lart.c (18648B)
1// SPDX-License-Identifier: GPL-2.0-only 2 3/* 4 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART. 5 * 6 * Author: Abraham vd Merwe <abraham@2d3d.co.za> 7 * 8 * Copyright (c) 2001, 2d3D, Inc. 9 * 10 * References: 11 * 12 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet 13 * - Order Number: 290644-005 14 * - January 2000 15 * 16 * [2] MTD internal API documentation 17 * - http://www.linux-mtd.infradead.org/ 18 * 19 * Limitations: 20 * 21 * Even though this driver is written for 3 Volt Fast Boot 22 * Block Flash Memory, it is rather specific to LART. With 23 * Minor modifications, notably the without data/address line 24 * mangling and different bus settings, etc. it should be 25 * trivial to adapt to other platforms. 26 * 27 * If somebody would sponsor me a different board, I'll 28 * adapt the driver (: 29 */ 30 31/* debugging */ 32//#define LART_DEBUG 33 34#include <linux/kernel.h> 35#include <linux/module.h> 36#include <linux/types.h> 37#include <linux/init.h> 38#include <linux/errno.h> 39#include <linux/string.h> 40#include <linux/mtd/mtd.h> 41#include <linux/mtd/partitions.h> 42 43#ifndef CONFIG_SA1100_LART 44#error This is for LART architecture only 45#endif 46 47static char module_name[] = "lart"; 48 49/* 50 * These values is specific to 28Fxxxx3 flash memory. 51 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet 52 */ 53#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH) 54#define FLASH_NUMBLOCKS_16m_PARAM 8 55#define FLASH_NUMBLOCKS_8m_PARAM 8 56 57/* 58 * These values is specific to 28Fxxxx3 flash memory. 59 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet 60 */ 61#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH) 62#define FLASH_NUMBLOCKS_16m_MAIN 31 63#define FLASH_NUMBLOCKS_8m_MAIN 15 64 65/* 66 * These values are specific to LART 67 */ 68 69/* general */ 70#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */ 71#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */ 72 73/* blob */ 74#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM 75#define PART_BLOB_START 0x00000000 76#define PART_BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM) 77 78/* kernel */ 79#define NUM_KERNEL_BLOCKS 7 80#define PART_KERNEL_START (PART_BLOB_START + PART_BLOB_LEN) 81#define PART_KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN) 82 83/* initial ramdisk */ 84#define NUM_INITRD_BLOCKS 24 85#define PART_INITRD_START (PART_KERNEL_START + PART_KERNEL_LEN) 86#define PART_INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN) 87 88/* 89 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet 90 */ 91#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */ 92#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */ 93#define ERASE_SETUP 0x00200020 /* Block Erase */ 94#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */ 95#define PGM_SETUP 0x00400040 /* Program */ 96#define STATUS_READ 0x00700070 /* Read Status Register */ 97#define STATUS_CLEAR 0x00500050 /* Clear Status Register */ 98#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */ 99#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */ 100#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */ 101 102/* 103 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet 104 */ 105#define FLASH_MANUFACTURER 0x00890089 106#define FLASH_DEVICE_8mbit_TOP 0x88f188f1 107#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2 108#define FLASH_DEVICE_16mbit_TOP 0x88f388f3 109#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4 110 111/***************************************************************************************************/ 112 113/* 114 * The data line mapping on LART is as follows: 115 * 116 * U2 CPU | U3 CPU 117 * ------------------- 118 * 0 20 | 0 12 