mtd_dataflash.c (24890B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 4 * 5 * Largely derived from at91_dataflash.c: 6 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 7*/ 8#include <linux/module.h> 9#include <linux/slab.h> 10#include <linux/delay.h> 11#include <linux/device.h> 12#include <linux/mutex.h> 13#include <linux/err.h> 14#include <linux/math64.h> 15#include <linux/of.h> 16#include <linux/of_device.h> 17 18#include <linux/spi/spi.h> 19#include <linux/spi/flash.h> 20 21#include <linux/mtd/mtd.h> 22#include <linux/mtd/partitions.h> 23 24/* 25 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 26 * each chip, which may be used for double buffered I/O; but this driver 27 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 28 * 29 * Sometimes DataFlash is packaged in MMC-format cards, although the 30 * MMC stack can't (yet?) distinguish between MMC and DataFlash 31 * protocols during enumeration. 32 */ 33 34/* reads can bypass the buffers */ 35#define OP_READ_CONTINUOUS 0xE8 36#define OP_READ_PAGE 0xD2 37 38/* group B requests can run even while status reports "busy" */ 39#define OP_READ_STATUS 0xD7 /* group B */ 40 41/* move data between host and buffer */ 42#define OP_READ_BUFFER1 0xD4 /* group B */ 43#define OP_READ_BUFFER2 0xD6 /* group B */ 44#define OP_WRITE_BUFFER1 0x84 /* group B */ 45#define OP_WRITE_BUFFER2 0x87 /* group B */ 46 47/* erasing flash */ 48#define OP_ERASE_PAGE 0x81 49#define OP_ERASE_BLOCK 0x50 50 51/* move data between buffer and flash */ 52#define OP_TRANSFER_BUF1 0x53 53#define OP_TRANSFER_BUF2 0x55 54#define OP_MREAD_BUFFER1 0xD4 55#define OP_MREAD_BUFFER2 0xD6 56#define OP_MWERASE_BUFFER1 0x83 57#define OP_MWERASE_BUFFER2 0x86 58#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 59#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 60 61/* write to buffer, then write-erase to flash */ 62#define OP_PROGRAM_VIA_BUF1 0x82 63#define OP_PROGRAM_VIA_BUF2 0x85 64 65/* compare buffer to flash */ 66#define OP_COMPARE_BUF1 0x60 67#define OP_COMPARE_BUF2 0x61 68 69/* read flash to buffer, then write-erase to flash */ 70#define OP_REWRITE_VIA_BUF1 0x58 71#define OP_REWRITE_VIA_BUF2 0x59 72 73/* newer chips report JEDEC manufacturer and device IDs; chip 74 * serial number and OTP bits; and per-sector writeprotect. 75 */ 76#define OP_READ_ID 0x9F 77#define OP_READ_SECURITY 0x77 78#define OP_WRITE_SECURITY_REVC 0x9A 79#define OP_WRITE_SECURITY 0x9B /* revision D */ 80 81#define CFI_MFR_ATMEL 0x1F 82 83#define DATAFLASH_SHIFT_EXTID 24 84#define DATAFLASH_SHIFT_ID 40 85 86struct dataflash { 87 u8 command[4]; 88 char name[24]; 89 90 unsigned short page_offset; /* offset in flash address */ 91 unsigned int page_size; /* of bytes per page */ 92 93 struct mutex lock; 94 struct spi_device *spi; 95 96 struct mtd_info mtd; 97}; 98 99static const struct spi_device_id dataflash_dev_ids[] = { 100 { "at45" }, 101 { "dataflash" }, 102 { }, 103}; 104MODULE_DEVICE_TABLE(spi, dataflash_dev_ids); 105 106#ifdef CONFIG_OF 107static const struct of_device_id dataflash_dt_ids[] = { 108 { .compatible = "atmel,at45", }, 109 { .compatible = "atmel,dataflash", }, 110 { /* sentinel */ } 111}; 112MODULE_DEVICE_TABLE(of, dataflash_dt_ids); 113#endif 114 115/* ......................................................................... */ 116 117/* 118 * Return the status of the DataFlash device. 119 */ 120static inline int dataflash_status(struct spi_device *spi) 121{ 122 /* NOTE: at45db321c over 25 MHz wants to write 123 * a dummy byte after the opcode... 124 */ 125 return spi_w8r8(spi, OP_READ_STATUS); 126} 127 128/* 129 * Poll the DataFlash device until it is READY. 130 * This usually takes 5-20 msec or so; more for sector erase. 