cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mtdconcat.c (22531B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * MTD device concatenation layer
      4 *
      5 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
      6 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
      7 *
      8 * NAND support by Christian Gan <cgan@iders.ca>
      9 */
     10
     11#include <linux/kernel.h>
     12#include <linux/module.h>
     13#include <linux/slab.h>
     14#include <linux/sched.h>
     15#include <linux/types.h>
     16#include <linux/backing-dev.h>
     17
     18#include <linux/mtd/mtd.h>
     19#include <linux/mtd/concat.h>
     20
     21#include <asm/div64.h>
     22
     23/*
     24 * Our storage structure:
     25 * Subdev points to an array of pointers to struct mtd_info objects
     26 * which is allocated along with this structure
     27 *
     28 */
     29struct mtd_concat {
     30	struct mtd_info mtd;
     31	int num_subdev;
     32	struct mtd_info **subdev;
     33};
     34
     35/*
     36 * how to calculate the size required for the above structure,
     37 * including the pointer array subdev points to:
     38 */
     39#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
     40	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
     41
     42/*
     43 * Given a pointer to the MTD object in the mtd_concat structure,
     44 * we can retrieve the pointer to that structure with this macro.
     45 */
     46#define CONCAT(x)  ((struct mtd_concat *)(x))
     47
     48/*
     49 * MTD methods which look up the relevant subdevice, translate the
     50 * effective address and pass through to the subdevice.
     51 */
     52
     53static int
     54concat_read(struct mtd_info *mtd, loff_t from, size_t len,
     55	    size_t * retlen, u_char * buf)
     56{
     57	struct mtd_concat *concat = CONCAT(mtd);
     58	int ret = 0, err;
     59	int i;
     60
     61	for (i = 0; i < concat->num_subdev; i++) {
     62		struct mtd_info *subdev = concat->subdev[i];
     63		size_t size, retsize;
     64
     65		if (from >= subdev->size) {
     66			/* Not destined for this subdev */
     67			size = 0;
     68			from -= subdev->size;
     69			continue;
     70		}
     71		if (from + len > subdev->size)
     72			/* First part goes into this subdev */
     73			size = subdev->size - from;
     74		else
     75			/* Entire transaction goes into this subdev */
     76			size = len;
     77
     78		err = mtd_read(subdev, from, size, &retsize, buf);
     79
     80		/* Save information about bitflips! */
     81		if (unlikely(err)) {
     82			if (mtd_is_eccerr(err)) {
     83				mtd->ecc_stats.failed++;
     84				ret = err;
     85			} else if (mtd_is_bitflip(err)) {
     86				mtd->ecc_stats.corrected++;
     87				/* Do not overwrite -EBADMSG !! */
     88				if (!ret)
     89					ret = err;
     90			} else
     91				return err;
     92		}
     93
     94		*retlen += retsize;
     95		len -= size;
     96		if (len == 0)
     97			return ret;
     98
     99		buf += size;
    100		from = 0;
    101	}
    102	return -EINVAL;
    103}
    104
    105static int
    106concat_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
    107	     size_t * retlen, const u_char * buf)
    108{
    109	struct mtd_concat *concat = CONCAT(mtd);
    110	int err = -EINVAL;
    111	int i;
    112	for (i = 0; i < concat->num_subdev; i++) {
    113		struct mtd_info *subdev = concat->subdev[i];
    114		size_t size, retsize;
    115
    116		if (to >= subdev->size) {
    117			to -= subdev->size;
    118			continue;
    119		}
    120		if (to + len > subdev->size)
    121			size = subdev->size - to;
    122		else
    123			size = len;
    124
    125		err = mtd_panic_write(subdev, to, size, &retsize, buf);
    126		if (err == -EOPNOTSUPP) {
    127			printk(KERN_ERR "mtdconcat: Cannot write from panic without panic_write\n");
