cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fsmc_nand.c (31102B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * ST Microelectronics
      4 * Flexible Static Memory Controller (FSMC)
      5 * Driver for NAND portions
      6 *
      7 * Copyright © 2010 ST Microelectronics
      8 * Vipin Kumar <vipin.kumar@st.com>
      9 * Ashish Priyadarshi
     10 *
     11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
     12 *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
     13 *  Copyright © 2009 Alessandro Rubini
     14 */
     15
     16#include <linux/clk.h>
     17#include <linux/completion.h>
     18#include <linux/delay.h>
     19#include <linux/dmaengine.h>
     20#include <linux/dma-direction.h>
     21#include <linux/dma-mapping.h>
     22#include <linux/err.h>
     23#include <linux/init.h>
     24#include <linux/module.h>
     25#include <linux/resource.h>
     26#include <linux/sched.h>
     27#include <linux/types.h>
     28#include <linux/mtd/mtd.h>
     29#include <linux/mtd/nand-ecc-sw-hamming.h>
     30#include <linux/mtd/rawnand.h>
     31#include <linux/platform_device.h>
     32#include <linux/of.h>
     33#include <linux/mtd/partitions.h>
     34#include <linux/io.h>
     35#include <linux/slab.h>
     36#include <linux/amba/bus.h>
     37#include <mtd/mtd-abi.h>
     38
     39/* fsmc controller registers for NOR flash */
     40#define CTRL			0x0
     41	/* ctrl register definitions */
     42	#define BANK_ENABLE		BIT(0)
     43	#define MUXED			BIT(1)
     44	#define NOR_DEV			(2 << 2)
     45	#define WIDTH_16		BIT(4)
     46	#define RSTPWRDWN		BIT(6)
     47	#define WPROT			BIT(7)
     48	#define WRT_ENABLE		BIT(12)
     49	#define WAIT_ENB		BIT(13)
     50
     51#define CTRL_TIM		0x4
     52	/* ctrl_tim register definitions */
     53
     54#define FSMC_NOR_BANK_SZ	0x8
     55#define FSMC_NOR_REG_SIZE	0x40
     56
     57#define FSMC_NOR_REG(base, bank, reg)	((base) +			\
     58					 (FSMC_NOR_BANK_SZ * (bank)) +	\
     59					 (reg))
     60
     61/* fsmc controller registers for NAND flash */
     62#define FSMC_PC			0x00
     63	/* pc register definitions */
     64	#define FSMC_RESET		BIT(0)
     65	#define FSMC_WAITON		BIT(1)
     66	#define FSMC_ENABLE		BIT(2)
     67	#define FSMC_DEVTYPE_NAND	BIT(3)
     68	#define FSMC_DEVWID_16		BIT(4)
     69	#define FSMC_ECCEN		BIT(6)
     70	#define FSMC_ECCPLEN_256	BIT(7)
     71	#define FSMC_TCLR_SHIFT		(9)
     72	#define FSMC_TCLR_MASK		(0xF)
     73	#define FSMC_TAR_SHIFT		(13)
     74	#define FSMC_TAR_MASK		(0xF)
     75#define STS			0x04
     76	/* sts register definitions */
     77	#define FSMC_CODE_RDY		BIT(15)
     78#define COMM			0x08
     79	/* comm register definitions */
     80	#define FSMC_TSET_SHIFT		0
     81	#define FSMC_TSET_MASK		0xFF
     82	#define FSMC_TWAIT_SHIFT	8
     83	#define FSMC_TWAIT_MASK		0xFF
     84	#define FSMC_THOLD_SHIFT	16
     85	#define FSMC_THOLD_MASK		0xFF
     86	#define FSMC_THIZ_SHIFT		24
     87	#define FSMC_THIZ_MASK		0xFF
     88#define ATTRIB			0x0C
     89#define IOATA			0x10
     90#define ECC1			0x14
     91#define ECC2			0x18
     92#define ECC3			0x1C
     93#define FSMC_NAND_BANK_SZ	0x20
     94
     95#define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
     96
     97/*
     98 * According to SPEAr300 Reference Manual (RM0082)
     99 *  TOUDEL = 7ns (Output delay from the flip-flops to the board)
    100 *  TINDEL = 5ns (Input delay from the board to the flipflop)
    101 */
    102#define TOUTDEL	7000
    103#define TINDEL	5000
    104
    105struct fsmc_nand_timings {
    106	u8 tclr;
    107	u8 tar;
    108	u8 thiz;
    109	u8 thold;
    110	u8 twait;
    111	u8 tset;
    112};
    113
    114enum access_mode {
    115	USE_DMA_ACCESS = 1,
    116	USE_WORD_ACCESS,
    117};
    118
    119/**
    120 * struct fsmc_nand_data - structure for FSMC NAND device state
    121 *
    122 * @base:		Inherit from the nand_controller struct
    123 * @pid:		Part ID on the AMBA PrimeCell format
    124 * @nand:		Chip related info for a NAND flash.
