cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

onenand_base.c (105032B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  Copyright © 2005-2009 Samsung Electronics
      4 *  Copyright © 2007 Nokia Corporation
      5 *
      6 *  Kyungmin Park <kyungmin.park@samsung.com>
      7 *
      8 *  Credits:
      9 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
     10 *	auto-placement support, read-while load support, various fixes
     11 *
     12 *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
     13 *	Flex-OneNAND support
     14 *	Amul Kumar Saha <amul.saha at samsung.com>
     15 *	OTP support
     16 */
     17
     18#include <linux/kernel.h>
     19#include <linux/module.h>
     20#include <linux/moduleparam.h>
     21#include <linux/slab.h>
     22#include <linux/sched.h>
     23#include <linux/delay.h>
     24#include <linux/interrupt.h>
     25#include <linux/jiffies.h>
     26#include <linux/mtd/mtd.h>
     27#include <linux/mtd/onenand.h>
     28#include <linux/mtd/partitions.h>
     29
     30#include <asm/io.h>
     31
     32/*
     33 * Multiblock erase if number of blocks to erase is 2 or more.
     34 * Maximum number of blocks for simultaneous erase is 64.
     35 */
     36#define MB_ERASE_MIN_BLK_COUNT 2
     37#define MB_ERASE_MAX_BLK_COUNT 64
     38
     39/* Default Flex-OneNAND boundary and lock respectively */
     40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
     41
     42module_param_array(flex_bdry, int, NULL, 0400);
     43MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
     44				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
     45				"DIE_BDRY: SLC boundary of the die"
     46				"LOCK: Locking information for SLC boundary"
     47				"    : 0->Set boundary in unlocked status"
     48				"    : 1->Set boundary in locked status");
     49
     50/* Default OneNAND/Flex-OneNAND OTP options*/
     51static int otp;
     52
     53module_param(otp, int, 0400);
     54MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
     55			"Syntax : otp=LOCK_TYPE"
     56			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
     57			"	   : 0 -> Default (No Blocks Locked)"
     58			"	   : 1 -> OTP Block lock"
     59			"	   : 2 -> 1st Block lock"
     60			"	   : 3 -> BOTH OTP Block and 1st Block lock");
     61
     62/*
     63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
     64 * For now, we expose only 64 out of 80 ecc bytes
     65 */
     66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
     67				     struct mtd_oob_region *oobregion)
     68{
     69	if (section > 7)
     70		return -ERANGE;
     71
     72	oobregion->offset = (section * 16) + 6;
     73	oobregion->length = 10;
     74
     75	return 0;
     76}
     77
     78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
     79				      struct mtd_oob_region *oobregion)
     80{
     81	if (section > 7)
     82		return -ERANGE;
     83
     84	oobregion->offset = (section * 16) + 2;
     85	oobregion->length = 4;
     86
     87	return 0;
     88}
     89
     90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
     91	.ecc = flexonenand_ooblayout_ecc,
     92	.free = flexonenand_ooblayout_free,
     93};
     94
     95/*
     96 * onenand_oob_128 - oob info for OneNAND with 4KB page
     97 *
     98 * Based on specification:
     99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
    100 *
    101 */
    102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
    103				     struct mtd_oob_region *oobregion)
    104{
    105	if (section > 7)
    106		return -ERANGE;
    107
    108	oobregion->offset = (section * 16) + 7;
    109	oobregion->length = 9;
    110
    111	return 0;
    112}
    113
    114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
    115				      struct mtd_oob_region *oobregion)
    116{
    117	if (section >= 8)
    118		return -ERANGE;
    119
    120	/*
    121	 * free bytes are using the spare area fields marked as
    122	 * "Managed by internal ECC logic for Logical Sector Number area"
    123	 */
    124	oobregion->offset = (section * 16) + 2;
    125	oobregion->length = 3;
    126
    127	return 0;
    128}
    129
    130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
    131	.ecc = onenand_ooblayout_128_ecc,
    132	.free = onenand_ooblayout_128_free,
    133};
    134
    135/*
    136 * onenand_oob_32_64 - oob info for large (2KB) page
    137 */
    138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
    139				       struct mtd_oob_region *oobregion)
    140{
    141	if (section > 3)
    142		return -ERANGE;
    143
    144	oobregion->offset = (section * 16) + 8;
    145	oobregion->length = 5;
    146
    147	return 0;
    148}
    149
    150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
    151					struct mtd_oob_region *oobregion)
    152{
    153	int sections = (mtd->oobsize / 32) * 2;
    154
    155	if (section >= sections)
    156		return -ERANGE;
    157
    158	if (section & 1) {
    159		oobregion->offset = ((section - 1) * 16) + 14;
    160		oobregion->length = 2;
    161	} else  {
    162		oobregion->offset = (section * 16) + 2;
    163		oobregion->length = 3;
    164	}
    165
    166	return 0;
    167}
    168
    169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
    170	.ecc = onenand_ooblayout_32_64_ecc,
    171	.free = onenand_ooblayout_32_64_free,
    172};
    173
    174static const unsigned char ffchars[] = {
    175	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    176	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
    177	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    178	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
    179	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    180	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
    181	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    182	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
    183	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    184	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
    185	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    186	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
    187	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    188	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
    189	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    190	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
    191};
    192
    193/**
    194 * onenand_readw - [OneNAND Interface] Read OneNAND register
    195 * @addr:		address to read
    196 *
    197 * Read OneNAND register
    198 */
    199static unsigned short onenand_readw(void __iomem *addr)
    200{
    201	return readw(addr);
    202}
    203
    204/**
    205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
    206 * @value:		value to write
    207 * @addr:		address to write
    208 *
    209 * Write OneNAND register with value
    210 */
    211static void onenand_writew(unsigned short value, void __iomem *addr)
    212{
    213	writew(value, addr);
    214}
    215
    216/**
    217 * onenand_block_address - [DEFAULT] Get block address
    218 * @this:		onenand chip data structure
    219 * @block:		the block
    220 * @return		translated block address if DDP, otherwise same
    221 *
    222 * Setup Start Address 1 Register (F100h)
    223 */
    224static int onenand_block_address(struct onenand_chip *this, int block)
    225{
    226	/* Device Flash Core select, NAND Flash Block Address */
    227	if (block & this->density_mask)
    228		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
    229
    230	return block;
    231}
    232
    233/**
    234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
    235 * @this:		onenand chip data structure
    236 * @block:		the block
    237 * @return		set DBS value if DDP, otherwise 0
    238 *
    239 * Setup Start Address 2 Register (F101h) for DDP
    240 */
    241static int onenand_bufferram_address(struct onenand_chip *this, int block)
    242{
    243	/* Device BufferRAM Select */
    244	if (block & this->density_mask)
    245		return ONENAND_DDP_CHIP1;
    246
    247	return ONENAND_DDP_CHIP0;
    248}
    249
    250/**
    251 * onenand_page_address - [DEFAULT] Get page address
    252 * @page:		the page address
    253 * @sector:	the sector address
    254 * @return		combined page and sector address
    255 *
    256 * Setup Start Address 8 Register (F107h)
    257 */
    258static int onenand_page_address(int page, int sector)
    259{
    260	/* Flash Page Address, Flash Sector Address */
    261	int fpa, fsa;
    262
    263	fpa = page & ONENAND_FPA_MASK;
    264	fsa = sector & ONENAND_FSA_MASK;
    265
    266	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
    267}
    268
    269/**
    270 * onenand_buffer_address - [DEFAULT] Get buffer address
    271 * @dataram1:	DataRAM index
    272 * @sectors:	the sector address
    273 * @count:		the number of sectors
    274 * Return:		the start buffer value
    275 *
    276 * Setup Start Buffer Register (F200h)
    277 */
    278static int onenand_buffer_address(int dataram1, int sectors, int count)
    279{
    280	int bsa, bsc;
    281
    282	/* BufferRAM Sector Address */
    283	bsa = sectors & ONENAND_BSA_MASK;
    284
    285	if (dataram1)
    286		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
    287	else
    288		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
    289
    290	/* BufferRAM Sector Count */
    291	bsc = count & ONENAND_BSC_MASK;
    292
    293	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
    294}
    295
    296/**
    297 * flexonenand_block- For given address return block number
    298 * @this:         - OneNAND device structure
    299 * @addr:		- Address for which block number is needed
    300 */
    301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
    302{
    303	unsigned boundary, blk, die = 0;
    304
    305	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
    306		die = 1;
    307		addr -= this->diesize[0];
    308	}
    309
    310	boundary = this->boundary[die];
    311
    312	blk = addr >> (this->erase_shift - 1);
    313	if (blk > boundary)
    314		blk = (blk + boundary + 1) >> 1;
    315
    316	blk += die ? this->density_mask : 0;
    317	return blk;
    318}
    319
    320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
    321{
    322	if (!FLEXONENAND(this))
    323		return addr >> this->erase_shift;
    324	return flexonenand_block(this, addr);
    325}
    326
    327/**
    328 * flexonenand_addr - Return address of the block
    329 * @this:		OneNAND device structure
    330 * @block:		Block number on Flex-OneNAND
    331 *
    332 * Return address of the block
    333 */
    334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
    335{
    336	loff_t ofs = 0;
    337	int die = 0, boundary;
    338
    339	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
    340		block -= this->density_mask;
    341		die = 1;
    342		ofs = this->diesize[0];
    343	}
    344
    345	boundary = this->boundary[die];
    346	ofs += (loff_t)block << (this->erase_shift - 1);
    347	if (block > (boundary + 1))
    348		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
    349	return ofs;
    350}
    351
    352loff_t onenand_addr(struct onenand_chip *this, int block)
    353{
    354	if (!FLEXONENAND(this))
    355		return (loff_t)block << this->erase_shift;
    356	return flexonenand_addr(this, block);
    357}
    358EXPORT_SYMBOL(onenand_addr);
    359
    360/**
    361 * onenand_get_density - [DEFAULT] Get OneNAND density
    362 * @dev_id:	OneNAND device ID
    363 *
    364 * Get OneNAND density from device ID
    365 */
    366static inline int onenand_get_density(int dev_id)
    367{
    368	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
    369	return (density & ONENAND_DEVICE_DENSITY_MASK);
    370}
    371
    372/**
    373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
    374 * @mtd:		MTD device structure
    375 * @addr:		address whose erase region needs to be identified
    376 */
    377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
    378{
    379	int i;
    380
    381	for (i = 0; i < mtd->numeraseregions; i++)
    382		if (addr < mtd->eraseregions[i].offset)
    383			break;
    384	return i - 1;
    385}
    386EXPORT_SYMBOL(flexonenand_region);
    387
    388/**
    389 * onenand_command - [DEFAULT] Send command to OneNAND device
    390 * @mtd:		MTD device structure
    391 * @cmd:		the command to be sent
    392 * @addr:		offset to read from or write to
    393 * @len:		number of bytes to read or write
    394 *
    395 * Send command to OneNAND device. This function is used for middle/large page
    396 * devices (1KB/2KB Bytes per page)
    397 */
    398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
    399{
    400	struct onenand_chip *this = mtd->priv;
    401	int value, block, page;
    402
    403	/* Address translation */
    404	switch (cmd) {
    405	case ONENAND_CMD_UNLOCK:
    406	case ONENAND_CMD_LOCK:
    407	case ONENAND_CMD_LOCK_TIGHT:
    408	case ONENAND_CMD_UNLOCK_ALL:
    409		block = -1;
    410		page = -1;
    411		break;
    412
    413	case FLEXONENAND_CMD_PI_ACCESS:
    414		/* addr contains die index */
    415		block = addr * this->density_mask;
    416		page = -1;
    417		break;
    418
    419	case ONENAND_CMD_ERASE:
    420	case ONENAND_CMD_MULTIBLOCK_ERASE:
    421	case ONENAND_CMD_ERASE_VERIFY:
    422	case ONENAND_CMD_BUFFERRAM:
    423	case ONENAND_CMD_OTP_ACCESS:
    424		block = onenand_block(this, addr);
    425		page = -1;
    426		break;
    427
    428	case FLEXONENAND_CMD_READ_PI:
    429		cmd = ONENAND_CMD_READ;
    430		block = addr * this->density_mask;
    431		page = 0;
    432		break;
    433
    434	default:
    435		block = onenand_block(this, addr);
    436		if (FLEXONENAND(this))
    437			page = (int) (addr - onenand_addr(this, block))>>\
    438				this->page_shift;
    439		else
    440			page = (int) (addr >> this->page_shift);
    441		if (ONENAND_IS_2PLANE(this)) {
    442			/* Make the even block number */
    443			block &= ~1;
    444			/* Is it the odd plane? */
    445			if (addr & this->writesize)
    446				block++;
    447			page >>= 1;
    448		}
    449		page &= this->page_mask;
    450		break;
    451	}
    452
    453	/* NOTE: The setting order of the registers is very important! */
    454	if (cmd == ONENAND_CMD_BUFFERRAM) {
    455		/* Select DataRAM for DDP */
    456		value = onenand_bufferram_address(this, block);
    457		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
    458
    459		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
    460			/* It is always BufferRAM0 */
    461			ONENAND_SET_BUFFERRAM0(this);
    462		else
    463			/* Switch to the next data buffer */
    464			ONENAND_SET_NEXT_BUFFERRAM(this);
    465
    466		return 0;
    467	}
    468
    469	if (block != -1) {
    470		/* Write 'DFS, FBA' of Flash */
    471		value = onenand_block_address(this, block);
    472		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
    473
    474		/* Select DataRAM for DDP */
    475		value = onenand_bufferram_address(this, block);
    476		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
    477	}
    478
    479	if (page != -1) {
    480		/* Now we use page size operation */
    481		int sectors = 0, count = 0;
    482		int dataram;
    483
    484		switch (cmd) {
    485		case FLEXONENAND_CMD_RECOVER_LSB:
    486		case ONENAND_CMD_READ:
    487		case ONENAND_CMD_READOOB:
    488			if (ONENAND_IS_4KB_PAGE(this))
    489				/* It is always BufferRAM0 */
    490				dataram = ONENAND_SET_BUFFERRAM0(this);
    491			else
    492				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
    493			break;
    494
    495		default:
    496			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
    497				cmd = ONENAND_CMD_2X_PROG;
    498			dataram = ONENAND_CURRENT_BUFFERRAM(this);
    499			break;
    500		}
    501
    502		/* Write 'FPA, FSA' of Flash */
    503		value = onenand_page_address(page, sectors);
    504		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
    505
    506		/* Write 'BSA, BSC' of DataRAM */
    507		value = onenand_buffer_address(dataram, sectors, count);
    508		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
    509	}
    510
    511	/* Interrupt clear */
    512	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
    513
    514	/* Write command */
    515	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
    516
    517	return 0;
    518}
    519
    520/**
    521 * onenand_read_ecc - return ecc status
    522 * @this:		onenand chip structure
    523 */
    524static inline int onenand_read_ecc(struct onenand_chip *this)
    525{
    526	int ecc, i, result = 0;
    527
    528	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
    529		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
    530
    531	for (i = 0; i < 4; i++) {
    532		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
    533		if (likely(!ecc))
    534			continue;
    535		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
    536			return ONENAND_ECC_2BIT_ALL;
    537		else
    538			result = ONENAND_ECC_1BIT_ALL;
    539	}
    540
    541	return result;
    542}
    543
    544/**
    545 * onenand_wait - [DEFAULT] wait until the command is done
    546 * @mtd:		MTD device structure
    547 * @state:		state to select the max. timeout value
    548 *
    549 * Wait for command done. This applies to all OneNAND command
    550 * Read can take up to 30us, erase up to 2ms and program up to 350us
    551 * according to general OneNAND specs
    552 */
    553static int onenand_wait(struct mtd_info *mtd, int state)
    554{
    555	struct onenand_chip * this = mtd->priv;
    556	unsigned long timeout;
    557	unsigned int flags = ONENAND_INT_MASTER;
    558	unsigned int interrupt = 0;
    559	unsigned int ctrl;
    560
    561	/* The 20 msec is enough */
    562	timeout = jiffies + msecs_to_jiffies(20);
    563	while (time_before(jiffies, timeout)) {
    564		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
    565
    566		if (interrupt & flags)
    567			break;
    568
    569		if (state != FL_READING && state != FL_PREPARING_ERASE)
    570			cond_resched();
    571	}
    572	/* To get correct interrupt status in timeout case */
    573	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
    574
    575	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
    576
    577	/*
    578	 * In the Spec. it checks the controller status first
    579	 * However if you get the correct information in case of
    580	 * power off recovery (POR) test, it should read ECC status first
    581	 */
    582	if (interrupt & ONENAND_INT_READ) {
    583		int ecc = onenand_read_ecc(this);
    584		if (ecc) {
    585			if (ecc & ONENAND_ECC_2BIT_ALL) {
    586				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
    587					__func__, ecc);
    588				mtd->ecc_stats.failed++;
    589				return -EBADMSG;
    590			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
    591				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
    592					__func__, ecc);
    593				mtd->ecc_stats.corrected++;
    594			}
    595		}
    596	} else if (state == FL_READING) {
    597		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
    598			__func__, ctrl, interrupt);
    599		return -EIO;
    600	}
    601
    602	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
    603		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
    604		       __func__, ctrl, interrupt);
    605		return -EIO;
    606	}
    607
    608	if (!(interrupt & ONENAND_INT_MASTER)) {
    609		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
    610		       __func__, ctrl, interrupt);
    611		return -EIO;
    612	}
    613
    614	/* If there's controller error, it's a real error */
    615	if (ctrl & ONENAND_CTRL_ERROR) {
    616		printk(KERN_ERR "%s: controller error = 0x%04x\n",
    617			__func__, ctrl);
    618		if (ctrl & ONENAND_CTRL_LOCK)
    619			printk(KERN_ERR "%s: it's locked error.\n", __func__);
    620		return -EIO;
    621	}
    622
    623	return 0;
    624}
    625
    626/*
    627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
    628 * @irq:		onenand interrupt number
    629 * @dev_id:	interrupt data
    630 *
    631 * complete the work
    632 */
    633static irqreturn_t onenand_interrupt(int irq, void *data)
    634{
    635	struct onenand_chip *this = data;
    636
    637	/* To handle shared interrupt */
    638	if (!this->complete.done)
    639		complete(&this->complete);
    640
    641	return IRQ_HANDLED;
    642}
    643
    644/*
    645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
    646 * @mtd:		MTD device structure
    647 * @state:		state to select the max. timeout value
    648 *
    649 * Wait for command done.
