cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cadence-nand-controller.c (83234B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Cadence NAND flash controller driver
      4 *
      5 * Copyright (C) 2019 Cadence
      6 *
      7 * Author: Piotr Sroka <piotrs@cadence.com>
      8 */
      9
     10#include <linux/bitfield.h>
     11#include <linux/clk.h>
     12#include <linux/dma-mapping.h>
     13#include <linux/dmaengine.h>
     14#include <linux/interrupt.h>
     15#include <linux/module.h>
     16#include <linux/mtd/mtd.h>
     17#include <linux/mtd/rawnand.h>
     18#include <linux/of_device.h>
     19#include <linux/iopoll.h>
     20#include <linux/slab.h>
     21
     22/*
     23 * HPNFC can work in 3 modes:
     24 * -  PIO - can work in master or slave DMA
     25 * -  CDMA - needs Master DMA for accessing command descriptors.
     26 * -  Generic mode - can use only slave DMA.
     27 * CDMA and PIO modes can be used to execute only base commands.
     28 * Generic mode can be used to execute any command
     29 * on NAND flash memory. Driver uses CDMA mode for
     30 * block erasing, page reading, page programing.
     31 * Generic mode is used for executing rest of commands.
     32 */
     33
     34#define MAX_ADDRESS_CYC		6
     35#define MAX_ERASE_ADDRESS_CYC	3
     36#define MAX_DATA_SIZE		0xFFFC
     37#define DMA_DATA_SIZE_ALIGN	8
     38
     39/* Register definition. */
     40/*
     41 * Command register 0.
     42 * Writing data to this register will initiate a new transaction
     43 * of the NF controller.
     44 */
     45#define CMD_REG0			0x0000
     46/* Command type field mask. */
     47#define		CMD_REG0_CT		GENMASK(31, 30)
     48/* Command type CDMA. */
     49#define		CMD_REG0_CT_CDMA	0uL
     50/* Command type generic. */
     51#define		CMD_REG0_CT_GEN		3uL
     52/* Command thread number field mask. */
     53#define		CMD_REG0_TN		GENMASK(27, 24)
     54
     55/* Command register 2. */
     56#define CMD_REG2			0x0008
     57/* Command register 3. */
     58#define CMD_REG3			0x000C
     59/* Pointer register to select which thread status will be selected. */
     60#define CMD_STATUS_PTR			0x0010
     61/* Command status register for selected thread. */
     62#define CMD_STATUS			0x0014
     63
     64/* Interrupt status register. */
     65#define INTR_STATUS			0x0110
     66#define		INTR_STATUS_SDMA_ERR	BIT(22)
     67#define		INTR_STATUS_SDMA_TRIGG	BIT(21)
     68#define		INTR_STATUS_UNSUPP_CMD	BIT(19)
     69#define		INTR_STATUS_DDMA_TERR	BIT(18)
     70#define		INTR_STATUS_CDMA_TERR	BIT(17)
     71#define		INTR_STATUS_CDMA_IDL	BIT(16)
     72
     73/* Interrupt enable register. */
     74#define INTR_ENABLE				0x0114
     75#define		INTR_ENABLE_INTR_EN		BIT(31)
     76#define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
     77#define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
     78#define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
     79#define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
     80#define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
     81#define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
     82
     83/* Controller internal state. */
     84#define CTRL_STATUS				0x0118
     85#define		CTRL_STATUS_INIT_COMP		BIT(9)
     86#define		CTRL_STATUS_CTRL_BUSY		BIT(8)
     87
     88/* Command Engine threads state. */
     89#define TRD_STATUS				0x0120
     90
     91/* Command Engine interrupt thread error status. */
     92#define TRD_ERR_INT_STATUS			0x0128
     93/* Command Engine interrupt thread error enable. */
     94#define TRD_ERR_INT_STATUS_EN			0x0130
     95/* Command Engine interrupt thread complete status. */
     96#define TRD_COMP_INT_STATUS			0x0138
     97
     98/*
     99 * Transfer config 0 register.
    100 * Configures data transfer parameters.
    101 */
    102#define TRAN_CFG_0				0x0400
    103/* Offset value from the beginning of the page. */
    104#define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
    105/* Numbers of sectors to transfer within singlNF device's page. */
    106#define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
    107
    108/*
    109 * Transfer config 1 register.
    110 * Configures data transfer parameters.
    111 */
    112#define TRAN_CFG_1				0x0404
    113/* Size of last data sector. */
    114#define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
    115/* Size of not-last data sector. */
    116#define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
    117
    118/* ECC engine configuration register 0. */
    119#define ECC_CONFIG_0				0x0428
    120/* Correction strength. */
    121#define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
    122/* Enable erased pages detection mechanism. */
    123#define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
    124/* Enable controller ECC check bits generation and correction. */
    125#define		ECC_CONFIG_0_ECC_EN		BIT(0)
    126
    127/* ECC engine configuration register 1. */
    128#define ECC_CONFIG_1				0x042C
    129
    130/* Multiplane settings register. */
    131#define MULTIPLANE_CFG				0x0434
    132/* Cache operation settings. */
    133#define CACHE_CFG				0x0438
    134
    135/* DMA settings register. */
    136#define DMA_SETINGS				0x043C
    137/* Enable SDMA error report on access unprepared slave DMA interface. */
    138#define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
    139
    140/* Transferred data block size for the slave DMA module. */
    141#define SDMA_SIZE				0x0440
    142
    143/* Thread number associated with transferred data block
    144 * for the slave DMA module.
    145 */
    146#define SDMA_TRD_NUM				0x0444
    147/* Thread number mask. */
    148#define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
    149
    150#define CONTROL_DATA_CTRL			0x0494
    151/* Thread number mask. */
    152#define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
    153
    154#define CTRL_VERSION				0x800
    155#define		CTRL_VERSION_REV		GENMASK(7, 0)
    156
    157/* Available hardware features of the controller. */
    158#define CTRL_FEATURES				0x804
    159/* Support for NV-DDR2/3 work mode. */
    160#define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
    161/* Support for NV-DDR work mode. */
    162#define		CTRL_FEATURES_NVDDR		BIT(27)
    163/* Support for asynchronous work mode. */
    164#define		CTRL_FEATURES_ASYNC		BIT(26)
    165/* Support for asynchronous work mode. */
    166#define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
    167/* Slave and Master DMA data width. */
    168#define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
    169/* Availability of Control Data feature.*/
    170#define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
    171
    172/* BCH Engine identification register 0 - correction strengths. */
    173#define BCH_CFG_0				0x838
    174#define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
    175#define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
    176#define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
    177#define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
    178
    179/* BCH Engine identification register 1 - correction strengths. */
    180#define BCH_CFG_1				0x83C
    181#define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
    182#define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
    183#define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
    184#define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
    185
    186/* BCH Engine identification register 2 - sector sizes. */
    187#define BCH_CFG_2				0x840
    188#define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
    189#define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
    190
    191/* BCH Engine identification register 3. */
    192#define BCH_CFG_3				0x844
    193#define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
    194
    195/* Ready/Busy# line status. */
    196#define RBN_SETINGS				0x1004
    197
    198/* Common settings. */
    199#define COMMON_SET				0x1008
    200/* 16 bit device connected to the NAND Flash interface. */
    201#define		COMMON_SET_DEVICE_16BIT		BIT(8)
    202
    203/* Skip_bytes registers. */
    204#define SKIP_BYTES_CONF				0x100C
    205#define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
    206#define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
    207
    208#define SKIP_BYTES_OFFSET			0x1010
    209#define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
    210
    211/* Timings configuration. */
    212#define ASYNC_TOGGLE_TIMINGS			0x101c
    213#define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
    214#define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
    215#define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
    216#define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
    217
    218#define	TIMINGS0				0x1024
    219#define		TIMINGS0_TADL			GENMASK(31, 24)
    220#define		TIMINGS0_TCCS			GENMASK(23, 16)
    221#define		TIMINGS0_TWHR			GENMASK(15, 8)
    222#define		TIMINGS0_TRHW			GENMASK(7, 0)
    223
    224#define	TIMINGS1				0x1028
    225#define		TIMINGS1_TRHZ			GENMASK(31, 24)
    226#define		TIMINGS1_TWB			GENMASK(23, 16)
    227#define		TIMINGS1_TVDLY			GENMASK(7, 0)
    228
    229#define	TIMINGS2				0x102c
    230#define		TIMINGS2_TFEAT			GENMASK(25, 16)
    231#define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
    232#define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
    233
    234/* Configuration of the resynchronization of slave DLL of PHY. */
    235#define DLL_PHY_CTRL				0x1034
    236#define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
    237#define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
    238#define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
    239#define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
    240#define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
    241
    242/* Register controlling DQ related timing. */
    243#define PHY_DQ_TIMING				0x2000
    244/* Register controlling DSQ related timing.  */
    245#define PHY_DQS_TIMING				0x2004
    246#define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
    247#define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
    248#define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
    249
    250/* Register controlling the gate and loopback control related timing. */
    251#define PHY_GATE_LPBK_CTRL			0x2008
    252#define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
    253
    254/* Register holds the control for the master DLL logic. */
    255#define PHY_DLL_MASTER_CTRL			0x200C
    256#define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
    257
    258/* Register holds the control for the slave DLL logic. */
    259#define PHY_DLL_SLAVE_CTRL			0x2010
    260
    261/* This register handles the global control settings for the PHY. */
    262#define PHY_CTRL				0x2080
    263#define		PHY_CTRL_SDR_DQS		BIT(14)
    264#define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
    265
    266/*
    267 * This register handles the global control settings
    268 * for the termination selects for reads.
    269 */
    270#define PHY_TSEL				0x2084
    271
    272/* Generic command layout. */
    273#define GCMD_LAY_CS			GENMASK_ULL(11, 8)
    274/*
    275 * This bit informs the minicotroller if it has to wait for tWB
    276 * after sending the last CMD/ADDR/DATA in the sequence.
    277 */
    278#define GCMD_LAY_TWB			BIT_ULL(6)
    279/* Type of generic instruction. */
    280#define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
    281
    282/* Generic CMD sequence type. */
    283#define		GCMD_LAY_INSTR_CMD	0
    284/* Generic ADDR sequence type. */
    285#define		GCMD_LAY_INSTR_ADDR	1
    286/* Generic data transfer sequence type. */
    287#define		GCMD_LAY_INSTR_DATA	2
    288
    289/* Input part of generic command type of input is command. */
    290#define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
    291
    292/* Generic command address sequence - address fields. */
    293#define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
    294/* Generic command address sequence - address size. */
    295#define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
    296
    297/* Transfer direction field of generic command data sequence. */
    298#define GCMD_DIR			BIT_ULL(11)
    299/* Read transfer direction of generic command data sequence. */
    300#define		GCMD_DIR_READ		0
    301/* Write transfer direction of generic command data sequence. */
    302#define		GCMD_DIR_WRITE		1
    303
    304/* ECC enabled flag of generic command data sequence - ECC enabled. */
    305#define GCMD_ECC_EN			BIT_ULL(12)
    306/* Generic command data sequence - sector size. */
    307#define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
    308/* Generic command data sequence - sector count. */
    309#define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
    310/* Generic command data sequence - last sector size. */
    311#define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
    312
    313/* CDMA descriptor fields. */
    314/* Erase command type of CDMA descriptor. */
    315#define CDMA_CT_ERASE		0x1000
    316/* Program page command type of CDMA descriptor. */
    317#define CDMA_CT_WR		0x2100
    318/* Read page command type of CDMA descriptor. */
    319#define CDMA_CT_RD		0x2200
    320
    321/* Flash pointer memory shift. */
    322#define CDMA_CFPTR_MEM_SHIFT	24
    323/* Flash pointer memory mask. */
    324#define CDMA_CFPTR_MEM		GENMASK(26, 24)
    325
    326/*
    327 * Command DMA descriptor flags. If set causes issue interrupt after
    328 * the completion of descriptor processing.