    125 *
    126 * @bank:		Bank number for probed device.
    127 * @dev:		Parent device
    128 * @mode:		Access mode
    129 * @clk:		Clock structure for FSMC.
    130 *
    131 * @read_dma_chan:	DMA channel for read access
    132 * @write_dma_chan:	DMA channel for write access to NAND
    133 * @dma_access_complete: Completion structure
    134 *
    135 * @dev_timings:	NAND timings
    136 *
    137 * @data_pa:		NAND Physical port for Data.
    138 * @data_va:		NAND port for Data.
    139 * @cmd_va:		NAND port for Command.
    140 * @addr_va:		NAND port for Address.
    141 * @regs_va:		Registers base address for a given bank.
    142 */
    143struct fsmc_nand_data {
    144	struct nand_controller	base;
    145	u32			pid;
    146	struct nand_chip	nand;
    147
    148	unsigned int		bank;
    149	struct device		*dev;
    150	enum access_mode	mode;
    151	struct clk		*clk;
    152
    153	/* DMA related objects */
    154	struct dma_chan		*read_dma_chan;
    155	struct dma_chan		*write_dma_chan;
    156	struct completion	dma_access_complete;
    157
    158	struct fsmc_nand_timings *dev_timings;
    159
    160	dma_addr_t		data_pa;
    161	void __iomem		*data_va;
    162	void __iomem		*cmd_va;
    163	void __iomem		*addr_va;
    164	void __iomem		*regs_va;
    165};
    166
    167static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
    168				   struct mtd_oob_region *oobregion)
    169{
    170	struct nand_chip *chip = mtd_to_nand(mtd);
    171
    172	if (section >= chip->ecc.steps)
    173		return -ERANGE;
    174
    175	oobregion->offset = (section * 16) + 2;
    176	oobregion->length = 3;
    177
    178	return 0;
    179}
    180
    181static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
    182				    struct mtd_oob_region *oobregion)
    183{
    184	struct nand_chip *chip = mtd_to_nand(mtd);
    185
    186	if (section >= chip->ecc.steps)
    187		return -ERANGE;
    188
    189	oobregion->offset = (section * 16) + 8;
    190
    191	if (section < chip->ecc.steps - 1)
    192		oobregion->length = 8;
    193	else
    194		oobregion->length = mtd->oobsize - oobregion->offset;
    195
    196	return 0;
    197}
    198
    199static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
    200	.ecc = fsmc_ecc1_ooblayout_ecc,
    201	.free = fsmc_ecc1_ooblayout_free,
    202};
    203
    204/*
    205 * ECC placement definitions in oobfree type format.
    206 * There are 13 bytes of ecc for every 512 byte block and it has to be read
    207 * consecutively and immediately after the 512 byte data block for hardware to
    208 * generate the error bit offsets in 512 byte data.
