changes the status */ 778 set_current_state(TASK_UNINTERRUPTIBLE); 779 add_wait_queue(&chip->wq, &wait); 780 mutex_unlock(&chip->mutex); 781 schedule(); 782 remove_wait_queue(&chip->wq, &wait); 783 timeo = jiffies + HZ; 784 goto retry; 785 } 786 787 ENABLE_VPP(map); 788 /* Clear the status register first */ 789 map_write(map, CMD(0x50), adr); 790 791 /* Now erase */ 792 map_write(map, CMD(0x20), adr); 793 map_write(map, CMD(0xD0), adr); 794 chip->state = FL_ERASING; 795 796 mutex_unlock(&chip->mutex); 797 msleep(1000); 798 mutex_lock(&chip->mutex); 799 800 /* FIXME. Use a timer to check this, and return immediately. */ 801 /* Once the state machine's known to be working I'll do that */ 802 803 timeo = jiffies + (HZ*20); 804 for (;;) { 805 if (chip->state != FL_ERASING) { 806 /* Someone's suspended the erase. Sleep */ 807 set_current_state(TASK_UNINTERRUPTIBLE); 808 add_wait_queue(&chip->wq, &wait); 809 mutex_unlock(&chip->mutex); 810 schedule(); 811 remove_wait_queue(&chip->wq, &wait); 812 timeo = jiffies + (HZ*20); /* FIXME */ 813 mutex_lock(&chip->mutex); 814 continue; 815 } 816 817 status = map_read(map, adr); 818 if (map_word_andequal(map, status, status_OK, status_OK)) 819 break; 820 821 /* OK Still waiting */ 822 if (time_after(jiffies, timeo)) { 823 map_write(map, CMD(0x70), adr); 824 chip->state = FL_STATUS; 825 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 826 DISABLE_VPP(map); 827 mutex_unlock(&chip->mutex); 828 return -EIO; 829 } 830 831 /* Latency issues. Drop the lock, wait a while and retry */ 832 mutex_unlock(&chip->mutex); 833 cfi_udelay(1); 834 mutex_lock(&chip->mutex); 835 } 836 837 DISABLE_VPP(map); 838 ret = 0; 839 840 /* We've broken this before. It doesn't hurt to be safe */ 841 map_write(map, CMD(0x70), adr); 842 chip->state = FL_STATUS; 843 status = map_read(map, adr); 844 845 /* check for lock bit */ 846 if (map_word_bitsset(map, status, CMD(0x3a))) { 847 unsigned char chipstatus = status.x[0]; 848 if (!map_word_equal(map, status, CMD(chipstatus))) { 849 int i, w; 850 for (w=0; w<map_words(map); w++) { 851 for (i = 0; i<cfi_interleave(cfi); i++) { 852 chipstatus |= status.x[w] >> (cfi->device_type * 8); 853 } 854 } 855 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", 856 status.x[0], chipstatus); 857 } 858 /* Reset the error bits */ 859 map_write(map, CMD(0x50), adr); 860 map_write(map, CMD(0x70), adr); 861 862 if ((chipstatus & 0x30) == 0x30) { 863 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); 864 ret = -EIO; 865 } else if (chipstatus & 0x02) { 866 /* Protection bit set */ 867 ret = -EROFS; 868 } else if (chipstatus & 0x8) { 869 /* Voltage */ 870 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); 871 ret = -EIO; 872 } else if (chipstatus & 0x20) { 873 if (retries--) { 874 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); 875 timeo = jiffies + HZ; 876 chip->state = FL_STATUS; 877 mutex_unlock(&chip->mutex); 878 goto retry; 879 } 880 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); 881 ret = -EIO; 882 } 883 } 884 885 wake_up(&chip->wq); 886 mutex_unlock(&chip->mutex); 887 return ret; 888} 889 890static int cfi_staa_erase_varsize(struct mtd_info *mtd, 891 struct erase_info *instr) 892{ struct map_info *map = mtd->priv; 893 struct cfi_private *cfi = map->fldrv_priv; 894 unsigned long adr, len; 895 int chipnum, ret; 896 int i, first; 897 struct mtd_erase_region_info *regions = mtd->eraseregions; 898 899 /* Check that both start and end of the requested erase are 900 * aligned with the erasesize at the appropriate addresses. 