    329 */
    330#define CDMA_CF_INT		BIT(8)
    331/*
    332 * Command DMA descriptor flags - the next descriptor
    333 * address field is valid and descriptor processing should continue.
    334 */
    335#define CDMA_CF_CONT		BIT(9)
    336/* DMA master flag of command DMA descriptor. */
    337#define CDMA_CF_DMA_MASTER	BIT(10)
    338
    339/* Operation complete status of command descriptor. */
    340#define CDMA_CS_COMP		BIT(15)
    341/* Operation complete status of command descriptor. */
    342/* Command descriptor status - operation fail. */
    343#define CDMA_CS_FAIL		BIT(14)
    344/* Command descriptor status - page erased. */
    345#define CDMA_CS_ERP		BIT(11)
    346/* Command descriptor status - timeout occurred. */
    347#define CDMA_CS_TOUT		BIT(10)
    348/*
    349 * Maximum amount of correction applied to one ECC sector.
    350 * It is part of command descriptor status.
    351 */
    352#define CDMA_CS_MAXERR		GENMASK(9, 2)
    353/* Command descriptor status - uncorrectable ECC error. */
    354#define CDMA_CS_UNCE		BIT(1)
    355/* Command descriptor status - descriptor error. */
    356#define CDMA_CS_ERR		BIT(0)
    357
    358/* Status of operation - OK. */
    359#define STAT_OK			0
    360/* Status of operation - FAIL. */
    361#define STAT_FAIL		2
    362/* Status of operation - uncorrectable ECC error. */
    363#define STAT_ECC_UNCORR		3
    364/* Status of operation - page erased. */
    365#define STAT_ERASED		5
    366/* Status of operation - correctable ECC error. */
    367#define STAT_ECC_CORR		6
    368/* Status of operation - unsuspected state. */
    369#define STAT_UNKNOWN		7
    370/* Status of operation - operation is not completed yet. */
    371#define STAT_BUSY		0xFF
    372
    373#define BCH_MAX_NUM_CORR_CAPS		8
    374#define BCH_MAX_NUM_SECTOR_SIZES	2
    375
    376struct cadence_nand_timings {
    377	u32 async_toggle_timings;
    378	u32 timings0;
    379	u32 timings1;
    380	u32 timings2;
    381	u32 dll_phy_ctrl;
    382	u32 phy_ctrl;
    383	u32 phy_dqs_timing;
    384	u32 phy_gate_lpbk_ctrl;
    385};
    386
    387/* Command DMA descriptor. */
    388struct cadence_nand_cdma_desc {
    389	/* Next descriptor address. */
    390	u64 next_pointer;
    391
    392	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
    393	u32 flash_pointer;
    394	/*field appears in HPNFC version 13*/
    395	u16 bank;
    396	u16 rsvd0;
    397
    398	/* Operation the controller needs to perform. */
    399	u16 command_type;
    400	u16 rsvd1;
    401	/* Flags for operation of this command. */
    402	u16 command_flags;
    403	u16 rsvd2;
    404
    405	/* System/host memory address required for data DMA commands. */
    406	u64 memory_pointer;
    407
    408	/* Status of operation. */
    409	u32 status;
    410	u32 rsvd3;
    411
    412	/* Address pointer to sync buffer location. */
    413	u64 sync_flag_pointer;
    414
    415	/* Controls the buffer sync mechanism. */
    416	u32 sync_arguments;
    417	u32 rsvd4;
    418
    419	/* Control data pointer. */
    420	u64 ctrl_data_ptr;
    421};
    422
    423/* Interrupt status. */
    424struct cadence_nand_irq_status {
    425	/* Thread operation complete status. */
    426	u32 trd_status;
    427	/* Thread operation error. */
    428	u32 trd_error;
    429	/* Controller status. */
    430	u32 status;
    431};
    432
    433/* Cadence NAND flash controller capabilities get from driver data. */
    434struct cadence_nand_dt_devdata {
    435	/* Skew value of the output signals of the NAND Flash interface. */
    436	u32 if_skew;
    437	/* It informs if slave DMA interface is connected to DMA engine. */
    438	unsigned int has_dma:1;
    439};
    440
    441/* Cadence NAND flash controller capabilities read from registers. */
    442struct cdns_nand_caps {
    443	/* Maximum number of banks supported by hardware. */
    444	u8 max_banks;
    445	/* Slave and Master DMA data width in bytes (4 or 8). */
    446	u8 data_dma_width;
    447	/* Control Data feature supported. */
    448	bool data_control_supp;
    449	/* Is PHY type DLL. */
    450	bool is_phy_type_dll;
    451};
    452
    453struct cdns_nand_ctrl {
    454	struct device *dev;
    455	struct nand_controller controller;
    456	struct cadence_nand_cdma_desc *cdma_desc;
    457	/* IP capability. */
    458	const struct cadence_nand_dt_devdata *caps1;
    459	struct cdns_nand_caps caps2;
    460	u8 ctrl_rev;
    461	dma_addr_t dma_cdma_desc;
    462	u8 *buf;
    463	u32 buf_size;
    464	u8 curr_corr_str_idx;
    465
    466	/* Register interface. */
    467	void __iomem *reg;
    468
    469	struct {
    470		void __iomem *virt;
    471		dma_addr_t dma;
    472	} io;
    473
    474	int irq;
    475	/* Interrupts that have happened. */
    476	struct cadence_nand_irq_status irq_status;
    477	/* Interrupts we are waiting for. */
    478	struct cadence_nand_irq_status irq_mask;
    479	struct completion complete;
    480	/* Protect irq_mask and irq_status. */
    481	spinlock_t irq_lock;
    482
    483	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
    484	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
    485	struct nand_ecc_caps ecc_caps;
    486
    487	int curr_trans_type;
    488
    489	struct dma_chan *dmac;
    490
    491	u32 nf_clk_rate;
    492	/*
    493	 * Estimated Board delay. The value includes the total
    494	 * round trip delay for the signals and is used for deciding on values
    495	 * associated with data read capture.
    496	 */
    497	u32 board_delay;
    498
    499	struct nand_chip *selected_chip;
    500
    501	unsigned long assigned_cs;
    502	struct list_head chips;
    503	u8 bch_metadata_size;
    504};
    505
    506struct cdns_nand_chip {
    507	struct cadence_nand_timings timings;
    508	struct nand_chip chip;
    509	u8 nsels;
    510	struct list_head node;
    511
    512	/*
    513	 * part of oob area of NAND flash memory page.
    514	 * This part is available for user to read or write.
    515	 */
    516	u32 avail_oob_size;
    517
    518	/* Sector size. There are few sectors per mtd->writesize */
    519	u32 sector_size;
    520	u32 sector_count;
    521
    522	/* Offset of BBM. */
    523	u8 bbm_offs;
    524	/* Number of bytes reserved for BBM. */
    525	u8 bbm_len;
    526	/* ECC strength index. */
    527	u8 corr_str_idx;
    528
    529	u8 cs[];
    530};
    531
    532struct ecc_info {
    533	int (*calc_ecc_bytes)(int step_size, int strength);
    534	int max_step_size;
    535};
    536
    537static inline struct
    538cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
    539{
    540	return container_of(chip, struct cdns_nand_chip, chip);
    541}
    542
    543static inline struct
    544cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
    545{
    546	return container_of(controller, struct cdns_nand_ctrl, controller);
    547}
    548
    549static bool
    550cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
    551			u32 buf_len)
    552{
    553	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
    554
    555	return buf && virt_addr_valid(buf) &&
    556		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
    557		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
    558}
    559
    560static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
    561				       u32 reg_offset, u32 timeout_us,
    562				       u32 mask, bool is_clear)
    563{
    564	u32 val;
    565	int ret;
    566
    567	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
    568					 val, !(val & mask) == is_clear,
    569					 10, timeout_us);
    570
    571	if (ret < 0) {
    572		dev_err(cdns_ctrl->dev,
    573			"Timeout while waiting for reg %x with mask %x is clear %d\n",
    574			reg_offset, mask, is_clear);
    575	}
    576
    577	return ret;
    578}
    579
    580static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
    581				       bool enable)
    582{
    583	u32 reg;
    584
    585	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
    586					1000000,
    587					CTRL_STATUS_CTRL_BUSY, true))
    588		return -ETIMEDOUT;
    589
    590	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
    591
    592	if (enable)
    593		reg |= ECC_CONFIG_0_ECC_EN;
    594	else
    595		reg &= ~ECC_CONFIG_0_ECC_EN;
    596
    597	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
    598
    599	return 0;
    600}
    601
    602static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
    603					  u8 corr_str_idx)
    604{
    605	u32 reg;
    606
    607	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
    608		return;
    609
    610	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
    611	reg &= ~ECC_CONFIG_0_CORR_STR;
    612	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
    613	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
    614
    615	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
    616}
    617
    618static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
    619					     u8 strength)
    620{
    621	int i, corr_str_idx = -1;
    622
    623	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
    624		if (cdns_ctrl->ecc_strengths[i] == strength) {
    625			corr_str_idx = i;
    626			break;
    627		}
    628	}
    629
    630	return corr_str_idx;
    631}
    632
    633static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
    634					    u16 marker_value)
    635{
    636	u32 reg;
    637
    638	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
    639					1000000,
    640					CTRL_STATUS_CTRL_BUSY, true))
    641		return -ETIMEDOUT;
    642
    643	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
    644	reg &= ~SKIP_BYTES_MARKER_VALUE;
    645	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
    646			  marker_value);
    647
    648	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
    649
    650	return 0;
    651}
    652
    653static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
    654					    u8 num_of_bytes,
    655					    u32 offset_value,
    656					    int enable)
    657{
    658	u32 reg, skip_bytes_offset;
    659
    660	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
    661					1000000,
    662					CTRL_STATUS_CTRL_BUSY, true))
    663		return -ETIMEDOUT;
    664
    665	if (!enable) {
    666		num_of_bytes = 0;
    667		offset_value = 0;
    668	}
    669
    670	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
    671	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
    672	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
    673			  num_of_bytes);
    674	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
    675				       offset_value);
    676
    677	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
    678	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
    679
    680	return 0;
    681}
    682
    683/* Functions enables/disables hardware detection of erased data */
    684static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
    685					     bool enable,
    686					     u8 bitflips_threshold)
    687{
    688	u32 reg;
    689
    690	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
    691
    692	if (enable)
    693		reg |= ECC_CONFIG_0_ERASE_DET_EN;
    694	else
    695		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
    696
    697	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
    698	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
    699}
    700
    701static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
    702					   bool bit_bus16)
    703{
    704	u32 reg;
    705
    706	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
    707					1000000,
    708					CTRL_STATUS_CTRL_BUSY, true))
    709		return -ETIMEDOUT;
    710
    711	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
    712
    713	if (!bit_bus16)
    714		reg &= ~COMMON_SET_DEVICE_16BIT;
    715	else
    716		reg |= COMMON_SET_DEVICE_16BIT;
    717	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
    718
    719	return 0;
    720}
    721
    722static void
    723cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
    724			     struct cadence_nand_irq_status *irq_status)
    725{
    726	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
    727	writel_relaxed(irq_status->trd_status,
    728		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
    729	writel_relaxed(irq_status->trd_error,
    730		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
    731}
    732
    733static void
    734cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
    735			     struct cadence_nand_irq_status *irq_status)
    736{
    737	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
    738	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
    739					       + TRD_COMP_INT_STATUS);
    740	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
    741					      + TRD_ERR_INT_STATUS);
    742}
    743
    744static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
    745			struct cadence_nand_irq_status *irq_status)
    746{
    747	cadence_nand_read_int_status(cdns_ctrl, irq_status);
    748
    749	return irq_status->status || irq_status->trd_status ||
    750		irq_status->trd_error;
    751}
    752
    753static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
    754{
    755	unsigned long flags;
    756
    757	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
    758	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
    759	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
    760	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
    761}
    762
    763/*
    764 * This is the interrupt service routine. It handles all interrupts
    765 * sent to this device.
