cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lart.c (18648B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2
      3/*
      4 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
      5 *
      6 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
      7 *
      8 * Copyright (c) 2001, 2d3D, Inc.
      9 *
     10 * References:
     11 *
     12 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
     13 *           - Order Number: 290644-005
     14 *           - January 2000
     15 *
     16 *    [2] MTD internal API documentation
     17 *           - http://www.linux-mtd.infradead.org/ 
     18 *
     19 * Limitations:
     20 *
     21 *    Even though this driver is written for 3 Volt Fast Boot
     22 *    Block Flash Memory, it is rather specific to LART. With
     23 *    Minor modifications, notably the without data/address line
     24 *    mangling and different bus settings, etc. it should be
     25 *    trivial to adapt to other platforms.
     26 *
     27 *    If somebody would sponsor me a different board, I'll
     28 *    adapt the driver (:
     29 */
     30
     31/* debugging */
     32//#define LART_DEBUG
     33
     34#include <linux/kernel.h>
     35#include <linux/module.h>
     36#include <linux/types.h>
     37#include <linux/init.h>
     38#include <linux/errno.h>
     39#include <linux/string.h>
     40#include <linux/mtd/mtd.h>
     41#include <linux/mtd/partitions.h>
     42
     43#ifndef CONFIG_SA1100_LART
     44#error This is for LART architecture only
     45#endif
     46
     47static char module_name[] = "lart";
     48
     49/*
     50 * These values is specific to 28Fxxxx3 flash memory.
     51 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
     52 */
     53#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
     54#define FLASH_NUMBLOCKS_16m_PARAM	8
     55#define FLASH_NUMBLOCKS_8m_PARAM	8
     56
     57/*
     58 * These values is specific to 28Fxxxx3 flash memory.
     59 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
     60 */
     61#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
     62#define FLASH_NUMBLOCKS_16m_MAIN	31
     63#define FLASH_NUMBLOCKS_8m_MAIN		15
     64
     65/*
     66 * These values are specific to LART
     67 */
     68
     69/* general */
     70#define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
     71#define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
     72
     73/* blob */
     74#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
     75#define PART_BLOB_START		0x00000000
     76#define PART_BLOB_LEN		(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
     77
     78/* kernel */
     79#define NUM_KERNEL_BLOCKS	7
     80#define PART_KERNEL_START	(PART_BLOB_START + PART_BLOB_LEN)
     81#define PART_KERNEL_LEN		(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
     82
     83/* initial ramdisk */
     84#define NUM_INITRD_BLOCKS	24
     85#define PART_INITRD_START	(PART_KERNEL_START + PART_KERNEL_LEN)
     86#define PART_INITRD_LEN		(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
     87
     88/*
     89 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
     90 */
     91#define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
     92#define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
     93#define ERASE_SETUP			0x00200020		/* Block Erase */
     94#define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
     95#define PGM_SETUP			0x00400040		/* Program */
     96#define STATUS_READ			0x00700070		/* Read Status Register */
     97#define STATUS_CLEAR		0x00500050		/* Clear Status Register */
     98#define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
     99#define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
    100#define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
    101
    102/*
    103 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
    104 */
    105#define FLASH_MANUFACTURER			0x00890089
    106#define FLASH_DEVICE_8mbit_TOP		0x88f188f1
    107#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
    108#define FLASH_DEVICE_16mbit_TOP		0x88f388f3
    109#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
    110
    111/***************************************************************************************************/
    112
    113/*