119 * 1 22 | 1 14 120 * 2 19 | 2 11 121 * 3 17 | 3 9 122 * 4 24 | 4 0 123 * 5 26 | 5 2 124 * 6 31 | 6 7 125 * 7 29 | 7 5 126 * 8 21 | 8 13 127 * 9 23 | 9 15 128 * 10 18 | 10 10 129 * 11 16 | 11 8 130 * 12 25 | 12 1 131 * 13 27 | 13 3 132 * 14 30 | 14 6 133 * 15 28 | 15 4 134 */ 135 136/* Mangle data (x) */ 137#define DATA_TO_FLASH(x) \ 138 ( \ 139 (((x) & 0x08009000) >> 11) + \ 140 (((x) & 0x00002000) >> 10) + \ 141 (((x) & 0x04004000) >> 8) + \ 142 (((x) & 0x00000010) >> 4) + \ 143 (((x) & 0x91000820) >> 3) + \ 144 (((x) & 0x22080080) >> 2) + \ 145 ((x) & 0x40000400) + \ 146 (((x) & 0x00040040) << 1) + \ 147 (((x) & 0x00110000) << 4) + \ 148 (((x) & 0x00220100) << 5) + \ 149 (((x) & 0x00800208) << 6) + \ 150 (((x) & 0x00400004) << 9) + \ 151 (((x) & 0x00000001) << 12) + \ 152 (((x) & 0x00000002) << 13) \ 153 ) 154 155/* Unmangle data (x) */ 156#define FLASH_TO_DATA(x) \ 157 ( \ 158 (((x) & 0x00010012) << 11) + \ 159 (((x) & 0x00000008) << 10) + \ 160 (((x) & 0x00040040) << 8) + \ 161 (((x) & 0x00000001) << 4) + \ 162 (((x) & 0x12200104) << 3) + \ 163 (((x) & 0x08820020) << 2) + \ 164 ((x) & 0x40000400) + \ 165 (((x) & 0x00080080) >> 1) + \ 166 (((x) & 0x01100000) >> 4) + \ 167 (((x) & 0x04402000) >> 5) + \ 168 (((x) & 0x20008200) >> 6) + \ 169 (((x) & 0x80000800) >> 9) + \ 170 (((x) & 0x00001000) >> 12) + \ 171 (((x) & 0x00004000) >> 13) \ 172 ) 173 174/* 175 * The address line mapping on LART is as follows: 176 * 177 * U3 CPU | U2 CPU 178 * ------------------- 179 * 0 2 | 0 2 180 * 1 3 | 1 3 181 * 2 9 | 2 9 182 * 3 13 | 3 8 183 * 4 8 | 4 7 184 * 5 12 | 5 6 185 * 6 11 | 6 5 186 * 7 10 | 7 4 187 * 8 4 | 8 10 188 * 9 5 | 9 11 189 * 10 6 | 10 12 190 * 11 7 | 11 13 191 * 192 * BOOT BLOCK BOUNDARY 193 * 194 * 12 15 | 12 15 195 * 13 14 | 13 14 196 * 14 16 | 14 16 197 * 198 * MAIN BLOCK BOUNDARY 199 * 200 * 15 17 | 15 18 201 * 16 18 | 16 17 202 * 17 20 | 17 20 203 * 18 19 | 18 19 204 * 19 21 | 19 21 205 * 206 * As we can see from above, the addresses aren't mangled across 207 * block boundaries, so we don't need to worry about address 208 * translations except for sending/reading commands during 209 * initialization 210 */ 211 212/* Mangle address (x) on chip U2 */ 213#define ADDR_TO_FLASH_U2(x) \ 214 ( \ 215 (((x) & 0x00000f00) >> 4) + \ 216 (((x) & 0x00042000) << 1) + \ 217 (((x) & 0x0009c003) << 2) + \ 218 (((x) & 0x00021080) << 3) + \ 219 (((x) & 0x00000010) << 4) + \ 220 (((x) & 0x00000040) << 5) + \ 221 (((x) & 0x00000024) << 7) + \ 222 (((x) & 0x00000008) << 10) \ 223 ) 224 225/* Unmangle address (x) on chip U2 */ 226#define FLASH_U2_TO_ADDR(x) \ 227 ( \ 228 (((x) << 4) & 0x00000f00) + \ 229 (((x) >> 1) & 0x00042000) + \ 230 (((x) >> 2) & 0x0009c003) + \ 231 (((x) >> 3) & 0x00021080) + \ 232 (((x) >> 4) & 0x00000010) + \ 233 (((x) >> 5) & 0x00000040) + \ 234 (((x) >> 7) & 0x00000024) + \ 235 (((x) >> 10) & 0x00000008) \ 236 ) 237 238/* Mangle address (x) on chip U3 */ 239#define ADDR_TO_FLASH_U3(x) \ 240 ( \ 241 (((x) & 0x00000080) >> 3) + \ 242 (((x) & 0x00000040) >> 1) + \ 243 (((x) & 0x00052020) << 1) + \ 244 (((x) & 0x00084f03) << 2) + \ 245 (((x) & 0x00029010) << 3) + \ 246 (((x) & 0x00000008) << 5) + \ 247 (((x) & 0x00000004) << 7) \ 248 ) 249 250/* Unmangle address (x) on chip U3 */ 251#define FLASH_U3_TO_ADDR(x) \ 252 ( \ 253 (((x) << 3) & 0x00000080) + \ 254 (((x) << 1) & 0x00000040) + \ 255 (((x) >> 1) & 0x00052020) + \ 256 (((x) >> 2) & 0x00084f03) + \ 257 (((x) >> 3) & 0x00029010) + \ 258 (((x) >> 5) & 0x00000008) + \ 259 (((x) >> 7) & 0x00000004) \ 260 ) 261 262/***************************************************************************************************/ 263 264static __u8 read8 (__u32 offset) 265{ 266 volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); 