    766 */
    767static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
    768{
    769	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
    770	struct cadence_nand_irq_status irq_status;
    771	irqreturn_t result = IRQ_NONE;
    772
    773	spin_lock(&cdns_ctrl->irq_lock);
    774
    775	if (irq_detected(cdns_ctrl, &irq_status)) {
    776		/* Handle interrupt. */
    777		/* First acknowledge it. */
    778		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
    779		/* Status in the device context for someone to read. */
    780		cdns_ctrl->irq_status.status |= irq_status.status;
    781		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
    782		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
    783		/* Notify anyone who cares that it happened. */
    784		complete(&cdns_ctrl->complete);
    785		/* Tell the OS that we've handled this. */
    786		result = IRQ_HANDLED;
    787	}
    788	spin_unlock(&cdns_ctrl->irq_lock);
    789
    790	return result;
    791}
    792
    793static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
    794				      struct cadence_nand_irq_status *irq_mask)
    795{
    796	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
    797		       cdns_ctrl->reg + INTR_ENABLE);
    798
    799	writel_relaxed(irq_mask->trd_error,
    800		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
    801}
    802
    803static void
    804cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
    805			  struct cadence_nand_irq_status *irq_mask,
    806			  struct cadence_nand_irq_status *irq_status)
    807{
    808	unsigned long timeout = msecs_to_jiffies(10000);
    809	unsigned long time_left;
    810
    811	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
    812						timeout);
    813
    814	*irq_status = cdns_ctrl->irq_status;
    815	if (time_left == 0) {
    816		/* Timeout error. */
    817		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
    818		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
    819			irq_status->status, irq_mask->status);
    820		dev_err(cdns_ctrl->dev,
    821			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
    822			irq_status->trd_status, irq_mask->trd_status);
    823		dev_err(cdns_ctrl->dev,
    824			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
    825			irq_status->trd_error, irq_mask->trd_error);
    826	}
    827}
    828
    829/* Execute generic command on NAND controller. */
    830static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
    831					 u8 chip_nr,
    832					 u64 mini_ctrl_cmd)
    833{
    834	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
    835
    836	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
    837	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
    838	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
    839
    840	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
    841					1000000,
    842					CTRL_STATUS_CTRL_BUSY, true))
    843		return -ETIMEDOUT;
    844
    845	cadence_nand_reset_irq(cdns_ctrl);
    846
    847	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
    848	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
    849
    850	/* Select generic command. */
    851	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
    852	/* Thread number. */
    853	reg |= FIELD_PREP(CMD_REG0_TN, 0);
    854
    855	/* Issue command. */
    856	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
    857
    858	return 0;
    859}
    860
    861/* Wait for data on slave DMA interface. */
    862static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
    863				     u8 *out_sdma_trd,
    864				     u32 *out_sdma_size)
    865{
    866	struct cadence_nand_irq_status irq_mask, irq_status;
    867
    868	irq_mask.trd_status = 0;
    869	irq_mask.trd_error = 0;
    870	irq_mask.status = INTR_STATUS_SDMA_TRIGG
    871		| INTR_STATUS_SDMA_ERR
    872		| INTR_STATUS_UNSUPP_CMD;
    873
    874	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
    875	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
    876	if (irq_status.status == 0) {
    877		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
    878		return -ETIMEDOUT;
    879	}
    880
    881	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
    882		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
    883		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
    884		*out_sdma_trd =
    885			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
    886	} else {
    887		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
    888			irq_status.status);
    889		return -EIO;
    890	}
    891
    892	return 0;
    893}
    894
    895static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
    896{
    897	u32  reg;
    898
    899	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
    900
    901	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
    902
    903	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
    904		cdns_ctrl->caps2.data_dma_width = 8;
    905	else
    906		cdns_ctrl->caps2.data_dma_width = 4;
    907
    908	if (reg & CTRL_FEATURES_CONTROL_DATA)
    909		cdns_ctrl->caps2.data_control_supp = true;
    910
    911	if (reg & (CTRL_FEATURES_NVDDR_2_3
    912		   | CTRL_FEATURES_NVDDR))
    913		cdns_ctrl->caps2.is_phy_type_dll = true;
    914}
    915
    916/* Prepare CDMA descriptor. */
    917static void
    918cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
    919			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
    920				   dma_addr_t ctrl_data_ptr, u16 ctype)
    921{
    922	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
    923
    924	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
    925
    926	/* Set fields for one descriptor. */
    927	cdma_desc->flash_pointer = flash_ptr;
    928	if (cdns_ctrl->ctrl_rev >= 13)
    929		cdma_desc->bank = nf_mem;
    930	else
    931		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
    932
    933	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
    934	cdma_desc->command_flags  |= CDMA_CF_INT;
    935
    936	cdma_desc->memory_pointer = mem_ptr;
    937	cdma_desc->status = 0;
    938	cdma_desc->sync_flag_pointer = 0;
    939	cdma_desc->sync_arguments = 0;
    940
    941	cdma_desc->command_type = ctype;
    942	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
    943}
    944
    945static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
    946					u32 desc_status)
    947{
    948	if (desc_status & CDMA_CS_ERP)
    949		return STAT_ERASED;
    950
    951	if (desc_status & CDMA_CS_UNCE)
    952		return STAT_ECC_UNCORR;
    953
    954	if (desc_status & CDMA_CS_ERR) {
    955		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
    956		return STAT_FAIL;
    957	}
    958
    959	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
    960		return STAT_ECC_CORR;
    961
    962	return STAT_FAIL;
    963}
    964
    965static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
    966{
    967	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
    968	u8 status = STAT_BUSY;
    969
    970	if (desc_ptr->status & CDMA_CS_FAIL) {
    971		status = cadence_nand_check_desc_error(cdns_ctrl,
    972						       desc_ptr->status);
    973		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
    974	} else if (desc_ptr->status & CDMA_CS_COMP) {
    975		/* Descriptor finished with no errors. */
    976		if (desc_ptr->command_flags & CDMA_CF_CONT) {
    977			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
    978			status = STAT_UNKNOWN;
    979		} else {
    980			/* Last descriptor.  */
    981			status = STAT_OK;
    982		}
    983	}
    984
    985	return status;
    986}
    987
    988static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
    989				  u8 thread)
    990{
    991	u32 reg;
    992	int status;
    993
    994	/* Wait for thread ready. */
    995	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
    996					     1000000,
    997					     BIT(thread), true);
    998	if (status)
    999		return status;
   1000
   1001	cadence_nand_reset_irq(cdns_ctrl);
   1002	reinit_completion(&cdns_ctrl->complete);
   1003
   1004	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
   1005		       cdns_ctrl->reg + CMD_REG2);
   1006	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
   1007
   1008	/* Select CDMA mode. */
   1009	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
   1010	/* Thread number. */
   1011	reg |= FIELD_PREP(CMD_REG0_TN, thread);
   1012	/* Issue command. */
   1013	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
   1014
   1015	return 0;
   1016}
   1017
   1018/* Send SDMA command and wait for finish. */
   1019static u32
   1020cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
   1021				u8 thread)
   1022{
   1023	struct cadence_nand_irq_status irq_mask, irq_status = {0};
   1024	int status;
   1025
   1026	irq_mask.trd_status = BIT(thread);
   1027	irq_mask.trd_error = BIT(thread);
   1028	irq_mask.status = INTR_STATUS_CDMA_TERR;
   1029
   1030	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
   1031
   1032	status = cadence_nand_cdma_send(cdns_ctrl, thread);
   1033	if (status)
   1034		return status;
   1035
   1036	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
   1037
   1038	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
   1039	    irq_status.trd_error == 0) {
   1040		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
   1041		return -ETIMEDOUT;
   1042	}
   1043	if (irq_status.status & irq_mask.status) {
   1044		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
   1045		return -EIO;
   1046	}
   1047
   1048	return 0;
   1049}
   1050
   1051/*
   1052 * ECC size depends on configured ECC strength and on maximum supported
   1053 * ECC step size.
   1054 */
   1055static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
   1056{
   1057	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
   1058
   1059	return ALIGN(nbytes, 2);
   1060}
   1061
   1062#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
   1063	static int \
   1064	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
   1065						    int strength)\
   1066	{\
   1067		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
   1068	}
   1069
   1070CADENCE_NAND_CALC_ECC_BYTES(256)
   1071CADENCE_NAND_CALC_ECC_BYTES(512)
   1072CADENCE_NAND_CALC_ECC_BYTES(1024)
   1073CADENCE_NAND_CALC_ECC_BYTES(2048)
   1074CADENCE_NAND_CALC_ECC_BYTES(4096)
   1075
   1076/* Function reads BCH capabilities. */
   1077static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
   1078{
   1079	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
   1080	int max_step_size = 0, nstrengths, i;
   1081	u32 reg;
   1082
   1083	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
   1084	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
   1085	if (cdns_ctrl->bch_metadata_size < 4) {
   1086		dev_err(cdns_ctrl->dev,
   1087			"Driver needs at least 4 bytes of BCH meta data\n");
   1088		return -EIO;
   1089	}
   1090
   1091	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
   1092	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
   1093	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
   1094	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
   1095	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
   1096
   1097	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
   1098	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
   1099	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
   1100	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
   1101	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
   1102
   1103	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
   1104	cdns_ctrl->ecc_stepinfos[0].stepsize =
   1105		FIELD_GET(BCH_CFG_2_SECT_0, reg);
   1106
   1107	cdns_ctrl->ecc_stepinfos[1].stepsize =
   1108		FIELD_GET(BCH_CFG_2_SECT_1, reg);
   1109
   1110	nstrengths = 0;
   1111	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
   1112		if (cdns_ctrl->ecc_strengths[i] != 0)
   1113			nstrengths++;
   1114	}
   1115
   1116	ecc_caps->nstepinfos = 0;
   1117	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
   1118		/* ECC strengths are common for all step infos. */
   1119		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
   1120		cdns_ctrl->ecc_stepinfos[i].strengths =
   1121			cdns_ctrl->ecc_strengths;
   1122
   1123		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
   1124			ecc_caps->nstepinfos++;
   1125
   1126		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
   1127			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
   1128	}
   1129	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
   1130
   1131	switch (max_step_size) {
   1132	case 256:
   1133		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
   1134		break;
   1135	case 512:
   1136		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
   1137		break;
   1138	case 1024:
   1139		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
   1140		break;
   1141	case 2048:
   1142		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
   1143		break;
   1144	case 4096:
   1145		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
   1146		break;
   1147	default:
   1148		dev_err(cdns_ctrl->dev,
   1149			"Unsupported sector size(ecc step size) %d\n",
   1150			max_step_size);
   1151		return -EIO;
   1152	}
   1153
   1154	return 0;
   1155}
   1156
   1157/* Hardware initialization. */
   1158static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
   1159{
   1160	int status;
   1161	u32 reg;
   1162
   1163	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
   1164					     1000000,
   1165					     CTRL_STATUS_INIT_COMP, false);
   1166	if (status)
   1167		return status;
   1168
   1169	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
   1170	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
   1171
   1172	dev_info(cdns_ctrl->dev,
   1173		 "%s: cadence nand controller version reg %x\n",
   1174		 __func__, reg);
   1175
   1176	/* Disable cache and multiplane. */
   1177	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
   1178	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
   1179
   1180	/* Clear all interrupts. */
   1181	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
   1182
   1183	cadence_nand_get_caps(cdns_ctrl);
   1184	if (cadence_nand_read_bch_caps(cdns_ctrl))
   1185		return -EIO;
   1186
   1187	/*
   1188	 * Set IO width access to 8.