    209 */
    210static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
    211				   struct mtd_oob_region *oobregion)
    212{
    213	struct nand_chip *chip = mtd_to_nand(mtd);
    214
    215	if (section >= chip->ecc.steps)
    216		return -ERANGE;
    217
    218	oobregion->length = chip->ecc.bytes;
    219
    220	if (!section && mtd->writesize <= 512)
    221		oobregion->offset = 0;
    222	else
    223		oobregion->offset = (section * 16) + 2;
    224
    225	return 0;
    226}
    227
    228static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
    229				    struct mtd_oob_region *oobregion)
    230{
    231	struct nand_chip *chip = mtd_to_nand(mtd);
    232
    233	if (section >= chip->ecc.steps)
    234		return -ERANGE;
    235
    236	oobregion->offset = (section * 16) + 15;
    237
    238	if (section < chip->ecc.steps - 1)
    239		oobregion->length = 3;
    240	else
    241		oobregion->length = mtd->oobsize - oobregion->offset;
    242
    243	return 0;
    244}
    245
    246static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
    247	.ecc = fsmc_ecc4_ooblayout_ecc,
    248	.free = fsmc_ecc4_ooblayout_free,
    249};
    250
    251static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
    252{
    253	return container_of(chip, struct fsmc_nand_data, nand);
    254}
    255
    256/*
    257 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
    258 *
    259 * This routine initializes timing parameters related to NAND memory access in
    260 * FSMC registers
    261 */
    262static void fsmc_nand_setup(struct fsmc_nand_data *host,
    263			    struct fsmc_nand_timings *tims)
    264{
    265	u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
    266	u32 tclr, tar, thiz, thold, twait, tset;
    267
    268	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
    269	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
    270	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
    271	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
    272	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
    273	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
    274
    275	if (host->nand.options & NAND_BUSWIDTH_16)
    276		value |= FSMC_DEVWID_16;
    277
    278	writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
    279	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
    280	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
    281}
    282
    283static int fsmc_calc_timings(struct fsmc_nand_data *host,
    284			     const struct nand_sdr_timings *sdrt,
    285			     struct fsmc_nand_timings *tims)
    286{
    287	unsigned long hclk = clk_get_rate(host->clk);
    288	unsigned long hclkn = NSEC_PER_SEC / hclk;
    289	u32 thiz, thold, twait, tset, twait_min;
    290
    291	if (sdrt->tRC_min < 30000)
    292		return -EOPNOTSUPP;
    293
    294	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
    295	if (tims->tar > FSMC_TAR_MASK)
    296		tims->tar = FSMC_TAR_MASK;
    297	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
    298	if (tims->tclr > FSMC_TCLR_MASK)
    299		tims->tclr = FSMC_TCLR_MASK;
    300
    301	thiz = sdrt->tCS_min - sdrt->tWP_min;
    302	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
    303
    304	thold = sdrt->tDH_min;
    305	if (thold < sdrt->tCH_min)
    306		thold = sdrt->tCH_min;
    307	if (thold < sdrt->tCLH_min)
    308		thold = sdrt->tCLH_min;
    309	if (thold < sdrt->tWH_min)
    310		thold = sdrt->tWH_min;
    311	if (thold < sdrt->tALH_min)
    312		thold = sdrt->tALH_min;
    313	if (thold < sdrt->tREH_min)
    314		thold = sdrt->tREH_min;
    315	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
    316	if (tims->thold == 0)
    317		tims->thold = 1;
    318	else if (tims->thold > FSMC_THOLD_MASK)
    319		tims->thold = FSMC_THOLD_MASK;
    320
    321	tset = max(sdrt->tCS_min - sdrt->tWP_min,
    322		   sdrt->tCEA_max - sdrt->tREA_max);
    323	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
    324	if (tims->tset == 0)
    325		tims->tset = 1;
    326	else if (tims->tset > FSMC_TSET_MASK)
    327		tims->tset = FSMC_TSET_MASK;
    328
    329	/*
    330	 * According to SPEAr300 Reference Manual (RM0082) which gives more
    331	 * information related to FSMSC timings than the SPEAr600 one (RM0305),
    332	 *   twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL
    333	 */
    334	twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000)
    335		    + TOUTDEL + TINDEL;
    336	twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min);
    337
    338	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
    339	if (tims->twait == 0)
    340		tims->twait = 1;
    341	else if (tims->twait > FSMC_TWAIT_MASK)
    342		tims->twait = FSMC_TWAIT_MASK;
    343
    344	return 0;
    345}
    346
    347static int fsmc_setup_interface(struct nand_chip *nand, int csline,