    128			return err;
    129		}
    130		if (err)
    131			break;
    132
    133		*retlen += retsize;
    134		len -= size;
    135		if (len == 0)
    136			break;
    137
    138		err = -EINVAL;
    139		buf += size;
    140		to = 0;
    141	}
    142	return err;
    143}
    144
    145
    146static int
    147concat_write(struct mtd_info *mtd, loff_t to, size_t len,
    148	     size_t * retlen, const u_char * buf)
    149{
    150	struct mtd_concat *concat = CONCAT(mtd);
    151	int err = -EINVAL;
    152	int i;
    153
    154	for (i = 0; i < concat->num_subdev; i++) {
    155		struct mtd_info *subdev = concat->subdev[i];
    156		size_t size, retsize;
    157
    158		if (to >= subdev->size) {
    159			size = 0;
    160			to -= subdev->size;
    161			continue;
    162		}
    163		if (to + len > subdev->size)
    164			size = subdev->size - to;
    165		else
    166			size = len;
    167
    168		err = mtd_write(subdev, to, size, &retsize, buf);
    169		if (err)
    170			break;
    171
    172		*retlen += retsize;
    173		len -= size;
    174		if (len == 0)
    175			break;
    176
    177		err = -EINVAL;
    178		buf += size;
    179		to = 0;
    180	}
    181	return err;
    182}
    183
    184static int
    185concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
    186		unsigned long count, loff_t to, size_t * retlen)
    187{
    188	struct mtd_concat *concat = CONCAT(mtd);
    189	struct kvec *vecs_copy;
    190	unsigned long entry_low, entry_high;
    191	size_t total_len = 0;
    192	int i;
    193	int err = -EINVAL;
    194
    195	/* Calculate total length of data */
    196	for (i = 0; i < count; i++)
    197		total_len += vecs[i].iov_len;
    198
    199	/* Check alignment */
    200	if (mtd->writesize > 1) {
    201		uint64_t __to = to;
    202		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
    203			return -EINVAL;
    204	}
    205
    206	/* make a copy of vecs */
    207	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
    208	if (!vecs_copy)
    209		return -ENOMEM;
    210
    211	entry_low = 0;
    212	for (i = 0; i < concat->num_subdev; i++) {
    213		struct mtd_info *subdev = concat->subdev[i];
    214		size_t size, wsize, retsize, old_iov_len;
    215
    216		if (to >= subdev->size) {
    217			to -= subdev->size;
    218			continue;
    219		}
    220
    221		size = min_t(uint64_t, total_len, subdev->size - to);
    222		wsize = size; /* store for future use */
    223
    224		entry_high = entry_low;
    225		while (entry_high < count) {
    226			if (size <= vecs_copy[entry_high].iov_len)
    227				break;
    228			size -= vecs_copy[entry_high++].iov_len;
    229		}
    230
    231		old_iov_len = vecs_copy[entry_high].iov_len;
    232		vecs_copy[entry_high].iov_len = size;
    233
    234		err = mtd_writev(subdev, &vecs_copy[entry_low],
    235				 entry_high - entry_low + 1, to, &retsize);
    236
    237		vecs_copy[entry_high].iov_len = old_iov_len - size;
    238		vecs_copy[entry_high].iov_base += size;
    239
    240		entry_low = entry_high;
    241
    242		if (err)
    243			break;
    244
    245		*retlen += retsize;
    246		total_len -= wsize;
    247
    248		if (total_len == 0)
    249			break;
    250
    251		err = -EINVAL;
    252		to = 0;
    253	}
    254
    255	kfree(vecs_copy);
    256	return err;
    257}
    258
    259static int
    260concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
    261{
    262	struct mtd_concat *concat = CONCAT(mtd);
    263	struct mtd_oob_ops devops = *ops;
    264	int i, err, ret = 0;
    265
    266	ops->retlen = ops->oobretlen = 0;
    267
    268	for (i = 0; i < concat->num_subdev; i++) {
    269		struct mtd_info *subdev = concat->subdev[i];
    270
    271		if (from >= subdev->size) {
    272			from -= subdev->size;
    273			continue;
    274		}
    275
    276		/* partial read ? */
    277		if (from + devops.len > subdev->size)