   1189	 * It is because during SW device discovering width access
   1190	 * is expected to be 8.
   1191	 */
   1192	status = cadence_nand_set_access_width16(cdns_ctrl, false);
   1193
   1194	return status;
   1195}
   1196
   1197#define TT_MAIN_OOB_AREAS	2
   1198#define TT_RAW_PAGE		3
   1199#define TT_BBM			4
   1200#define TT_MAIN_OOB_AREA_EXT	5
   1201
   1202/* Prepare size of data to transfer. */
   1203static void
   1204cadence_nand_prepare_data_size(struct nand_chip *chip,
   1205			       int transfer_type)
   1206{
   1207	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1208	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1209	struct mtd_info *mtd = nand_to_mtd(chip);
   1210	u32 sec_size = 0, offset = 0, sec_cnt = 1;
   1211	u32 last_sec_size = cdns_chip->sector_size;
   1212	u32 data_ctrl_size = 0;
   1213	u32 reg = 0;
   1214
   1215	if (cdns_ctrl->curr_trans_type == transfer_type)
   1216		return;
   1217
   1218	switch (transfer_type) {
   1219	case TT_MAIN_OOB_AREA_EXT:
   1220		sec_cnt = cdns_chip->sector_count;
   1221		sec_size = cdns_chip->sector_size;
   1222		data_ctrl_size = cdns_chip->avail_oob_size;
   1223		break;
   1224	case TT_MAIN_OOB_AREAS:
   1225		sec_cnt = cdns_chip->sector_count;
   1226		last_sec_size = cdns_chip->sector_size
   1227			+ cdns_chip->avail_oob_size;
   1228		sec_size = cdns_chip->sector_size;
   1229		break;
   1230	case TT_RAW_PAGE:
   1231		last_sec_size = mtd->writesize + mtd->oobsize;
   1232		break;
   1233	case TT_BBM:
   1234		offset = mtd->writesize + cdns_chip->bbm_offs;
   1235		last_sec_size = 8;
   1236		break;
   1237	}
   1238
   1239	reg = 0;
   1240	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
   1241	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
   1242	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
   1243
   1244	reg = 0;
   1245	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
   1246	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
   1247	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
   1248
   1249	if (cdns_ctrl->caps2.data_control_supp) {
   1250		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
   1251		reg &= ~CONTROL_DATA_CTRL_SIZE;
   1252		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
   1253		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
   1254	}
   1255
   1256	cdns_ctrl->curr_trans_type = transfer_type;
   1257}
   1258
   1259static int
   1260cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
   1261			   int page, void *buf, void *ctrl_dat, u32 buf_size,
   1262			   u32 ctrl_dat_size, enum dma_data_direction dir,
   1263			   bool with_ecc)
   1264{
   1265	dma_addr_t dma_buf, dma_ctrl_dat = 0;
   1266	u8 thread_nr = chip_nr;
   1267	int status;
   1268	u16 ctype;
   1269
   1270	if (dir == DMA_FROM_DEVICE)
   1271		ctype = CDMA_CT_RD;
   1272	else
   1273		ctype = CDMA_CT_WR;
   1274
   1275	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
   1276
   1277	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
   1278	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
   1279		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
   1280		return -EIO;
   1281	}
   1282
   1283	if (ctrl_dat && ctrl_dat_size) {
   1284		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
   1285					      ctrl_dat_size, dir);
   1286		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
   1287			dma_unmap_single(cdns_ctrl->dev, dma_buf,
   1288					 buf_size, dir);
   1289			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
   1290			return -EIO;
   1291		}
   1292	}
   1293
   1294	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
   1295				       dma_buf, dma_ctrl_dat, ctype);
   1296
   1297	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
   1298
   1299	dma_unmap_single(cdns_ctrl->dev, dma_buf,
   1300			 buf_size, dir);
   1301
   1302	if (ctrl_dat && ctrl_dat_size)
   1303		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
   1304				 ctrl_dat_size, dir);
   1305	if (status)
   1306		return status;
   1307
   1308	return cadence_nand_cdma_finish(cdns_ctrl);
   1309}
   1310
   1311static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
   1312				     struct cadence_nand_timings *t)
   1313{
   1314	writel_relaxed(t->async_toggle_timings,
   1315		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
   1316	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
   1317	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
   1318	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
   1319
   1320	if (cdns_ctrl->caps2.is_phy_type_dll)
   1321		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
   1322
   1323	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
   1324
   1325	if (cdns_ctrl->caps2.is_phy_type_dll) {
   1326		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
   1327		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
   1328		writel_relaxed(t->phy_dqs_timing,
   1329			       cdns_ctrl->reg + PHY_DQS_TIMING);
   1330		writel_relaxed(t->phy_gate_lpbk_ctrl,
   1331			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
   1332		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
   1333			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
   1334		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
   1335	}
   1336}
   1337
   1338static int cadence_nand_select_target(struct nand_chip *chip)
   1339{
   1340	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1341	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1342
   1343	if (chip == cdns_ctrl->selected_chip)
   1344		return 0;
   1345
   1346	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
   1347					1000000,
   1348					CTRL_STATUS_CTRL_BUSY, true))
   1349		return -ETIMEDOUT;
   1350
   1351	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
   1352
   1353	cadence_nand_set_ecc_strength(cdns_ctrl,
   1354				      cdns_chip->corr_str_idx);
   1355
   1356	cadence_nand_set_erase_detection(cdns_ctrl, true,
   1357					 chip->ecc.strength);
   1358
   1359	cdns_ctrl->curr_trans_type = -1;
   1360	cdns_ctrl->selected_chip = chip;
   1361
   1362	return 0;
   1363}
   1364
   1365static int cadence_nand_erase(struct nand_chip *chip, u32 page)
   1366{
   1367	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1368	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1369	int status;
   1370	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
   1371
   1372	cadence_nand_cdma_desc_prepare(cdns_ctrl,
   1373				       cdns_chip->cs[chip->cur_cs],
   1374				       page, 0, 0,
   1375				       CDMA_CT_ERASE);
   1376	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
   1377	if (status) {
   1378		dev_err(cdns_ctrl->dev, "erase operation failed\n");
   1379		return -EIO;
   1380	}
   1381
   1382	status = cadence_nand_cdma_finish(cdns_ctrl);
   1383	if (status)
   1384		return status;
   1385
   1386	return 0;
   1387}
   1388
   1389static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
   1390{
   1391	int status;
   1392	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1393	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1394	struct mtd_info *mtd = nand_to_mtd(chip);
   1395
   1396	cadence_nand_prepare_data_size(chip, TT_BBM);
   1397
   1398	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
   1399
   1400	/*
   1401	 * Read only bad block marker from offset
   1402	 * defined by a memory manufacturer.
   1403	 */
   1404	status = cadence_nand_cdma_transfer(cdns_ctrl,
   1405					    cdns_chip->cs[chip->cur_cs],
   1406					    page, cdns_ctrl->buf, NULL,
   1407					    mtd->oobsize,
   1408					    0, DMA_FROM_DEVICE, false);
   1409	if (status) {
   1410		dev_err(cdns_ctrl->dev, "read BBM failed\n");
   1411		return -EIO;
   1412	}
   1413
   1414	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
   1415
   1416	return 0;
   1417}
   1418
   1419static int cadence_nand_write_page(struct nand_chip *chip,
   1420				   const u8 *buf, int oob_required,
   1421				   int page)
   1422{
   1423	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1424	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1425	struct mtd_info *mtd = nand_to_mtd(chip);
   1426	int status;
   1427	u16 marker_val = 0xFFFF;
   1428
   1429	status = cadence_nand_select_target(chip);
   1430	if (status)
   1431		return status;
   1432
   1433	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
   1434					 mtd->writesize
   1435					 + cdns_chip->bbm_offs,
   1436					 1);
   1437
   1438	if (oob_required) {
   1439		marker_val = *(u16 *)(chip->oob_poi
   1440				      + cdns_chip->bbm_offs);
   1441	} else {
   1442		/* Set oob data to 0xFF. */
   1443		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
   1444		       cdns_chip->avail_oob_size);
   1445	}
   1446
   1447	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
   1448
   1449	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
   1450
   1451	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
   1452	    cdns_ctrl->caps2.data_control_supp) {
   1453		u8 *oob;
   1454
   1455		if (oob_required)
   1456			oob = chip->oob_poi;
   1457		else
   1458			oob = cdns_ctrl->buf + mtd->writesize;
   1459
   1460		status = cadence_nand_cdma_transfer(cdns_ctrl,
   1461						    cdns_chip->cs[chip->cur_cs],
   1462						    page, (void *)buf, oob,
   1463						    mtd->writesize,
   1464						    cdns_chip->avail_oob_size,
   1465						    DMA_TO_DEVICE, true);
   1466		if (status) {
   1467			dev_err(cdns_ctrl->dev, "write page failed\n");
   1468			return -EIO;
   1469		}
   1470
   1471		return 0;
   1472	}
   1473
   1474	if (oob_required) {
   1475		/* Transfer the data to the oob area. */
   1476		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
   1477		       cdns_chip->avail_oob_size);
   1478	}
   1479
   1480	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
   1481
   1482	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
   1483
   1484	return cadence_nand_cdma_transfer(cdns_ctrl,
   1485					  cdns_chip->cs[chip->cur_cs],
   1486					  page, cdns_ctrl->buf, NULL,
   1487					  mtd->writesize
   1488					  + cdns_chip->avail_oob_size,
   1489					  0, DMA_TO_DEVICE, true);
   1490}
   1491
   1492static int cadence_nand_write_oob(struct nand_chip *chip, int page)
   1493{
   1494	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1495	struct mtd_info *mtd = nand_to_mtd(chip);
   1496
   1497	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
   1498
   1499	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
   1500}
   1501
   1502static int cadence_nand_write_page_raw(struct nand_chip *chip,
   1503				       const u8 *buf, int oob_required,
   1504				       int page)
   1505{
   1506	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1507	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1508	struct mtd_info *mtd = nand_to_mtd(chip);
   1509	int writesize = mtd->writesize;
   1510	int oobsize = mtd->oobsize;
   1511	int ecc_steps = chip->ecc.steps;
   1512	int ecc_size = chip->ecc.size;
   1513	int ecc_bytes = chip->ecc.bytes;
   1514	void *tmp_buf = cdns_ctrl->buf;
   1515	int oob_skip = cdns_chip->bbm_len;
   1516	size_t size = writesize + oobsize;
   1517	int i, pos, len;
   1518	int status = 0;
   1519
   1520	status = cadence_nand_select_target(chip);
   1521	if (status)
   1522		return status;
   1523
   1524	/*
   1525	 * Fill the buffer with 0xff first except the full page transfer.
   1526	 * This simplifies the logic.