131 */ 132static int dataflash_waitready(struct spi_device *spi) 133{ 134 int status; 135 136 for (;;) { 137 status = dataflash_status(spi); 138 if (status < 0) { 139 dev_dbg(&spi->dev, "status %d?\n", status); 140 status = 0; 141 } 142 143 if (status & (1 << 7)) /* RDY/nBSY */ 144 return status; 145 146 usleep_range(3000, 4000); 147 } 148} 149 150/* ......................................................................... */ 151 152/* 153 * Erase pages of flash. 154 */ 155static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 156{ 157 struct dataflash *priv = mtd->priv; 158 struct spi_device *spi = priv->spi; 159 struct spi_transfer x = { }; 160 struct spi_message msg; 161 unsigned blocksize = priv->page_size << 3; 162 u8 *command; 163 u32 rem; 164 165 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n", 166 (long long)instr->addr, (long long)instr->len); 167 168 div_u64_rem(instr->len, priv->page_size, &rem); 169 if (rem) 170 return -EINVAL; 171 div_u64_rem(instr->addr, priv->page_size, &rem); 172 if (rem) 173 return -EINVAL; 174 175 spi_message_init(&msg); 176 177 x.tx_buf = command = priv->command; 178 x.len = 4; 179 spi_message_add_tail(&x, &msg); 180 181 mutex_lock(&priv->lock); 182 while (instr->len > 0) { 183 unsigned int pageaddr; 184 int status; 185 int do_block; 186 187 /* Calculate flash page address; use block erase (for speed) if 188 * we're at a block boundary and need to erase the whole block. 189 */ 190 pageaddr = div_u64(instr->addr, priv->page_size); 191 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 192 pageaddr = pageaddr << priv->page_offset; 193 194 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 195 command[1] = (u8)(pageaddr >> 16); 196 command[2] = (u8)(pageaddr >> 8); 197 command[3] = 0; 198 199 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n", 200 do_block ? "block" : "page", 201 command[0], command[1], command[2], command[3], 202 pageaddr); 203 204 status = spi_sync(spi, &msg); 205 (void) dataflash_waitready(spi); 206 207 if (status < 0) { 208 dev_err(&spi->dev, "erase %x, err %d\n", 209 pageaddr, status); 210 /* REVISIT: can retry instr->retries times; or 211 * giveup and instr->fail_addr = instr->addr; 212 */ 213 continue; 214 } 215 216 if (do_block) { 217 instr->addr += blocksize; 218 instr->len -= blocksize; 219 } else { 220 instr->addr += priv->page_size; 221 instr->len -= priv->page_size; 222 } 223 } 224 mutex_unlock(&priv->lock); 225 226 return 0; 227} 228 229/* 230 * Read from the DataFlash device. 231 * from : Start offset in flash device 232 * len : Amount to read 233 * retlen : About of data actually read 234 * buf : Buffer containing the data 235 */ 236static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 237 size_t *retlen, u_char *buf) 238{ 239 struct dataflash *priv = mtd->priv; 240 struct spi_transfer x[2] = { }; 241 struct spi_message msg; 242 unsigned int addr; 243 u8 *command; 244 int status; 245 246 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n", 247 (unsigned int)from, (unsigned int)(from + len)); 248 249 /* Calculate flash page/byte address */ 250 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 251 + ((unsigned)from % priv->page_size); 252 253 command = priv->command; 254 255 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n", 256 command[0], command[1], command[2], command[3]); 257 258 spi_message_init(&msg); 259 260 x[0].tx_buf = command; 261 x[0].len = 8; 262 spi_message_add_tail(&x[0], &msg); 263 264 x[1].rx_buf = buf; 265 x[1].len = len; 266 spi_message_add_tail(&x[1], &msg); 267 268 mutex_lock(&priv->lock); 269 270 /* Continuous read, max clock = f(car) which may be less than 271 * the peak rate available. Some chips support commands with 272 * fewer "don't care" bytes. Both buffers stay unchanged. 