    650 */
    651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
    652{
    653	struct onenand_chip *this = mtd->priv;
    654
    655	wait_for_completion(&this->complete);
    656
    657	return onenand_wait(mtd, state);
    658}
    659
    660/*
    661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
    662 * @mtd:		MTD device structure
    663 * @state:		state to select the max. timeout value
    664 *
    665 * Try interrupt based wait (It is used one-time)
    666 */
    667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
    668{
    669	struct onenand_chip *this = mtd->priv;
    670	unsigned long remain, timeout;
    671
    672	/* We use interrupt wait first */
    673	this->wait = onenand_interrupt_wait;
    674
    675	timeout = msecs_to_jiffies(100);
    676	remain = wait_for_completion_timeout(&this->complete, timeout);
    677	if (!remain) {
    678		printk(KERN_INFO "OneNAND: There's no interrupt. "
    679				"We use the normal wait\n");
    680
    681		/* Release the irq */
    682		free_irq(this->irq, this);
    683
    684		this->wait = onenand_wait;
    685	}
    686
    687	return onenand_wait(mtd, state);
    688}
    689
    690/*
    691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
    692 * @mtd:		MTD device structure
    693 *
    694 * There's two method to wait onenand work
    695 * 1. polling - read interrupt status register
    696 * 2. interrupt - use the kernel interrupt method
    697 */
    698static void onenand_setup_wait(struct mtd_info *mtd)
    699{
    700	struct onenand_chip *this = mtd->priv;
    701	int syscfg;
    702
    703	init_completion(&this->complete);
    704
    705	if (this->irq <= 0) {
    706		this->wait = onenand_wait;
    707		return;
    708	}
    709
    710	if (request_irq(this->irq, &onenand_interrupt,
    711				IRQF_SHARED, "onenand", this)) {
    712		/* If we can't get irq, use the normal wait */
    713		this->wait = onenand_wait;
    714		return;
    715	}
    716
    717	/* Enable interrupt */
    718	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
    719	syscfg |= ONENAND_SYS_CFG1_IOBE;
    720	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
    721
    722	this->wait = onenand_try_interrupt_wait;
    723}
    724
    725/**
    726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
    727 * @mtd:		MTD data structure
    728 * @area:		BufferRAM area
    729 * @return		offset given area
    730 *
    731 * Return BufferRAM offset given area
    732 */
    733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
    734{
    735	struct onenand_chip *this = mtd->priv;
    736
    737	if (ONENAND_CURRENT_BUFFERRAM(this)) {
    738		/* Note: the 'this->writesize' is a real page size */
    739		if (area == ONENAND_DATARAM)
    740			return this->writesize;
    741		if (area == ONENAND_SPARERAM)
    742			return mtd->oobsize;
    743	}
    744
    745	return 0;
    746}
    747
    748/**
    749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
    750 * @mtd:		MTD data structure
    751 * @area:		BufferRAM area
    752 * @buffer:	the databuffer to put/get data
    753 * @offset:	offset to read from or write to
    754 * @count:		number of bytes to read/write
    755 *
    756 * Read the BufferRAM area
    757 */
    758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
    759		unsigned char *buffer, int offset, size_t count)
    760{
    761	struct onenand_chip *this = mtd->priv;
    762	void __iomem *bufferram;
    763
    764	bufferram = this->base + area;
    765
    766	bufferram += onenand_bufferram_offset(mtd, area);
    767
    768	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
    769		unsigned short word;
    770
    771		/* Align with word(16-bit) size */
    772		count--;
    773
    774		/* Read word and save byte */
    775		word = this->read_word(bufferram + offset + count);
    776		buffer[count] = (word & 0xff);
    777	}
    778
    779	memcpy(buffer, bufferram + offset, count);
    780
    781	return 0;
    782}
    783
    784/**
    785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
    786 * @mtd:		MTD data structure
    787 * @area:		BufferRAM area
    788 * @buffer:	the databuffer to put/get data
    789 * @offset:	offset to read from or write to
    790 * @count:		number of bytes to read/write
    791 *
    792 * Read the BufferRAM area with Sync. Burst Mode
    793 */
    794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
    795		unsigned char *buffer, int offset, size_t count)
    796{
    797	struct onenand_chip *this = mtd->priv;
    798	void __iomem *bufferram;
    799
    800	bufferram = this->base + area;
    801
    802	bufferram += onenand_bufferram_offset(mtd, area);
    803
    804	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
    805
    806	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
    807		unsigned short word;
    808
    809		/* Align with word(16-bit) size */
    810		count--;
    811
    812		/* Read word and save byte */
    813		word = this->read_word(bufferram + offset + count);
    814		buffer[count] = (word & 0xff);
    815	}
    816
    817	memcpy(buffer, bufferram + offset, count);
    818
    819	this->mmcontrol(mtd, 0);
    820
    821	return 0;
    822}
    823
    824/**
    825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
    826 * @mtd:		MTD data structure
    827 * @area:		BufferRAM area
    828 * @buffer:	the databuffer to put/get data
    829 * @offset:	offset to read from or write to
    830 * @count:		number of bytes to read/write
    831 *
    832 * Write the BufferRAM area
    833 */
    834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
    835		const unsigned char *buffer, int offset, size_t count)
    836{
    837	struct onenand_chip *this = mtd->priv;
    838	void __iomem *bufferram;
    839
    840	bufferram = this->base + area;
    841
    842	bufferram += onenand_bufferram_offset(mtd, area);
    843
    844	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
    845		unsigned short word;
    846		int byte_offset;
    847
    848		/* Align with word(16-bit) size */
    849		count--;
    850
    851		/* Calculate byte access offset */
    852		byte_offset = offset + count;
    853
    854		/* Read word and save byte */
    855		word = this->read_word(bufferram + byte_offset);
    856		word = (word & ~0xff) | buffer[count];
    857		this->write_word(word, bufferram + byte_offset);
    858	}
    859
    860	memcpy(bufferram + offset, buffer, count);
    861
    862	return 0;
    863}
    864
    865/**
    866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
    867 * @mtd:		MTD data structure
    868 * @addr:		address to check
    869 * @return		blockpage address
    870 *
    871 * Get blockpage address at 2x program mode
    872 */
    873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
    874{
    875	struct onenand_chip *this = mtd->priv;
    876	int blockpage, block, page;
    877
    878	/* Calculate the even block number */
    879	block = (int) (addr >> this->erase_shift) & ~1;
    880	/* Is it the odd plane? */
    881	if (addr & this->writesize)
    882		block++;
    883	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
    884	blockpage = (block << 7) | page;
    885
    886	return blockpage;
    887}
    888
    889/**
    890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
    891 * @mtd:		MTD data structure
    892 * @addr:		address to check
    893 * @return		1 if there are valid data, otherwise 0
    894 *
    895 * Check bufferram if there is data we required
    896 */
    897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
    898{
    899	struct onenand_chip *this = mtd->priv;
    900	int blockpage, found = 0;
    901	unsigned int i;
    902
    903	if (ONENAND_IS_2PLANE(this))
    904		blockpage = onenand_get_2x_blockpage(mtd, addr);
    905	else
    906		blockpage = (int) (addr >> this->page_shift);
    907
    908	/* Is there valid data? */
    909	i = ONENAND_CURRENT_BUFFERRAM(this);
    910	if (this->bufferram[i].blockpage == blockpage)
    911		found = 1;
    912	else {
    913		/* Check another BufferRAM */
    914		i = ONENAND_NEXT_BUFFERRAM(this);
    915		if (this->bufferram[i].blockpage == blockpage) {
    916			ONENAND_SET_NEXT_BUFFERRAM(this);
    917			found = 1;
    918		}
    919	}
    920
    921	if (found && ONENAND_IS_DDP(this)) {
    922		/* Select DataRAM for DDP */
    923		int block = onenand_block(this, addr);
    924		int value = onenand_bufferram_address(this, block);
    925		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
    926	}
    927
    928	return found;
    929}
    930
    931/**
    932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
    933 * @mtd:		MTD data structure
    934 * @addr:		address to update
    935 * @valid:		valid flag
    936 *
    937 * Update BufferRAM information
    938 */
    939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
    940		int valid)
    941{
    942	struct onenand_chip *this = mtd->priv;
    943	int blockpage;
    944	unsigned int i;
    945
    946	if (ONENAND_IS_2PLANE(this))
    947		blockpage = onenand_get_2x_blockpage(mtd, addr);
    948	else
    949		blockpage = (int) (addr >> this->page_shift);
    950
    951	/* Invalidate another BufferRAM */
    952	i = ONENAND_NEXT_BUFFERRAM(this);
    953	if (this->bufferram[i].blockpage == blockpage)
    954		this->bufferram[i].blockpage = -1;
    955
    956	/* Update BufferRAM */
    957	i = ONENAND_CURRENT_BUFFERRAM(this);
    958	if (valid)
    959		this->bufferram[i].blockpage = blockpage;
    960	else
    961		this->bufferram[i].blockpage = -1;
    962}
    963
    964/**
    965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
    966 * @mtd:		MTD data structure
    967 * @addr:		start address to invalidate
    968 * @len:		length to invalidate
    969 *
    970 * Invalidate BufferRAM information
    971 */
    972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
    973		unsigned int len)
    974{
    975	struct onenand_chip *this = mtd->priv;
    976	int i;
    977	loff_t end_addr = addr + len;
    978
    979	/* Invalidate BufferRAM */
    980	for (i = 0; i < MAX_BUFFERRAM; i++) {
    981		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
    982		if (buf_addr >= addr && buf_addr < end_addr)
    983			this->bufferram[i].blockpage = -1;
    984	}
    985}
    986
    987/**
    988 * onenand_get_device - [GENERIC] Get chip for selected access
    989 * @mtd:		MTD device structure
    990 * @new_state:	the state which is requested
    991 *
    992 * Get the device and lock it for exclusive access
    993 */
    994static int onenand_get_device(struct mtd_info *mtd, int new_state)
    995{
    996	struct onenand_chip *this = mtd->priv;
    997	DECLARE_WAITQUEUE(wait, current);
    998
    999	/*
   1000	 * Grab the lock and see if the device is available
   1001	 */
   1002	while (1) {
   1003		spin_lock(&this->chip_lock);
   1004		if (this->state == FL_READY) {
   1005			this->state = new_state;
   1006			spin_unlock(&this->chip_lock);
   1007			if (new_state != FL_PM_SUSPENDED && this->enable)
   1008				this->enable(mtd);
   1009			break;
   1010		}
   1011		if (new_state == FL_PM_SUSPENDED) {
   1012			spin_unlock(&this->chip_lock);
   1013			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
   1014		}
   1015		set_current_state(TASK_UNINTERRUPTIBLE);
   1016		add_wait_queue(&this->wq, &wait);
   1017		spin_unlock(&this->chip_lock);
   1018		schedule();
   1019		remove_wait_queue(&this->wq, &wait);
   1020	}
   1021
   1022	return 0;
   1023}
   1024
   1025/**
   1026 * onenand_release_device - [GENERIC] release chip
   1027 * @mtd:		MTD device structure
   1028 *
   1029 * Deselect, release chip lock and wake up anyone waiting on the device
   1030 */
   1031static void onenand_release_device(struct mtd_info *mtd)
   1032{
   1033	struct onenand_chip *this = mtd->priv;
   1034
   1035	if (this->state != FL_PM_SUSPENDED && this->disable)
   1036		this->disable(mtd);
   1037	/* Release the chip */
   1038	spin_lock(&this->chip_lock);
   1039	this->state = FL_READY;
   1040	wake_up(&this->wq);
   1041	spin_unlock(&this->chip_lock);
   1042}
   1043
   1044/**
   1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
   1046 * @mtd:		MTD device structure
   1047 * @buf:		destination address
   1048 * @column:	oob offset to read from
   1049 * @thislen:	oob length to read
   1050 */
   1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
   1052				int thislen)
   1053{
   1054	struct onenand_chip *this = mtd->priv;
   1055
   1056	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
   1057			     mtd->oobsize);
   1058	return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
   1059					   column, thislen);
   1060}
   1061
   1062/**
   1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
   1064 * @mtd:		MTD device structure
   1065 * @addr:		address to recover
   1066 * @status:	return value from onenand_wait / onenand_bbt_wait
   1067 *
   1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
   1069 * lower page address and MSB page has higher page address in paired pages.
   1070 * If power off occurs during MSB page program, the paired LSB page data can
   1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
   1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
   1073 * read after power up, issue LSB page recovery read.