    278			devops.len = subdev->size - from;
    279
    280		err = mtd_read_oob(subdev, from, &devops);
    281		ops->retlen += devops.retlen;
    282		ops->oobretlen += devops.oobretlen;
    283
    284		/* Save information about bitflips! */
    285		if (unlikely(err)) {
    286			if (mtd_is_eccerr(err)) {
    287				mtd->ecc_stats.failed++;
    288				ret = err;
    289			} else if (mtd_is_bitflip(err)) {
    290				mtd->ecc_stats.corrected++;
    291				/* Do not overwrite -EBADMSG !! */
    292				if (!ret)
    293					ret = err;
    294			} else
    295				return err;
    296		}
    297
    298		if (devops.datbuf) {
    299			devops.len = ops->len - ops->retlen;
    300			if (!devops.len)
    301				return ret;
    302			devops.datbuf += devops.retlen;
    303		}
    304		if (devops.oobbuf) {
    305			devops.ooblen = ops->ooblen - ops->oobretlen;
    306			if (!devops.ooblen)
    307				return ret;
    308			devops.oobbuf += ops->oobretlen;
    309		}
    310
    311		from = 0;
    312	}
    313	return -EINVAL;
    314}
    315
    316static int
    317concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
    318{
    319	struct mtd_concat *concat = CONCAT(mtd);
    320	struct mtd_oob_ops devops = *ops;
    321	int i, err;
    322
    323	if (!(mtd->flags & MTD_WRITEABLE))
    324		return -EROFS;
    325
    326	ops->retlen = ops->oobretlen = 0;
    327
    328	for (i = 0; i < concat->num_subdev; i++) {
    329		struct mtd_info *subdev = concat->subdev[i];
    330
    331		if (to >= subdev->size) {
    332			to -= subdev->size;
    333			continue;
    334		}
    335
    336		/* partial write ? */
    337		if (to + devops.len > subdev->size)
    338			devops.len = subdev->size - to;
    339
    340		err = mtd_write_oob(subdev, to, &devops);
    341		ops->retlen += devops.retlen;
    342		ops->oobretlen += devops.oobretlen;
    343		if (err)
    344			return err;
    345
    346		if (devops.datbuf) {
    347			devops.len = ops->len - ops->retlen;
    348			if (!devops.len)
    349				return 0;
    350			devops.datbuf += devops.retlen;
    351		}
    352		if (devops.oobbuf) {
    353			devops.ooblen = ops->ooblen - ops->oobretlen;
    354			if (!devops.ooblen)
    355				return 0;
    356			devops.oobbuf += devops.oobretlen;
    357		}
    358		to = 0;
    359	}
    360	return -EINVAL;
    361}
    362
    363static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
    364{
    365	struct mtd_concat *concat = CONCAT(mtd);
    366	struct mtd_info *subdev;
    367	int i, err;
    368	uint64_t length, offset = 0;
    369	struct erase_info *erase;
    370
    371	/*
    372	 * Check for proper erase block alignment of the to-be-erased area.
    373	 * It is easier to do this based on the super device's erase
    374	 * region info rather than looking at each particular sub-device
    375	 * in turn.
    376	 */
    377	if (!concat->mtd.numeraseregions) {
    378		/* the easy case: device has uniform erase block size */
    379		if (instr->addr & (concat->mtd.erasesize - 1))
    380			return -EINVAL;
    381		if (instr->len & (concat->mtd.erasesize - 1))
    382			return -EINVAL;
    383	} else {
    384		/* device has variable erase size */
    385		struct mtd_erase_region_info *erase_regions =
    386		    concat->mtd.eraseregions;
    387
    388		/*
    389		 * Find the erase region where the to-be-erased area begins:
    390		 */
    391		for (i = 0; i < concat->mtd.numeraseregions &&
    392		     instr->addr >= erase_regions[i].offset; i++) ;
    393		--i;
    394
    395		/*
    396		 * Now erase_regions[i] is the region in which the
    397		 * to-be-erased area begins. Verify that the starting
    398		 * offset is aligned to this region's erase size:
    399		 */
    400		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
    401			return -EINVAL;
    402
    403		/*
    404		 * now find the erase region where the to-be-erased area ends:
    405		 */