273 */ 274 command[0] = OP_READ_CONTINUOUS; 275 command[1] = (u8)(addr >> 16); 276 command[2] = (u8)(addr >> 8); 277 command[3] = (u8)(addr >> 0); 278 /* plus 4 "don't care" bytes */ 279 280 status = spi_sync(priv->spi, &msg); 281 mutex_unlock(&priv->lock); 282 283 if (status >= 0) { 284 *retlen = msg.actual_length - 8; 285 status = 0; 286 } else 287 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n", 288 (unsigned)from, (unsigned)(from + len), 289 status); 290 return status; 291} 292 293/* 294 * Write to the DataFlash device. 295 * to : Start offset in flash device 296 * len : Amount to write 297 * retlen : Amount of data actually written 298 * buf : Buffer containing the data 299 */ 300static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 301 size_t * retlen, const u_char * buf) 302{ 303 struct dataflash *priv = mtd->priv; 304 struct spi_device *spi = priv->spi; 305 struct spi_transfer x[2] = { }; 306 struct spi_message msg; 307 unsigned int pageaddr, addr, offset, writelen; 308 size_t remaining = len; 309 u_char *writebuf = (u_char *) buf; 310 int status = -EINVAL; 311 u8 *command; 312 313 dev_dbg(&spi->dev, "write 0x%x..0x%x\n", 314 (unsigned int)to, (unsigned int)(to + len)); 315 316 spi_message_init(&msg); 317 318 x[0].tx_buf = command = priv->command; 319 x[0].len = 4; 320 spi_message_add_tail(&x[0], &msg); 321 322 pageaddr = ((unsigned)to / priv->page_size); 323 offset = ((unsigned)to % priv->page_size); 324 if (offset + len > priv->page_size) 325 writelen = priv->page_size - offset; 326 else 327 writelen = len; 328 329 mutex_lock(&priv->lock); 330 while (remaining > 0) { 331 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n", 332 pageaddr, offset, writelen); 333 334 /* REVISIT: 335 * (a) each page in a sector must be rewritten at least 336 * once every 10K sibling erase/program operations. 337 * (b) for pages that are already erased, we could 338 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 339 * (c) WRITE to buffer could be done while waiting for 340 * a previous MWRITE/MWERASE to complete ... 341 * (d) error handling here seems to be mostly missing. 342 * 343 * Two persistent bits per page, plus a per-sector counter, 344 * could support (a) and (b) ... we might consider using 345 * the second half of sector zero, which is just one block, 346 * to track that state. (On AT91, that sector should also 347 * support boot-from-DataFlash.) 348 */ 349 350 addr = pageaddr << priv->page_offset; 351 352 /* (1) Maybe transfer partial page to Buffer1 */ 353 if (writelen != priv->page_size) { 354 command[0] = OP_TRANSFER_BUF1; 355 command[1] = (addr & 0x00FF0000) >> 16; 356 command[2] = (addr & 0x0000FF00) >> 8; 357 command[3] = 0; 358 359 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n", 360 command[0], command[1], command[2], command[3]); 361 362 status = spi_sync(spi, &msg); 363 if (status < 0) 364 dev_dbg(&spi->dev, "xfer %u -> %d\n", 365 addr, status); 366 367 (void) dataflash_waitready(priv->spi); 368 } 369 370 /* (2) Program full page via Buffer1 */ 371 addr += offset; 372 command[0] = OP_PROGRAM_VIA_BUF1; 373 command[1] = (addr & 0x00FF0000) >> 16; 374 command[2] = (addr & 0x0000FF00) >> 8; 375 command[3] = (addr & 0x000000FF); 376 377 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n", 378 command[0], command[1], command[2], command[3]); 379 380 x[1].tx_buf = writebuf; 381 x[1].len = writelen; 382 spi_message_add_tail(x + 1, &msg); 383 status = spi_sync(spi, &msg); 384 spi_transfer_del(x + 1); 385 if (status < 0) 386 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n", 387 addr, writelen, status); 388 389 (void) dataflash_waitready(priv->spi); 390 391 392#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY 393 394 /* (3) Compare to Buffer1 */ 395 addr = pageaddr << priv->page_offset; 396 command[0] = OP_COMPARE_BUF1; 397 command[1] = (addr & 0x00FF0000) >> 16; 398 command[2] = (addr & 0x0000FF00) >> 8; 