cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

au1550nd.c (8330B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  Copyright (C) 2004 Embedded Edge, LLC
      4 */
      5
      6#include <linux/delay.h>
      7#include <linux/slab.h>
      8#include <linux/module.h>
      9#include <linux/interrupt.h>
     10#include <linux/mtd/mtd.h>
     11#include <linux/mtd/rawnand.h>
     12#include <linux/mtd/partitions.h>
     13#include <linux/platform_device.h>
     14#include <asm/io.h>
     15#include <asm/mach-au1x00/au1000.h>
     16#include <asm/mach-au1x00/au1550nd.h>
     17
     18
     19struct au1550nd_ctx {
     20	struct nand_controller controller;
     21	struct nand_chip chip;
     22
     23	int cs;
     24	void __iomem *base;
     25};
     26
     27static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this)
     28{
     29	return container_of(this, struct au1550nd_ctx, chip);
     30}
     31
     32/**
     33 * au_write_buf -  write buffer to chip
     34 * @this:	NAND chip object
     35 * @buf:	data buffer
     36 * @len:	number of bytes to write
     37 *
     38 * write function for 8bit buswidth
     39 */
     40static void au_write_buf(struct nand_chip *this, const void *buf,
     41			 unsigned int len)
     42{
     43	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
     44	const u8 *p = buf;
     45	int i;
     46
     47	for (i = 0; i < len; i++) {
     48		writeb(p[i], ctx->base + MEM_STNAND_DATA);
     49		wmb(); /* drain writebuffer */
     50	}
     51}
     52
     53/**
     54 * au_read_buf -  read chip data into buffer
     55 * @this:	NAND chip object
     56 * @buf:	buffer to store date
     57 * @len:	number of bytes to read
     58 *
     59 * read function for 8bit buswidth
     60 */
     61static void au_read_buf(struct nand_chip *this, void *buf,
     62			unsigned int len)
     63{
     64	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
     65	u8 *p = buf;
     66	int i;
     67
     68	for (i = 0; i < len; i++) {
     69		p[i] = readb(ctx->base + MEM_STNAND_DATA);
     70		wmb(); /* drain writebuffer */
     71	}
     72}
     73
     74/**
     75 * au_write_buf16 -  write buffer to chip
     76 * @this:	NAND chip object
     77 * @buf:	data buffer
     78 * @len:	number of bytes to write
     79 *
     80 * write function for 16bit buswidth
     81 */
     82static void au_write_buf16(struct nand_chip *this, const void *buf,
     83			   unsigned int len)
     84{
     85	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
     86	const u16 *p = buf;
     87	unsigned int i;
     88
     89	len >>= 1;
     90	for (i = 0; i < len; i++) {
     91		writew(p[i], ctx->base + MEM_STNAND_DATA);
     92		wmb(); /* drain writebuffer */
     93	}
     94}
     95
     96/**
     97 * au_read_buf16 -  read chip data into buffer
     98 * @this:	NAND chip object
     99 * @buf:	buffer to store date
    100 * @len:	number of bytes to read
    101 *
    102 * read function for 16bit buswidth
    103 */
    104static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len)
    105{
    106	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
    107	unsigned int i;
    108	u16 *p = buf;
    109
    110	len >>= 1;
    111	for (i = 0; i < len; i++) {
    112		p[i] = readw(ctx->base + MEM_STNAND_DATA);
    113		wmb(); /* drain writebuffer */
    114	}
    115}
    116
    117static int find_nand_cs(unsigned long nand_base)
    118{
    119	void __iomem *base =
    120			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
    121	unsigned long addr, staddr, start, mask, end;
    122	int i;
    123
    124	for (i = 0; i < 4; i++) {
    125		addr = 0x1000 + (i * 0x10);			/* CSx */
    126		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
    127		/* figure out the decoded range of this CS */
    128		start = (staddr << 4) & 0xfffc0000;
    129		mask = (staddr << 18) & 0xfffc0000;
    130		end = (start | (start - 1)) & ~(start ^ mask);
    131		if ((nand_base >= start) && (nand_base < end))
    132			return i;
    133	}
    134
    135	return -ENODEV;
    136}
    137
    138static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms)
    139{
    140	unsigned long timeout_jiffies = jiffies;
    141
    142	timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1;
    143	do {
    144		if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1)
    145			return 0;
    146
    147		usleep_range(10, 100);
    148	} while (time_before(jiffies, timeout_jiffies));
    149
    150	return -ETIMEDOUT;
    151}
    152
    153static int au1550nd_exec_instr(struct nand_chip *this,
    154			       const struct nand_op_instr *instr)
    155{
    156	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
    157	unsigned int i;
    158	int ret = 0;
    159
    160	switch (instr->type) {
    161	case NAND_OP_CMD_INSTR:
    162		writeb(instr->ctx.cmd.opcode,
    163		       ctx->base + MEM_STNAND_CMD);
    164		/* Drain the writebuffer */
    165		wmb();
    166		break;
    167
    168	case NAND_OP_ADDR_INSTR:
    169		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
    170			writeb(instr->ctx.addr.addrs[i],
    171			       ctx->base + MEM_STNAND_ADDR);
    172			/* Drain the writebuffer */
    173			wmb();
    174		}
    175		break;
    176
    177	case NAND_OP_DATA_IN_INSTR:
    178		if ((this->options & NAND_BUSWIDTH_16) &&
    179		    !instr->ctx.data.force_8bit)
    180			au_read_buf16(this, instr->ctx.data.buf.in,