901 */ 902 903 i = 0; 904 905 /* Skip all erase regions which are ended before the start of 906 the requested erase. Actually, to save on the calculations, 907 we skip to the first erase region which starts after the 908 start of the requested erase, and then go back one. 909 */ 910 911 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) 912 i++; 913 i--; 914 915 /* OK, now i is pointing at the erase region in which this 916 erase request starts. Check the start of the requested 917 erase range is aligned with the erase size which is in 918 effect here. 919 */ 920 921 if (instr->addr & (regions[i].erasesize-1)) 922 return -EINVAL; 923 924 /* Remember the erase region we start on */ 925 first = i; 926 927 /* Next, check that the end of the requested erase is aligned 928 * with the erase region at that address. 929 */ 930 931 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) 932 i++; 933 934 /* As before, drop back one to point at the region in which 935 the address actually falls 936 */ 937 i--; 938 939 if ((instr->addr + instr->len) & (regions[i].erasesize-1)) 940 return -EINVAL; 941 942 chipnum = instr->addr >> cfi->chipshift; 943 adr = instr->addr - (chipnum << cfi->chipshift); 944 len = instr->len; 945 946 i=first; 947 948 while(len) { 949 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); 950 951 if (ret) 952 return ret; 953 954 adr += regions[i].erasesize; 955 len -= regions[i].erasesize; 956 957 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) 958 i++; 959 960 if (adr >> cfi->chipshift) { 961 adr = 0; 962 chipnum++; 963 964 if (chipnum >= cfi->numchips) 965 break; 966 } 967 } 968 969 return 0; 970} 971 972static void cfi_staa_sync (struct mtd_info *mtd) 973{ 974 struct map_info *map = mtd->priv; 975 struct cfi_private *cfi = map->fldrv_priv; 976 int i; 977 struct flchip *chip; 978 int ret = 0; 979 DECLARE_WAITQUEUE(wait, current); 980 981 for (i=0; !ret && i<cfi->numchips; i++) { 982 chip = &cfi->chips[i]; 983 984 retry: 985 mutex_lock(&chip->mutex); 986 987 switch(chip->state) { 988 case FL_READY: 989 case FL_STATUS: 990 case FL_CFI_QUERY: 991 case FL_JEDEC_QUERY: 992 chip->oldstate = chip->state; 993 chip->state = FL_SYNCING; 994 /* No need to wake_up() on this state change - 995 * as the whole point is that nobody can do anything 996 * with the chip now anyway. 997 */ 998 fallthrough; 999 case FL_SYNCING: 1000 mutex_unlock(&chip->mutex); 1001 break; 1002 1003 default: 1004 /* Not an idle state */ 1005 set_current_state(TASK_UNINTERRUPTIBLE); 1006 add_wait_queue(&chip->wq, &wait); 1007 1008 mutex_unlock(&chip->mutex); 1009 schedule(); 1010 remove_wait_queue(&chip->wq, &wait); 1011 1012 goto retry; 1013 } 1014 } 1015 1016 /* Unlock the chips again */ 1017 1018 for (i--; i >=0; i--) { 1019 chip = &cfi->chips[i]; 1020 1021 mutex_lock(&chip->mutex); 1022 1023 if (chip->state == FL_SYNCING) { 1024 chip->state = chip->oldstate; 1025 wake_up(&chip->wq); 1026 } 1027 mutex_unlock(&chip->mutex); 1028 } 1029} 1030 1031static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1032{ 1033 struct cfi_private *cfi = map->fldrv_priv; 1034 map_word status, status_OK; 1035 unsigned long timeo = jiffies + HZ; 1036 DECLARE_WAITQUEUE(wait, current); 1037 1038 adr += chip->start; 1039 1040 /* Let's determine this according to the interleave only once */ 1041 status_OK = CMD(0x80); 1042 1043 timeo = jiffies + HZ; 1044retry: 1045 mutex_lock(&chip->mutex); 1046 1047 /* Check that the chip's ready to talk to us. */ 1048 switch (chip->state) { 1049 case FL_CFI_QUERY: 1050 case FL_JEDEC_QUERY: 1051 case FL_READY: 1052 map_write(map, CMD(0x70), adr); 1053 chip->state = FL_STATUS; 1054 fallthrough; 1055 case FL_STATUS: 1056 status = map_read(map, adr); 1057 if (map_word_andequal(map, status, status_OK, status_OK)) 1058 break; 1059 1060 /* Urgh. Chip not yet ready to talk to us. */ 1061 if (time_after(jiffies, timeo)) { 1062 mutex_unlock(&chip->mutex); 1063 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); 1064 return -EIO; 1065 } 1066 1067 /* Latency issues. Drop the lock, wait a while and retry */ 1068 mutex_unlock(&chip->mutex); 1069 cfi_udelay(1); 1070 goto retry; 1071 1072 default: 1073 /* Stick ourselves on a wait queue to be woken when 1074 someone changes the status */ 1075 set_current_state(TASK_UNINTERRUPTIBLE); 1076 add_wait_queue(&chip->wq, &wait); 1077 mutex_unlock(&chip->mutex); 1078 schedule(); 1079 remove_wait_queue(&chip->wq, &wait); 1080 timeo = jiffies + HZ; 1081 goto retry; 1082 } 1083 1084 ENABLE_VPP(map); 1085 map_write(map, CMD(0x60), adr); 1086 map_write(map, CMD(0x01), adr); 1087 chip->state = FL_LOCKING; 1088 1089 mutex_unlock(&chip->mutex); 1090 msleep(1000); 1091 mutex_lock(&chip->mutex); 1092 1093 /* FIXME. Use a timer to check this, and return immediately. */ 1094 /* Once the state machine's known to be working I'll do that */ 1095 1096 timeo = jiffies + (HZ*2); 1097 for (;;) { 1098 1099 status = map_read(map, adr); 1100 if (map_word_andequal(map, status, status_OK, status_OK)) 1101 break; 1102 1103 /* OK Still waiting */ 1104 if (time_after(jiffies, timeo)) { 1105 map_write(map, CMD(0x70), adr); 1106 chip->state = FL_STATUS; 1107 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1108 DISABLE_VPP(map); 1109 mutex_unlock(&chip->mutex); 1110 return -EIO; 1111 } 1112 1113 /* Latency issues. Drop the lock, wait a while and retry */ 1114 mutex_unlock(&chip->mutex); 1115 cfi_udelay(1); 1116 mutex_lock(&chip->mutex); 1117 } 1118 1119 /* Done and happy. */ 1120 chip->state = FL_STATUS; 1121 DISABLE_VPP(map); 1122 wake_up(&chip->wq); 1123 mutex_unlock(&chip->mutex); 1124 return 0; 1125} 1126static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1127{ 1128 struct map_info *map = mtd->priv; 1129 struct cfi_private *cfi = map->fldrv_priv; 1130 unsigned long adr; 1131 int chipnum, ret; 1132#ifdef DEBUG_LOCK_BITS 1133 int ofs_factor = cfi->interleave * cfi->device_type; 1134#endif 1135 1136 if (ofs & (mtd->erasesize - 1)) 1137 return -EINVAL; 1138 1139 if (len & (mtd->erasesize -1)) 1140 return -EINVAL; 1141 1142 chipnum = ofs >> cfi->chipshift; 1143 adr = ofs - (chipnum << cfi->chipshift); 1144 1145 while(len) { 1146 1147#ifdef DEBUG_LOCK_BITS 1148 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1149 