399 command[3] = 0; 400 401 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n", 402 command[0], command[1], command[2], command[3]); 403 404 status = spi_sync(spi, &msg); 405 if (status < 0) 406 dev_dbg(&spi->dev, "compare %u -> %d\n", 407 addr, status); 408 409 status = dataflash_waitready(priv->spi); 410 411 /* Check result of the compare operation */ 412 if (status & (1 << 6)) { 413 dev_err(&spi->dev, "compare page %u, err %d\n", 414 pageaddr, status); 415 remaining = 0; 416 status = -EIO; 417 break; 418 } else 419 status = 0; 420 421#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ 422 423 remaining = remaining - writelen; 424 pageaddr++; 425 offset = 0; 426 writebuf += writelen; 427 *retlen += writelen; 428 429 if (remaining > priv->page_size) 430 writelen = priv->page_size; 431 else 432 writelen = remaining; 433 } 434 mutex_unlock(&priv->lock); 435 436 return status; 437} 438 439/* ......................................................................... */ 440 441#ifdef CONFIG_MTD_DATAFLASH_OTP 442 443static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, 444 size_t *retlen, struct otp_info *info) 445{ 446 /* Report both blocks as identical: bytes 0..64, locked. 447 * Unless the user block changed from all-ones, we can't 448 * tell whether it's still writable; so we assume it isn't. 449 */ 450 info->start = 0; 451 info->length = 64; 452 info->locked = 1; 453 *retlen = sizeof(*info); 454 return 0; 455} 456 457static ssize_t otp_read(struct spi_device *spi, unsigned base, 458 u8 *buf, loff_t off, size_t len) 459{ 460 struct spi_message m; 461 size_t l; 462 u8 *scratch; 463 struct spi_transfer t; 464 int status; 465 466 if (off > 64) 467 return -EINVAL; 468 469 if ((off + len) > 64) 470 len = 64 - off; 471 472 spi_message_init(&m); 473 474 l = 4 + base + off + len; 475 scratch = kzalloc(l, GFP_KERNEL); 476 if (!scratch) 477 return -ENOMEM; 478 479 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 480 * IN: ignore 4 bytes, data bytes 0..N (max 127) 481 */ 482 scratch[0] = OP_READ_SECURITY; 483 484 memset(&t, 0, sizeof t); 485 t.tx_buf = scratch; 486 t.rx_buf = scratch; 487 t.len = l; 488 spi_message_add_tail(&t, &m); 489 490 dataflash_waitready(spi); 491 492 status = spi_sync(spi, &m); 493 if (status >= 0) { 494 memcpy(buf, scratch + 4 + base + off, len); 495 status = len; 496 } 497 498 kfree(scratch); 499 return status; 500} 501 502static int dataflash_read_fact_otp(struct mtd_info *mtd, 503 loff_t from, size_t len, size_t *retlen, u_char *buf) 504{ 505 struct dataflash *priv = mtd->priv; 506 int status; 507 508 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 509 mutex_lock(&priv->lock); 510 status = otp_read(priv->spi, 64, buf, from, len); 511 mutex_unlock(&priv->lock); 512 513 if (status < 0) 514 return status; 515 *retlen = status; 516 return 0; 517} 518 519static int dataflash_read_user_otp(struct mtd_info *mtd, 520 loff_t from, size_t len, size_t *retlen, u_char *buf) 521{ 522 struct dataflash *priv = mtd->priv; 523 int status; 524 525 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 526 mutex_lock(&priv->lock); 527 status = otp_read(priv->spi, 0, buf, from, len); 528 mutex_unlock(&priv->lock); 529 530 if (status < 0) 531 return status; 532 *retlen = status; 533 return 0; 534} 535 536static int dataflash_write_user_otp(struct mtd_info *mtd, 537 loff_t from, size_t len, size_t *retlen, const u_char *buf) 538{ 539 struct spi_message m; 540 const size_t l = 4 + 64; 541 u8 *scratch; 542 struct spi_transfer t; 543 struct dataflash *priv = mtd->priv; 544 int status; 545 546 if (from >= 64) { 547 /* 548 * Attempting to write beyond the end of OTP memory, 549 * no data can be written. 