   1074 */
   1075static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
   1076{
   1077	struct onenand_chip *this = mtd->priv;
   1078	int i;
   1079
   1080	/* Recovery is only for Flex-OneNAND */
   1081	if (!FLEXONENAND(this))
   1082		return status;
   1083
   1084	/* check if we failed due to uncorrectable error */
   1085	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
   1086		return status;
   1087
   1088	/* check if address lies in MLC region */
   1089	i = flexonenand_region(mtd, addr);
   1090	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
   1091		return status;
   1092
   1093	/* We are attempting to reread, so decrement stats.failed
   1094	 * which was incremented by onenand_wait due to read failure
   1095	 */
   1096	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
   1097		__func__);
   1098	mtd->ecc_stats.failed--;
   1099
   1100	/* Issue the LSB page recovery command */
   1101	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
   1102	return this->wait(mtd, FL_READING);
   1103}
   1104
   1105/**
   1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
   1107 * @mtd:		MTD device structure
   1108 * @from:		offset to read from
   1109 * @ops:		oob operation description structure
   1110 *
   1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
   1112 * So, read-while-load is not present.
   1113 */
   1114static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
   1115				struct mtd_oob_ops *ops)
   1116{
   1117	struct onenand_chip *this = mtd->priv;
   1118	struct mtd_ecc_stats stats;
   1119	size_t len = ops->len;
   1120	size_t ooblen = ops->ooblen;
   1121	u_char *buf = ops->datbuf;
   1122	u_char *oobbuf = ops->oobbuf;
   1123	int read = 0, column, thislen;
   1124	int oobread = 0, oobcolumn, thisooblen, oobsize;
   1125	int ret = 0;
   1126	int writesize = this->writesize;
   1127
   1128	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
   1129			(int)len);
   1130
   1131	oobsize = mtd_oobavail(mtd, ops);
   1132	oobcolumn = from & (mtd->oobsize - 1);
   1133
   1134	/* Do not allow reads past end of device */
   1135	if (from + len > mtd->size) {
   1136		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
   1137			__func__);
   1138		ops->retlen = 0;
   1139		ops->oobretlen = 0;
   1140		return -EINVAL;
   1141	}
   1142
   1143	stats = mtd->ecc_stats;
   1144
   1145	while (read < len) {
   1146		cond_resched();
   1147
   1148		thislen = min_t(int, writesize, len - read);
   1149
   1150		column = from & (writesize - 1);
   1151		if (column + thislen > writesize)
   1152			thislen = writesize - column;
   1153
   1154		if (!onenand_check_bufferram(mtd, from)) {
   1155			this->command(mtd, ONENAND_CMD_READ, from, writesize);
   1156
   1157			ret = this->wait(mtd, FL_READING);
   1158			if (unlikely(ret))
   1159				ret = onenand_recover_lsb(mtd, from, ret);
   1160			onenand_update_bufferram(mtd, from, !ret);
   1161			if (mtd_is_eccerr(ret))
   1162				ret = 0;
   1163			if (ret)
   1164				break;
   1165		}
   1166
   1167		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
   1168		if (oobbuf) {
   1169			thisooblen = oobsize - oobcolumn;
   1170			thisooblen = min_t(int, thisooblen, ooblen - oobread);
   1171
   1172			if (ops->mode == MTD_OPS_AUTO_OOB)
   1173				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
   1174			else
   1175				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
   1176			oobread += thisooblen;
   1177			oobbuf += thisooblen;
   1178			oobcolumn = 0;
   1179		}
   1180
   1181		read += thislen;
   1182		if (read == len)
   1183			break;
   1184
   1185		from += thislen;
   1186		buf += thislen;
   1187	}
   1188
   1189	/*
   1190	 * Return success, if no ECC failures, else -EBADMSG
   1191	 * fs driver will take care of that, because
   1192	 * retlen == desired len and result == -EBADMSG
   1193	 */
   1194	ops->retlen = read;
   1195	ops->oobretlen = oobread;
   1196
   1197	if (ret)
   1198		return ret;
   1199
   1200	if (mtd->ecc_stats.failed - stats.failed)
   1201		return -EBADMSG;
   1202
   1203	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
   1204	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
   1205}
   1206
   1207/**
   1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
   1209 * @mtd:		MTD device structure
   1210 * @from:		offset to read from
   1211 * @ops:		oob operation description structure
   1212 *
   1213 * OneNAND read main and/or out-of-band data
   1214 */
   1215static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
   1216				struct mtd_oob_ops *ops)
   1217{
   1218	struct onenand_chip *this = mtd->priv;
   1219	struct mtd_ecc_stats stats;
   1220	size_t len = ops->len;
   1221	size_t ooblen = ops->ooblen;
   1222	u_char *buf = ops->datbuf;
   1223	u_char *oobbuf = ops->oobbuf;
   1224	int read = 0, column, thislen;
   1225	int oobread = 0, oobcolumn, thisooblen, oobsize;
   1226	int ret = 0, boundary = 0;
   1227	int writesize = this->writesize;
   1228
   1229	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
   1230			(int)len);
   1231
   1232	oobsize = mtd_oobavail(mtd, ops);
   1233	oobcolumn = from & (mtd->oobsize - 1);
   1234
   1235	/* Do not allow reads past end of device */
   1236	if ((from + len) > mtd->size) {
   1237		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
   1238			__func__);
   1239		ops->retlen = 0;
   1240		ops->oobretlen = 0;
   1241		return -EINVAL;
   1242	}
   1243
   1244	stats = mtd->ecc_stats;
   1245
   1246	/* Read-while-load method */
   1247
   1248	/* Do first load to bufferRAM */
   1249	if (read < len) {
   1250		if (!onenand_check_bufferram(mtd, from)) {
   1251			this->command(mtd, ONENAND_CMD_READ, from, writesize);
   1252			ret = this->wait(mtd, FL_READING);
   1253			onenand_update_bufferram(mtd, from, !ret);
   1254			if (mtd_is_eccerr(ret))
   1255				ret = 0;
   1256		}
   1257	}
   1258
   1259	thislen = min_t(int, writesize, len - read);
   1260	column = from & (writesize - 1);
   1261	if (column + thislen > writesize)
   1262		thislen = writesize - column;
   1263
   1264	while (!ret) {
   1265		/* If there is more to load then start next load */
   1266		from += thislen;
   1267		if (read + thislen < len) {
   1268			this->command(mtd, ONENAND_CMD_READ, from, writesize);
   1269			/*
   1270			 * Chip boundary handling in DDP
   1271			 * Now we issued chip 1 read and pointed chip 1
   1272			 * bufferram so we have to point chip 0 bufferram.
   1273			 */
   1274			if (ONENAND_IS_DDP(this) &&
   1275			    unlikely(from == (this->chipsize >> 1))) {
   1276				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
   1277				boundary = 1;
   1278			} else
   1279				boundary = 0;
   1280			ONENAND_SET_PREV_BUFFERRAM(this);
   1281		}
   1282		/* While load is going, read from last bufferRAM */
   1283		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
   1284
   1285		/* Read oob area if needed */
   1286		if (oobbuf) {
   1287			thisooblen = oobsize - oobcolumn;
   1288			thisooblen = min_t(int, thisooblen, ooblen - oobread);
   1289
   1290			if (ops->mode == MTD_OPS_AUTO_OOB)
   1291				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
   1292			else
   1293				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
   1294			oobread += thisooblen;
   1295			oobbuf += thisooblen;
   1296			oobcolumn = 0;
   1297		}
   1298
   1299		/* See if we are done */
   1300		read += thislen;
   1301		if (read == len)
   1302			break;
   1303		/* Set up for next read from bufferRAM */
   1304		if (unlikely(boundary))
   1305			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
   1306		ONENAND_SET_NEXT_BUFFERRAM(this);
   1307		buf += thislen;
   1308		thislen = min_t(int, writesize, len - read);
   1309		column = 0;
   1310		cond_resched();
   1311		/* Now wait for load */
   1312		ret = this->wait(mtd, FL_READING);
   1313		onenand_update_bufferram(mtd, from, !ret);
   1314		if (mtd_is_eccerr(ret))
   1315			ret = 0;
   1316	}
   1317
   1318	/*
   1319	 * Return success, if no ECC failures, else -EBADMSG
   1320	 * fs driver will take care of that, because
   1321	 * retlen == desired len and result == -EBADMSG
   1322	 */
   1323	ops->retlen = read;
   1324	ops->oobretlen = oobread;
   1325
   1326	if (ret)
   1327		return ret;
   1328
   1329	if (mtd->ecc_stats.failed - stats.failed)
   1330		return -EBADMSG;
   1331
   1332	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
   1333	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
   1334}
   1335
   1336/**
   1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
   1338 * @mtd:		MTD device structure
   1339 * @from:		offset to read from
   1340 * @ops:		oob operation description structure
   1341 *
   1342 * OneNAND read out-of-band data from the spare area
   1343 */
   1344static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
   1345			struct mtd_oob_ops *ops)
   1346{
   1347	struct onenand_chip *this = mtd->priv;
   1348	struct mtd_ecc_stats stats;
   1349	int read = 0, thislen, column, oobsize;
   1350	size_t len = ops->ooblen;
   1351	unsigned int mode = ops->mode;
   1352	u_char *buf = ops->oobbuf;
   1353	int ret = 0, readcmd;
   1354
   1355	from += ops->ooboffs;
   1356
   1357	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
   1358			(int)len);
   1359
   1360	/* Initialize return length value */
   1361	ops->oobretlen = 0;
   1362
   1363	if (mode == MTD_OPS_AUTO_OOB)
   1364		oobsize = mtd->oobavail;
   1365	else
   1366		oobsize = mtd->oobsize;
   1367
   1368	column = from & (mtd->oobsize - 1);
   1369
   1370	if (unlikely(column >= oobsize)) {
   1371		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
   1372			__func__);
   1373		return -EINVAL;
   1374	}
   1375
   1376	stats = mtd->ecc_stats;
   1377
   1378	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1379
   1380	while (read < len) {
   1381		cond_resched();
   1382
   1383		thislen = oobsize - column;
   1384		thislen = min_t(int, thislen, len);
   1385
   1386		this->command(mtd, readcmd, from, mtd->oobsize);
   1387
   1388		onenand_update_bufferram(mtd, from, 0);
   1389
   1390		ret = this->wait(mtd, FL_READING);
   1391		if (unlikely(ret))
   1392			ret = onenand_recover_lsb(mtd, from, ret);
   1393
   1394		if (ret && !mtd_is_eccerr(ret)) {
   1395			printk(KERN_ERR "%s: read failed = 0x%x\n",
   1396				__func__, ret);
   1397			break;
   1398		}
   1399
   1400		if (mode == MTD_OPS_AUTO_OOB)
   1401			onenand_transfer_auto_oob(mtd, buf, column, thislen);
   1402		else
   1403			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
   1404
   1405		read += thislen;
   1406
   1407		if (read == len)
   1408			break;
   1409
   1410		buf += thislen;
   1411
   1412		/* Read more? */
   1413		if (read < len) {
   1414			/* Page size */
   1415			from += mtd->writesize;
   1416			column = 0;
   1417		}
   1418	}
   1419
   1420	ops->oobretlen = read;
   1421
   1422	if (ret)
   1423		return ret;
   1424
   1425	if (mtd->ecc_stats.failed - stats.failed)
   1426		return -EBADMSG;
   1427
   1428	return 0;
   1429}
   1430
   1431/**
   1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
   1433 * @mtd:		MTD device structure
   1434 * @from:		offset to read from
   1435 * @ops:		oob operation description structure
   1436 *
   1437 * Read main and/or out-of-band
   1438 */
   1439static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
   1440			    struct mtd_oob_ops *ops)
   1441{
   1442	struct onenand_chip *this = mtd->priv;
   1443	int ret;
   1444
   1445	switch (ops->mode) {
   1446	case MTD_OPS_PLACE_OOB:
   1447	case MTD_OPS_AUTO_OOB:
   1448		break;
   1449	case MTD_OPS_RAW:
   1450		/* Not implemented yet */
   1451	default:
   1452		return -EINVAL;
   1453	}
   1454
   1455	onenand_get_device(mtd, FL_READING);
   1456	if (ops->datbuf)
   1457		ret = ONENAND_IS_4KB_PAGE(this) ?
   1458			onenand_mlc_read_ops_nolock(mtd, from, ops) :
   1459			onenand_read_ops_nolock(mtd, from, ops);
   1460	else
   1461		ret = onenand_read_oob_nolock(mtd, from, ops);
   1462	onenand_release_device(mtd);
   1463
   1464	return ret;
   1465}
   1466
   1467/**
   1468 * onenand_bbt_wait - [DEFAULT] wait until the command is done
   1469 * @mtd:		MTD device structure
   1470 * @state:		state to select the max. timeout value
   1471 *
   1472 * Wait for command done.