    114 * The data line mapping on LART is as follows:
    115 *
    116 *   	 U2  CPU |   U3  CPU
    117 *   	 -------------------
    118 *   	  0  20  |   0   12
    119 *   	  1  22  |   1   14
    120 *   	  2  19  |   2   11
    121 *   	  3  17  |   3   9
    122 *   	  4  24  |   4   0
    123 *   	  5  26  |   5   2
    124 *   	  6  31  |   6   7
    125 *   	  7  29  |   7   5
    126 *   	  8  21  |   8   13
    127 *   	  9  23  |   9   15
    128 *   	  10 18  |   10  10
    129 *   	  11 16  |   11  8
    130 *   	  12 25  |   12  1
    131 *   	  13 27  |   13  3
    132 *   	  14 30  |   14  6
    133 *   	  15 28  |   15  4
    134 */
    135
    136/* Mangle data (x) */
    137#define DATA_TO_FLASH(x)				\
    138	(									\
    139		(((x) & 0x08009000) >> 11)	+	\
    140		(((x) & 0x00002000) >> 10)	+	\
    141		(((x) & 0x04004000) >> 8)	+	\
    142		(((x) & 0x00000010) >> 4)	+	\
    143		(((x) & 0x91000820) >> 3)	+	\
    144		(((x) & 0x22080080) >> 2)	+	\
    145		((x) & 0x40000400)			+	\
    146		(((x) & 0x00040040) << 1)	+	\
    147		(((x) & 0x00110000) << 4)	+	\
    148		(((x) & 0x00220100) << 5)	+	\
    149		(((x) & 0x00800208) << 6)	+	\
    150		(((x) & 0x00400004) << 9)	+	\
    151		(((x) & 0x00000001) << 12)	+	\
    152		(((x) & 0x00000002) << 13)		\
    153	)
    154
    155/* Unmangle data (x) */
    156#define FLASH_TO_DATA(x)				\
    157	(									\
    158		(((x) & 0x00010012) << 11)	+	\
    159		(((x) & 0x00000008) << 10)	+	\
    160		(((x) & 0x00040040) << 8)	+	\
    161		(((x) & 0x00000001) << 4)	+	\
    162		(((x) & 0x12200104) << 3)	+	\
    163		(((x) & 0x08820020) << 2)	+	\
    164		((x) & 0x40000400)			+	\
    165		(((x) & 0x00080080) >> 1)	+	\
    166		(((x) & 0x01100000) >> 4)	+	\
    167		(((x) & 0x04402000) >> 5)	+	\
    168		(((x) & 0x20008200) >> 6)	+	\
    169		(((x) & 0x80000800) >> 9)	+	\
    170		(((x) & 0x00001000) >> 12)	+	\
    171		(((x) & 0x00004000) >> 13)		\
    172	)
    173
    174/*
    175 * The address line mapping on LART is as follows:
    176 *
    177 *   	 U3  CPU |   U2  CPU
    178 *   	 -------------------
    179 *   	  0  2   |   0   2
    180 *   	  1  3   |   1   3
    181 *   	  2  9   |   2   9
    182 *   	  3  13  |   3   8
    183 *   	  4  8   |   4   7
    184 *   	  5  12  |   5   6
    185 *   	  6  11  |   6   5
    186 *   	  7  10  |   7   4
    187 *   	  8  4   |   8   10
    188 *   	  9  5   |   9   11
    189 *   	 10  6   |   10  12
    190 *   	 11  7   |   11  13
    191 *
    192 *   	 BOOT BLOCK BOUNDARY
    193 *
    194 *   	 12  15  |   12  15
    195 *   	 13  14  |   13  14
    196 *   	 14  16  |   14  16
    197 *
    198 *   	 MAIN BLOCK BOUNDARY
    199 *
    200 *   	 15  17  |   15  18
    201 *   	 16  18  |   16  17
    202 *   	 17  20  |   17  20
    203 *   	 18  19  |   18  19
    204 *   	 19  21  |   19  21
    205 *
    206 * As we can see from above, the addresses aren't mangled across
    207 * block boundaries, so we don't need to worry about address
    208 * translations except for sending/reading commands during
    209 * initialization
    210 */
    211
    212/* Mangle address (x) on chip U2 */
    213#define ADDR_TO_FLASH_U2(x)				\
    214	(									\
    215		(((x) & 0x00000f00) >> 4)	+	\
    216		(((x) & 0x00042000) << 1)	+	\
    217		(((x) & 0x0009c003) << 2)	+	\
    218		(((x) & 0x00021080) << 3)	+	\
    219		(((x) & 0x00000010) << 4)	+	\
    220		(((x) & 0x00000040) << 5)	+	\
    221		(((x) & 0x00000024) << 7)	+	\
    222		(((x) & 0x00000008) << 10)		\
    223	)
    224
    225/* Unmangle address (x) on chip U2 */
    226#define FLASH_U2_TO_ADDR(x)				\
    227	(									\
    228		(((x) << 4) & 0x00000f00)	+	\
    229		(((x) >> 1) & 0x00042000)	+	\
    230		(((x) >> 2) & 0x0009c003)	+	\
    231		(((x) >> 3) & 0x00021080)	+	\
    232		(((x) >> 4) & 0x00000010)	+	\
    233		(((x) >> 5) & 0x00000040)	+	\
    234		(((x) >> 7) & 0x00000024)	+	\
    235		(((x) >> 10) & 0x00000008)		\
    236	)
    237
    238/* Mangle address (x) on chip U3 */
    239#define ADDR_TO_FLASH_U3(x)				\
    240	(									\
    241		(((x) & 0x00000080) >> 3)	+	\
    242		(((x) & 0x00000040) >> 1)	+	\
    243		(((x) & 0x00052020) << 1)	+	\
    244		(((x) & 0x00084f03) << 2)	+	\
    245		(((x) & 0x00029010) << 3)	+	\
    246		(((x) & 0x00000008) << 5)	+	\
    247		(((x) & 0x00000004) << 7)		\