267#ifdef LART_DEBUG 268 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data); 269#endif 270 return (*data); 271} 272 273static __u32 read32 (__u32 offset) 274{ 275 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); 276#ifdef LART_DEBUG 277 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data); 278#endif 279 return (*data); 280} 281 282static void write32 (__u32 x,__u32 offset) 283{ 284 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); 285 *data = x; 286#ifdef LART_DEBUG 287 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data); 288#endif 289} 290 291/***************************************************************************************************/ 292 293/* 294 * Probe for 16mbit flash memory on a LART board without doing 295 * too much damage. Since we need to write 1 dword to memory, 296 * we're f**cked if this happens to be DRAM since we can't 297 * restore the memory (otherwise we might exit Read Array mode). 298 * 299 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. 300 */ 301static int flash_probe (void) 302{ 303 __u32 manufacturer,devtype; 304 305 /* setup "Read Identifier Codes" mode */ 306 write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); 307 308 /* probe U2. U2/U3 returns the same data since the first 3 309 * address lines is mangled in the same way */ 310 manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); 311 devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); 312 313 /* put the flash back into command mode */ 314 write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); 315 316 return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM)); 317} 318 319/* 320 * Erase one block of flash memory at offset ``offset'' which is any 321 * address within the block which should be erased. 322 * 323 * Returns 1 if successful, 0 otherwise. 324 */ 325static inline int erase_block (__u32 offset) 326{ 327 __u32 status; 328 329#ifdef LART_DEBUG 330 printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset); 331#endif 332 333 /* erase and confirm */ 334 write32 (DATA_TO_FLASH (ERASE_SETUP),offset); 335 write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); 336 337 /* wait for block erase to finish */ 338 do 339 { 340 write32 (DATA_TO_FLASH (STATUS_READ),offset); 341 status = FLASH_TO_DATA (read32 (offset)); 342 } 343 while ((~status & STATUS_BUSY) != 0); 344 345 /* put the flash back into command mode */ 346 write32 (DATA_TO_FLASH (READ_ARRAY),offset); 347 348 /* was the erase successful? */ 349 if ((status & STATUS_ERASE_ERR)) 350 { 351 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); 352 return (0); 353 } 354 355 return (1); 356} 357 358static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) 359{ 360 __u32 addr,len; 361 int i,first; 362 363#ifdef LART_DEBUG 364 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); 365#endif 366 367 /* 368 * check that both start and end of the requested erase are 369 * aligned with the erasesize at the appropriate addresses. 370 * 371 * skip all erase regions which are ended before the start of 372 * the requested erase. Actually, to save on the calculations, 373 * we skip to the first erase region which starts after the 374 * start of the requested erase, and then go back one. 375 */ 376 for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; 377 i--; 378 379 /* 380 * ok, now i is pointing at the erase region in which this 381 * erase request starts. Check the start of the requested 382 * erase range is aligned with the erase size which is in 383 * effect here. 384 */ 385 if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1))) 386 return -EINVAL; 387 388 /* Remember the erase region we start on */ 389 first = i; 390 391 /* 392 * next, check that the end of the requested erase is aligned 393 * with the erase region at that address. 