   1473 */
   1474static int onenand_bbt_wait(struct mtd_info *mtd, int state)
   1475{
   1476	struct onenand_chip *this = mtd->priv;
   1477	unsigned long timeout;
   1478	unsigned int interrupt, ctrl, ecc, addr1, addr8;
   1479
   1480	/* The 20 msec is enough */
   1481	timeout = jiffies + msecs_to_jiffies(20);
   1482	while (time_before(jiffies, timeout)) {
   1483		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
   1484		if (interrupt & ONENAND_INT_MASTER)
   1485			break;
   1486	}
   1487	/* To get correct interrupt status in timeout case */
   1488	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
   1489	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
   1490	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
   1491	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
   1492
   1493	if (interrupt & ONENAND_INT_READ) {
   1494		ecc = onenand_read_ecc(this);
   1495		if (ecc & ONENAND_ECC_2BIT_ALL) {
   1496			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
   1497			       "intr 0x%04x addr1 %#x addr8 %#x\n",
   1498			       __func__, ecc, ctrl, interrupt, addr1, addr8);
   1499			return ONENAND_BBT_READ_ECC_ERROR;
   1500		}
   1501	} else {
   1502		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
   1503		       "intr 0x%04x addr1 %#x addr8 %#x\n",
   1504		       __func__, ctrl, interrupt, addr1, addr8);
   1505		return ONENAND_BBT_READ_FATAL_ERROR;
   1506	}
   1507
   1508	/* Initial bad block case: 0x2400 or 0x0400 */
   1509	if (ctrl & ONENAND_CTRL_ERROR) {
   1510		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
   1511		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
   1512		return ONENAND_BBT_READ_ERROR;
   1513	}
   1514
   1515	return 0;
   1516}
   1517
   1518/**
   1519 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
   1520 * @mtd:		MTD device structure
   1521 * @from:		offset to read from
   1522 * @ops:		oob operation description structure
   1523 *
   1524 * OneNAND read out-of-band data from the spare area for bbt scan
   1525 */
   1526int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
   1527			    struct mtd_oob_ops *ops)
   1528{
   1529	struct onenand_chip *this = mtd->priv;
   1530	int read = 0, thislen, column;
   1531	int ret = 0, readcmd;
   1532	size_t len = ops->ooblen;
   1533	u_char *buf = ops->oobbuf;
   1534
   1535	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
   1536			len);
   1537
   1538	/* Initialize return value */
   1539	ops->oobretlen = 0;
   1540
   1541	/* Do not allow reads past end of device */
   1542	if (unlikely((from + len) > mtd->size)) {
   1543		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
   1544			__func__);
   1545		return ONENAND_BBT_READ_FATAL_ERROR;
   1546	}
   1547
   1548	/* Grab the lock and see if the device is available */
   1549	onenand_get_device(mtd, FL_READING);
   1550
   1551	column = from & (mtd->oobsize - 1);
   1552
   1553	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1554
   1555	while (read < len) {
   1556		cond_resched();
   1557
   1558		thislen = mtd->oobsize - column;
   1559		thislen = min_t(int, thislen, len);
   1560
   1561		this->command(mtd, readcmd, from, mtd->oobsize);
   1562
   1563		onenand_update_bufferram(mtd, from, 0);
   1564
   1565		ret = this->bbt_wait(mtd, FL_READING);
   1566		if (unlikely(ret))
   1567			ret = onenand_recover_lsb(mtd, from, ret);
   1568
   1569		if (ret)
   1570			break;
   1571
   1572		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
   1573		read += thislen;
   1574		if (read == len)
   1575			break;
   1576
   1577		buf += thislen;
   1578
   1579		/* Read more? */
   1580		if (read < len) {
   1581			/* Update Page size */
   1582			from += this->writesize;
   1583			column = 0;
   1584		}
   1585	}
   1586
   1587	/* Deselect and wake up anyone waiting on the device */
   1588	onenand_release_device(mtd);
   1589
   1590	ops->oobretlen = read;
   1591	return ret;
   1592}
   1593
   1594#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
   1595/**
   1596 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
   1597 * @mtd:		MTD device structure
   1598 * @buf:		the databuffer to verify
   1599 * @to:		offset to read from
   1600 */
   1601static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
   1602{
   1603	struct onenand_chip *this = mtd->priv;
   1604	u_char *oob_buf = this->oob_buf;
   1605	int status, i, readcmd;
   1606
   1607	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1608
   1609	this->command(mtd, readcmd, to, mtd->oobsize);
   1610	onenand_update_bufferram(mtd, to, 0);
   1611	status = this->wait(mtd, FL_READING);
   1612	if (status)
   1613		return status;
   1614
   1615	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
   1616	for (i = 0; i < mtd->oobsize; i++)
   1617		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
   1618			return -EBADMSG;
   1619
   1620	return 0;
   1621}
   1622
   1623/**
   1624 * onenand_verify - [GENERIC] verify the chip contents after a write
   1625 * @mtd:          MTD device structure
   1626 * @buf:          the databuffer to verify
   1627 * @addr:         offset to read from
   1628 * @len:          number of bytes to read and compare
   1629 */
   1630static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
   1631{
   1632	struct onenand_chip *this = mtd->priv;
   1633	int ret = 0;
   1634	int thislen, column;
   1635
   1636	column = addr & (this->writesize - 1);
   1637
   1638	while (len != 0) {
   1639		thislen = min_t(int, this->writesize - column, len);
   1640
   1641		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
   1642
   1643		onenand_update_bufferram(mtd, addr, 0);
   1644
   1645		ret = this->wait(mtd, FL_READING);
   1646		if (ret)
   1647			return ret;
   1648
   1649		onenand_update_bufferram(mtd, addr, 1);
   1650
   1651		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
   1652
   1653		if (memcmp(buf, this->verify_buf + column, thislen))
   1654			return -EBADMSG;
   1655
   1656		len -= thislen;
   1657		buf += thislen;
   1658		addr += thislen;
   1659		column = 0;
   1660	}
   1661
   1662	return 0;
   1663}
   1664#else
   1665#define onenand_verify(...)		(0)
   1666#define onenand_verify_oob(...)		(0)
   1667#endif
   1668
   1669#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
   1670
   1671static void onenand_panic_wait(struct mtd_info *mtd)
   1672{
   1673	struct onenand_chip *this = mtd->priv;
   1674	unsigned int interrupt;
   1675	int i;
   1676	
   1677	for (i = 0; i < 2000; i++) {
   1678		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
   1679		if (interrupt & ONENAND_INT_MASTER)
   1680			break;
   1681		udelay(10);
   1682	}
   1683}
   1684
   1685/**
   1686 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
   1687 * @mtd:		MTD device structure
   1688 * @to:		offset to write to
   1689 * @len:		number of bytes to write
   1690 * @retlen:	pointer to variable to store the number of written bytes
   1691 * @buf:		the data to write
   1692 *
   1693 * Write with ECC
   1694 */
   1695static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
   1696			 size_t *retlen, const u_char *buf)
   1697{
   1698	struct onenand_chip *this = mtd->priv;
   1699	int column, subpage;
   1700	int written = 0;
   1701
   1702	if (this->state == FL_PM_SUSPENDED)
   1703		return -EBUSY;
   1704
   1705	/* Wait for any existing operation to clear */
   1706	onenand_panic_wait(mtd);
   1707
   1708	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
   1709			(int)len);
   1710
   1711	/* Reject writes, which are not page aligned */
   1712        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
   1713		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
   1714			__func__);
   1715                return -EINVAL;
   1716        }
   1717
   1718	column = to & (mtd->writesize - 1);
   1719
   1720	/* Loop until all data write */
   1721	while (written < len) {
   1722		int thislen = min_t(int, mtd->writesize - column, len - written);
   1723		u_char *wbuf = (u_char *) buf;
   1724
   1725		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
   1726
   1727		/* Partial page write */
   1728		subpage = thislen < mtd->writesize;
   1729		if (subpage) {
   1730			memset(this->page_buf, 0xff, mtd->writesize);
   1731			memcpy(this->page_buf + column, buf, thislen);
   1732			wbuf = this->page_buf;
   1733		}
   1734
   1735		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
   1736		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
   1737
   1738		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
   1739
   1740		onenand_panic_wait(mtd);
   1741
   1742		/* In partial page write we don't update bufferram */
   1743		onenand_update_bufferram(mtd, to, !subpage);
   1744		if (ONENAND_IS_2PLANE(this)) {
   1745			ONENAND_SET_BUFFERRAM1(this);
   1746			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
   1747		}
   1748
   1749		written += thislen;
   1750
   1751		if (written == len)
   1752			break;
   1753
   1754		column = 0;
   1755		to += thislen;
   1756		buf += thislen;
   1757	}
   1758
   1759	*retlen = written;
   1760	return 0;
   1761}
   1762
   1763/**
   1764 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
   1765 * @mtd:		MTD device structure
   1766 * @oob_buf:	oob buffer
   1767 * @buf:		source address
   1768 * @column:	oob offset to write to
   1769 * @thislen:	oob length to write
   1770 */
   1771static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
   1772				  const u_char *buf, int column, int thislen)
   1773{
   1774	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
   1775}
   1776
   1777/**
   1778 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
   1779 * @mtd:		MTD device structure
   1780 * @to:		offset to write to
   1781 * @ops:		oob operation description structure
   1782 *
   1783 * Write main and/or oob with ECC
   1784 */
   1785static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
   1786				struct mtd_oob_ops *ops)
   1787{
   1788	struct onenand_chip *this = mtd->priv;
   1789	int written = 0, column, thislen = 0, subpage = 0;
   1790	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
   1791	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
   1792	size_t len = ops->len;
   1793	size_t ooblen = ops->ooblen;
   1794	const u_char *buf = ops->datbuf;
   1795	const u_char *oob = ops->oobbuf;
   1796	u_char *oobbuf;
   1797	int ret = 0, cmd;
   1798
   1799	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
   1800			(int)len);
   1801
   1802	/* Initialize retlen, in case of early exit */
   1803	ops->retlen = 0;
   1804	ops->oobretlen = 0;
   1805
   1806	/* Reject writes, which are not page aligned */
   1807        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
   1808		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
   1809			__func__);
   1810                return -EINVAL;
   1811        }
   1812
   1813	/* Check zero length */
   1814	if (!len)
   1815		return 0;
   1816	oobsize = mtd_oobavail(mtd, ops);
   1817	oobcolumn = to & (mtd->oobsize - 1);
   1818
   1819	column = to & (mtd->writesize - 1);
   1820
   1821	/* Loop until all data write */
   1822	while (1) {
   1823		if (written < len) {
   1824			u_char *wbuf = (u_char *) buf;
   1825
   1826			thislen = min_t(int, mtd->writesize - column, len - written);
   1827			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
   1828
   1829			cond_resched();
   1830
   1831			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
   1832
   1833			/* Partial page write */
   1834			subpage = thislen < mtd->writesize;
   1835			if (subpage) {
   1836				memset(this->page_buf, 0xff, mtd->writesize);
   1837				memcpy(this->page_buf + column, buf, thislen);
   1838				wbuf = this->page_buf;
   1839			}
   1840
   1841			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
   1842
   1843			if (oob) {
   1844				oobbuf = this->oob_buf;
   1845
   1846				/* We send data to spare ram with oobsize
   1847				 * to prevent byte access */
   1848				memset(oobbuf, 0xff, mtd->oobsize);
   1849				if (ops->mode == MTD_OPS_AUTO_OOB)
   1850					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
   1851				else
   1852					memcpy(oobbuf + oobcolumn, oob, thisooblen);
   1853
   1854				oobwritten += thisooblen;
   1855				oob += thisooblen;
   1856				oobcolumn = 0;
   1857			} else
   1858				oobbuf = (u_char *) ffchars;
   1859
   1860			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
   1861		} else
   1862			ONENAND_SET_NEXT_BUFFERRAM(this);
   1863
   1864		/*
   1865		 * 2 PLANE, MLC, and Flex-OneNAND do not support
   1866		 * write-while-program feature.
   1867		 */
   1868		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
   1869			ONENAND_SET_PREV_BUFFERRAM(this);
   1870
   1871			ret = this->wait(mtd, FL_WRITING);
   1872
   1873			/* In partial page write we don't update bufferram */
   1874			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
   1875			if (ret) {
   1876				written -= prevlen;
   1877				printk(KERN_ERR "%s: write failed %d\n",
   1878					__func__, ret);
   1879				break;
   1880			}
   1881
   1882			if (written == len) {
   1883				/* Only check verify write turn on */
   1884				ret = onenand_verify(mtd, buf - len, to - len, len);
   1885				if (ret)
   1886					printk(KERN_ERR "%s: verify failed %d\n",
   1887						__func__, ret);
   1888				break;
   1889			}
   1890
   1891			ONENAND_SET_NEXT_BUFFERRAM(this);
   1892		}
   1893
   1894		this->ongoing = 0;
   1895		cmd = ONENAND_CMD_PROG;
   1896
   1897		/* Exclude 1st OTP and OTP blocks for cache program feature */
   1898		if (ONENAND_IS_CACHE_PROGRAM(this) &&
   1899		    likely(onenand_block(this, to) != 0) &&
   1900		    ONENAND_IS_4KB_PAGE(this) &&
   1901		    ((written + thislen) < len)) {
   1902			cmd = ONENAND_CMD_2X_CACHE_PROG;
   1903			this->ongoing = 1;
   1904		}
   1905
   1906		this->command(mtd, cmd, to, mtd->writesize);
   1907
   1908		/*
   1909		 * 2 PLANE, MLC, and Flex-OneNAND wait here
   1910		 */
   1911		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
   1912			ret = this->wait(mtd, FL_WRITING);
   1913
   1914			/* In partial page write we don't update bufferram */
   1915			onenand_update_bufferram(mtd, to, !ret && !subpage);
   1916			if (ret) {
   1917				printk(KERN_ERR "%s: write failed %d\n",
   1918					__func__, ret);
   1919				break;
   1920			}
   1921
   1922			/* Only check verify write turn on */
   1923			ret = onenand_verify(mtd, buf, to, thislen);
   1924			if (ret) {
   1925				printk(KERN_ERR "%s: verify failed %d\n",
   1926					__func__, ret);
   1927				break;
   1928			}
   1929
   1930			written += thislen;
   1931
   1932			if (written == len)
   1933				break;
   1934
   1935		} else
   1936			written += thislen;
   1937
   1938		column = 0;
   1939		prev_subpage = subpage;
   1940		prev = to;
   1941		prevlen = thislen;
   1942		to += thislen;
   1943		buf += thislen;
   1944		first = 0;
   1945	}
   1946
   1947	/* In error case, clear all bufferrams */
   1948	if (written != len)
   1949		onenand_invalidate_bufferram(mtd, 0, -1);
   1950
   1951	ops->retlen = written;
   1952	ops->oobretlen = oobwritten;
   1953
   1954	return ret;
   1955}
   1956
   1957
   1958/**
   1959 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
   1960 * @mtd:		MTD device structure
   1961 * @to:			offset to write to
   1962 * @ops:                oob operation description structure
   1963 *
   1964 * OneNAND write out-of-band
   1965 */
   1966static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
   1967				    struct mtd_oob_ops *ops)
   1968{
   1969	struct onenand_chip *this = mtd->priv;
   1970	int column, ret = 0, oobsize;
   1971	int written = 0, oobcmd;
   1972	u_char *oobbuf;
   1973	size_t len = ops->ooblen;
   1974	const u_char *buf = ops->oobbuf;
   1975	unsigned int mode = ops->mode;
   1976
   1977	to += ops->ooboffs;
   1978
   1979	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
   1980			(int)len);
   1981
   1982	/* Initialize retlen, in case of early exit */
   1983	ops->oobretlen = 0;
   1984
   1985	if (mode == MTD_OPS_AUTO_OOB)
   1986		oobsize = mtd->oobavail;
   1987	else
   1988		oobsize = mtd->oobsize;
   1989
   1990	column = to & (mtd->oobsize - 1);
   1991
   1992	if (unlikely(column >= oobsize)) {
   1993		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
   1994			__func__);
   1995		return -EINVAL;
   1996	}
   1997
   1998	/* For compatibility with NAND: Do not allow write past end of page */
   1999	if (unlikely(column + len > oobsize)) {
   2000		printk(KERN_ERR "%s: Attempt to write past end of page\n",
   2001			__func__);
   2002		return -EINVAL;
   2003	}
   2004
   2005	oobbuf = this->oob_buf;
   2006
   2007	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
   2008
   2009	/* Loop until all data write */
   2010	while (written < len) {
   2011		int thislen = min_t(int, oobsize, len - written);
   2012
   2013		cond_resched();
   2014
   2015		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
   2016
   2017		/* We send data to spare ram with oobsize
   2018		 * to prevent byte access */
   2019		memset(oobbuf, 0xff, mtd->oobsize);
   2020		if (mode == MTD_OPS_AUTO_OOB)
   2021			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
   2022		else
   2023			memcpy(oobbuf + column, buf, thislen);
   2024		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
   2025
   2026		if (ONENAND_IS_4KB_PAGE(this)) {
   2027			/* Set main area of DataRAM to 0xff*/
   2028			memset(this->page_buf, 0xff, mtd->writesize);
   2029			this->write_bufferram(mtd, ONENAND_DATARAM,
   2030					 this->page_buf, 0, mtd->writesize);
   2031		}
   2032
   2033		this->command(mtd, oobcmd, to, mtd->oobsize);
   2034
   2035		onenand_update_bufferram(mtd, to, 0);
   2036		if (ONENAND_IS_2PLANE(this)) {
   2037			ONENAND_SET_BUFFERRAM1(this);
   2038			onenand_update_bufferram(mtd, to + this->writesize, 0);
   2039		}
   2040
   2041		ret = this->wait(mtd, FL_WRITING);
   2042		if (ret) {
   2043			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
   2044			break;
   2045		}
   2046
   2047		ret = onenand_verify_oob(mtd, oobbuf, to);
   2048		if (ret) {
   2049			printk(KERN_ERR "%s: verify failed %d\n",
   2050				__func__, ret);
   2051			break;
   2052		}
   2053
   2054		written += thislen;
   2055		if (written == len)
   2056			break;
   2057
   2058		to += mtd->writesize;
   2059		buf += thislen;
   2060		column = 0;
   2061	}
   2062
   2063	ops->oobretlen = written;
   2064
   2065	return ret;
   2066}
   2067
   2068/**
   2069 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
   2070 * @mtd:		MTD device structure
   2071 * @to:			offset to write
   2072 * @ops:		oob operation description structure
   2073 */
   2074static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
   2075			     struct mtd_oob_ops *ops)
   2076{
   2077	int ret;
   2078
   2079	switch (ops->mode) {
   2080	case MTD_OPS_PLACE_OOB:
   2081	case MTD_OPS_AUTO_OOB:
   2082		break;
   2083	case MTD_OPS_RAW:
   2084		/* Not implemented yet */
   2085	default:
   2086		return -EINVAL;
   2087	}
   2088
   2089	onenand_get_device(mtd, FL_WRITING);
   2090	if (ops->datbuf)
   2091		ret = onenand_write_ops_nolock(mtd, to, ops);
   2092	else
   2093		ret = onenand_write_oob_nolock(mtd, to, ops);
   2094	onenand_release_device(mtd);
   2095
   2096	return ret;
   2097}
   2098
   2099/**
   2100 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
   2101 * @mtd:		MTD device structure
   2102 * @ofs:		offset from device start
   2103 * @allowbbt:	1, if its allowed to access the bbt area
   2104 *
   2105 * Check, if the block is bad. Either by reading the bad block table or
   2106 * calling of the scan function.