550 */ 551 *retlen = 0; 552 return 0; 553 } 554 555 /* Truncate the write to fit into OTP memory. */ 556 if ((from + len) > 64) 557 len = 64 - from; 558 559 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 560 * IN: ignore all 561 */ 562 scratch = kzalloc(l, GFP_KERNEL); 563 if (!scratch) 564 return -ENOMEM; 565 scratch[0] = OP_WRITE_SECURITY; 566 memcpy(scratch + 4 + from, buf, len); 567 568 spi_message_init(&m); 569 570 memset(&t, 0, sizeof t); 571 t.tx_buf = scratch; 572 t.len = l; 573 spi_message_add_tail(&t, &m); 574 575 /* Write the OTP bits, if they've not yet been written. 576 * This modifies SRAM buffer1. 577 */ 578 mutex_lock(&priv->lock); 579 dataflash_waitready(priv->spi); 580 status = spi_sync(priv->spi, &m); 581 mutex_unlock(&priv->lock); 582 583 kfree(scratch); 584 585 if (status >= 0) { 586 status = 0; 587 *retlen = len; 588 } 589 return status; 590} 591 592static char *otp_setup(struct mtd_info *device, char revision) 593{ 594 device->_get_fact_prot_info = dataflash_get_otp_info; 595 device->_read_fact_prot_reg = dataflash_read_fact_otp; 596 device->_get_user_prot_info = dataflash_get_otp_info; 597 device->_read_user_prot_reg = dataflash_read_user_otp; 598 599 /* rev c parts (at45db321c and at45db1281 only!) use a 600 * different write procedure; not (yet?) implemented. 601 */ 602 if (revision > 'c') 603 device->_write_user_prot_reg = dataflash_write_user_otp; 604 605 return ", OTP"; 606} 607 608#else 609 610static char *otp_setup(struct mtd_info *device, char revision) 611{ 612 return " (OTP)"; 613} 614 615#endif 616 617/* ......................................................................... */ 618 619/* 620 * Register DataFlash device with MTD subsystem. 621 */ 622static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, 623 int pagesize, int pageoffset, char revision) 624{ 625 struct dataflash *priv; 626 struct mtd_info *device; 627 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); 628 char *otp_tag = ""; 629 int err = 0; 630 631 priv = kzalloc(sizeof *priv, GFP_KERNEL); 632 if (!priv) 633 return -ENOMEM; 634 635 mutex_init(&priv->lock); 636 priv->spi = spi; 637 priv->page_size = pagesize; 638 priv->page_offset = pageoffset; 639 640 /* name must be usable with cmdlinepart */ 641 sprintf(priv->name, "spi%d.%d-%s", 642 spi->master->bus_num, spi->chip_select, 643 name); 644 645 device = &priv->mtd; 646 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 647 device->size = nr_pages * pagesize; 648 device->erasesize = pagesize; 649 device->writesize = pagesize; 650 device->type = MTD_DATAFLASH; 651 device->flags = MTD_WRITEABLE; 652 device->_erase = dataflash_erase; 653 device->_read = dataflash_read; 654 device->_write = dataflash_write; 655 device->priv = priv; 656 657 device->dev.parent = &spi->dev; 658 mtd_set_of_node(device, spi->dev.of_node); 659 660 if (revision >= 'c') 661 otp_tag = otp_setup(device, revision); 662 663 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 664 name, (long long)((device->size + 1023) >> 10), 665 pagesize, otp_tag); 666 spi_set_drvdata(spi, priv); 667 668 err = mtd_device_register(device, 669 pdata ? pdata->parts : NULL, 670 pdata ? pdata->nr_parts : 0); 671 672 if (!err) 673 return 0; 674 675 kfree(priv); 676 return err; 677} 678 679static inline int add_dataflash(struct spi_device *spi, char *name, 680 int nr_pages, int pagesize, int pageoffset) 681{ 682 return add_dataflash_otp(spi, name, nr_pages, pagesize, 683 pageoffset, 0); 684} 685 686struct flash_info { 687 char *name; 688 689 /* JEDEC id has a high byte of zero plus three data bytes: 690 * the manufacturer id, then a two byte device id. 691 */ 692 u64 jedec_id; 693 694 /* The size listed here is what works with OP_ERASE_PAGE. */ 695 unsigned nr_pages; 696 u16 pagesize; 697 u16 pageoffset; 698 699 u16 flags; 700#define SUP_EXTID 0x0004 /* supports extended ID data */ 701#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 702#define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 703}; 704 705static struct flash_info dataflash_data[] = { 706 707 /* 708 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 709 * one with IS_POW2PS and the other without. The entry with the 710 * non-2^N byte page size can't name exact chip revisions without 711 * losing backwards compatibility for cmdlinepart. 