394 * 395 * as before, drop back one to point at the region in which 396 * the address actually falls 397 */ 398 for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; 399 i--; 400 401 /* is the end aligned on a block boundary? */ 402 if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1))) 403 return -EINVAL; 404 405 addr = instr->addr; 406 len = instr->len; 407 408 i = first; 409 410 /* now erase those blocks */ 411 while (len) 412 { 413 if (!erase_block (addr)) 414 return (-EIO); 415 416 addr += mtd->eraseregions[i].erasesize; 417 len -= mtd->eraseregions[i].erasesize; 418 419 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; 420 } 421 422 return (0); 423} 424 425static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) 426{ 427#ifdef LART_DEBUG 428 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); 429#endif 430 431 /* we always read len bytes */ 432 *retlen = len; 433 434 /* first, we read bytes until we reach a dword boundary */ 435 if (from & (BUSWIDTH - 1)) 436 { 437 int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); 438 439 while (len && gap--) { 440 *buf++ = read8 (from++); 441 len--; 442 } 443 } 444 445 /* now we read dwords until we reach a non-dword boundary */ 446 while (len >= BUSWIDTH) 447 { 448 *((__u32 *) buf) = read32 (from); 449 450 buf += BUSWIDTH; 451 from += BUSWIDTH; 452 len -= BUSWIDTH; 453 } 454 455 /* top up the last unaligned bytes */ 456 if (len & (BUSWIDTH - 1)) 457 while (len--) *buf++ = read8 (from++); 458 459 return (0); 460} 461 462/* 463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' 464 * must be 32 bits, i.e. it must be on a dword boundary. 465 * 466 * Returns 1 if successful, 0 otherwise. 467 */ 468static inline int write_dword (__u32 offset,__u32 x) 469{ 470 __u32 status; 471 472#ifdef LART_DEBUG 473 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x); 474#endif 475 476 /* setup writing */ 477 write32 (DATA_TO_FLASH (PGM_SETUP),offset); 478 479 /* write the data */ 480 write32 (x,offset); 481 482 /* wait for the write to finish */ 483 do 484 { 485 write32 (DATA_TO_FLASH (STATUS_READ),offset); 486 status = FLASH_TO_DATA (read32 (offset)); 487 } 488 while ((~status & STATUS_BUSY) != 0); 489 490 /* put the flash back into command mode */ 491 write32 (DATA_TO_FLASH (READ_ARRAY),offset); 492 493 /* was the write successful? */ 494 if ((status & STATUS_PGM_ERR) || read32 (offset) != x) 495 { 496 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); 497 return (0); 498 } 499 500 return (1); 501} 502 503static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) 504{ 505 __u8 tmp[4]; 506 int i,n; 507 508#ifdef LART_DEBUG 509 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); 510#endif 511 512 /* sanity checks */ 513 if (!len) return (0); 514 515 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ 516 if (to & (BUSWIDTH - 1)) 517 { 518 __u32 aligned = to & ~(BUSWIDTH - 1); 519 int gap = to - aligned; 520 521 i = n = 0; 522 523 while (gap--) tmp[i++] = 0xFF; 524 while (len && i < BUSWIDTH) { 525 tmp[i++] = buf[n++]; 526 len--; 527 } 528 while (i < BUSWIDTH) tmp[i++] = 0xFF; 529 530 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); 531 532 to += n; 533 buf += n; 534 *retlen += n; 535 } 536 537 /* now we write dwords until we reach a non-dword boundary */ 538 while (len >= BUSWIDTH) 539 { 540 if (!write_dword (to,*((__u32 *) buf))) return (-EIO); 541 542 to += BUSWIDTH; 543 buf += BUSWIDTH; 544 *retlen += BUSWIDTH; 545 len -= BUSWIDTH; 546 } 547 548 /* top up the last unaligned bytes, padded with 0xFF.... */ 549 if (len & (BUSWIDTH - 1)) 550 { 551 i = n = 0; 552 553 while (len--) tmp[i++] = buf[n++]; 554 while (i < BUSWIDTH) tmp[i++] = 0xFF; 555 556 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); 557 558 *retlen += n; 559 } 560 561 return (0); 562} 563 564/***************************************************************************************************/ 565 566static struct mtd_info mtd; 567 568static struct mtd_erase_region_info erase_regions[] = { 569 /* parameter blocks */ 570 { 571 .offset = 0x00000000, 572 .erasesize = FLASH_BLOCKSIZE_PARAM, 573 .numblocks = FLASH_NUMBLOCKS_16m_PARAM, 574 }, 575 /* main blocks */ 576 { 577 .