   2107 */
   2108static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
   2109{
   2110	struct onenand_chip *this = mtd->priv;
   2111	struct bbm_info *bbm = this->bbm;
   2112
   2113	/* Return info from the table */
   2114	return bbm->isbad_bbt(mtd, ofs, allowbbt);
   2115}
   2116
   2117
   2118static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
   2119					   struct erase_info *instr)
   2120{
   2121	struct onenand_chip *this = mtd->priv;
   2122	loff_t addr = instr->addr;
   2123	int len = instr->len;
   2124	unsigned int block_size = (1 << this->erase_shift);
   2125	int ret = 0;
   2126
   2127	while (len) {
   2128		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
   2129		ret = this->wait(mtd, FL_VERIFYING_ERASE);
   2130		if (ret) {
   2131			printk(KERN_ERR "%s: Failed verify, block %d\n",
   2132			       __func__, onenand_block(this, addr));
   2133			instr->fail_addr = addr;
   2134			return -1;
   2135		}
   2136		len -= block_size;
   2137		addr += block_size;
   2138	}
   2139	return 0;
   2140}
   2141
   2142/**
   2143 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
   2144 * @mtd:		MTD device structure
   2145 * @instr:		erase instruction
   2146 * @block_size:		block size
   2147 *
   2148 * Erase one or more blocks up to 64 block at a time
   2149 */
   2150static int onenand_multiblock_erase(struct mtd_info *mtd,
   2151				    struct erase_info *instr,
   2152				    unsigned int block_size)
   2153{
   2154	struct onenand_chip *this = mtd->priv;
   2155	loff_t addr = instr->addr;
   2156	int len = instr->len;
   2157	int eb_count = 0;
   2158	int ret = 0;
   2159	int bdry_block = 0;
   2160
   2161	if (ONENAND_IS_DDP(this)) {
   2162		loff_t bdry_addr = this->chipsize >> 1;
   2163		if (addr < bdry_addr && (addr + len) > bdry_addr)
   2164			bdry_block = bdry_addr >> this->erase_shift;
   2165	}
   2166
   2167	/* Pre-check bbs */
   2168	while (len) {
   2169		/* Check if we have a bad block, we do not erase bad blocks */
   2170		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
   2171			printk(KERN_WARNING "%s: attempt to erase a bad block "
   2172			       "at addr 0x%012llx\n",
   2173			       __func__, (unsigned long long) addr);
   2174			return -EIO;
   2175		}
   2176		len -= block_size;
   2177		addr += block_size;
   2178	}
   2179
   2180	len = instr->len;
   2181	addr = instr->addr;
   2182
   2183	/* loop over 64 eb batches */
   2184	while (len) {
   2185		struct erase_info verify_instr = *instr;
   2186		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
   2187
   2188		verify_instr.addr = addr;
   2189		verify_instr.len = 0;
   2190
   2191		/* do not cross chip boundary */
   2192		if (bdry_block) {
   2193			int this_block = (addr >> this->erase_shift);
   2194
   2195			if (this_block < bdry_block) {
   2196				max_eb_count = min(max_eb_count,
   2197						   (bdry_block - this_block));
   2198			}
   2199		}
   2200
   2201		eb_count = 0;
   2202
   2203		while (len > block_size && eb_count < (max_eb_count - 1)) {
   2204			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
   2205				      addr, block_size);
   2206			onenand_invalidate_bufferram(mtd, addr, block_size);
   2207
   2208			ret = this->wait(mtd, FL_PREPARING_ERASE);
   2209			if (ret) {
   2210				printk(KERN_ERR "%s: Failed multiblock erase, "
   2211				       "block %d\n", __func__,
   2212				       onenand_block(this, addr));
   2213				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
   2214				return -EIO;
   2215			}
   2216
   2217			len -= block_size;
   2218			addr += block_size;
   2219			eb_count++;
   2220		}
   2221
   2222		/* last block of 64-eb series */
   2223		cond_resched();
   2224		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
   2225		onenand_invalidate_bufferram(mtd, addr, block_size);
   2226
   2227		ret = this->wait(mtd, FL_ERASING);
   2228		/* Check if it is write protected */
   2229		if (ret) {
   2230			printk(KERN_ERR "%s: Failed erase, block %d\n",
   2231			       __func__, onenand_block(this, addr));
   2232			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
   2233			return -EIO;
   2234		}
   2235
   2236		len -= block_size;
   2237		addr += block_size;
   2238		eb_count++;
   2239
   2240		/* verify */
   2241		verify_instr.len = eb_count * block_size;
   2242		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
   2243			instr->fail_addr = verify_instr.fail_addr;
   2244			return -EIO;
   2245		}
   2246
   2247	}
   2248	return 0;
   2249}
   2250
   2251
   2252/**
   2253 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
   2254 * @mtd:		MTD device structure
   2255 * @instr:		erase instruction
   2256 * @region:	erase region
   2257 * @block_size:	erase block size
   2258 *
   2259 * Erase one or more blocks one block at a time
   2260 */
   2261static int onenand_block_by_block_erase(struct mtd_info *mtd,
   2262					struct erase_info *instr,
   2263					struct mtd_erase_region_info *region,
   2264					unsigned int block_size)
   2265{
   2266	struct onenand_chip *this = mtd->priv;
   2267	loff_t addr = instr->addr;
   2268	int len = instr->len;
   2269	loff_t region_end = 0;
   2270	int ret = 0;
   2271
   2272	if (region) {
   2273		/* region is set for Flex-OneNAND */
   2274		region_end = region->offset + region->erasesize * region->numblocks;
   2275	}
   2276
   2277	/* Loop through the blocks */
   2278	while (len) {
   2279		cond_resched();
   2280
   2281		/* Check if we have a bad block, we do not erase bad blocks */
   2282		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
   2283			printk(KERN_WARNING "%s: attempt to erase a bad block "
   2284					"at addr 0x%012llx\n",
   2285					__func__, (unsigned long long) addr);
   2286			return -EIO;
   2287		}
   2288
   2289		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
   2290
   2291		onenand_invalidate_bufferram(mtd, addr, block_size);
   2292
   2293		ret = this->wait(mtd, FL_ERASING);
   2294		/* Check, if it is write protected */
   2295		if (ret) {
   2296			printk(KERN_ERR "%s: Failed erase, block %d\n",
   2297				__func__, onenand_block(this, addr));
   2298			instr->fail_addr = addr;
   2299			return -EIO;
   2300		}
   2301
   2302		len -= block_size;
   2303		addr += block_size;
   2304
   2305		if (region && addr == region_end) {
   2306			if (!len)
   2307				break;
   2308			region++;
   2309
   2310			block_size = region->erasesize;
   2311			region_end = region->offset + region->erasesize * region->numblocks;
   2312
   2313			if (len & (block_size - 1)) {
   2314				/* FIXME: This should be handled at MTD partitioning level. */
   2315				printk(KERN_ERR "%s: Unaligned address\n",
   2316					__func__);
   2317				return -EIO;
   2318			}
   2319		}
   2320	}
   2321	return 0;
   2322}
   2323
   2324/**
   2325 * onenand_erase - [MTD Interface] erase block(s)
   2326 * @mtd:		MTD device structure
   2327 * @instr:		erase instruction
   2328 *
   2329 * Erase one or more blocks
   2330 */
   2331static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
   2332{
   2333	struct onenand_chip *this = mtd->priv;
   2334	unsigned int block_size;
   2335	loff_t addr = instr->addr;
   2336	loff_t len = instr->len;
   2337	int ret = 0;
   2338	struct mtd_erase_region_info *region = NULL;
   2339	loff_t region_offset = 0;
   2340
   2341	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
   2342			(unsigned long long)instr->addr,
   2343			(unsigned long long)instr->len);
   2344
   2345	if (FLEXONENAND(this)) {
   2346		/* Find the eraseregion of this address */
   2347		int i = flexonenand_region(mtd, addr);
   2348
   2349		region = &mtd->eraseregions[i];
   2350		block_size = region->erasesize;
   2351
   2352		/* Start address within region must align on block boundary.
   2353		 * Erase region's start offset is always block start address.
   2354		 */
   2355		region_offset = region->offset;
   2356	} else
   2357		block_size = 1 << this->erase_shift;
   2358
   2359	/* Start address must align on block boundary */
   2360	if (unlikely((addr - region_offset) & (block_size - 1))) {
   2361		printk(KERN_ERR "%s: Unaligned address\n", __func__);
   2362		return -EINVAL;
   2363	}
   2364
   2365	/* Length must align on block boundary */
   2366	if (unlikely(len & (block_size - 1))) {
   2367		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
   2368		return -EINVAL;
   2369	}
   2370
   2371	/* Grab the lock and see if the device is available */
   2372	onenand_get_device(mtd, FL_ERASING);
   2373
   2374	if (ONENAND_IS_4KB_PAGE(this) || region ||
   2375	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
   2376		/* region is set for Flex-OneNAND (no mb erase) */
   2377		ret = onenand_block_by_block_erase(mtd, instr,
   2378						   region, block_size);
   2379	} else {
   2380		ret = onenand_multiblock_erase(mtd, instr, block_size);
   2381	}
   2382
   2383	/* Deselect and wake up anyone waiting on the device */
   2384	onenand_release_device(mtd);
   2385
   2386	return ret;
   2387}
   2388
   2389/**
   2390 * onenand_sync - [MTD Interface] sync
   2391 * @mtd:		MTD device structure
   2392 *
   2393 * Sync is actually a wait for chip ready function
   2394 */
   2395static void onenand_sync(struct mtd_info *mtd)
   2396{
   2397	pr_debug("%s: called\n", __func__);
   2398
   2399	/* Grab the lock and see if the device is available */
   2400	onenand_get_device(mtd, FL_SYNCING);
   2401
   2402	/* Release it and go back */
   2403	onenand_release_device(mtd);
   2404}
   2405
   2406/**
   2407 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
   2408 * @mtd:		MTD device structure
   2409 * @ofs:		offset relative to mtd start
   2410 *
   2411 * Check whether the block is bad
   2412 */
   2413static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
   2414{
   2415	int ret;
   2416
   2417	onenand_get_device(mtd, FL_READING);
   2418	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
   2419	onenand_release_device(mtd);
   2420	return ret;
   2421}
   2422
   2423/**
   2424 * onenand_default_block_markbad - [DEFAULT] mark a block bad
   2425 * @mtd:		MTD device structure
   2426 * @ofs:		offset from device start
   2427 *
   2428 * This is the default implementation, which can be overridden by
   2429 * a hardware specific driver.
   2430 */
   2431static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
   2432{
   2433	struct onenand_chip *this = mtd->priv;
   2434	struct bbm_info *bbm = this->bbm;
   2435	u_char buf[2] = {0, 0};
   2436	struct mtd_oob_ops ops = {
   2437		.mode = MTD_OPS_PLACE_OOB,
   2438		.ooblen = 2,
   2439		.oobbuf = buf,
   2440		.ooboffs = 0,
   2441	};
   2442	int block;
   2443
   2444	/* Get block number */
   2445	block = onenand_block(this, ofs);
   2446        if (bbm->bbt)
   2447                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
   2448
   2449        /* We write two bytes, so we don't have to mess with 16-bit access */
   2450        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
   2451	/* FIXME : What to do when marking SLC block in partition
   2452	 * 	   with MLC erasesize? For now, it is not advisable to
   2453	 *	   create partitions containing both SLC and MLC regions.