   1527	 */
   1528	if (!buf || !oob_required)
   1529		memset(tmp_buf, 0xff, size);
   1530
   1531	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
   1532
   1533	/* Arrange the buffer for syndrome payload/ecc layout. */
   1534	if (buf) {
   1535		for (i = 0; i < ecc_steps; i++) {
   1536			pos = i * (ecc_size + ecc_bytes);
   1537			len = ecc_size;
   1538
   1539			if (pos >= writesize)
   1540				pos += oob_skip;
   1541			else if (pos + len > writesize)
   1542				len = writesize - pos;
   1543
   1544			memcpy(tmp_buf + pos, buf, len);
   1545			buf += len;
   1546			if (len < ecc_size) {
   1547				len = ecc_size - len;
   1548				memcpy(tmp_buf + writesize + oob_skip, buf,
   1549				       len);
   1550				buf += len;
   1551			}
   1552		}
   1553	}
   1554
   1555	if (oob_required) {
   1556		const u8 *oob = chip->oob_poi;
   1557		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
   1558			(cdns_chip->sector_size + chip->ecc.bytes)
   1559			+ cdns_chip->sector_size + oob_skip;
   1560
   1561		/* BBM at the beginning of the OOB area. */
   1562		memcpy(tmp_buf + writesize, oob, oob_skip);
   1563
   1564		/* OOB free. */
   1565		memcpy(tmp_buf + oob_data_offset, oob,
   1566		       cdns_chip->avail_oob_size);
   1567		oob += cdns_chip->avail_oob_size;
   1568
   1569		/* OOB ECC. */
   1570		for (i = 0; i < ecc_steps; i++) {
   1571			pos = ecc_size + i * (ecc_size + ecc_bytes);
   1572			if (i == (ecc_steps - 1))
   1573				pos += cdns_chip->avail_oob_size;
   1574
   1575			len = ecc_bytes;
   1576
   1577			if (pos >= writesize)
   1578				pos += oob_skip;
   1579			else if (pos + len > writesize)
   1580				len = writesize - pos;
   1581
   1582			memcpy(tmp_buf + pos, oob, len);
   1583			oob += len;
   1584			if (len < ecc_bytes) {
   1585				len = ecc_bytes - len;
   1586				memcpy(tmp_buf + writesize + oob_skip, oob,
   1587				       len);
   1588				oob += len;
   1589			}
   1590		}
   1591	}
   1592
   1593	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
   1594
   1595	return cadence_nand_cdma_transfer(cdns_ctrl,
   1596					  cdns_chip->cs[chip->cur_cs],
   1597					  page, cdns_ctrl->buf, NULL,
   1598					  mtd->writesize +
   1599					  mtd->oobsize,
   1600					  0, DMA_TO_DEVICE, false);
   1601}
   1602
   1603static int cadence_nand_write_oob_raw(struct nand_chip *chip,
   1604				      int page)
   1605{
   1606	return cadence_nand_write_page_raw(chip, NULL, true, page);
   1607}
   1608
   1609static int cadence_nand_read_page(struct nand_chip *chip,
   1610				  u8 *buf, int oob_required, int page)
   1611{
   1612	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1613	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1614	struct mtd_info *mtd = nand_to_mtd(chip);
   1615	int status = 0;
   1616	int ecc_err_count = 0;
   1617
   1618	status = cadence_nand_select_target(chip);
   1619	if (status)
   1620		return status;
   1621
   1622	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
   1623					 mtd->writesize
   1624					 + cdns_chip->bbm_offs, 1);
   1625
   1626	/*
   1627	 * If data buffer can be accessed by DMA and data_control feature
   1628	 * is supported then transfer data and oob directly.
   1629	 */
   1630	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
   1631	    cdns_ctrl->caps2.data_control_supp) {
   1632		u8 *oob;
   1633
   1634		if (oob_required)
   1635			oob = chip->oob_poi;
   1636		else
   1637			oob = cdns_ctrl->buf + mtd->writesize;
   1638
   1639		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
   1640		status = cadence_nand_cdma_transfer(cdns_ctrl,
   1641						    cdns_chip->cs[chip->cur_cs],
   1642						    page, buf, oob,
   1643						    mtd->writesize,
   1644						    cdns_chip->avail_oob_size,
   1645						    DMA_FROM_DEVICE, true);
   1646	/* Otherwise use bounce buffer. */
   1647	} else {
   1648		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
   1649		status = cadence_nand_cdma_transfer(cdns_ctrl,
   1650						    cdns_chip->cs[chip->cur_cs],
   1651						    page, cdns_ctrl->buf,
   1652						    NULL, mtd->writesize
   1653						    + cdns_chip->avail_oob_size,
   1654						    0, DMA_FROM_DEVICE, true);
   1655
   1656		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
   1657		if (oob_required)
   1658			memcpy(chip->oob_poi,
   1659			       cdns_ctrl->buf + mtd->writesize,
   1660			       mtd->oobsize);
   1661	}
   1662
   1663	switch (status) {
   1664	case STAT_ECC_UNCORR:
   1665		mtd->ecc_stats.failed++;
   1666		ecc_err_count++;
   1667		break;
   1668	case STAT_ECC_CORR:
   1669		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
   1670					  cdns_ctrl->cdma_desc->status);
   1671		mtd->ecc_stats.corrected += ecc_err_count;
   1672		break;
   1673	case STAT_ERASED:
   1674	case STAT_OK:
   1675		break;
   1676	default:
   1677		dev_err(cdns_ctrl->dev, "read page failed\n");
   1678		return -EIO;
   1679	}
   1680
   1681	if (oob_required)
   1682		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
   1683			return -EIO;
   1684
   1685	return ecc_err_count;
   1686}
   1687
   1688/* Reads OOB data from the device. */
   1689static int cadence_nand_read_oob(struct nand_chip *chip, int page)
   1690{
   1691	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1692
   1693	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
   1694}
   1695
   1696static int cadence_nand_read_page_raw(struct nand_chip *chip,
   1697				      u8 *buf, int oob_required, int page)
   1698{
   1699	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1700	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   1701	struct mtd_info *mtd = nand_to_mtd(chip);
   1702	int oob_skip = cdns_chip->bbm_len;
   1703	int writesize = mtd->writesize;
   1704	int ecc_steps = chip->ecc.steps;
   1705	int ecc_size = chip->ecc.size;
   1706	int ecc_bytes = chip->ecc.bytes;
   1707	void *tmp_buf = cdns_ctrl->buf;
   1708	int i, pos, len;
   1709	int status = 0;
   1710
   1711	status = cadence_nand_select_target(chip);
   1712	if (status)
   1713		return status;
   1714
   1715	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
   1716
   1717	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
   1718	status = cadence_nand_cdma_transfer(cdns_ctrl,
   1719					    cdns_chip->cs[chip->cur_cs],
   1720					    page, cdns_ctrl->buf, NULL,
   1721					    mtd->writesize
   1722					    + mtd->oobsize,
   1723					    0, DMA_FROM_DEVICE, false);
   1724
   1725	switch (status) {
   1726	case STAT_ERASED:
   1727	case STAT_OK:
   1728		break;
   1729	default:
   1730		dev_err(cdns_ctrl->dev, "read raw page failed\n");
   1731		return -EIO;
   1732	}
   1733
   1734	/* Arrange the buffer for syndrome payload/ecc layout. */
   1735	if (buf) {
   1736		for (i = 0; i < ecc_steps; i++) {
   1737			pos = i * (ecc_size + ecc_bytes);
   1738			len = ecc_size;
   1739
   1740			if (pos >= writesize)
   1741				pos += oob_skip;
   1742			else if (pos + len > writesize)
   1743				len = writesize - pos;
   1744
   1745			memcpy(buf, tmp_buf + pos, len);
   1746			buf += len;
   1747			if (len < ecc_size) {
   1748				len = ecc_size - len;
   1749				memcpy(buf, tmp_buf + writesize + oob_skip,
   1750				       len);
   1751				buf += len;
   1752			}
   1753		}
   1754	}
   1755
   1756	if (oob_required) {
   1757		u8 *oob = chip->oob_poi;
   1758		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
   1759			(cdns_chip->sector_size + chip->ecc.bytes)
   1760			+ cdns_chip->sector_size + oob_skip;
   1761
   1762		/* OOB free. */
   1763		memcpy(oob, tmp_buf + oob_data_offset,
   1764		       cdns_chip->avail_oob_size);
   1765
   1766		/* BBM at the beginning of the OOB area. */
   1767		memcpy(oob, tmp_buf + writesize, oob_skip);
   1768
   1769		oob += cdns_chip->avail_oob_size;
   1770
   1771		/* OOB ECC */
   1772		for (i = 0; i < ecc_steps; i++) {
   1773			pos = ecc_size + i * (ecc_size + ecc_bytes);
   1774			len = ecc_bytes;
   1775
   1776			if (i == (ecc_steps - 1))
   1777				pos += cdns_chip->avail_oob_size;
   1778
   1779			if (pos >= writesize)
   1780				pos += oob_skip;
   1781			else if (pos + len > writesize)
   1782				len = writesize - pos;
   1783
   1784			memcpy(oob, tmp_buf + pos, len);
   1785			oob += len;
   1786			if (len < ecc_bytes) {
   1787				len = ecc_bytes - len;
   1788				memcpy(oob, tmp_buf + writesize + oob_skip,
   1789				       len);
   1790				oob += len;
   1791			}
   1792		}
   1793	}
   1794
   1795	return 0;
   1796}
   1797
   1798static int cadence_nand_read_oob_raw(struct nand_chip *chip,
   1799				     int page)
   1800{
   1801	return cadence_nand_read_page_raw(chip, NULL, true, page);
   1802}
   1803
   1804static void cadence_nand_slave_dma_transfer_finished(void *data)
   1805{
   1806	struct completion *finished = data;
   1807
   1808	complete(finished);
   1809}
   1810
   1811static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
   1812					   void *buf,
   1813					   dma_addr_t dev_dma, size_t len,
   1814					   enum dma_data_direction dir)
   1815{
   1816	DECLARE_COMPLETION_ONSTACK(finished);
   1817	struct dma_chan *chan;
   1818	struct dma_device *dma_dev;
   1819	dma_addr_t src_dma, dst_dma, buf_dma;
   1820	struct dma_async_tx_descriptor *tx;
   1821	dma_cookie_t cookie;
   1822
   1823	chan = cdns_ctrl->dmac;
   1824	dma_dev = chan->device;
   1825
   1826	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
   1827	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
   1828		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
   1829		goto err;
   1830	}
   1831
   1832	if (dir == DMA_FROM_DEVICE) {
   1833		src_dma = cdns_ctrl->io.dma;
   1834		dst_dma = buf_dma;
   1835	} else {
   1836		src_dma = buf_dma;
   1837		dst_dma = cdns_ctrl->io.dma;
   1838	}
   1839
   1840	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
   1841				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
   1842	if (!tx) {
   1843		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
   1844		goto err_unmap;
   1845	}
   1846
   1847	tx->callback = cadence_nand_slave_dma_transfer_finished;
   1848	tx->callback_param = &finished;
   1849
   1850	cookie = dmaengine_submit(tx);
   1851	if (dma_submit_error(cookie)) {
   1852		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
   1853		goto err_unmap;
   1854	}
   1855
   1856	dma_async_issue_pending(cdns_ctrl->dmac);
   1857	wait_for_completion(&finished);
   1858
   1859	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
   1860
   1861	return 0;
   1862
   1863err_unmap:
   1864	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
   1865
   1866err:
   1867	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
   1868
   1869	return -EIO;
   1870}
   1871
   1872static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
   1873				 u8 *buf, int len)
   1874{
   1875	u8 thread_nr = 0;
   1876	u32 sdma_size;
   1877	int status;
   1878
   1879	/* Wait until slave DMA interface is ready to data transfer. */
   1880	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
   1881	if (status)
   1882		return status;
   1883
   1884	if (!cdns_ctrl->caps1->has_dma) {
   1885		int len_in_words = len >> 2;
   1886
   1887		/* read alingment data */
   1888		ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
   1889		if (sdma_size > len) {
   1890			/* read rest data from slave DMA interface if any */
   1891			ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
   1892				     sdma_size / 4 - len_in_words);
   1893			/* copy rest of data */
   1894			memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
   1895			       len - (len_in_words << 2));
   1896		}
   1897		return 0;
   1898	}
   1899
   1900	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
   1901		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
   1902							 cdns_ctrl->io.dma,
   1903							 len, DMA_FROM_DEVICE);
   1904		if (status == 0)
   1905			return 0;
   1906
   1907		dev_warn(cdns_ctrl->dev,
   1908			 "Slave DMA transfer failed. Try again using bounce buffer.");
   1909	}
   1910
   1911	/* If DMA transfer is not possible or failed then use bounce buffer. */
   1912	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
   1913						 cdns_ctrl->io.dma,
   1914						 sdma_size, DMA_FROM_DEVICE);
   1915
   1916	if (status) {
   1917		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
   1918		return status;
   1919	}
   1920
   1921	memcpy(buf, cdns_ctrl->buf, len);
   1922
   1923	return 0;
   1924}
   1925
   1926static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
   1927				  const u8 *buf, int len)
   1928{
   1929	u8 thread_nr = 0;
   1930	u32 sdma_size;
   1931	int status;
   1932
   1933	/* Wait until slave DMA interface is ready to data transfer. */
   1934	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
   1935	if (status)
   1936		return status;
   1937
   1938	if (!cdns_ctrl->caps1->has_dma) {
   1939		int len_in_words = len >> 2;
   1940
   1941		iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
   1942		if (sdma_size > len) {
   1943			/* copy rest of data */
   1944			memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
   1945			       len - (len_in_words << 2));
   1946			/* write all expected by nand controller data */
   1947			iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
   1948				      sdma_size / 4 - len_in_words);
   1949		}
   1950
   1951		return 0;
   1952	}
   1953
   1954	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
   1955		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
   1956							 cdns_ctrl->io.dma,
   1957							 len, DMA_TO_DEVICE);
   1958		if (status == 0)
   1959			return 0;
   1960
   1961		dev_warn(cdns_ctrl->dev,
   1962			 "Slave DMA transfer failed. Try again using bounce buffer.");
   1963	}
   1964
   1965	/* If DMA transfer is not possible or failed then use bounce buffer. */
   1966	memcpy(cdns_ctrl->buf, buf, len);
   1967
   1968	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
   1969						 cdns_ctrl->io.dma,
   1970						 sdma_size, DMA_TO_DEVICE);
   1971
   1972	if (status)
   1973		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
   1974
   1975	return status;
   1976}
   1977
   1978static int cadence_nand_force_byte_access(struct nand_chip *chip,
   1979					  bool force_8bit)
   1980{
   1981	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   1982	int status;
   1983
   1984	/*
   1985	 * Callers of this function do not verify if the NAND is using a 16-bit
   1986	 * an 8-bit bus for normal operations, so we need to take care of that
   1987	 * here by leaving the configuration unchanged if the NAND does not have
   1988	 * the NAND_BUSWIDTH_16 flag set.