712 * 713 * These newer chips also support 128-byte security registers (with 714 * 64 bytes one-time-programmable) and software write-protection. 715 */ 716 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 717 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 718 719 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 720 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 721 722 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 723 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 724 725 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 726 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 727 728 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 729 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 730 731 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 732 733 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 734 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 735 736 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 737 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 738 739 { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS}, 740 { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS}, 741}; 742 743static struct flash_info *jedec_lookup(struct spi_device *spi, 744 u64 jedec, bool use_extid) 745{ 746 struct flash_info *info; 747 int status; 748 749 for (info = dataflash_data; 750 info < dataflash_data + ARRAY_SIZE(dataflash_data); 751 info++) { 752 if (use_extid && !(info->flags & SUP_EXTID)) 753 continue; 754 755 if (info->jedec_id == jedec) { 756 dev_dbg(&spi->dev, "OTP, sector protect%s\n", 757 (info->flags & SUP_POW2PS) ? 758 ", binary pagesize" : ""); 759 if (info->flags & SUP_POW2PS) { 760 status = dataflash_status(spi); 761 if (status < 0) { 762 dev_dbg(&spi->dev, "status error %d\n", 763 status); 764 return ERR_PTR(status); 765 } 766 if (status & 0x1) { 767 if (info->flags & IS_POW2PS) 768 return info; 769 } else { 770 if (!(info->flags & IS_POW2PS)) 771 return info; 772 } 773 } else 774 return info; 775 } 776 } 777 778 return ERR_PTR(-ENODEV); 779} 780 781static struct flash_info *jedec_probe(struct spi_device *spi) 782{ 783 int ret; 784 u8 code = OP_READ_ID; 785 u64 jedec; 786 u8 id[sizeof(jedec)] = {0}; 787 const unsigned int id_size = 5; 788 struct flash_info *info; 789 790 /* 791 * JEDEC also defines an optional "extended device information" 792 * string for after vendor-specific data, after the three bytes 793 * we use here. Supporting some chips might require using it. 794 * 795 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 796 * That's not an error; only rev C and newer chips handle it, and 797 * only Atmel sells these chips. 798 */ 799 ret = spi_write_then_read(spi, &code, 1, id, id_size); 800 if (ret < 0) { 801 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret); 802 return ERR_PTR(ret); 803 } 804 805 if (id[0] != CFI_MFR_ATMEL) 806 return NULL; 807 808 jedec = be64_to_cpup((__be64 *)id); 809 810 /* 811 * First, try to match device using extended device 812 * information 813 */ 814 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true); 815 if (!IS_ERR(info)) 816 return info; 817 /* 818 * If that fails, make another pass using regular ID 819 * information 820 */ 821 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false); 822 if (!IS_ERR(info)) 823 return info; 824 /* 825 * Treat other chips as errors ... we won't know the right page 826 * size (it might be binary) even when we can tell which density 827 * class is involved (legacy chip id scheme). 