   2454	 */
   2455	return onenand_write_oob_nolock(mtd, ofs, &ops);
   2456}
   2457
   2458/**
   2459 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
   2460 * @mtd:		MTD device structure
   2461 * @ofs:		offset relative to mtd start
   2462 *
   2463 * Mark the block as bad
   2464 */
   2465static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
   2466{
   2467	struct onenand_chip *this = mtd->priv;
   2468	int ret;
   2469
   2470	ret = onenand_block_isbad(mtd, ofs);
   2471	if (ret) {
   2472		/* If it was bad already, return success and do nothing */
   2473		if (ret > 0)
   2474			return 0;
   2475		return ret;
   2476	}
   2477
   2478	onenand_get_device(mtd, FL_WRITING);
   2479	ret = this->block_markbad(mtd, ofs);
   2480	onenand_release_device(mtd);
   2481	return ret;
   2482}
   2483
   2484/**
   2485 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
   2486 * @mtd:		MTD device structure
   2487 * @ofs:		offset relative to mtd start
   2488 * @len:		number of bytes to lock or unlock
   2489 * @cmd:		lock or unlock command
   2490 *
   2491 * Lock or unlock one or more blocks
   2492 */
   2493static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
   2494{
   2495	struct onenand_chip *this = mtd->priv;
   2496	int start, end, block, value, status;
   2497	int wp_status_mask;
   2498
   2499	start = onenand_block(this, ofs);
   2500	end = onenand_block(this, ofs + len) - 1;
   2501
   2502	if (cmd == ONENAND_CMD_LOCK)
   2503		wp_status_mask = ONENAND_WP_LS;
   2504	else
   2505		wp_status_mask = ONENAND_WP_US;
   2506
   2507	/* Continuous lock scheme */
   2508	if (this->options & ONENAND_HAS_CONT_LOCK) {
   2509		/* Set start block address */
   2510		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2511		/* Set end block address */
   2512		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
   2513		/* Write lock command */
   2514		this->command(mtd, cmd, 0, 0);
   2515
   2516		/* There's no return value */
   2517		this->wait(mtd, FL_LOCKING);
   2518
   2519		/* Sanity check */
   2520		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   2521		    & ONENAND_CTRL_ONGO)
   2522			continue;
   2523
   2524		/* Check lock status */
   2525		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   2526		if (!(status & wp_status_mask))
   2527			printk(KERN_ERR "%s: wp status = 0x%x\n",
   2528				__func__, status);
   2529
   2530		return 0;
   2531	}
   2532
   2533	/* Block lock scheme */
   2534	for (block = start; block < end + 1; block++) {
   2535		/* Set block address */
   2536		value = onenand_block_address(this, block);
   2537		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
   2538		/* Select DataRAM for DDP */
   2539		value = onenand_bufferram_address(this, block);
   2540		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
   2541		/* Set start block address */
   2542		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2543		/* Write lock command */
   2544		this->command(mtd, cmd, 0, 0);
   2545
   2546		/* There's no return value */
   2547		this->wait(mtd, FL_LOCKING);
   2548
   2549		/* Sanity check */
   2550		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   2551		    & ONENAND_CTRL_ONGO)
   2552			continue;
   2553
   2554		/* Check lock status */
   2555		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   2556		if (!(status & wp_status_mask))
   2557			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
   2558				__func__, block, status);
   2559	}
   2560
   2561	return 0;
   2562}
   2563
   2564/**
   2565 * onenand_lock - [MTD Interface] Lock block(s)
   2566 * @mtd:		MTD device structure
   2567 * @ofs:		offset relative to mtd start
   2568 * @len:		number of bytes to unlock
   2569 *
   2570 * Lock one or more blocks
   2571 */
   2572static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
   2573{
   2574	int ret;
   2575
   2576	onenand_get_device(mtd, FL_LOCKING);
   2577	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
   2578	onenand_release_device(mtd);
   2579	return ret;
   2580}
   2581
   2582/**
   2583 * onenand_unlock - [MTD Interface] Unlock block(s)
   2584 * @mtd:		MTD device structure
   2585 * @ofs:		offset relative to mtd start
   2586 * @len:		number of bytes to unlock
   2587 *
   2588 * Unlock one or more blocks
   2589 */
   2590static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
   2591{
   2592	int ret;
   2593
   2594	onenand_get_device(mtd, FL_LOCKING);
   2595	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
   2596	onenand_release_device(mtd);
   2597	return ret;
   2598}
   2599
   2600/**
   2601 * onenand_check_lock_status - [OneNAND Interface] Check lock status
   2602 * @this:		onenand chip data structure
   2603 *
   2604 * Check lock status
   2605 */
   2606static int onenand_check_lock_status(struct onenand_chip *this)
   2607{
   2608	unsigned int value, block, status;
   2609	unsigned int end;
   2610
   2611	end = this->chipsize >> this->erase_shift;
   2612	for (block = 0; block < end; block++) {
   2613		/* Set block address */
   2614		value = onenand_block_address(this, block);
   2615		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
   2616		/* Select DataRAM for DDP */
   2617		value = onenand_bufferram_address(this, block);
   2618		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
   2619		/* Set start block address */
   2620		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2621
   2622		/* Check lock status */
   2623		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   2624		if (!(status & ONENAND_WP_US)) {
   2625			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
   2626				__func__, block, status);
   2627			return 0;
   2628		}
   2629	}
   2630
   2631	return 1;
   2632}
   2633
   2634/**
   2635 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
   2636 * @mtd:		MTD device structure
   2637 *
   2638 * Unlock all blocks
   2639 */
   2640static void onenand_unlock_all(struct mtd_info *mtd)
   2641{
   2642	struct onenand_chip *this = mtd->priv;
   2643	loff_t ofs = 0;
   2644	loff_t len = mtd->size;
   2645
   2646	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
   2647		/* Set start block address */
   2648		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2649		/* Write unlock command */
   2650		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
   2651
   2652		/* There's no return value */
   2653		this->wait(mtd, FL_LOCKING);
   2654
   2655		/* Sanity check */
   2656		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   2657		    & ONENAND_CTRL_ONGO)
   2658			continue;
   2659
   2660		/* Don't check lock status */
   2661		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
   2662			return;
   2663
   2664		/* Check lock status */
   2665		if (onenand_check_lock_status(this))
   2666			return;
   2667
   2668		/* Workaround for all block unlock in DDP */
   2669		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
   2670			/* All blocks on another chip */
   2671			ofs = this->chipsize >> 1;
   2672			len = this->chipsize >> 1;
   2673		}
   2674	}
   2675
   2676	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
   2677}
   2678
   2679#ifdef CONFIG_MTD_ONENAND_OTP
   2680
   2681/**
   2682 * onenand_otp_command - Send OTP specific command to OneNAND device
   2683 * @mtd:	 MTD device structure
   2684 * @cmd:	 the command to be sent
   2685 * @addr:	 offset to read from or write to
   2686 * @len:	 number of bytes to read or write
   2687 */
   2688static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
   2689				size_t len)
   2690{
   2691	struct onenand_chip *this = mtd->priv;
   2692	int value, block, page;
   2693
   2694	/* Address translation */
   2695	switch (cmd) {
   2696	case ONENAND_CMD_OTP_ACCESS:
   2697		block = (int) (addr >> this->erase_shift);
   2698		page = -1;
   2699		break;
   2700
   2701	default:
   2702		block = (int) (addr >> this->erase_shift);
   2703		page = (int) (addr >> this->page_shift);
   2704
   2705		if (ONENAND_IS_2PLANE(this)) {
   2706			/* Make the even block number */
   2707			block &= ~1;
   2708			/* Is it the odd plane? */
   2709			if (addr & this->writesize)
   2710				block++;
   2711			page >>= 1;
   2712		}
   2713		page &= this->page_mask;
   2714		break;
   2715	}
   2716
   2717	if (block != -1) {
   2718		/* Write 'DFS, FBA' of Flash */
   2719		value = onenand_block_address(this, block);
   2720		this->write_word(value, this->base +
   2721				ONENAND_REG_START_ADDRESS1);
   2722	}
   2723
   2724	if (page != -1) {
   2725		/* Now we use page size operation */
   2726		int sectors = 4, count = 4;
   2727		int dataram;
   2728
   2729		switch (cmd) {
   2730		default:
   2731			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
   2732				cmd = ONENAND_CMD_2X_PROG;
   2733			dataram = ONENAND_CURRENT_BUFFERRAM(this);
   2734			break;
   2735		}
   2736
   2737		/* Write 'FPA, FSA' of Flash */
   2738		value = onenand_page_address(page, sectors);
   2739		this->write_word(value, this->base +
   2740				ONENAND_REG_START_ADDRESS8);
   2741
   2742		/* Write 'BSA, BSC' of DataRAM */
   2743		value = onenand_buffer_address(dataram, sectors, count);
   2744		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
   2745	}
   2746
   2747	/* Interrupt clear */
   2748	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
   2749
   2750	/* Write command */
   2751	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
   2752
   2753	return 0;
   2754}
   2755
   2756/**
   2757 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
   2758 * @mtd:		MTD device structure
   2759 * @to:			offset to write to
   2760 * @ops:                oob operation description structure
   2761 *
   2762 * OneNAND write out-of-band only for OTP
   2763 */
   2764static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
   2765				    struct mtd_oob_ops *ops)
   2766{
   2767	struct onenand_chip *this = mtd->priv;
   2768	int column, ret = 0, oobsize;
   2769	int written = 0;
   2770	u_char *oobbuf;
   2771	size_t len = ops->ooblen;
   2772	const u_char *buf = ops->oobbuf;
   2773	int block, value, status;
   2774
   2775	to += ops->ooboffs;
   2776
   2777	/* Initialize retlen, in case of early exit */
   2778	ops->oobretlen = 0;
   2779
   2780	oobsize = mtd->oobsize;
   2781
   2782	column = to & (mtd->oobsize - 1);
   2783
   2784	oobbuf = this->oob_buf;
   2785
   2786	/* Loop until all data write */
   2787	while (written < len) {
   2788		int thislen = min_t(int, oobsize, len - written);
   2789
   2790		cond_resched();
   2791
   2792		block = (int) (to >> this->erase_shift);
   2793		/*
   2794		 * Write 'DFS, FBA' of Flash
   2795		 * Add: F100h DQ=DFS, FBA
   2796		 */
   2797
   2798		value = onenand_block_address(this, block);
   2799		this->write_word(value, this->base +
   2800				ONENAND_REG_START_ADDRESS1);
   2801
   2802		/*
   2803		 * Select DataRAM for DDP
   2804		 * Add: F101h DQ=DBS
   2805		 */
   2806
   2807		value = onenand_bufferram_address(this, block);
   2808		this->write_word(value, this->base +
   2809				ONENAND_REG_START_ADDRESS2);
   2810		ONENAND_SET_NEXT_BUFFERRAM(this);
   2811
   2812		/*
   2813		 * Enter OTP access mode
   2814		 */
   2815		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
   2816		this->wait(mtd, FL_OTPING);
   2817
   2818		/* We send data to spare ram with oobsize
   2819		 * to prevent byte access */
   2820		memcpy(oobbuf + column, buf, thislen);
   2821
   2822		/*
   2823		 * Write Data into DataRAM
   2824		 * Add: 8th Word
   2825		 * in sector0/spare/page0
   2826		 * DQ=XXFCh
   2827		 */
   2828		this->write_bufferram(mtd, ONENAND_SPARERAM,
   2829					oobbuf, 0, mtd->oobsize);
   2830
   2831		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
   2832		onenand_update_bufferram(mtd, to, 0);
   2833		if (ONENAND_IS_2PLANE(this)) {
   2834			ONENAND_SET_BUFFERRAM1(this);
   2835			onenand_update_bufferram(mtd, to + this->writesize, 0);
   2836		}
   2837
   2838		ret = this->wait(mtd, FL_WRITING);
   2839		if (ret) {
   2840			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
   2841			break;
   2842		}
   2843
   2844		/* Exit OTP access mode */
   2845		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   2846		this->wait(mtd, FL_RESETTING);
   2847
   2848		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
   2849		status &= 0x60;
   2850
   2851		if (status == 0x60) {
   2852			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
   2853			printk(KERN_DEBUG "1st Block\tLOCKED\n");
   2854			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
   2855		} else if (status == 0x20) {
   2856			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
   2857			printk(KERN_DEBUG "1st Block\tLOCKED\n");
   2858			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
   2859		} else if (status == 0x40) {
   2860			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
   2861			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
   2862			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
   2863		} else {
   2864			printk(KERN_DEBUG "Reboot to check\n");
   2865		}
   2866
   2867		written += thislen;
   2868		if (written == len)
   2869			break;
   2870
   2871		to += mtd->writesize;
   2872		buf += thislen;
   2873		column = 0;
   2874	}
   2875
   2876	ops->oobretlen = written;
   2877
   2878	return ret;
   2879}
   2880
   2881/* Internal OTP operation */
   2882typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
   2883		size_t *retlen, u_char *buf);
   2884
   2885/**
   2886 * do_otp_read - [DEFAULT] Read OTP block area
   2887 * @mtd:		MTD device structure
   2888 * @from:		The offset to read
   2889 * @len:		number of bytes to read
   2890 * @retlen:	pointer to variable to store the number of readbytes
   2891 * @buf:		the databuffer to put/get data
   2892 *
   2893 * Read OTP block area.
   2894 */
   2895static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
   2896		size_t *retlen, u_char *buf)
   2897{
   2898	struct onenand_chip *this = mtd->priv;
   2899	struct mtd_oob_ops ops = {
   2900		.len	= len,
   2901		.ooblen	= 0,
   2902		.datbuf	= buf,
   2903		.oobbuf	= NULL,
   2904	};
   2905	int ret;
   2906
   2907	/* Enter OTP access mode */
   2908	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
   2909	this->wait(mtd, FL_OTPING);
   2910
   2911	ret = ONENAND_IS_4KB_PAGE(this) ?
   2912		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
   2913		onenand_read_ops_nolock(mtd, from, &ops);
   2914
   2915	/* Exit OTP access mode */
   2916	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   2917	this->wait(mtd, FL_RESETTING);
   2918
   2919	return ret;
   2920}
   2921
   2922/**
   2923 * do_otp_write - [DEFAULT] Write OTP block area
   2924 * @mtd:		MTD device structure
   2925 * @to:		The offset to write
   2926 * @len:		number of bytes to write
   2927 * @retlen:	pointer to variable to store the number of write bytes
   2928 * @buf:		the databuffer to put/get data
   2929 *
   2930 * Write OTP block area.
   2931 */
   2932static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
   2933		size_t *retlen, u_char *buf)
   2934{
   2935	struct onenand_chip *this = mtd->priv;
   2936	unsigned char *pbuf = buf;
   2937	int ret;
   2938	struct mtd_oob_ops ops;
   2939
   2940	/* Force buffer page aligned */
   2941	if (len < mtd->writesize) {
   2942		memcpy(this->page_buf, buf, len);
   2943		memset(this->page_buf + len, 0xff, mtd->writesize - len);
   2944		pbuf = this->page_buf;
   2945		len = mtd->writesize;
   2946	}
   2947
   2948	/* Enter OTP access mode */
   2949	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
   2950	this->wait(mtd, FL_OTPING);
   2951
   2952	ops.len = len;
   2953	ops.ooblen = 0;
   2954	ops.datbuf = pbuf;
   2955	ops.oobbuf = NULL;
   2956	ret = onenand_write_ops_nolock(mtd, to, &ops);
   2957	*retlen = ops.retlen;
   2958
   2959	/* Exit OTP access mode */
   2960	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   2961	this->wait(mtd, FL_RESETTING);
   2962
   2963	return ret;
   2964}
   2965
   2966/**
   2967 * do_otp_lock - [DEFAULT] Lock OTP block area
   2968 * @mtd:		MTD device structure
   2969 * @from:		The offset to lock
   2970 * @len:		number of bytes to lock
   2971 * @retlen:	pointer to variable to store the number of lock bytes
   2972 * @buf:		the databuffer to put/get data
   2973 *
   2974 * Lock OTP block area.
   2975 */
   2976static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
   2977		size_t *retlen, u_char *buf)
   2978{
   2979	struct onenand_chip *this = mtd->priv;
   2980	struct mtd_oob_ops ops;
   2981	int ret;
   2982
   2983	if (FLEXONENAND(this)) {
   2984
   2985		/* Enter OTP access mode */
   2986		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
   2987		this->wait(mtd, FL_OTPING);
   2988		/*
   2989		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
   2990		 * main area of page 49.
   2991		 */
   2992		ops.len = mtd->writesize;
   2993		ops.ooblen = 0;
   2994		ops.datbuf = buf;
   2995		ops.oobbuf = NULL;
   2996		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
   2997		*retlen = ops.retlen;
   2998
   2999		/* Exit OTP access mode */
   3000		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   3001		this->wait(mtd, FL_RESETTING);
   3002	} else {
   3003		ops.mode = MTD_OPS_PLACE_OOB;
   3004		ops.ooblen = len;
   3005		ops.oobbuf = buf;
   3006		ops.ooboffs = 0;
   3007		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
   3008		*retlen = ops.oobretlen;
   3009	}
   3010
   3011	return ret;
   3012}
   3013
   3014/**
   3015 * onenand_otp_walk - [DEFAULT] Handle OTP operation
   3016 * @mtd:		MTD device structure
   3017 * @from:		The offset to read/write
   3018 * @len:		number of bytes to read/write
   3019 * @retlen:	pointer to variable to store the number of read bytes
   3020 * @buf:		the databuffer to put/get data
   3021 * @action:	do given action
   3022 * @mode:		specify user and factory
   3023 *
   3024 * Handle OTP operation.
   3025 */
   3026static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
   3027			size_t *retlen, u_char *buf,
   3028			otp_op_t action, int mode)
   3029{
   3030	struct onenand_chip *this = mtd->priv;
   3031	int otp_pages;
   3032	int density;
   3033	int ret = 0;
   3034
   3035	*retlen = 0;
   3036
   3037	density = onenand_get_density(this->device_id);
   3038	if (density < ONENAND_DEVICE_DENSITY_512Mb)
   3039		otp_pages = 20;
   3040	else
   3041		otp_pages = 50;
   3042
   3043	if (mode == MTD_OTP_FACTORY) {
   3044		from += mtd->writesize * otp_pages;
   3045		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
   3046	}
   3047
   3048	/* Check User/Factory boundary */
   3049	if (mode == MTD_OTP_USER) {
   3050		if (mtd->writesize * otp_pages < from + len)
   3051			return 0;
   3052	} else {
   3053		if (mtd->writesize * otp_pages <  len)
   3054			return 0;
   3055	}
   3056
   3057	onenand_get_device(mtd, FL_OTPING);
   3058	while (len > 0 && otp_pages > 0) {
   3059		if (!action) {	/* OTP Info functions */
   3060			struct otp_info *otpinfo;
   3061
   3062			len -= sizeof(struct otp_info);
   3063			if (len <= 0) {
   3064				ret = -ENOSPC;
   3065				break;
   3066			}
   3067
   3068			otpinfo = (struct otp_info *) buf;
   3069			otpinfo->start = from;
   3070			otpinfo->length = mtd->writesize;
   3071			otpinfo->locked = 0;
   3072
   3073			from += mtd->writesize;
   3074			buf += sizeof(struct otp_info);
   3075			*retlen += sizeof(struct otp_info);
   3076		} else {
   3077			size_t tmp_retlen;
   3078
   3079			ret = action(mtd, from, len, &tmp_retlen, buf);
   3080			if (ret)
   3081				break;
   3082
   3083			buf += tmp_retlen;
   3084			len -= tmp_retlen;
   3085			*retlen += tmp_retlen;
   3086
   3087		}
   3088		otp_pages--;
   3089	}
   3090	onenand_release_device(mtd);
   3091
   3092	return ret;
   3093}
   3094
   3095/**
   3096 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
   3097 * @mtd:		MTD device structure
   3098 * @len:		number of bytes to read
   3099 * @retlen:	pointer to variable to store the number of read bytes
   3100 * @buf:		the databuffer to put/get data
   3101 *
   3102 * Read factory OTP info.