    248	)
    249
    250/* Unmangle address (x) on chip U3 */
    251#define FLASH_U3_TO_ADDR(x)				\
    252	(									\
    253		(((x) << 3) & 0x00000080)	+	\
    254		(((x) << 1) & 0x00000040)	+	\
    255		(((x) >> 1) & 0x00052020)	+	\
    256		(((x) >> 2) & 0x00084f03)	+	\
    257		(((x) >> 3) & 0x00029010)	+	\
    258		(((x) >> 5) & 0x00000008)	+	\
    259		(((x) >> 7) & 0x00000004)		\
    260	)
    261
    262/***************************************************************************************************/
    263
    264static __u8 read8 (__u32 offset)
    265{
    266   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
    267#ifdef LART_DEBUG
    268   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
    269#endif
    270   return (*data);
    271}
    272
    273static __u32 read32 (__u32 offset)
    274{
    275   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
    276#ifdef LART_DEBUG
    277   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
    278#endif
    279   return (*data);
    280}
    281
    282static void write32 (__u32 x,__u32 offset)
    283{
    284   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
    285   *data = x;
    286#ifdef LART_DEBUG
    287   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
    288#endif
    289}
    290
    291/***************************************************************************************************/
    292
    293/*
    294 * Probe for 16mbit flash memory on a LART board without doing
    295 * too much damage. Since we need to write 1 dword to memory,
    296 * we're f**cked if this happens to be DRAM since we can't
    297 * restore the memory (otherwise we might exit Read Array mode).
    298 *
    299 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
    300 */
    301static int flash_probe (void)
    302{
    303   __u32 manufacturer,devtype;
    304
    305   /* setup "Read Identifier Codes" mode */
    306   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
    307
    308   /* probe U2. U2/U3 returns the same data since the first 3
    309	* address lines is mangled in the same way */
    310   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
    311   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
    312
    313   /* put the flash back into command mode */
    314   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
    315
    316   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
    317}
    318
    319/*
    320 * Erase one block of flash memory at offset ``offset'' which is any
    321 * address within the block which should be erased.
    322 *
    323 * Returns 1 if successful, 0 otherwise.
    324 */
    325static inline int erase_block (__u32 offset)
    326{
    327   __u32 status;
    328
    329#ifdef LART_DEBUG
    330   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
    331#endif
    332
    333   /* erase and confirm */
    334   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
    335   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
    336
    337   /* wait for block erase to finish */
    338   do
    339	 {
    340		write32 (DATA_TO_FLASH (STATUS_READ),offset);
    341		status = FLASH_TO_DATA (read32 (offset));
    342	 }
    343   while ((~status & STATUS_BUSY) != 0);
    344
    345   /* put the flash back into command mode */
    346   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
    347
    348   /* was the erase successful? */
    349   if ((status & STATUS_ERASE_ERR))
    350	 {
    351		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
    352		return (0);
    353	 }
    354
    355   return (1);
    356}
    357
    358static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
    359{
    360   __u32 addr,len;
    361   int i,first;
    362
    363#ifdef LART_DEBUG
    364   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
    365#endif
    366
    367   /*
    368	* check that both start and end of the requested erase are
    369	* aligned with the erasesize at the appropriate addresses.
    370	*
    371	* skip all erase regions which are ended before the start of
    372	* the requested erase. Actually, to save on the calculations,
    373	* we skip to the first erase region which starts after the
    374	* start of the requested erase, and then go back one.