   1989	 */
   1990	if (!(chip->options & NAND_BUSWIDTH_16))
   1991		return 0;
   1992
   1993	status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
   1994
   1995	return status;
   1996}
   1997
   1998static int cadence_nand_cmd_opcode(struct nand_chip *chip,
   1999				   const struct nand_subop *subop)
   2000{
   2001	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2002	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2003	const struct nand_op_instr *instr;
   2004	unsigned int op_id = 0;
   2005	u64 mini_ctrl_cmd = 0;
   2006	int ret;
   2007
   2008	instr = &subop->instrs[op_id];
   2009
   2010	if (instr->delay_ns > 0)
   2011		mini_ctrl_cmd |= GCMD_LAY_TWB;
   2012
   2013	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
   2014				    GCMD_LAY_INSTR_CMD);
   2015	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
   2016				    instr->ctx.cmd.opcode);
   2017
   2018	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
   2019					    cdns_chip->cs[chip->cur_cs],
   2020					    mini_ctrl_cmd);
   2021	if (ret)
   2022		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
   2023			instr->ctx.cmd.opcode);
   2024
   2025	return ret;
   2026}
   2027
   2028static int cadence_nand_cmd_address(struct nand_chip *chip,
   2029				    const struct nand_subop *subop)
   2030{
   2031	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2032	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2033	const struct nand_op_instr *instr;
   2034	unsigned int op_id = 0;
   2035	u64 mini_ctrl_cmd = 0;
   2036	unsigned int offset, naddrs;
   2037	u64 address = 0;
   2038	const u8 *addrs;
   2039	int ret;
   2040	int i;
   2041
   2042	instr = &subop->instrs[op_id];
   2043
   2044	if (instr->delay_ns > 0)
   2045		mini_ctrl_cmd |= GCMD_LAY_TWB;
   2046
   2047	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
   2048				    GCMD_LAY_INSTR_ADDR);
   2049
   2050	offset = nand_subop_get_addr_start_off(subop, op_id);
   2051	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
   2052	addrs = &instr->ctx.addr.addrs[offset];
   2053
   2054	for (i = 0; i < naddrs; i++)
   2055		address |= (u64)addrs[i] << (8 * i);
   2056
   2057	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
   2058				    address);
   2059	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
   2060				    naddrs - 1);
   2061
   2062	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
   2063					    cdns_chip->cs[chip->cur_cs],
   2064					    mini_ctrl_cmd);
   2065	if (ret)
   2066		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
   2067
   2068	return ret;
   2069}
   2070
   2071static int cadence_nand_cmd_erase(struct nand_chip *chip,
   2072				  const struct nand_subop *subop)
   2073{
   2074	unsigned int op_id;
   2075
   2076	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
   2077		int i;
   2078		const struct nand_op_instr *instr = NULL;
   2079		unsigned int offset, naddrs;
   2080		const u8 *addrs;
   2081		u32 page = 0;
   2082
   2083		instr = &subop->instrs[1];
   2084		offset = nand_subop_get_addr_start_off(subop, 1);
   2085		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
   2086		addrs = &instr->ctx.addr.addrs[offset];
   2087
   2088		for (i = 0; i < naddrs; i++)
   2089			page |= (u32)addrs[i] << (8 * i);
   2090
   2091		return cadence_nand_erase(chip, page);
   2092	}
   2093
   2094	/*
   2095	 * If it is not an erase operation then handle operation
   2096	 * by calling exec_op function.
   2097	 */
   2098	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
   2099		int ret;
   2100		const struct nand_operation nand_op = {
   2101			.cs = chip->cur_cs,
   2102			.instrs =  &subop->instrs[op_id],
   2103			.ninstrs = 1};
   2104		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
   2105		if (ret)
   2106			return ret;
   2107	}
   2108
   2109	return 0;
   2110}
   2111
   2112static int cadence_nand_cmd_data(struct nand_chip *chip,
   2113				 const struct nand_subop *subop)
   2114{
   2115	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2116	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2117	const struct nand_op_instr *instr;
   2118	unsigned int offset, op_id = 0;
   2119	u64 mini_ctrl_cmd = 0;
   2120	int len = 0;
   2121	int ret;
   2122
   2123	instr = &subop->instrs[op_id];
   2124
   2125	if (instr->delay_ns > 0)
   2126		mini_ctrl_cmd |= GCMD_LAY_TWB;
   2127
   2128	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
   2129				    GCMD_LAY_INSTR_DATA);
   2130
   2131	if (instr->type == NAND_OP_DATA_OUT_INSTR)
   2132		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
   2133					    GCMD_DIR_WRITE);
   2134
   2135	len = nand_subop_get_data_len(subop, op_id);
   2136	offset = nand_subop_get_data_start_off(subop, op_id);
   2137	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
   2138	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
   2139	if (instr->ctx.data.force_8bit) {
   2140		ret = cadence_nand_force_byte_access(chip, true);
   2141		if (ret) {
   2142			dev_err(cdns_ctrl->dev,
   2143				"cannot change byte access generic data cmd failed\n");
   2144			return ret;
   2145		}
   2146	}
   2147
   2148	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
   2149					    cdns_chip->cs[chip->cur_cs],
   2150					    mini_ctrl_cmd);
   2151	if (ret) {
   2152		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
   2153		return ret;
   2154	}
   2155
   2156	if (instr->type == NAND_OP_DATA_IN_INSTR) {
   2157		void *buf = instr->ctx.data.buf.in + offset;
   2158
   2159		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
   2160	} else {
   2161		const void *buf = instr->ctx.data.buf.out + offset;
   2162
   2163		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
   2164	}
   2165
   2166	if (ret) {
   2167		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
   2168		return ret;
   2169	}
   2170
   2171	if (instr->ctx.data.force_8bit) {
   2172		ret = cadence_nand_force_byte_access(chip, false);
   2173		if (ret) {
   2174			dev_err(cdns_ctrl->dev,
   2175				"cannot change byte access generic data cmd failed\n");
   2176		}
   2177	}
   2178
   2179	return ret;
   2180}
   2181
   2182static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
   2183				    const struct nand_subop *subop)
   2184{
   2185	int status;
   2186	unsigned int op_id = 0;
   2187	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2188	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2189	const struct nand_op_instr *instr = &subop->instrs[op_id];
   2190	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
   2191
   2192	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
   2193					     timeout_us,
   2194					     BIT(cdns_chip->cs[chip->cur_cs]),
   2195					     false);
   2196	return status;
   2197}
   2198
   2199static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
   2200	NAND_OP_PARSER_PATTERN(
   2201		cadence_nand_cmd_erase,
   2202		NAND_OP_PARSER_PAT_CMD_ELEM(false),
   2203		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
   2204		NAND_OP_PARSER_PAT_CMD_ELEM(false),
   2205		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
   2206	NAND_OP_PARSER_PATTERN(
   2207		cadence_nand_cmd_opcode,
   2208		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
   2209	NAND_OP_PARSER_PATTERN(
   2210		cadence_nand_cmd_address,
   2211		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
   2212	NAND_OP_PARSER_PATTERN(
   2213		cadence_nand_cmd_data,
   2214		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
   2215	NAND_OP_PARSER_PATTERN(
   2216		cadence_nand_cmd_data,
   2217		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
   2218	NAND_OP_PARSER_PATTERN(
   2219		cadence_nand_cmd_waitrdy,
   2220		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
   2221	);
   2222
   2223static int cadence_nand_exec_op(struct nand_chip *chip,
   2224				const struct nand_operation *op,
   2225				bool check_only)
   2226{
   2227	if (!check_only) {
   2228		int status = cadence_nand_select_target(chip);
   2229
   2230		if (status)
   2231			return status;
   2232	}
   2233
   2234	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
   2235				      check_only);
   2236}
   2237
   2238static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
   2239				       struct mtd_oob_region *oobregion)
   2240{
   2241	struct nand_chip *chip = mtd_to_nand(mtd);
   2242	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2243
   2244	if (section)
   2245		return -ERANGE;
   2246
   2247	oobregion->offset = cdns_chip->bbm_len;
   2248	oobregion->length = cdns_chip->avail_oob_size
   2249		- cdns_chip->bbm_len;
   2250
   2251	return 0;
   2252}
   2253
   2254static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
   2255				      struct mtd_oob_region *oobregion)
   2256{
   2257	struct nand_chip *chip = mtd_to_nand(mtd);
   2258	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2259
   2260	if (section)
   2261		return -ERANGE;
   2262
   2263	oobregion->offset = cdns_chip->avail_oob_size;
   2264	oobregion->length = chip->ecc.total;
   2265
   2266	return 0;
   2267}
   2268
   2269static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
   2270	.free = cadence_nand_ooblayout_free,
   2271	.ecc = cadence_nand_ooblayout_ecc,
   2272};
   2273
   2274static int calc_cycl(u32 timing, u32 clock)
   2275{
   2276	if (timing == 0 || clock == 0)
   2277		return 0;
   2278
   2279	if ((timing % clock) > 0)
   2280		return timing / clock;
   2281	else
   2282		return timing / clock - 1;
   2283}
   2284
   2285/* Calculate max data valid window. */
   2286static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
   2287				u32 board_delay_skew_min, u32 ext_mode)
   2288{
   2289	if (ext_mode == 0)
   2290		clk_period /= 2;
   2291
   2292	return (trp_cnt + 1) * clk_period + trhoh_min +
   2293		board_delay_skew_min;
   2294}
   2295
   2296/* Calculate data valid window. */
   2297static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
   2298			    u32 trea_max, u32 ext_mode)
   2299{
   2300	if (ext_mode == 0)
   2301		clk_period /= 2;
   2302
   2303	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
   2304}
   2305
   2306static int
   2307cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
   2308			     const struct nand_interface_config *conf)
   2309{
   2310	const struct nand_sdr_timings *sdr;
   2311	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2312	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2313	struct cadence_nand_timings *t = &cdns_chip->timings;
   2314	u32 reg;
   2315	u32 board_delay = cdns_ctrl->board_delay;
   2316	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
   2317					    cdns_ctrl->nf_clk_rate);
   2318	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
   2319	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
   2320	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
   2321	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
   2322	u32 if_skew = cdns_ctrl->caps1->if_skew;
   2323	u32 board_delay_skew_min = board_delay - if_skew;
   2324	u32 board_delay_skew_max = board_delay + if_skew;
   2325	u32 dqs_sampl_res, phony_dqs_mod;
   2326	u32 tdvw, tdvw_min, tdvw_max;
   2327	u32 ext_rd_mode, ext_wr_mode;
   2328	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
   2329	u32 sampling_point;
   2330
   2331	sdr = nand_get_sdr_timings(conf);
   2332	if (IS_ERR(sdr))
   2333		return PTR_ERR(sdr);
   2334
   2335	memset(t, 0, sizeof(*t));
   2336	/* Sampling point calculation. */
   2337
   2338	if (cdns_ctrl->caps2.is_phy_type_dll)
   2339		phony_dqs_mod = 2;
   2340	else
   2341		phony_dqs_mod = 1;
   2342
   2343	dqs_sampl_res = clk_period / phony_dqs_mod;
   2344
   2345	tdvw_min = sdr->tREA_max + board_delay_skew_max;
   2346	/*
   2347	 * The idea of those calculation is to get the optimum value
   2348	 * for tRP and tRH timings. If it is NOT possible to sample data
   2349	 * with optimal tRP/tRH settings, the parameters will be extended.