   3103 */
   3104static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
   3105				      size_t *retlen, struct otp_info *buf)
   3106{
   3107	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
   3108				MTD_OTP_FACTORY);
   3109}
   3110
   3111/**
   3112 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
   3113 * @mtd:		MTD device structure
   3114 * @from:		The offset to read
   3115 * @len:		number of bytes to read
   3116 * @retlen:	pointer to variable to store the number of read bytes
   3117 * @buf:		the databuffer to put/get data
   3118 *
   3119 * Read factory OTP area.
   3120 */
   3121static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
   3122			size_t len, size_t *retlen, u_char *buf)
   3123{
   3124	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
   3125}
   3126
   3127/**
   3128 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
   3129 * @mtd:		MTD device structure
   3130 * @retlen:	pointer to variable to store the number of read bytes
   3131 * @len:		number of bytes to read
   3132 * @buf:		the databuffer to put/get data
   3133 *
   3134 * Read user OTP info.
   3135 */
   3136static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
   3137				      size_t *retlen, struct otp_info *buf)
   3138{
   3139	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
   3140				MTD_OTP_USER);
   3141}
   3142
   3143/**
   3144 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
   3145 * @mtd:		MTD device structure
   3146 * @from:		The offset to read
   3147 * @len:		number of bytes to read
   3148 * @retlen:	pointer to variable to store the number of read bytes
   3149 * @buf:		the databuffer to put/get data
   3150 *
   3151 * Read user OTP area.
   3152 */
   3153static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
   3154			size_t len, size_t *retlen, u_char *buf)
   3155{
   3156	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
   3157}
   3158
   3159/**
   3160 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
   3161 * @mtd:		MTD device structure
   3162 * @from:		The offset to write
   3163 * @len:		number of bytes to write
   3164 * @retlen:	pointer to variable to store the number of write bytes
   3165 * @buf:		the databuffer to put/get data
   3166 *
   3167 * Write user OTP area.
   3168 */
   3169static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
   3170			size_t len, size_t *retlen, const u_char *buf)
   3171{
   3172	return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
   3173				do_otp_write, MTD_OTP_USER);
   3174}
   3175
   3176/**
   3177 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
   3178 * @mtd:		MTD device structure
   3179 * @from:		The offset to lock
   3180 * @len:		number of bytes to unlock
   3181 *
   3182 * Write lock mark on spare area in page 0 in OTP block
   3183 */
   3184static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
   3185			size_t len)
   3186{
   3187	struct onenand_chip *this = mtd->priv;
   3188	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
   3189	size_t retlen;
   3190	int ret;
   3191	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
   3192
   3193	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
   3194						 : mtd->oobsize);
   3195	/*
   3196	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
   3197	 * We write 16 bytes spare area instead of 2 bytes.
   3198	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
   3199	 * main area of page 49.
   3200	 */
   3201
   3202	from = 0;
   3203	len = FLEXONENAND(this) ? mtd->writesize : 16;
   3204
   3205	/*
   3206	 * Note: OTP lock operation
   3207	 *       OTP block : 0xXXFC			XX 1111 1100
   3208	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
   3209	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
   3210	 */
   3211	if (FLEXONENAND(this))
   3212		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
   3213
   3214	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
   3215	if (otp == 1)
   3216		buf[otp_lock_offset] = 0xFC;
   3217	else if (otp == 2)
   3218		buf[otp_lock_offset] = 0xF3;
   3219	else if (otp == 3)
   3220		buf[otp_lock_offset] = 0xF0;
   3221	else if (otp != 0)
   3222		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
   3223
   3224	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
   3225
   3226	return ret ? : retlen;
   3227}
   3228
   3229#endif	/* CONFIG_MTD_ONENAND_OTP */
   3230
   3231/**
   3232 * onenand_check_features - Check and set OneNAND features
   3233 * @mtd:		MTD data structure
   3234 *
   3235 * Check and set OneNAND features
   3236 * - lock scheme
   3237 * - two plane
   3238 */
   3239static void onenand_check_features(struct mtd_info *mtd)
   3240{
   3241	struct onenand_chip *this = mtd->priv;
   3242	unsigned int density, process, numbufs;
   3243
   3244	/* Lock scheme depends on density and process */
   3245	density = onenand_get_density(this->device_id);
   3246	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
   3247	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
   3248
   3249	/* Lock scheme */
   3250	switch (density) {
   3251	case ONENAND_DEVICE_DENSITY_8Gb:
   3252		this->options |= ONENAND_HAS_NOP_1;
   3253		fallthrough;
   3254	case ONENAND_DEVICE_DENSITY_4Gb:
   3255		if (ONENAND_IS_DDP(this))
   3256			this->options |= ONENAND_HAS_2PLANE;
   3257		else if (numbufs == 1) {
   3258			this->options |= ONENAND_HAS_4KB_PAGE;
   3259			this->options |= ONENAND_HAS_CACHE_PROGRAM;
   3260			/*
   3261			 * There are two different 4KiB pagesize chips
   3262			 * and no way to detect it by H/W config values.
   3263			 *
   3264			 * To detect the correct NOP for each chips,
   3265			 * It should check the version ID as workaround.
   3266			 *
   3267			 * Now it has as following
   3268			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
   3269			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
   3270			 */
   3271			if ((this->version_id & 0xf) == 0xe)
   3272				this->options |= ONENAND_HAS_NOP_1;
   3273		}
   3274		this->options |= ONENAND_HAS_UNLOCK_ALL;
   3275		break;
   3276
   3277	case ONENAND_DEVICE_DENSITY_2Gb:
   3278		/* 2Gb DDP does not have 2 plane */
   3279		if (!ONENAND_IS_DDP(this))
   3280			this->options |= ONENAND_HAS_2PLANE;
   3281		this->options |= ONENAND_HAS_UNLOCK_ALL;
   3282		break;
   3283
   3284	case ONENAND_DEVICE_DENSITY_1Gb:
   3285		/* A-Die has all block unlock */
   3286		if (process)
   3287			this->options |= ONENAND_HAS_UNLOCK_ALL;
   3288		break;
   3289
   3290	default:
   3291		/* Some OneNAND has continuous lock scheme */
   3292		if (!process)
   3293			this->options |= ONENAND_HAS_CONT_LOCK;
   3294		break;
   3295	}
   3296
   3297	/* The MLC has 4KiB pagesize. */
   3298	if (ONENAND_IS_MLC(this))
   3299		this->options |= ONENAND_HAS_4KB_PAGE;
   3300
   3301	if (ONENAND_IS_4KB_PAGE(this))
   3302		this->options &= ~ONENAND_HAS_2PLANE;
   3303
   3304	if (FLEXONENAND(this)) {
   3305		this->options &= ~ONENAND_HAS_CONT_LOCK;
   3306		this->options |= ONENAND_HAS_UNLOCK_ALL;
   3307	}
   3308
   3309	if (this->options & ONENAND_HAS_CONT_LOCK)
   3310		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
   3311	if (this->options & ONENAND_HAS_UNLOCK_ALL)
   3312		printk(KERN_DEBUG "Chip support all block unlock\n");
   3313	if (this->options & ONENAND_HAS_2PLANE)
   3314		printk(KERN_DEBUG "Chip has 2 plane\n");
   3315	if (this->options & ONENAND_HAS_4KB_PAGE)
   3316		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
   3317	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
   3318		printk(KERN_DEBUG "Chip has cache program feature\n");
   3319}
   3320
   3321/**
   3322 * onenand_print_device_info - Print device & version ID
   3323 * @device:        device ID
   3324 * @version:	version ID
   3325 *
   3326 * Print device & version ID
   3327 */
   3328static void onenand_print_device_info(int device, int version)
   3329{
   3330	int vcc, demuxed, ddp, density, flexonenand;
   3331
   3332        vcc = device & ONENAND_DEVICE_VCC_MASK;
   3333        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
   3334        ddp = device & ONENAND_DEVICE_IS_DDP;
   3335        density = onenand_get_density(device);
   3336	flexonenand = device & DEVICE_IS_FLEXONENAND;
   3337	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
   3338		demuxed ? "" : "Muxed ",
   3339		flexonenand ? "Flex-" : "",
   3340                ddp ? "(DDP)" : "",
   3341                (16 << density),
   3342                vcc ? "2.65/3.3" : "1.8",
   3343                device);
   3344	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
   3345}
   3346
   3347static const struct onenand_manufacturers onenand_manuf_ids[] = {
   3348        {ONENAND_MFR_SAMSUNG, "Samsung"},
   3349	{ONENAND_MFR_NUMONYX, "Numonyx"},
   3350};
   3351
   3352/**
   3353 * onenand_check_maf - Check manufacturer ID
   3354 * @manuf:         manufacturer ID
   3355 *
   3356 * Check manufacturer ID
   3357 */
   3358static int onenand_check_maf(int manuf)
   3359{
   3360	int size = ARRAY_SIZE(onenand_manuf_ids);
   3361	char *name;
   3362        int i;
   3363
   3364	for (i = 0; i < size; i++)
   3365                if (manuf == onenand_manuf_ids[i].id)
   3366                        break;
   3367
   3368	if (i < size)
   3369		name = onenand_manuf_ids[i].name;
   3370	else
   3371		name = "Unknown";
   3372
   3373	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
   3374
   3375	return (i == size);
   3376}
   3377
   3378/**
   3379 * flexonenand_get_boundary	- Reads the SLC boundary
   3380 * @mtd:		MTD data structure
   3381 */
   3382static int flexonenand_get_boundary(struct mtd_info *mtd)
   3383{
   3384	struct onenand_chip *this = mtd->priv;
   3385	unsigned die, bdry;
   3386	int syscfg, locked;
   3387
   3388	/* Disable ECC */
   3389	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
   3390	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
   3391
   3392	for (die = 0; die < this->dies; die++) {
   3393		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
   3394		this->wait(mtd, FL_SYNCING);
   3395
   3396		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
   3397		this->wait(mtd, FL_READING);
   3398
   3399		bdry = this->read_word(this->base + ONENAND_DATARAM);
   3400		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
   3401			locked = 0;
   3402		else
   3403			locked = 1;
   3404		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
   3405
   3406		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   3407		this->wait(mtd, FL_RESETTING);
   3408
   3409		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
   3410		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
   3411	}
   3412
   3413	/* Enable ECC */
   3414	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
   3415	return 0;
   3416}
   3417
   3418/**
   3419 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
   3420 * 			  boundary[], diesize[], mtd->size, mtd->erasesize
   3421 * @mtd:		- MTD device structure
   3422 */
   3423static void flexonenand_get_size(struct mtd_info *mtd)
   3424{
   3425	struct onenand_chip *this = mtd->priv;
   3426	int die, i, eraseshift, density;
   3427	int blksperdie, maxbdry;
   3428	loff_t ofs;
   3429
   3430	density = onenand_get_density(this->device_id);
   3431	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
   3432	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
   3433	maxbdry = blksperdie - 1;
   3434	eraseshift = this->erase_shift - 1;
   3435
   3436	mtd->numeraseregions = this->dies << 1;
   3437
   3438	/* This fills up the device boundary */
   3439	flexonenand_get_boundary(mtd);
   3440	die = ofs = 0;
   3441	i = -1;
   3442	for (; die < this->dies; die++) {
   3443		if (!die || this->boundary[die-1] != maxbdry) {
   3444			i++;
   3445			mtd->eraseregions[i].offset = ofs;
   3446			mtd->eraseregions[i].erasesize = 1 << eraseshift;
   3447			mtd->eraseregions[i].numblocks =
   3448							this->boundary[die] + 1;
   3449			ofs += mtd->eraseregions[i].numblocks << eraseshift;
   3450			eraseshift++;
   3451		} else {
   3452			mtd->numeraseregions -= 1;
   3453			mtd->eraseregions[i].numblocks +=
   3454							this->boundary[die] + 1;
   3455			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
   3456		}
   3457		if (this->boundary[die] != maxbdry) {
   3458			i++;
   3459			mtd->eraseregions[i].offset = ofs;
   3460			mtd->eraseregions[i].erasesize = 1 << eraseshift;
   3461			mtd->eraseregions[i].numblocks = maxbdry ^
   3462							 this->boundary[die];
   3463			ofs += mtd->eraseregions[i].numblocks << eraseshift;
   3464			eraseshift--;
   3465		} else
   3466			mtd->numeraseregions -= 1;
   3467	}
   3468
   3469	/* Expose MLC erase size except when all blocks are SLC */
   3470	mtd->erasesize = 1 << this->erase_shift;
   3471	if (mtd->numeraseregions == 1)
   3472		mtd->erasesize >>= 1;
   3473
   3474	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
   3475	for (i = 0; i < mtd->numeraseregions; i++)
   3476		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
   3477			" numblocks: %04u]\n",
   3478			(unsigned int) mtd->eraseregions[i].offset,
   3479			mtd->eraseregions[i].erasesize,
   3480			mtd->eraseregions[i].numblocks);
   3481
   3482	for (die = 0, mtd->size = 0; die < this->dies; die++) {
   3483		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
   3484		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
   3485						 << (this->erase_shift - 1);
   3486		mtd->size += this->diesize[die];
   3487	}
   3488}
   3489
   3490/**
   3491 * flexonenand_check_blocks_erased - Check if blocks are erased
   3492 * @mtd:	mtd info structure
   3493 * @start:	first erase block to check
   3494 * @end:	last erase block to check
   3495 *
   3496 * Converting an unerased block from MLC to SLC
   3497 * causes byte values to change. Since both data and its ECC
   3498 * have changed, reads on the block give uncorrectable error.
   3499 * This might lead to the block being detected as bad.
   3500 *
   3501 * Avoid this by ensuring that the block to be converted is
   3502 * erased.
   3503 */
   3504static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
   3505{
   3506	struct onenand_chip *this = mtd->priv;
   3507	int i, ret;
   3508	int block;
   3509	struct mtd_oob_ops ops = {
   3510		.mode = MTD_OPS_PLACE_OOB,
   3511		.ooboffs = 0,
   3512		.ooblen	= mtd->oobsize,
   3513		.datbuf	= NULL,
   3514		.oobbuf	= this->oob_buf,
   3515	};
   3516	loff_t addr;
   3517
   3518	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
   3519
   3520	for (block = start; block <= end; block++) {
   3521		addr = flexonenand_addr(this, block);
   3522		if (onenand_block_isbad_nolock(mtd, addr, 0))
   3523			continue;
   3524
   3525		/*
   3526		 * Since main area write results in ECC write to spare,
   3527		 * it is sufficient to check only ECC bytes for change.