    406		for (; i < concat->mtd.numeraseregions &&
    407		     (instr->addr + instr->len) >= erase_regions[i].offset;
    408		     ++i) ;
    409		--i;
    410		/*
    411		 * check if the ending offset is aligned to this region's erase size
    412		 */
    413		if (i < 0 || ((instr->addr + instr->len) &
    414					(erase_regions[i].erasesize - 1)))
    415			return -EINVAL;
    416	}
    417
    418	/* make a local copy of instr to avoid modifying the caller's struct */
    419	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
    420
    421	if (!erase)
    422		return -ENOMEM;
    423
    424	*erase = *instr;
    425	length = instr->len;
    426
    427	/*
    428	 * find the subdevice where the to-be-erased area begins, adjust
    429	 * starting offset to be relative to the subdevice start
    430	 */
    431	for (i = 0; i < concat->num_subdev; i++) {
    432		subdev = concat->subdev[i];
    433		if (subdev->size <= erase->addr) {
    434			erase->addr -= subdev->size;
    435			offset += subdev->size;
    436		} else {
    437			break;
    438		}
    439	}
    440
    441	/* must never happen since size limit has been verified above */
    442	BUG_ON(i >= concat->num_subdev);
    443
    444	/* now do the erase: */
    445	err = 0;
    446	for (; length > 0; i++) {
    447		/* loop for all subdevices affected by this request */
    448		subdev = concat->subdev[i];	/* get current subdevice */
    449
    450		/* limit length to subdevice's size: */
    451		if (erase->addr + length > subdev->size)
    452			erase->len = subdev->size - erase->addr;
    453		else
    454			erase->len = length;
    455
    456		length -= erase->len;
    457		if ((err = mtd_erase(subdev, erase))) {
    458			/* sanity check: should never happen since
    459			 * block alignment has been checked above */
    460			BUG_ON(err == -EINVAL);
    461			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
    462				instr->fail_addr = erase->fail_addr + offset;
    463			break;
    464		}
    465		/*
    466		 * erase->addr specifies the offset of the area to be
    467		 * erased *within the current subdevice*. It can be
    468		 * non-zero only the first time through this loop, i.e.
    469		 * for the first subdevice where blocks need to be erased.
    470		 * All the following erases must begin at the start of the
    471		 * current subdevice, i.e. at offset zero.
    472		 */
    473		erase->addr = 0;
    474		offset += subdev->size;
    475	}
    476	kfree(erase);
    477
    478	return err;
    479}
    480
    481static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
    482			 bool is_lock)
    483{
    484	struct mtd_concat *concat = CONCAT(mtd);
    485	int i, err = -EINVAL;
    486
    487	for (i = 0; i < concat->num_subdev; i++) {
    488		struct mtd_info *subdev = concat->subdev[i];
    489		uint64_t size;
    490
    491		if (ofs >= subdev->size) {
    492			size = 0;
    493			ofs -= subdev->size;
    494			continue;
    495		}
    496		if (ofs + len > subdev->size)
    497			size = subdev->size - ofs;
    498		else
    499			size = len;
    500
    501		if (is_lock)
    502			err = mtd_lock(subdev, ofs, size);
    503		else
    504			err = mtd_unlock(subdev, ofs, size);
    505		if (err)
    506			break;
    507
    508		len -= size;
    509		if (len == 0)
    510			break;
    511
    512		err = -EINVAL;
    513		ofs = 0;
    514	}
    515
    516	return err;
    517}
    518
    519static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    520{
    521	return concat_xxlock(mtd, ofs, len, true);
    522}
    523
    524static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    525{
    526	return concat_xxlock(mtd, ofs, len, false);
    527}
    528
    529static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
    530{
    531	struct mtd_concat *concat = CONCAT(mtd);
    532	int i, err = -EINVAL;
    533
    534	for (i = 0; i < concat->num_subdev; i++) {