828 */ 829 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec); 830 return ERR_PTR(-ENODEV); 831} 832 833/* 834 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 835 * or else the ID code embedded in the status bits: 836 * 837 * Device Density ID code #Pages PageSize Offset 838 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 839 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 840 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 841 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 842 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 843 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 844 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 845 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 846 */ 847static int dataflash_probe(struct spi_device *spi) 848{ 849 int status; 850 struct flash_info *info; 851 852 /* 853 * Try to detect dataflash by JEDEC ID. 854 * If it succeeds we know we have either a C or D part. 855 * D will support power of 2 pagesize option. 856 * Both support the security register, though with different 857 * write procedures. 858 */ 859 info = jedec_probe(spi); 860 if (IS_ERR(info)) 861 return PTR_ERR(info); 862 if (info != NULL) 863 return add_dataflash_otp(spi, info->name, info->nr_pages, 864 info->pagesize, info->pageoffset, 865 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 866 867 /* 868 * Older chips support only legacy commands, identifing 869 * capacity using bits in the status byte. 870 */ 871 status = dataflash_status(spi); 872 if (status <= 0 || status == 0xff) { 873 dev_dbg(&spi->dev, "status error %d\n", status); 874 if (status == 0 || status == 0xff) 875 status = -ENODEV; 876 return status; 877 } 878 879 /* if there's a device there, assume it's dataflash. 880 * board setup should have set spi->max_speed_max to 881 * match f(car) for continuous reads, mode 0 or 3. 882 */ 883 switch (status & 0x3c) { 884 case 0x0c: /* 0 0 1 1 x x */ 885 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 886 break; 887 case 0x14: /* 0 1 0 1 x x */ 888 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 889 break; 890 case 0x1c: /* 0 1 1 1 x x */ 891 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 892 break; 893 case 0x24: /* 1 0 0 1 x x */ 894 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 895 break; 896 case 0x2c: /* 1 0 1 1 x x */ 897 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 898 break; 899 case 0x34: /* 1 1 0 1 x x */ 900 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 901 break; 902 case 0x38: /* 1 1 1 x x x */ 903 case 0x3c: 904 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 905 break; 906 /* obsolete AT45DB1282 not (yet?) supported */ 907 default: 908 dev_info(&spi->dev, "unsupported device (%x)\n", 909 status & 0x3c); 910 status = -ENODEV; 911 } 912 913 if (status < 0) 914 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status); 915 916 return status; 917} 918 919static void dataflash_remove(struct spi_device *spi) 920{ 921 struct dataflash *flash = spi_get_drvdata(spi); 922 923 dev_dbg(&spi->dev, "remove\n"); 924 925 WARN_ON(mtd_device_unregister(&flash->mtd)); 926 927 kfree(flash); 928} 929 930static struct spi_driver dataflash_driver = { 931 .driver = { 932 .name = "mtd_dataflash", 933 .of_match_table = of_match_ptr(dataflash_dt_ids), 934 }, 935 .id_table = dataflash_dev_ids, 936 937 .probe = dataflash_probe, 938 .remove = dataflash_remove, 939 940 /* FIXME: investigate suspend and resume... */ 941}; 942 943module_spi_driver(dataflash_driver); 944 945MODULE_LICENSE("GPL"); 946MODULE_AUTHOR("Andrew Victor, David Brownell"); 947MODULE_DESCRIPTION("MTD DataFlash driver"); 948MODULE_ALIAS("spi:mtd_dataflash");