   3528		 */
   3529		ret = onenand_read_oob_nolock(mtd, addr, &ops);
   3530		if (ret)
   3531			return ret;
   3532
   3533		for (i = 0; i < mtd->oobsize; i++)
   3534			if (this->oob_buf[i] != 0xff)
   3535				break;
   3536
   3537		if (i != mtd->oobsize) {
   3538			printk(KERN_WARNING "%s: Block %d not erased.\n",
   3539				__func__, block);
   3540			return 1;
   3541		}
   3542	}
   3543
   3544	return 0;
   3545}
   3546
   3547/*
   3548 * flexonenand_set_boundary	- Writes the SLC boundary
   3549 */
   3550static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
   3551				    int boundary, int lock)
   3552{
   3553	struct onenand_chip *this = mtd->priv;
   3554	int ret, density, blksperdie, old, new, thisboundary;
   3555	loff_t addr;
   3556
   3557	/* Change only once for SDP Flex-OneNAND */
   3558	if (die && (!ONENAND_IS_DDP(this)))
   3559		return 0;
   3560
   3561	/* boundary value of -1 indicates no required change */
   3562	if (boundary < 0 || boundary == this->boundary[die])
   3563		return 0;
   3564
   3565	density = onenand_get_density(this->device_id);
   3566	blksperdie = ((16 << density) << 20) >> this->erase_shift;
   3567	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
   3568
   3569	if (boundary >= blksperdie) {
   3570		printk(KERN_ERR "%s: Invalid boundary value. "
   3571				"Boundary not changed.\n", __func__);
   3572		return -EINVAL;
   3573	}
   3574
   3575	/* Check if converting blocks are erased */
   3576	old = this->boundary[die] + (die * this->density_mask);
   3577	new = boundary + (die * this->density_mask);
   3578	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
   3579	if (ret) {
   3580		printk(KERN_ERR "%s: Please erase blocks "
   3581				"before boundary change\n", __func__);
   3582		return ret;
   3583	}
   3584
   3585	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
   3586	this->wait(mtd, FL_SYNCING);
   3587
   3588	/* Check is boundary is locked */
   3589	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
   3590	this->wait(mtd, FL_READING);
   3591
   3592	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
   3593	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
   3594		printk(KERN_ERR "%s: boundary locked\n", __func__);
   3595		ret = 1;
   3596		goto out;
   3597	}
   3598
   3599	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
   3600			die, boundary, lock ? "(Locked)" : "(Unlocked)");
   3601
   3602	addr = die ? this->diesize[0] : 0;
   3603
   3604	boundary &= FLEXONENAND_PI_MASK;
   3605	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
   3606
   3607	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
   3608	ret = this->wait(mtd, FL_ERASING);
   3609	if (ret) {
   3610		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
   3611		       __func__, die);
   3612		goto out;
   3613	}
   3614
   3615	this->write_word(boundary, this->base + ONENAND_DATARAM);
   3616	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
   3617	ret = this->wait(mtd, FL_WRITING);
   3618	if (ret) {
   3619		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
   3620			__func__, die);
   3621		goto out;
   3622	}
   3623
   3624	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
   3625	ret = this->wait(mtd, FL_WRITING);
   3626out:
   3627	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
   3628	this->wait(mtd, FL_RESETTING);
   3629	if (!ret)
   3630		/* Recalculate device size on boundary change*/
   3631		flexonenand_get_size(mtd);
   3632
   3633	return ret;
   3634}
   3635
   3636/**
   3637 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
   3638 * @mtd:		MTD device structure
   3639 *
   3640 * OneNAND detection method:
   3641 *   Compare the values from command with ones from register
   3642 */
   3643static int onenand_chip_probe(struct mtd_info *mtd)
   3644{
   3645	struct onenand_chip *this = mtd->priv;
   3646	int bram_maf_id, bram_dev_id, maf_id, dev_id;
   3647	int syscfg;
   3648
   3649	/* Save system configuration 1 */
   3650	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
   3651	/* Clear Sync. Burst Read mode to read BootRAM */
   3652	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
   3653
   3654	/* Send the command for reading device ID from BootRAM */
   3655	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
   3656
   3657	/* Read manufacturer and device IDs from BootRAM */
   3658	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
   3659	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
   3660
   3661	/* Reset OneNAND to read default register values */
   3662	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
   3663	/* Wait reset */
   3664	this->wait(mtd, FL_RESETTING);
   3665
   3666	/* Restore system configuration 1 */
   3667	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
   3668
   3669	/* Check manufacturer ID */
   3670	if (onenand_check_maf(bram_maf_id))
   3671		return -ENXIO;
   3672
   3673	/* Read manufacturer and device IDs from Register */
   3674	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
   3675	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
   3676
   3677	/* Check OneNAND device */
   3678	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
   3679		return -ENXIO;
   3680
   3681	return 0;
   3682}
   3683
   3684/**
   3685 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
   3686 * @mtd:		MTD device structure
   3687 */
   3688static int onenand_probe(struct mtd_info *mtd)
   3689{
   3690	struct onenand_chip *this = mtd->priv;
   3691	int dev_id, ver_id;
   3692	int density;
   3693	int ret;
   3694
   3695	ret = this->chip_probe(mtd);
   3696	if (ret)
   3697		return ret;
   3698
   3699	/* Device and version IDs from Register */
   3700	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
   3701	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
   3702	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
   3703
   3704	/* Flash device information */
   3705	onenand_print_device_info(dev_id, ver_id);
   3706	this->device_id = dev_id;
   3707	this->version_id = ver_id;
   3708
   3709	/* Check OneNAND features */
   3710	onenand_check_features(mtd);
   3711
   3712	density = onenand_get_density(dev_id);
   3713	if (FLEXONENAND(this)) {
   3714		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
   3715		/* Maximum possible erase regions */
   3716		mtd->numeraseregions = this->dies << 1;
   3717		mtd->eraseregions =
   3718			kcalloc(this->dies << 1,
   3719				sizeof(struct mtd_erase_region_info),
   3720				GFP_KERNEL);
   3721		if (!mtd->eraseregions)
   3722			return -ENOMEM;
   3723	}
   3724
   3725	/*
   3726	 * For Flex-OneNAND, chipsize represents maximum possible device size.
   3727	 * mtd->size represents the actual device size.
   3728	 */
   3729	this->chipsize = (16 << density) << 20;
   3730
   3731	/* OneNAND page size & block size */
   3732	/* The data buffer size is equal to page size */
   3733	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
   3734	/* We use the full BufferRAM */
   3735	if (ONENAND_IS_4KB_PAGE(this))
   3736		mtd->writesize <<= 1;
   3737
   3738	mtd->oobsize = mtd->writesize >> 5;
   3739	/* Pages per a block are always 64 in OneNAND */
   3740	mtd->erasesize = mtd->writesize << 6;
   3741	/*
   3742	 * Flex-OneNAND SLC area has 64 pages per block.
   3743	 * Flex-OneNAND MLC area has 128 pages per block.
   3744	 * Expose MLC erase size to find erase_shift and page_mask.
   3745	 */
   3746	if (FLEXONENAND(this))
   3747		mtd->erasesize <<= 1;
   3748
   3749	this->erase_shift = ffs(mtd->erasesize) - 1;
   3750	this->page_shift = ffs(mtd->writesize) - 1;
   3751	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
   3752	/* Set density mask. it is used for DDP */
   3753	if (ONENAND_IS_DDP(this))
   3754		this->density_mask = this->chipsize >> (this->erase_shift + 1);
   3755	/* It's real page size */
   3756	this->writesize = mtd->writesize;
   3757
   3758	/* REVISIT: Multichip handling */
   3759
   3760	if (FLEXONENAND(this))
   3761		flexonenand_get_size(mtd);
   3762	else
   3763		mtd->size = this->chipsize;
   3764
   3765	/*
   3766	 * We emulate the 4KiB page and 256KiB erase block size
   3767	 * But oobsize is still 64 bytes.
   3768	 * It is only valid if you turn on 2X program support,
   3769	 * Otherwise it will be ignored by compiler.
   3770	 */
   3771	if (ONENAND_IS_2PLANE(this)) {
   3772		mtd->writesize <<= 1;
   3773		mtd->erasesize <<= 1;
   3774	}
   3775
   3776	return 0;
   3777}
   3778
   3779/**
   3780 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
   3781 * @mtd:		MTD device structure
   3782 */
   3783static int onenand_suspend(struct mtd_info *mtd)
   3784{
   3785	return onenand_get_device(mtd, FL_PM_SUSPENDED);
   3786}
   3787
   3788/**
   3789 * onenand_resume - [MTD Interface] Resume the OneNAND flash
   3790 * @mtd:		MTD device structure
   3791 */
   3792static void onenand_resume(struct mtd_info *mtd)
   3793{
   3794	struct onenand_chip *this = mtd->priv;
   3795
   3796	if (this->state == FL_PM_SUSPENDED)
   3797		onenand_release_device(mtd);
   3798	else
   3799		printk(KERN_ERR "%s: resume() called for the chip which is not "
   3800				"in suspended state\n", __func__);
   3801}
   3802
   3803/**
   3804 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
   3805 * @mtd:		MTD device structure
   3806 * @maxchips:	Number of chips to scan for
   3807 *
   3808 * This fills out all the not initialized function pointers
   3809 * with the defaults.
   3810 * The flash ID is read and the mtd/chip structures are
   3811 * filled with the appropriate values.
   3812 */
   3813int onenand_scan(struct mtd_info *mtd, int maxchips)
   3814{
   3815	int i, ret;
   3816	struct onenand_chip *this = mtd->priv;
   3817
   3818	if (!this->read_word)
   3819		this->read_word = onenand_readw;
   3820	if (!this->write_word)
   3821		this->write_word = onenand_writew;
   3822
   3823	if (!this->command)
   3824		this->command = onenand_command;
   3825	if (!this->wait)
   3826		onenand_setup_wait(mtd);
   3827	if (!this->bbt_wait)
   3828		this->bbt_wait = onenand_bbt_wait;
   3829	if (!this->unlock_all)
   3830		this->unlock_all = onenand_unlock_all;
   3831
   3832	if (!this->chip_probe)
   3833		this->chip_probe = onenand_chip_probe;
   3834
   3835	if (!this->read_bufferram)
   3836		this->read_bufferram = onenand_read_bufferram;
   3837	if (!this->write_bufferram)
   3838		this->write_bufferram = onenand_write_bufferram;
   3839
   3840	if (!this->block_markbad)
   3841		this->block_markbad = onenand_default_block_markbad;
   3842	if (!this->scan_bbt)
   3843		this->scan_bbt = onenand_default_bbt;
   3844
   3845	if (onenand_probe(mtd))
   3846		return -ENXIO;
   3847
   3848	/* Set Sync. Burst Read after probing */
   3849	if (this->mmcontrol) {
   3850		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
   3851		this->read_bufferram = onenand_sync_read_bufferram;
   3852	}
   3853
   3854	/* Allocate buffers, if necessary */
   3855	if (!this->page_buf) {
   3856		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
   3857		if (!this->page_buf)
   3858			return -ENOMEM;
   3859#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
   3860		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
   3861		if (!this->verify_buf) {
   3862			kfree(this->page_buf);
   3863			return -ENOMEM;
   3864		}
   3865#endif
   3866		this->options |= ONENAND_PAGEBUF_ALLOC;
   3867	}
   3868	if (!this->oob_buf) {
   3869		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
   3870		if (!this->oob_buf) {
   3871			if (this->options & ONENAND_PAGEBUF_ALLOC) {
   3872				this->options &= ~ONENAND_PAGEBUF_ALLOC;
   3873#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
   3874				kfree(this->verify_buf);
   3875#endif
   3876				kfree(this->page_buf);
   3877			}
   3878			return -ENOMEM;
   3879		}
   3880		this->options |= ONENAND_OOBBUF_ALLOC;
   3881	}
   3882
   3883	this->state = FL_READY;
   3884	init_waitqueue_head(&this->wq);
   3885	spin_lock_init(&this->chip_lock);
   3886
   3887	/*
   3888	 * Allow subpage writes up to oobsize.
   3889	 */
   3890	switch (mtd->oobsize) {
   3891	case 128:
   3892		if (FLEXONENAND(this)) {
   3893			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
   3894			mtd->subpage_sft = 0;
   3895		} else {
   3896			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
   3897			mtd->subpage_sft = 2;
   3898		}
   3899		if (ONENAND_IS_NOP_1(this))
   3900			mtd->subpage_sft = 0;
   3901		break;
   3902	case 64:
   3903		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
   3904		mtd->subpage_sft = 2;
   3905		break;
   3906
   3907	case 32:
   3908		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
   3909		mtd->subpage_sft = 1;
   3910		break;
   3911
   3912	default:
   3913		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
   3914			__func__, mtd->oobsize);
   3915		mtd->subpage_sft = 0;
   3916		/* To prevent kernel oops */
   3917		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
   3918		break;
   3919	}
   3920
   3921	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
   3922
   3923	/*
   3924	 * The number of bytes available for a client to place data into
   3925	 * the out of band area
   3926	 */
   3927	ret = mtd_ooblayout_count_freebytes(mtd);
   3928	if (ret < 0)
   3929		ret = 0;
   3930
   3931	mtd->oobavail = ret;
   3932
   3933	mtd->ecc_strength = 1;
   3934
   3935	/* Fill in remaining MTD driver data */
   3936	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
   3937	mtd->flags = MTD_CAP_NANDFLASH;
   3938	mtd->_erase = onenand_erase;
   3939	mtd->_point = NULL;
   3940	mtd->_unpoint = NULL;
   3941	mtd->_read_oob = onenand_read_oob;
   3942	mtd->_write_oob = onenand_write_oob;
   3943	mtd->_panic_write = onenand_panic_write;
   3944#ifdef CONFIG_MTD_ONENAND_OTP
   3945	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
   3946	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
   3947	mtd->_get_user_prot_info = onenand_get_user_prot_info;
   3948	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
   3949	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
   3950	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
   3951#endif
   3952	mtd->_sync = onenand_sync;
   3953	mtd->_lock = onenand_lock;
   3954	mtd->_unlock = onenand_unlock;
   3955	mtd->_suspend = onenand_suspend;
   3956	mtd->_resume = onenand_resume;
   3957	mtd->_block_isbad = onenand_block_isbad;
   3958	mtd->_block_markbad = onenand_block_markbad;
   3959	mtd->owner = THIS_MODULE;
   3960	mtd->writebufsize = mtd->writesize;
   3961
   3962	/* Unlock whole block */
   3963	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
   3964		this->unlock_all(mtd);
   3965
   3966	/* Set the bad block marker position */
   3967	this->badblockpos = ONENAND_BADBLOCK_POS;
   3968
   3969	ret = this->scan_bbt(mtd);
   3970	if ((!FLEXONENAND(this)) || ret)
   3971		return ret;
   3972
   3973	/* Change Flex-OneNAND boundaries if required */
   3974	for (i = 0; i < MAX_DIES; i++)
   3975		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
   3976						 flex_bdry[(2 * i) + 1]);
   3977
   3978	return 0;
   3979}
   3980
   3981/**
   3982 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
   3983 * @mtd:		MTD device structure
   3984 */
   3985void onenand_release(struct mtd_info *mtd)
   3986{
   3987	struct onenand_chip *this = mtd->priv;
   3988
   3989	/* Deregister partitions */
   3990	mtd_device_unregister(mtd);
   3991
   3992	/* Free bad block table memory, if allocated */
   3993	if (this->bbm) {
   3994		struct bbm_info *bbm = this->bbm;
   3995		kfree(bbm->bbt);
   3996		kfree(this->bbm);
   3997	}
   3998	/* Buffers allocated by onenand_scan */
   3999	if (this->options & ONENAND_PAGEBUF_ALLOC) {
   4000		kfree(this->page_buf);
   4001#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
   4002		kfree(this->verify_buf);
   4003#endif
   4004	}
   4005	if (this->options & ONENAND_OOBBUF_ALLOC)
   4006		kfree(this->oob_buf);
   4007	kfree(mtd->eraseregions);
   4008}
   4009
   4010EXPORT_SYMBOL_GPL(onenand_scan);
   4011EXPORT_SYMBOL_GPL(onenand_release);
   4012
   4013MODULE_LICENSE("GPL");
   4014MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
   4015MODULE_DESCRIPTION("Generic OneNAND flash driver code");