    535		struct mtd_info *subdev = concat->subdev[i];
    536
    537		if (ofs >= subdev->size) {
    538			ofs -= subdev->size;
    539			continue;
    540		}
    541
    542		if (ofs + len > subdev->size)
    543			break;
    544
    545		return mtd_is_locked(subdev, ofs, len);
    546	}
    547
    548	return err;
    549}
    550
    551static void concat_sync(struct mtd_info *mtd)
    552{
    553	struct mtd_concat *concat = CONCAT(mtd);
    554	int i;
    555
    556	for (i = 0; i < concat->num_subdev; i++) {
    557		struct mtd_info *subdev = concat->subdev[i];
    558		mtd_sync(subdev);
    559	}
    560}
    561
    562static int concat_suspend(struct mtd_info *mtd)
    563{
    564	struct mtd_concat *concat = CONCAT(mtd);
    565	int i, rc = 0;
    566
    567	for (i = 0; i < concat->num_subdev; i++) {
    568		struct mtd_info *subdev = concat->subdev[i];
    569		if ((rc = mtd_suspend(subdev)) < 0)
    570			return rc;
    571	}
    572	return rc;
    573}
    574
    575static void concat_resume(struct mtd_info *mtd)
    576{
    577	struct mtd_concat *concat = CONCAT(mtd);
    578	int i;
    579
    580	for (i = 0; i < concat->num_subdev; i++) {
    581		struct mtd_info *subdev = concat->subdev[i];
    582		mtd_resume(subdev);
    583	}
    584}
    585
    586static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
    587{
    588	struct mtd_concat *concat = CONCAT(mtd);
    589	int i, res = 0;
    590
    591	if (!mtd_can_have_bb(concat->subdev[0]))
    592		return res;
    593
    594	for (i = 0; i < concat->num_subdev; i++) {
    595		struct mtd_info *subdev = concat->subdev[i];
    596
    597		if (ofs >= subdev->size) {
    598			ofs -= subdev->size;
    599			continue;
    600		}
    601
    602		res = mtd_block_isbad(subdev, ofs);
    603		break;
    604	}
    605
    606	return res;
    607}
    608
    609static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
    610{
    611	struct mtd_concat *concat = CONCAT(mtd);
    612	int i, err = -EINVAL;
    613
    614	for (i = 0; i < concat->num_subdev; i++) {
    615		struct mtd_info *subdev = concat->subdev[i];
    616
    617		if (ofs >= subdev->size) {
    618			ofs -= subdev->size;
    619			continue;
    620		}
    621
    622		err = mtd_block_markbad(subdev, ofs);
    623		if (!err)
    624			mtd->ecc_stats.badblocks++;
    625		break;
    626	}
    627
    628	return err;
    629}
    630
    631/*
    632 * This function constructs a virtual MTD device by concatenating
    633 * num_devs MTD devices. A pointer to the new device object is
    634 * stored to *new_dev upon success. This function does _not_
    635 * register any devices: this is the caller's responsibility.
    636 */
    637struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
    638				   int num_devs,	/* number of subdevices      */
    639				   const char *name)
    640{				/* name for the new device   */
    641	int i;
    642	size_t size;
    643	struct mtd_concat *concat;
    644	struct mtd_info *subdev_master = NULL;
    645	uint32_t max_erasesize, curr_erasesize;
    646	int num_erase_region;
    647	int max_writebufsize = 0;
    648
    649	printk(KERN_NOTICE "Concatenating MTD devices:\n");
    650	for (i = 0; i < num_devs; i++)
    651		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
    652	printk(KERN_NOTICE "into device \"%s\"\n", name);
    653
    654	/* allocate the device structure */
    655	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
    656	concat = kzalloc(size, GFP_KERNEL);
    657	if (!concat) {
    658		printk
    659		    ("memory allocation error while creating concatenated device \"%s\"\n",
    660		     name);
    661		return NULL;
    662	}
    663	concat->subdev = (struct mtd_info **) (concat + 1);
    664
    665	/*
    666	 * Set up the new "super" device's MTD object structure, check for
    667	 * incompatibilities between the subdevices.