    348				const struct nand_interface_config *conf)
    349{
    350	struct fsmc_nand_data *host = nand_to_fsmc(nand);
    351	struct fsmc_nand_timings tims;
    352	const struct nand_sdr_timings *sdrt;
    353	int ret;
    354
    355	sdrt = nand_get_sdr_timings(conf);
    356	if (IS_ERR(sdrt))
    357		return PTR_ERR(sdrt);
    358
    359	ret = fsmc_calc_timings(host, sdrt, &tims);
    360	if (ret)
    361		return ret;
    362
    363	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
    364		return 0;
    365
    366	fsmc_nand_setup(host, &tims);
    367
    368	return 0;
    369}
    370
    371/*
    372 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
    373 */
    374static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
    375{
    376	struct fsmc_nand_data *host = nand_to_fsmc(chip);
    377
    378	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
    379		       host->regs_va + FSMC_PC);
    380	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
    381		       host->regs_va + FSMC_PC);
    382	writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
    383		       host->regs_va + FSMC_PC);
    384}
    385
    386/*
    387 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
    388 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
    389 * max of 8-bits)
    390 */
    391static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
    392				u8 *ecc)
    393{
    394	struct fsmc_nand_data *host = nand_to_fsmc(chip);
    395	u32 ecc_tmp;
    396	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
    397
    398	do {
    399		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
    400			break;
    401
    402		cond_resched();
    403	} while (!time_after_eq(jiffies, deadline));
    404
    405	if (time_after_eq(jiffies, deadline)) {
    406		dev_err(host->dev, "calculate ecc timed out\n");
    407		return -ETIMEDOUT;
    408	}
    409
    410	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
    411	ecc[0] = ecc_tmp;
    412	ecc[1] = ecc_tmp >> 8;
    413	ecc[2] = ecc_tmp >> 16;
    414	ecc[3] = ecc_tmp >> 24;
    415
    416	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
    417	ecc[4] = ecc_tmp;
    418	ecc[5] = ecc_tmp >> 8;
    419	ecc[6] = ecc_tmp >> 16;
    420	ecc[7] = ecc_tmp >> 24;
    421
    422	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
    423	ecc[8] = ecc_tmp;
    424	ecc[9] = ecc_tmp >> 8;
    425	ecc[10] = ecc_tmp >> 16;
    426	ecc[11] = ecc_tmp >> 24;
    427
    428	ecc_tmp = readl_relaxed(host->regs_va + STS);
    429	ecc[12] = ecc_tmp >> 16;
    430
    431	return 0;
    432}
    433
    434/*
    435 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
    436 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
    437 * max of 1-bit)
    438 */
    439static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
    440				u8 *ecc)
    441{
    442	struct fsmc_nand_data *host = nand_to_fsmc(chip);
    443	u32 ecc_tmp;
    444
    445	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
    446	ecc[0] = ecc_tmp;
    447	ecc[1] = ecc_tmp >> 8;
    448	ecc[2] = ecc_tmp >> 16;
    449
    450	return 0;
    451}
    452
    453static int fsmc_correct_ecc1(struct nand_chip *chip,
    454			     unsigned char *buf,
    455			     unsigned char *read_ecc,
    456			     unsigned char *calc_ecc)
    457{
    458	bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
    459
    460	return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc,
    461				      chip->ecc.size, sm_order);
    462}
    463
    464/* Count the number of 0's in buff upto a max of max_bits */
    465static int count_written_bits(u8 *buff, int size, int max_bits)
    466{
    467	int k, written_bits = 0;
    468
    469	for (k = 0; k < size; k++) {
    470		written_bits += hweight8(~buff[k]);
    471		if (written_bits > max_bits)
    472			break;
    473	}
    474
    475	return written_bits;
    476}
    477
    478static void dma_complete(void *param)
    479{
    480	struct fsmc_nand_data *host = param;
    481
    482	complete(&host->dma_access_complete);
    483}
    484
    485static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
    486		    enum dma_data_direction direction)
    487{
    488	struct dma_chan *chan;
    489	struct dma_device *dma_dev;
    490	struct dma_async_tx_descriptor *tx;
    491	dma_addr_t dma_dst, dma_src, dma_addr;
    492	dma_cookie_t cookie;
    493	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
    494	int ret;
    495	unsigned long time_left;
    496
    497	if (direction == DMA_TO_DEVICE)
    498		chan = host->write_dma_chan;
    499	else if (direction == DMA_FROM_DEVICE)
    500		chan = host->read_dma_chan;
    501	else
    502		return -EINVAL;
    503
    504	dma_dev = chan->device;
    505	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
    506
    507	if (direction == DMA_TO_DEVICE) {
    508		dma_src = dma_addr;