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1150 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1151#endif 1152 1153 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); 1154 1155#ifdef DEBUG_LOCK_BITS 1156 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1157 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1158 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1159#endif 1160 1161 if (ret) 1162 return ret; 1163 1164 adr += mtd->erasesize; 1165 len -= mtd->erasesize; 1166 1167 if (adr >> cfi->chipshift) { 1168 adr = 0; 1169 chipnum++; 1170 1171 if (chipnum >= cfi->numchips) 1172 break; 1173 } 1174 } 1175 return 0; 1176} 1177static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) 1178{ 1179 struct cfi_private *cfi = map->fldrv_priv; 1180 map_word status, status_OK; 1181 unsigned long timeo = jiffies + HZ; 1182 DECLARE_WAITQUEUE(wait, current); 1183 1184 adr += chip->start; 1185 1186 /* Let's determine this according to the interleave only once */ 1187 status_OK = CMD(0x80); 1188 1189 timeo = jiffies + HZ; 1190retry: 1191 mutex_lock(&chip->mutex); 1192 1193 /* Check that the chip's ready to talk to us. */ 1194 switch (chip->state) { 1195 case FL_CFI_QUERY: 1196 case FL_JEDEC_QUERY: 1197 case FL_READY: 1198 map_write(map, CMD(0x70), adr); 1199 chip->state = FL_STATUS; 1200 fallthrough; 1201 case FL_STATUS: 1202 status = map_read(map, adr); 1203 if (map_word_andequal(map, status, status_OK, status_OK)) 1204 break; 1205 1206 /* Urgh. Chip not yet ready to talk to us. */ 1207 if (time_after(jiffies, timeo)) { 1208 mutex_unlock(&chip->mutex); 1209 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); 1210 return -EIO; 1211 } 1212 1213 /* Latency issues. Drop the lock, wait a while and retry */ 1214 mutex_unlock(&chip->mutex); 1215 cfi_udelay(1); 1216 goto retry; 1217 1218 default: 1219 /* Stick ourselves on a wait queue to be woken when 1220 someone changes the status */ 1221 set_current_state(TASK_UNINTERRUPTIBLE); 1222 add_wait_queue(&chip->wq, &wait); 1223 mutex_unlock(&chip->mutex); 1224 schedule(); 1225 remove_wait_queue(&chip->wq, &wait); 1226 timeo = jiffies + HZ; 1227 goto retry; 1228 } 1229 1230 ENABLE_VPP(map); 1231 map_write(map, CMD(0x60), adr); 1232 map_write(map, CMD(0xD0), adr); 1233 chip->state = FL_UNLOCKING; 1234 1235 mutex_unlock(&chip->mutex); 1236 msleep(1000); 1237 mutex_lock(&chip->mutex); 1238 1239 /* FIXME. Use a timer to check this, and return immediately. */ 1240 /* Once the state machine's known to be working I'll do that */ 1241 1242 timeo = jiffies + (HZ*2); 1243 for (;;) { 1244 1245 status = map_read(map, adr); 1246 if (map_word_andequal(map, status, status_OK, status_OK)) 1247 break; 1248 1249 /* OK Still waiting */ 1250 if (time_after(jiffies, timeo)) { 1251 map_write(map, CMD(0x70), adr); 1252 chip->state = FL_STATUS; 1253 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); 1254 DISABLE_VPP(map); 1255 mutex_unlock(&chip->mutex); 1256 return -EIO; 1257 } 1258 1259 /* Latency issues. Drop the unlock, wait a while and retry */ 1260 mutex_unlock(&chip->mutex); 1261 cfi_udelay(1); 1262 mutex_lock(&chip->mutex); 1263 } 1264 1265 /* Done and happy. */ 1266 chip->state = FL_STATUS; 1267 DISABLE_VPP(map); 1268 wake_up(&chip->wq); 