   2350	 * If clk_period is 50ns (the lowest value) this condition is met
   2351	 * for SDR timing modes 1, 2, 3, 4 and 5.
   2352	 * If clk_period is 20ns the condition is met only for SDR timing
   2353	 * mode 5.
   2354	 */
   2355	if (sdr->tRC_min <= clk_period &&
   2356	    sdr->tRP_min <= (clk_period / 2) &&
   2357	    sdr->tREH_min <= (clk_period / 2)) {
   2358		/* Performance mode. */
   2359		ext_rd_mode = 0;
   2360		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
   2361				 sdr->tREA_max, ext_rd_mode);
   2362		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
   2363					 board_delay_skew_min,
   2364					 ext_rd_mode);
   2365		/*
   2366		 * Check if data valid window and sampling point can be found
   2367		 * and is not on the edge (ie. we have hold margin).
   2368		 * If not extend the tRP timings.
   2369		 */
   2370		if (tdvw > 0) {
   2371			if (tdvw_max <= tdvw_min ||
   2372			    (tdvw_max % dqs_sampl_res) == 0) {
   2373				/*
   2374				 * No valid sampling point so the RE pulse need
   2375				 * to be widen widening by half clock cycle.
   2376				 */
   2377				ext_rd_mode = 1;
   2378			}
   2379		} else {
   2380			/*
   2381			 * There is no valid window
   2382			 * to be able to sample data the tRP need to be widen.
   2383			 * Very safe calculations are performed here.
   2384			 */
   2385			trp_cnt = (sdr->tREA_max + board_delay_skew_max
   2386				   + dqs_sampl_res) / clk_period;
   2387			ext_rd_mode = 1;
   2388		}
   2389
   2390	} else {
   2391		/* Extended read mode. */
   2392		u32 trh;
   2393
   2394		ext_rd_mode = 1;
   2395		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
   2396		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
   2397		if (sdr->tREH_min >= trh)
   2398			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
   2399		else
   2400			trh_cnt = calc_cycl(trh, clk_period);
   2401
   2402		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
   2403				 sdr->tREA_max, ext_rd_mode);
   2404		/*
   2405		 * Check if data valid window and sampling point can be found
   2406		 * or if it is at the edge check if previous is valid
   2407		 * - if not extend the tRP timings.
   2408		 */
   2409		if (tdvw > 0) {
   2410			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
   2411						 sdr->tRHOH_min,
   2412						 board_delay_skew_min,
   2413						 ext_rd_mode);
   2414
   2415			if ((((tdvw_max / dqs_sampl_res)
   2416			      * dqs_sampl_res) <= tdvw_min) ||
   2417			    (((tdvw_max % dqs_sampl_res) == 0) &&
   2418			     (((tdvw_max / dqs_sampl_res - 1)
   2419			       * dqs_sampl_res) <= tdvw_min))) {
   2420				/*
   2421				 * Data valid window width is lower than
   2422				 * sampling resolution and do not hit any
   2423				 * sampling point to be sure the sampling point
   2424				 * will be found the RE low pulse width will be
   2425				 *  extended by one clock cycle.
   2426				 */
   2427				trp_cnt = trp_cnt + 1;
   2428			}
   2429		} else {
   2430			/*
   2431			 * There is no valid window to be able to sample data.
   2432			 * The tRP need to be widen.
   2433			 * Very safe calculations are performed here.
   2434			 */
   2435			trp_cnt = (sdr->tREA_max + board_delay_skew_max
   2436				   + dqs_sampl_res) / clk_period;
   2437		}
   2438	}
   2439
   2440	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
   2441				 sdr->tRHOH_min,
   2442				 board_delay_skew_min, ext_rd_mode);
   2443
   2444	if (sdr->tWC_min <= clk_period &&
   2445	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
   2446	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
   2447		ext_wr_mode = 0;
   2448	} else {
   2449		u32 twh;
   2450
   2451		ext_wr_mode = 1;
   2452		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
   2453		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
   2454			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
   2455					    clk_period);
   2456
   2457		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
   2458		if (sdr->tWH_min >= twh)
   2459			twh = sdr->tWH_min;
   2460
   2461		twh_cnt = calc_cycl(twh + if_skew, clk_period);
   2462	}
   2463
   2464	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
   2465	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
   2466	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
   2467	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
   2468	t->async_toggle_timings = reg;
   2469	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
   2470
   2471	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
   2472	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
   2473	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
   2474	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
   2475	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
   2476
   2477	/*
   2478	 * If timing exceeds delay field in timing register
   2479	 * then use maximum value.
   2480	 */
   2481	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
   2482		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
   2483	else
   2484		reg |= TIMINGS0_TCCS;
   2485
   2486	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
   2487	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
   2488	t->timings0 = reg;
   2489	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
   2490
   2491	/* The following is related to single signal so skew is not needed. */
   2492	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
   2493	trhz_cnt = trhz_cnt + 1;
   2494	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
   2495	/*
   2496	 * Because of the two stage syncflop the value must be increased by 3
   2497	 * first value is related with sync, second value is related
   2498	 * with output if delay.
   2499	 */
   2500	twb_cnt = twb_cnt + 3 + 5;
   2501	/*
   2502	 * The following is related to the we edge of the random data input
   2503	 * sequence so skew is not needed.
   2504	 */
   2505	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
   2506	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
   2507	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
   2508	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
   2509	t->timings1 = reg;
   2510	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
   2511
   2512	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
   2513	if (tfeat_cnt < twb_cnt)
   2514		tfeat_cnt = twb_cnt;
   2515
   2516	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
   2517	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
   2518
   2519	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
   2520	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
   2521	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
   2522	t->timings2 = reg;
   2523	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
   2524
   2525	if (cdns_ctrl->caps2.is_phy_type_dll) {
   2526		reg = DLL_PHY_CTRL_DLL_RST_N;
   2527		if (ext_wr_mode)
   2528			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
   2529		if (ext_rd_mode)
   2530			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
   2531
   2532		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
   2533		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
   2534		t->dll_phy_ctrl = reg;
   2535		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
   2536	}
   2537
   2538	/* Sampling point calculation. */
   2539	if ((tdvw_max % dqs_sampl_res) > 0)
   2540		sampling_point = tdvw_max / dqs_sampl_res;
   2541	else
   2542		sampling_point = (tdvw_max / dqs_sampl_res - 1);
   2543
   2544	if (sampling_point * dqs_sampl_res > tdvw_min) {
   2545		dll_phy_dqs_timing =
   2546			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
   2547		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
   2548		phony_dqs_timing = sampling_point / phony_dqs_mod;
   2549
   2550		if ((sampling_point % 2) > 0) {
   2551			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
   2552			if ((tdvw_max % dqs_sampl_res) == 0)
   2553				/*
   2554				 * Calculation for sampling point at the edge
   2555				 * of data and being odd number.
   2556				 */
   2557				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
   2558					/ phony_dqs_mod - 1;
   2559
   2560			if (!cdns_ctrl->caps2.is_phy_type_dll)
   2561				phony_dqs_timing--;
   2562
   2563		} else {
   2564			phony_dqs_timing--;
   2565		}
   2566		rd_del_sel = phony_dqs_timing + 3;
   2567	} else {
   2568		dev_warn(cdns_ctrl->dev,
   2569			 "ERROR : cannot find valid sampling point\n");
   2570	}
   2571
   2572	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
   2573	if (cdns_ctrl->caps2.is_phy_type_dll)
   2574		reg  |= PHY_CTRL_SDR_DQS;
   2575	t->phy_ctrl = reg;
   2576	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
   2577
   2578	if (cdns_ctrl->caps2.is_phy_type_dll) {
   2579		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
   2580		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
   2581		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
   2582			dll_phy_dqs_timing);
   2583		t->phy_dqs_timing = dll_phy_dqs_timing;
   2584
   2585		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
   2586		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
   2587			reg);
   2588		t->phy_gate_lpbk_ctrl = reg;
   2589
   2590		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
   2591			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
   2592		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
   2593	}
   2594
   2595	return 0;
   2596}
   2597
   2598static int cadence_nand_attach_chip(struct nand_chip *chip)
   2599{
   2600	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
   2601	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
   2602	u32 ecc_size;
   2603	struct mtd_info *mtd = nand_to_mtd(chip);
   2604	int ret;
   2605
   2606	if (chip->options & NAND_BUSWIDTH_16) {
   2607		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
   2608		if (ret)
   2609			return ret;
   2610	}
   2611
   2612	chip->bbt_options |= NAND_BBT_USE_FLASH;
   2613	chip->bbt_options |= NAND_BBT_NO_OOB;
   2614	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
   2615
   2616	chip->options |= NAND_NO_SUBPAGE_WRITE;
   2617
   2618	cdns_chip->bbm_offs = chip->badblockpos;
   2619	cdns_chip->bbm_offs &= ~0x01;
   2620	/* this value should be even number */
   2621	cdns_chip->bbm_len = 2;
   2622
   2623	ret = nand_ecc_choose_conf(chip,
   2624				   &cdns_ctrl->ecc_caps,
   2625				   mtd->oobsize - cdns_chip->bbm_len);
   2626	if (ret) {
   2627		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
   2628		return ret;
   2629	}
   2630
   2631	dev_dbg(cdns_ctrl->dev,
   2632		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
   2633		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
   2634
   2635	/* Error correction configuration. */
   2636	cdns_chip->sector_size = chip->ecc.size;
   2637	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
   2638	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
   2639
   2640	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
   2641
   2642	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
   2643		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
   2644
   2645	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
   2646	    > mtd->oobsize)
   2647		cdns_chip->avail_oob_size -= 4;
   2648
   2649	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
   2650	if (ret < 0)
   2651		return -EINVAL;
   2652
   2653	cdns_chip->corr_str_idx = (u8)ret;
   2654
   2655	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
   2656					1000000,
   2657					CTRL_STATUS_CTRL_BUSY, true))
   2658		return -ETIMEDOUT;
   2659
   2660	cadence_nand_set_ecc_strength(cdns_ctrl,
   2661				      cdns_chip->corr_str_idx);
   2662
   2663	cadence_nand_set_erase_detection(cdns_ctrl, true,
   2664					 chip->ecc.strength);
   2665
   2666	/* Override the default read operations. */
   2667	chip->ecc.read_page = cadence_nand_read_page;
   2668	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
   2669	chip->ecc.write_page = cadence_nand_write_page;
   2670	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
   2671	chip->ecc.read_oob = cadence_nand_read_oob;
   2672	chip->ecc.write_oob = cadence_nand_write_oob;
   2673	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
   2674	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
   2675
   2676	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
   2677		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
   2678
   2679	/* Is 32-bit DMA supported? */
   2680	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
   2681	if (ret) {
   2682		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
   2683		return ret;
   2684	}
   2685
   2686	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
   2687
   2688	return 0;
   2689}
   2690
   2691static const struct nand_controller_ops cadence_nand_controller_ops = {
   2692	.attach_chip = cadence_nand_attach_chip,
   2693	.exec_op = cadence_nand_exec_op,
   2694	.setup_interface = cadence_nand_setup_interface,
   2695};
   2696
   2697static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
   2698				  struct device_node *np)
   2699{
   2700	struct cdns_nand_chip *cdns_chip;
   2701	struct mtd_info *mtd;
   2702	struct nand_chip *chip;
   2703	int nsels, ret, i;
   2704	u32 cs;
   2705
   2706	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
   2707	if (nsels <= 0) {
   2708		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
   2709		return -EINVAL;
   2710	}
   2711
   2712	/* Allocate the nand chip structure. */
   2713	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
   2714				 (nsels * sizeof(u8)),
   2715				 GFP_KERNEL);
   2716	if (!cdns_chip) {
   2717		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
   2718		return -ENOMEM;
   2719	}
   2720
   2721	cdns_chip->nsels = nsels;
   2722
   2723	for (i = 0; i < nsels; i++) {
   2724		/* Retrieve CS id. */
   2725		ret = of_property_read_u32_index(np, "reg", i, &cs);
   2726		if (ret) {
   2727			dev_err(cdns_ctrl->dev,
   2728				"could not retrieve reg property: %d\n",
   2729				ret);
   2730			return ret;
   2731		}
   2732
   2733		if (cs >= cdns_ctrl->caps2.max_banks) {
   2734			dev_err(cdns_ctrl->dev,
   2735				"invalid reg value: %u (max CS = %d)\n",
   2736				cs, cdns_ctrl->caps2.max_banks);
   2737			return -EINVAL;
   2738		}
   2739
   2740		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
   2741			dev_err(cdns_ctrl->dev,
   2742				"CS %d already assigned\n", cs);
   2743			return -EINVAL;
   2744		}
   2745
   2746		cdns_chip->cs[i] = cs;
   2747	}
   2748
   2749	chip = &cdns_chip->chip;
   2750	chip->controller = &cdns_ctrl->controller;
   2751	nand_set_flash_node(chip, np);
   2752
   2753	mtd = nand_to_mtd(chip);
   2754	mtd->dev.parent = cdns_ctrl->dev;
   2755
   2756	/*
   2757	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
   2758	 * in the DT node, this entry will be overwritten in nand_scan_ident().