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, 578 .erasesize = FLASH_BLOCKSIZE_MAIN, 579 .numblocks = FLASH_NUMBLOCKS_16m_MAIN, 580 } 581}; 582 583static const struct mtd_partition lart_partitions[] = { 584 /* blob */ 585 { 586 .name = "blob", 587 .offset = PART_BLOB_START, 588 .size = PART_BLOB_LEN, 589 }, 590 /* kernel */ 591 { 592 .name = "kernel", 593 .offset = PART_KERNEL_START, /* MTDPART_OFS_APPEND */ 594 .size = PART_KERNEL_LEN, 595 }, 596 /* initial ramdisk / file system */ 597 { 598 .name = "file system", 599 .offset = PART_INITRD_START, /* MTDPART_OFS_APPEND */ 600 .size = PART_INITRD_LEN, /* MTDPART_SIZ_FULL */ 601 } 602}; 603#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions) 604 605static int __init lart_flash_init (void) 606{ 607 int result; 608 memset (&mtd,0,sizeof (mtd)); 609 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); 610 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); 611 if (!flash_probe ()) 612 { 613 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); 614 return (-ENXIO); 615 } 616 printk ("%s: This looks like a LART board to me.\n",module_name); 617 mtd.name = module_name; 618 mtd.type = MTD_NORFLASH; 619 mtd.writesize = 1; 620 mtd.writebufsize = 4; 621 mtd.flags = MTD_CAP_NORFLASH; 622 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; 623 mtd.erasesize = FLASH_BLOCKSIZE_MAIN; 624 mtd.numeraseregions = ARRAY_SIZE(erase_regions); 625 mtd.eraseregions = erase_regions; 626 mtd._erase = flash_erase; 627 mtd._read = flash_read; 628 mtd._write = flash_write; 629 mtd.owner = THIS_MODULE; 630 631#ifdef LART_DEBUG 632 printk (KERN_DEBUG 633 "mtd.name = %s\n" 634 "mtd.size = 0x%.8x (%uM)\n" 635 "mtd.erasesize = 0x%.8x (%uK)\n" 636 "mtd.numeraseregions = %d\n", 637 mtd.name, 638 mtd.size,mtd.size / (1024*1024), 639 mtd.erasesize,mtd.erasesize / 1024, 640 mtd.numeraseregions); 641 642 if (mtd.numeraseregions) 643 for (result = 0; result < mtd.numeraseregions; result++) 644 printk (KERN_DEBUG 645 "\n\n" 646 "mtd.eraseregions[%d].offset = 0x%.8x\n" 647 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" 648 "mtd.eraseregions[%d].numblocks = %d\n", 649 result,mtd.eraseregions[result].offset, 650 result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, 651 result,mtd.eraseregions[result].numblocks); 652 653 printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); 654 655 for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) 656 printk (KERN_DEBUG 657 "\n\n" 658 "lart_partitions[%d].name = %s\n" 659 "lart_partitions[%d].offset = 0x%.8x\n" 660 "lart_partitions[%d].size = 0x%.8x (%uK)\n", 661 result,lart_partitions[result].name, 662 result,lart_partitions[result].offset, 663 result,lart_partitions[result].size,lart_partitions[result].size / 1024); 664#endif 665 666 result = mtd_device_register(&mtd, lart_partitions, 667 ARRAY_SIZE(lart_partitions)); 668 669 return (result); 670} 671 672static void __exit lart_flash_exit (void) 673{ 674 mtd_device_unregister(&mtd); 675} 676 677module_init (lart_flash_init); 678module_exit (lart_flash_exit); 679 680MODULE_LICENSE("GPL"); 681MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); 682MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");