1269 mutex_unlock(&chip->mutex); 1270 return 0; 1271} 1272static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1273{ 1274 struct map_info *map = mtd->priv; 1275 struct cfi_private *cfi = map->fldrv_priv; 1276 unsigned long adr; 1277 int chipnum, ret; 1278#ifdef DEBUG_LOCK_BITS 1279 int ofs_factor = cfi->interleave * cfi->device_type; 1280#endif 1281 1282 chipnum = ofs >> cfi->chipshift; 1283 adr = ofs - (chipnum << cfi->chipshift); 1284 1285#ifdef DEBUG_LOCK_BITS 1286 { 1287 unsigned long temp_adr = adr; 1288 unsigned long temp_len = len; 1289 1290 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1291 while (temp_len) { 1292 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); 1293 temp_adr += mtd->erasesize; 1294 temp_len -= mtd->erasesize; 1295 } 1296 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1297 } 1298#endif 1299 1300 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); 1301 1302#ifdef DEBUG_LOCK_BITS 1303 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); 1304 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); 1305 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); 1306#endif 1307 1308 return ret; 1309} 1310 1311static int cfi_staa_suspend(struct mtd_info *mtd) 1312{ 1313 struct map_info *map = mtd->priv; 1314 struct cfi_private *cfi = map->fldrv_priv; 1315 int i; 1316 struct flchip *chip; 1317 int ret = 0; 1318 1319 for (i=0; !ret && i<cfi->numchips; i++) { 1320 chip = &cfi->chips[i]; 1321 1322 mutex_lock(&chip->mutex); 1323 1324 switch(chip->state) { 1325 case FL_READY: 1326 case FL_STATUS: 1327 case FL_CFI_QUERY: 1328 case FL_JEDEC_QUERY: 1329 chip->oldstate = chip->state; 1330 chip->state = FL_PM_SUSPENDED; 1331 /* No need to wake_up() on this state change - 1332 * as the whole point is that nobody can do anything 1333 * with the chip now anyway. 1334 */ 1335 break; 1336 1337 case FL_PM_SUSPENDED: 1338 break; 1339 1340 default: 1341 ret = -EAGAIN; 1342 break; 1343 } 1344 mutex_unlock(&chip->mutex); 1345 } 1346 1347 /* Unlock the chips again */ 1348 1349 if (ret) { 1350 for (i--; i >=0; i--) { 1351 chip = &cfi->chips[i]; 1352 1353 mutex_lock(&chip->mutex); 1354 1355 if (chip->state == FL_PM_SUSPENDED) { 1356 /* No need to force it into a known state here, 1357 because we're returning failure, and it didn't 1358 get power cycled */ 1359 chip->state = chip->oldstate; 1360 wake_up(&chip->wq); 1361 } 1362 mutex_unlock(&chip->mutex); 1363 } 1364 } 1365 1366 return ret; 1367} 1368 1369static void cfi_staa_resume(struct mtd_info *mtd) 1370{ 1371 struct map_info *map = mtd->priv; 1372 struct cfi_private *cfi = map->fldrv_priv; 1373 int i; 1374 struct flchip *chip; 1375 1376 for (i=0; i<cfi->numchips; i++) { 1377 1378 chip = &cfi->chips[i]; 1379 1380 mutex_lock(&chip->mutex); 1381 1382 /* Go to known state. Chip may have been power cycled */ 1383 if (chip->state == FL_PM_SUSPENDED) { 1384 map_write(map, CMD(0xFF), 0); 1385 chip->state = FL_READY; 1386 wake_up(&chip->wq); 1387 } 1388 1389 mutex_unlock(&chip->mutex); 1390 } 1391} 1392 1393static void cfi_staa_destroy(struct mtd_info *mtd) 1394{ 1395 struct map_info *map = mtd->priv; 1396 struct cfi_private *cfi = map->fldrv_priv; 1397 kfree(cfi->cmdset_priv); 1398 kfree(cfi); 1399} 1400 1401MODULE_LICENSE("GPL");