   2759	 */
   2760	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
   2761
   2762	ret = nand_scan(chip, cdns_chip->nsels);
   2763	if (ret) {
   2764		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
   2765		return ret;
   2766	}
   2767
   2768	ret = mtd_device_register(mtd, NULL, 0);
   2769	if (ret) {
   2770		dev_err(cdns_ctrl->dev,
   2771			"failed to register mtd device: %d\n", ret);
   2772		nand_cleanup(chip);
   2773		return ret;
   2774	}
   2775
   2776	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
   2777
   2778	return 0;
   2779}
   2780
   2781static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
   2782{
   2783	struct cdns_nand_chip *entry, *temp;
   2784	struct nand_chip *chip;
   2785	int ret;
   2786
   2787	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
   2788		chip = &entry->chip;
   2789		ret = mtd_device_unregister(nand_to_mtd(chip));
   2790		WARN_ON(ret);
   2791		nand_cleanup(chip);
   2792		list_del(&entry->node);
   2793	}
   2794}
   2795
   2796static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
   2797{
   2798	struct device_node *np = cdns_ctrl->dev->of_node;
   2799	struct device_node *nand_np;
   2800	int max_cs = cdns_ctrl->caps2.max_banks;
   2801	int nchips, ret;
   2802
   2803	nchips = of_get_child_count(np);
   2804
   2805	if (nchips > max_cs) {
   2806		dev_err(cdns_ctrl->dev,
   2807			"too many NAND chips: %d (max = %d CS)\n",
   2808			nchips, max_cs);
   2809		return -EINVAL;
   2810	}
   2811
   2812	for_each_child_of_node(np, nand_np) {
   2813		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
   2814		if (ret) {
   2815			of_node_put(nand_np);
   2816			cadence_nand_chips_cleanup(cdns_ctrl);
   2817			return ret;
   2818		}
   2819	}
   2820
   2821	return 0;
   2822}
   2823
   2824static void
   2825cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
   2826{
   2827	/* Disable interrupts. */
   2828	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
   2829}
   2830
   2831static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
   2832{
   2833	dma_cap_mask_t mask;
   2834	int ret;
   2835
   2836	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
   2837						  sizeof(*cdns_ctrl->cdma_desc),
   2838						  &cdns_ctrl->dma_cdma_desc,
   2839						  GFP_KERNEL);
   2840	if (!cdns_ctrl->dma_cdma_desc)
   2841		return -ENOMEM;
   2842
   2843	cdns_ctrl->buf_size = SZ_16K;
   2844	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
   2845	if (!cdns_ctrl->buf) {
   2846		ret = -ENOMEM;
   2847		goto free_buf_desc;
   2848	}
   2849
   2850	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
   2851			     IRQF_SHARED, "cadence-nand-controller",
   2852			     cdns_ctrl)) {
   2853		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
   2854		ret = -ENODEV;
   2855		goto free_buf;
   2856	}
   2857
   2858	spin_lock_init(&cdns_ctrl->irq_lock);
   2859	init_completion(&cdns_ctrl->complete);
   2860
   2861	ret = cadence_nand_hw_init(cdns_ctrl);
   2862	if (ret)
   2863		goto disable_irq;
   2864
   2865	dma_cap_zero(mask);
   2866	dma_cap_set(DMA_MEMCPY, mask);
   2867
   2868	if (cdns_ctrl->caps1->has_dma) {
   2869		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
   2870		if (!cdns_ctrl->dmac) {
   2871			dev_err(cdns_ctrl->dev,
   2872				"Unable to get a DMA channel\n");
   2873			ret = -EBUSY;
   2874			goto disable_irq;
   2875		}
   2876	}
   2877
   2878	nand_controller_init(&cdns_ctrl->controller);
   2879	INIT_LIST_HEAD(&cdns_ctrl->chips);
   2880
   2881	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
   2882	cdns_ctrl->curr_corr_str_idx = 0xFF;
   2883
   2884	ret = cadence_nand_chips_init(cdns_ctrl);
   2885	if (ret) {
   2886		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
   2887			ret);
   2888		goto dma_release_chnl;
   2889	}
   2890
   2891	kfree(cdns_ctrl->buf);
   2892	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
   2893	if (!cdns_ctrl->buf) {
   2894		ret = -ENOMEM;
   2895		goto dma_release_chnl;
   2896	}
   2897
   2898	return 0;
   2899
   2900dma_release_chnl:
   2901	if (cdns_ctrl->dmac)
   2902		dma_release_channel(cdns_ctrl->dmac);
   2903
   2904disable_irq:
   2905	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
   2906
   2907free_buf:
   2908	kfree(cdns_ctrl->buf);
   2909
   2910free_buf_desc:
   2911	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
   2912			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
   2913
   2914	return ret;
   2915}
   2916
   2917/* Driver exit point. */
   2918static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
   2919{
   2920	cadence_nand_chips_cleanup(cdns_ctrl);
   2921	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
   2922	kfree(cdns_ctrl->buf);
   2923	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
   2924			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
   2925
   2926	if (cdns_ctrl->dmac)
   2927		dma_release_channel(cdns_ctrl->dmac);
   2928}
   2929
   2930struct cadence_nand_dt {
   2931	struct cdns_nand_ctrl cdns_ctrl;
   2932	struct clk *clk;
   2933};
   2934
   2935static const struct cadence_nand_dt_devdata cadence_nand_default = {
   2936	.if_skew = 0,
   2937	.has_dma = 1,
   2938};
   2939
   2940static const struct of_device_id cadence_nand_dt_ids[] = {
   2941	{
   2942		.compatible = "cdns,hp-nfc",
   2943		.data = &cadence_nand_default
   2944	}, {}
   2945};
   2946
   2947MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
   2948
   2949static int cadence_nand_dt_probe(struct platform_device *ofdev)
   2950{
   2951	struct resource *res;
   2952	struct cadence_nand_dt *dt;
   2953	struct cdns_nand_ctrl *cdns_ctrl;
   2954	int ret;
   2955	const struct of_device_id *of_id;
   2956	const struct cadence_nand_dt_devdata *devdata;
   2957	u32 val;
   2958
   2959	of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
   2960	if (of_id) {
   2961		ofdev->id_entry = of_id->data;
   2962		devdata = of_id->data;
   2963	} else {
   2964		pr_err("Failed to find the right device id.\n");
   2965		return -ENOMEM;
   2966	}
   2967
   2968	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
   2969	if (!dt)
   2970		return -ENOMEM;
   2971
   2972	cdns_ctrl = &dt->cdns_ctrl;
   2973	cdns_ctrl->caps1 = devdata;
   2974
   2975	cdns_ctrl->dev = &ofdev->dev;
   2976	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
   2977	if (cdns_ctrl->irq < 0)
   2978		return cdns_ctrl->irq;
   2979
   2980	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
   2981
   2982	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
   2983	if (IS_ERR(cdns_ctrl->reg))
   2984		return PTR_ERR(cdns_ctrl->reg);
   2985
   2986	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
   2987	if (IS_ERR(cdns_ctrl->io.virt))
   2988		return PTR_ERR(cdns_ctrl->io.virt);
   2989	cdns_ctrl->io.dma = res->start;
   2990
   2991	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
   2992	if (IS_ERR(dt->clk))
   2993		return PTR_ERR(dt->clk);
   2994
   2995	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
   2996
   2997	ret = of_property_read_u32(ofdev->dev.of_node,
   2998				   "cdns,board-delay-ps", &val);
   2999	if (ret) {
   3000		val = 4830;
   3001		dev_info(cdns_ctrl->dev,
   3002			 "missing cdns,board-delay-ps property, %d was set\n",
   3003			 val);
   3004	}
   3005	cdns_ctrl->board_delay = val;
   3006
   3007	ret = cadence_nand_init(cdns_ctrl);
   3008	if (ret)
   3009		return ret;
   3010
   3011	platform_set_drvdata(ofdev, dt);
   3012	return 0;
   3013}
   3014
   3015static int cadence_nand_dt_remove(struct platform_device *ofdev)
   3016{
   3017	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
   3018
   3019	cadence_nand_remove(&dt->cdns_ctrl);
   3020
   3021	return 0;
   3022}
   3023
   3024static struct platform_driver cadence_nand_dt_driver = {
   3025	.probe		= cadence_nand_dt_probe,
   3026	.remove		= cadence_nand_dt_remove,
   3027	.driver		= {
   3028		.name	= "cadence-nand-controller",
   3029		.of_match_table = cadence_nand_dt_ids,
   3030	},
   3031};
   3032
   3033module_platform_driver(cadence_nand_dt_driver);
   3034
   3035MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
   3036MODULE_LICENSE("GPL v2");
   3037MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
   3038