    181				      instr->ctx.data.len);
    182		else
    183			au_read_buf(this, instr->ctx.data.buf.in,
    184				    instr->ctx.data.len);
    185		break;
    186
    187	case NAND_OP_DATA_OUT_INSTR:
    188		if ((this->options & NAND_BUSWIDTH_16) &&
    189		    !instr->ctx.data.force_8bit)
    190			au_write_buf16(this, instr->ctx.data.buf.out,
    191				       instr->ctx.data.len);
    192		else
    193			au_write_buf(this, instr->ctx.data.buf.out,
    194				     instr->ctx.data.len);
    195		break;
    196
    197	case NAND_OP_WAITRDY_INSTR:
    198		ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms);
    199		break;
    200	default:
    201		return -EINVAL;
    202	}
    203
    204	if (instr->delay_ns)
    205		ndelay(instr->delay_ns);
    206
    207	return ret;
    208}
    209
    210static int au1550nd_exec_op(struct nand_chip *this,
    211			    const struct nand_operation *op,
    212			    bool check_only)
    213{
    214	struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
    215	unsigned int i;
    216	int ret;
    217
    218	if (check_only)
    219		return 0;
    220
    221	/* assert (force assert) chip enable */
    222	alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
    223	/* Drain the writebuffer */
    224	wmb();
    225
    226	for (i = 0; i < op->ninstrs; i++) {
    227		ret = au1550nd_exec_instr(this, &op->instrs[i]);
    228		if (ret)
    229			break;
    230	}
    231
    232	/* deassert chip enable */
    233	alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
    234	/* Drain the writebuffer */
    235	wmb();
    236
    237	return ret;
    238}
    239
    240static int au1550nd_attach_chip(struct nand_chip *chip)
    241{
    242	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
    243	    chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
    244		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
    245
    246	return 0;
    247}
    248
    249static const struct nand_controller_ops au1550nd_ops = {
    250	.exec_op = au1550nd_exec_op,
    251	.attach_chip = au1550nd_attach_chip,
    252};
    253
    254static int au1550nd_probe(struct platform_device *pdev)
    255{
    256	struct au1550nd_platdata *pd;
    257	struct au1550nd_ctx *ctx;
    258	struct nand_chip *this;
    259	struct mtd_info *mtd;
    260	struct resource *r;
    261	int ret, cs;
    262
    263	pd = dev_get_platdata(&pdev->dev);
    264	if (!pd) {
    265		dev_err(&pdev->dev, "missing platform data\n");
    266		return -ENODEV;
    267	}
    268
    269	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
    270	if (!ctx)
    271		return -ENOMEM;
    272
    273	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    274	if (!r) {
    275		dev_err(&pdev->dev, "no NAND memory resource\n");
    276		ret = -ENODEV;
    277		goto out1;
    278	}
    279	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
    280		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
    281		ret = -ENOMEM;
    282		goto out1;
    283	}
    284
    285	ctx->base = ioremap(r->start, 0x1000);
    286	if (!ctx->base) {
    287		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
    288		ret = -ENODEV;
    289		goto out2;
    290	}
    291
    292	this = &ctx->chip;
    293	mtd = nand_to_mtd(this);
    294	mtd->dev.parent = &pdev->dev;
    295
    296	/* figure out which CS# r->start belongs to */
    297	cs = find_nand_cs(r->start);
    298	if (cs < 0) {
    299		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
    300		ret = -ENODEV;
    301		goto out3;
    302	}
    303	ctx->cs = cs;
    304
    305	nand_controller_init(&ctx->controller);
    306	ctx->controller.ops = &au1550nd_ops;
    307	this->controller = &ctx->controller;
    308
    309	if (pd->devwidth)
    310		this->options |= NAND_BUSWIDTH_16;
    311
    312	/*
    313	 * This driver assumes that the default ECC engine should be TYPE_SOFT.
    314	 * Set ->engine_type before registering the NAND devices in order to
    315	 * provide a driver specific default value.
    316	 */
    317	this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
    318
    319	ret = nand_scan(this, 1);
    320	if (ret) {
    321		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
    322		goto out3;
    323	}
    324
    325	mtd_device_register(mtd, pd->parts, pd->num_parts);
    326
    327	platform_set_drvdata(pdev, ctx);
    328
    329	return 0;
    330
    331out3:
    332	iounmap(ctx->base);
    333out2:
    334	release_mem_region(r->start, resource_size(r));
    335out1:
    336	kfree(ctx);
    337	return ret;
    338}
    339
    340static int au1550nd_remove(struct platform_device *pdev)
    341{
    342	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
    343	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    344	struct nand_chip *chip = &ctx->chip;
    345	int ret;
    346
    347	ret = mtd_device_unregister(nand_to_mtd(chip));
    348	WARN_ON(ret);
    349	nand_cleanup(chip);
    350	iounmap(ctx->base);
    351	release_mem_region(r->start, 0x1000);
    352	kfree(ctx);
    353	return 0;
    354}
    355
    356static struct platform_driver au1550nd_driver = {
    357	.driver = {
    358		.name	= "au1550-nand",
    359	},
    360	.probe		= au1550nd_probe,
    361	.remove		= au1550nd_remove,
    362};
    363
    364module_platform_driver(au1550nd_driver);
    365
    366MODULE_LICENSE("GPL");
    367MODULE_AUTHOR("Embedded Edge, LLC");
    368MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");