    668	 */
    669	concat->mtd.type = subdev[0]->type;
    670	concat->mtd.flags = subdev[0]->flags;
    671	concat->mtd.size = subdev[0]->size;
    672	concat->mtd.erasesize = subdev[0]->erasesize;
    673	concat->mtd.writesize = subdev[0]->writesize;
    674
    675	for (i = 0; i < num_devs; i++)
    676		if (max_writebufsize < subdev[i]->writebufsize)
    677			max_writebufsize = subdev[i]->writebufsize;
    678	concat->mtd.writebufsize = max_writebufsize;
    679
    680	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
    681	concat->mtd.oobsize = subdev[0]->oobsize;
    682	concat->mtd.oobavail = subdev[0]->oobavail;
    683
    684	subdev_master = mtd_get_master(subdev[0]);
    685	if (subdev_master->_writev)
    686		concat->mtd._writev = concat_writev;
    687	if (subdev_master->_read_oob)
    688		concat->mtd._read_oob = concat_read_oob;
    689	if (subdev_master->_write_oob)
    690		concat->mtd._write_oob = concat_write_oob;
    691	if (subdev_master->_block_isbad)
    692		concat->mtd._block_isbad = concat_block_isbad;
    693	if (subdev_master->_block_markbad)
    694		concat->mtd._block_markbad = concat_block_markbad;
    695	if (subdev_master->_panic_write)
    696		concat->mtd._panic_write = concat_panic_write;
    697	if (subdev_master->_read)
    698		concat->mtd._read = concat_read;
    699	if (subdev_master->_write)
    700		concat->mtd._write = concat_write;
    701
    702	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
    703
    704	concat->subdev[0] = subdev[0];
    705
    706	for (i = 1; i < num_devs; i++) {
    707		if (concat->mtd.type != subdev[i]->type) {
    708			kfree(concat);
    709			printk("Incompatible device type on \"%s\"\n",
    710			       subdev[i]->name);
    711			return NULL;
    712		}
    713		if (concat->mtd.flags != subdev[i]->flags) {
    714			/*
    715			 * Expect all flags except MTD_WRITEABLE to be
    716			 * equal on all subdevices.
    717			 */
    718			if ((concat->mtd.flags ^ subdev[i]->
    719			     flags) & ~MTD_WRITEABLE) {
    720				kfree(concat);
    721				printk("Incompatible device flags on \"%s\"\n",
    722				       subdev[i]->name);
    723				return NULL;
    724			} else
    725				/* if writeable attribute differs,
    726				   make super device writeable */
    727				concat->mtd.flags |=
    728				    subdev[i]->flags & MTD_WRITEABLE;
    729		}
    730
    731		subdev_master = mtd_get_master(subdev[i]);
    732		concat->mtd.size += subdev[i]->size;
    733		concat->mtd.ecc_stats.badblocks +=
    734			subdev[i]->ecc_stats.badblocks;
    735		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
    736		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
    737		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
    738		    !concat->mtd._read_oob  != !subdev_master->_read_oob ||
    739		    !concat->mtd._write_oob != !subdev_master->_write_oob) {
    740			/*
    741			 * Check against subdev[i] for data members, because
    742			 * subdev's attributes may be different from master
    743			 * mtd device. Check against subdev's master mtd
    744			 * device for callbacks, because the existence of
    745			 * subdev's callbacks is decided by master mtd device.
    746			 */
    747			kfree(concat);
    748			printk("Incompatible OOB or ECC data on \"%s\"\n",
    749			       subdev[i]->name);
    750			return NULL;
    751		}
    752		concat->subdev[i] = subdev[i];
    753
    754	}
    755
    756	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
    757
    758	concat->num_subdev = num_devs;
    759	concat->mtd.name = name;
    760
    761	concat->mtd._erase = concat_erase;
    762	concat->mtd._sync = concat_sync;
    763	concat->mtd._lock = concat_lock;
    764	concat->mtd._unlock = concat_unlock;
    765	concat->mtd._is_locked = concat_is_locked;
    766	concat->mtd._suspend = concat_suspend;
    767	concat->mtd._resume = concat_resume;
    768
    769	/*
    770	 * Combine the erase block size info of the subdevices:
    771	 *
    772	 * first, walk the map of the new device and see how
    773	 * many changes in erase size we have
    774	 */
    775	max_erasesize = curr_erasesize = subdev[0]->erasesize;
    776	num_erase_region = 1;
    777	for (i = 0; i < num_devs; i++) {
    778		if (subdev[i]->numeraseregions == 0) {
    779			/* current subdevice has uniform erase size */
    780			if (subdev[i]->erasesize != curr_erasesize) {
    781				/* if it differs from the last subdevice's erase size, count it */
    782				++num_erase_region;
    783				curr_erasesize = subdev[i]->erasesize;
    784				if (curr_erasesize > max_erasesize)
    785					max_erasesize = curr_erasesize;
    786			}
    787		} else {
    788			/* current subdevice has variable erase size */
    789			int j;
    790			for (j = 0; j < subdev[i]->numeraseregions; j++) {
    791
    792				/* walk the list of erase regions, count any changes */
    793				if (subdev[i]->eraseregions[j].erasesize !=
    794				    curr_erasesize) {
    795					++num_erase_region;
    796					curr_erasesize =
    797					    subdev[i]->eraseregions[j].