    375	*/
    376   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
    377   i--;
    378
    379   /*
    380	* ok, now i is pointing at the erase region in which this
    381	* erase request starts. Check the start of the requested
    382	* erase range is aligned with the erase size which is in
    383	* effect here.
    384	*/
    385   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
    386      return -EINVAL;
    387
    388   /* Remember the erase region we start on */
    389   first = i;
    390
    391   /*
    392	* next, check that the end of the requested erase is aligned
    393	* with the erase region at that address.
    394	*
    395	* as before, drop back one to point at the region in which
    396	* the address actually falls
    397	*/
    398   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
    399   i--;
    400
    401   /* is the end aligned on a block boundary? */
    402   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
    403      return -EINVAL;
    404
    405   addr = instr->addr;
    406   len = instr->len;
    407
    408   i = first;
    409
    410   /* now erase those blocks */
    411   while (len)
    412	 {
    413		if (!erase_block (addr))
    414			 return (-EIO);
    415
    416		addr += mtd->eraseregions[i].erasesize;
    417		len -= mtd->eraseregions[i].erasesize;
    418
    419		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
    420	 }
    421
    422   return (0);
    423}
    424
    425static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
    426{
    427#ifdef LART_DEBUG
    428   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
    429#endif
    430
    431   /* we always read len bytes */
    432   *retlen = len;
    433
    434   /* first, we read bytes until we reach a dword boundary */
    435   if (from & (BUSWIDTH - 1))
    436	 {
    437		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
    438
    439		while (len && gap--) {
    440			*buf++ = read8 (from++);
    441			len--;
    442		}
    443	 }
    444
    445   /* now we read dwords until we reach a non-dword boundary */
    446   while (len >= BUSWIDTH)
    447	 {
    448		*((__u32 *) buf) = read32 (from);
    449
    450		buf += BUSWIDTH;
    451		from += BUSWIDTH;
    452		len -= BUSWIDTH;
    453	 }
    454
    455   /* top up the last unaligned bytes */
    456   if (len & (BUSWIDTH - 1))
    457	 while (len--) *buf++ = read8 (from++);
    458
    459   return (0);
    460}
    461
    462/*
    463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
    464 * must be 32 bits, i.e. it must be on a dword boundary.
    465 *
    466 * Returns 1 if successful, 0 otherwise.
    467 */
    468static inline int write_dword (__u32 offset,__u32 x)
    469{
    470   __u32 status;
    471
    472#ifdef LART_DEBUG
    473   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
    474#endif
    475
    476   /* setup writing */
    477   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
    478
    479   /* write the data */
    480   write32 (x,offset);
    481
    482   /* wait for the write to finish */
    483   do
    484	 {
    485		write32 (DATA_TO_FLASH (STATUS_READ),offset);
    486		status = FLASH_TO_DATA (read32 (offset));
    487	 }
    488   while ((~status & STATUS_BUSY) != 0);
    489
    490   /* put the flash back into command mode */
    491   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
    492
    493   /* was the write successful? */
    494   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
    495	 {
    496		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
    497		return (0);
    498	 }
    499
    500   return (1);
    501}
    502
    503static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
    504{
    505   __u8 tmp[4];
    506   int i,n;
    507
    508#ifdef LART_DEBUG
    509   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
    510#endif
    511
    512   /* sanity checks */
    513   if (!len) return (0);
    514
    515   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
    516   if (to & (BUSWIDTH - 1))
    517	 {
    518		__u32 aligned = to & ~(BUSWIDTH - 1);
    519		int gap = to - aligned;
    520
    521		i = n = 0;
    522
    523		while (gap--) tmp[i++] = 0xFF;
    524		while (len && i < BUSWIDTH) {
    525			tmp[i++] = buf[n++];
    526			len--;
    527		}
    528		while (i < BUSWIDTH) tmp[i++] = 0xFF;
    529
    530		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
    531
    532		to += n;
    533		buf += n;
    534		*retlen += n;
    535	 }
    536
    537   /* now we write dwords until we reach a non-dword boundary */
    538   while (len >= BUSWIDTH)
    539	 {
    540		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
    541