    798					    erasesize;
    799					if (curr_erasesize > max_erasesize)
    800						max_erasesize = curr_erasesize;
    801				}
    802			}
    803		}
    804	}
    805
    806	if (num_erase_region == 1) {
    807		/*
    808		 * All subdevices have the same uniform erase size.
    809		 * This is easy:
    810		 */
    811		concat->mtd.erasesize = curr_erasesize;
    812		concat->mtd.numeraseregions = 0;
    813	} else {
    814		uint64_t tmp64;
    815
    816		/*
    817		 * erase block size varies across the subdevices: allocate
    818		 * space to store the data describing the variable erase regions
    819		 */
    820		struct mtd_erase_region_info *erase_region_p;
    821		uint64_t begin, position;
    822
    823		concat->mtd.erasesize = max_erasesize;
    824		concat->mtd.numeraseregions = num_erase_region;
    825		concat->mtd.eraseregions = erase_region_p =
    826		    kmalloc_array(num_erase_region,
    827				  sizeof(struct mtd_erase_region_info),
    828				  GFP_KERNEL);
    829		if (!erase_region_p) {
    830			kfree(concat);
    831			printk
    832			    ("memory allocation error while creating erase region list"
    833			     " for device \"%s\"\n", name);
    834			return NULL;
    835		}
    836
    837		/*
    838		 * walk the map of the new device once more and fill in
    839		 * in erase region info:
    840		 */
    841		curr_erasesize = subdev[0]->erasesize;
    842		begin = position = 0;
    843		for (i = 0; i < num_devs; i++) {
    844			if (subdev[i]->numeraseregions == 0) {
    845				/* current subdevice has uniform erase size */
    846				if (subdev[i]->erasesize != curr_erasesize) {
    847					/*
    848					 *  fill in an mtd_erase_region_info structure for the area
    849					 *  we have walked so far:
    850					 */
    851					erase_region_p->offset = begin;
    852					erase_region_p->erasesize =
    853					    curr_erasesize;
    854					tmp64 = position - begin;
    855					do_div(tmp64, curr_erasesize);
    856					erase_region_p->numblocks = tmp64;
    857					begin = position;
    858
    859					curr_erasesize = subdev[i]->erasesize;
    860					++erase_region_p;
    861				}
    862				position += subdev[i]->size;
    863			} else {
    864				/* current subdevice has variable erase size */
    865				int j;
    866				for (j = 0; j < subdev[i]->numeraseregions; j++) {
    867					/* walk the list of erase regions, count any changes */
    868					if (subdev[i]->eraseregions[j].
    869					    erasesize != curr_erasesize) {
    870						erase_region_p->offset = begin;
    871						erase_region_p->erasesize =
    872						    curr_erasesize;
    873						tmp64 = position - begin;
    874						do_div(tmp64, curr_erasesize);
    875						erase_region_p->numblocks = tmp64;
    876						begin = position;
    877
    878						curr_erasesize =
    879						    subdev[i]->eraseregions[j].
    880						    erasesize;
    881						++erase_region_p;
    882					}
    883					position +=
    884					    subdev[i]->eraseregions[j].
    885					    numblocks * (uint64_t)curr_erasesize;
    886				}
    887			}
    888		}
    889		/* Now write the final entry */
    890		erase_region_p->offset = begin;
    891		erase_region_p->erasesize = curr_erasesize;
    892		tmp64 = position - begin;
    893		do_div(tmp64, curr_erasesize);
    894		erase_region_p->numblocks = tmp64;
    895	}
    896
    897	return &concat->mtd;
    898}
    899
    900/* Cleans the context obtained from mtd_concat_create() */
    901void mtd_concat_destroy(struct mtd_info *mtd)
    902{
    903	struct mtd_concat *concat = CONCAT(mtd);
    904	if (concat->mtd.numeraseregions)
    905		kfree(concat->mtd.eraseregions);
    906	kfree(concat);
    907}
    908
    909EXPORT_SYMBOL(mtd_concat_create);
    910EXPORT_SYMBOL(mtd_concat_destroy);
    911
    912MODULE_LICENSE("GPL");
    913MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
    914MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");