    542		to += BUSWIDTH;
    543		buf += BUSWIDTH;
    544		*retlen += BUSWIDTH;
    545		len -= BUSWIDTH;
    546	 }
    547
    548   /* top up the last unaligned bytes, padded with 0xFF.... */
    549   if (len & (BUSWIDTH - 1))
    550	 {
    551		i = n = 0;
    552
    553		while (len--) tmp[i++] = buf[n++];
    554		while (i < BUSWIDTH) tmp[i++] = 0xFF;
    555
    556		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
    557
    558		*retlen += n;
    559	 }
    560
    561   return (0);
    562}
    563
    564/***************************************************************************************************/
    565
    566static struct mtd_info mtd;
    567
    568static struct mtd_erase_region_info erase_regions[] = {
    569	/* parameter blocks */
    570	{
    571		.offset		= 0x00000000,
    572		.erasesize	= FLASH_BLOCKSIZE_PARAM,
    573		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
    574	},
    575	/* main blocks */
    576	{
    577		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
    578		.erasesize	= FLASH_BLOCKSIZE_MAIN,
    579		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
    580	}
    581};
    582
    583static const struct mtd_partition lart_partitions[] = {
    584	/* blob */
    585	{
    586		.name	= "blob",
    587		.offset	= PART_BLOB_START,
    588		.size	= PART_BLOB_LEN,
    589	},
    590	/* kernel */
    591	{
    592		.name	= "kernel",
    593		.offset	= PART_KERNEL_START,	/* MTDPART_OFS_APPEND */
    594		.size	= PART_KERNEL_LEN,
    595	},
    596	/* initial ramdisk / file system */
    597	{
    598		.name	= "file system",
    599		.offset	= PART_INITRD_START,	/* MTDPART_OFS_APPEND */
    600		.size	= PART_INITRD_LEN,	/* MTDPART_SIZ_FULL */
    601	}
    602};
    603#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
    604
    605static int __init lart_flash_init (void)
    606{
    607   int result;
    608   memset (&mtd,0,sizeof (mtd));
    609   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
    610   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
    611   if (!flash_probe ())
    612	 {
    613		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
    614		return (-ENXIO);
    615	 }
    616   printk ("%s: This looks like a LART board to me.\n",module_name);
    617   mtd.name = module_name;
    618   mtd.type = MTD_NORFLASH;
    619   mtd.writesize = 1;
    620   mtd.writebufsize = 4;
    621   mtd.flags = MTD_CAP_NORFLASH;
    622   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
    623   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
    624   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
    625   mtd.eraseregions = erase_regions;
    626   mtd._erase = flash_erase;
    627   mtd._read = flash_read;
    628   mtd._write = flash_write;
    629   mtd.owner = THIS_MODULE;
    630
    631#ifdef LART_DEBUG
    632   printk (KERN_DEBUG
    633		   "mtd.name = %s\n"
    634		   "mtd.size = 0x%.8x (%uM)\n"
    635		   "mtd.erasesize = 0x%.8x (%uK)\n"
    636		   "mtd.numeraseregions = %d\n",
    637		   mtd.name,
    638		   mtd.size,mtd.size / (1024*1024),
    639		   mtd.erasesize,mtd.erasesize / 1024,
    640		   mtd.numeraseregions);
    641
    642   if (mtd.numeraseregions)
    643	 for (result = 0; result < mtd.numeraseregions; result++)
    644	   printk (KERN_DEBUG
    645			   "\n\n"
    646			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
    647			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
    648			   "mtd.eraseregions[%d].numblocks = %d\n",
    649			   result,mtd.eraseregions[result].offset,
    650			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
    651			   result,mtd.eraseregions[result].numblocks);
    652
    653   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
    654
    655   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
    656	 printk (KERN_DEBUG
    657			 "\n\n"
    658			 "lart_partitions[%d].name = %s\n"
    659			 "lart_partitions[%d].offset = 0x%.8x\n"
    660			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
    661			 result,lart_partitions[result].name,
    662			 result,lart_partitions[result].offset,
    663			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
    664#endif
    665
    666   result = mtd_device_register(&mtd, lart_partitions,
    667                                ARRAY_SIZE(lart_partitions));
    668
    669   return (result);
    670}
    671
    672static void __exit lart_flash_exit (void)
    673{
    674   mtd_device_unregister(&mtd);
    675}
    676
    677module_init (lart_flash_init);
    678module_exit (lart_flash_exit);
    679
    680MODULE_LICENSE("GPL");
    681MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
    682MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");