    509		dma_dst = host->data_pa;
    510	} else {
    511		dma_src = host->data_pa;
    512		dma_dst = dma_addr;
    513	}
    514
    515	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
    516			len, flags);
    517	if (!tx) {
    518		dev_err(host->dev, "device_prep_dma_memcpy error\n");
    519		ret = -EIO;
    520		goto unmap_dma;
    521	}
    522
    523	tx->callback = dma_complete;
    524	tx->callback_param = host;
    525	cookie = tx->tx_submit(tx);
    526
    527	ret = dma_submit_error(cookie);
    528	if (ret) {
    529		dev_err(host->dev, "dma_submit_error %d\n", cookie);
    530		goto unmap_dma;
    531	}
    532
    533	dma_async_issue_pending(chan);
    534
    535	time_left =
    536	wait_for_completion_timeout(&host->dma_access_complete,
    537				    msecs_to_jiffies(3000));
    538	if (time_left == 0) {
    539		dmaengine_terminate_all(chan);
    540		dev_err(host->dev, "wait_for_completion_timeout\n");
    541		ret = -ETIMEDOUT;
    542		goto unmap_dma;
    543	}
    544
    545	ret = 0;
    546
    547unmap_dma:
    548	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
    549
    550	return ret;
    551}
    552
    553/*
    554 * fsmc_write_buf - write buffer to chip
    555 * @host:	FSMC NAND controller
    556 * @buf:	data buffer
    557 * @len:	number of bytes to write
    558 */
    559static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
    560			   int len)
    561{
    562	int i;
    563
    564	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
    565	    IS_ALIGNED(len, sizeof(u32))) {
    566		u32 *p = (u32 *)buf;
    567
    568		len = len >> 2;
    569		for (i = 0; i < len; i++)
    570			writel_relaxed(p[i], host->data_va);
    571	} else {
    572		for (i = 0; i < len; i++)
    573			writeb_relaxed(buf[i], host->data_va);
    574	}
    575}
    576
    577/*
    578 * fsmc_read_buf - read chip data into buffer
    579 * @host:	FSMC NAND controller
    580 * @buf:	buffer to store date
    581 * @len:	number of bytes to read
    582 */
    583static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
    584{
    585	int i;
    586
    587	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
    588	    IS_ALIGNED(len, sizeof(u32))) {
    589		u32 *p = (u32 *)buf;
    590
    591		len = len >> 2;
    592		for (i = 0; i < len; i++)
    593			p[i] = readl_relaxed(host->data_va);
    594	} else {
    595		for (i = 0; i < len; i++)
    596			buf[i] = readb_relaxed(host->data_va);
    597	}
    598}
    599
    600/*
    601 * fsmc_read_buf_dma - read chip data into buffer
    602 * @host:	FSMC NAND controller
    603 * @buf:	buffer to store date
    604 * @len:	number of bytes to read
    605 */
    606static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
    607			      int len)
    608{
    609	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
    610}
    611
    612/*
    613 * fsmc_write_buf_dma - write buffer to chip
    614 * @host:	FSMC NAND controller
    615 * @buf:	data buffer
    616 * @len:	number of bytes to write
    617 */
    618static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
    619			       int len)
    620{
    621	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
    622}
    623
    624/*
    625 * fsmc_exec_op - hook called by the core to execute NAND operations
    626 *
    627 * This controller is simple enough and thus does not need to use the parser
    628 * provided by the core, instead, handle every situation here.
    629 */
    630static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
    631			bool check_only)
    632{
    633	struct fsmc_nand_data *host = nand_to_fsmc(chip);
    634	const struct nand_op_instr *instr = NULL;
    635	int ret = 0;
    636	unsigned int op_id;
    637	int i;
    638
    639	if (check_only)
    640		return 0;
    641
    642	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
    643
    644	for (op_id = 0; op_id < op->ninstrs; op_id++) {
    645		instr = &op->instrs[op_id];
    646
    647		nand_op_trace("  ", instr);
    648
    649		switch (instr->type) {
    650		case NAND_OP_CMD_INSTR:
    651			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
    652			break;
    653
    654		case NAND_OP_ADDR_INSTR:
    655			for (i = 0; i < instr->ctx.addr.naddrs; i++)
    656				writeb_relaxed(instr->ctx.addr.addrs[i],
    657					       host->addr_va);
    658			break;
    659
    660		case NAND_OP_DATA_IN_INSTR:
    661			if (host->mode == USE_DMA_ACCESS)
    662				fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
    663						  instr->ctx.data.len);
    664			else
    665				fsmc_read_buf(host, instr->ctx.data.buf.in,
    666					      instr->ctx.data.len);
    667			break;
    668
    669		case NAND_OP_DATA_OUT_INSTR:
    670			if (host->mode == USE_DMA_ACCESS)
    671				fsmc_write_buf_dma(host,
    672						   instr->ctx.data.buf.out,
    673						   instr->ctx.data.len);
    674			else
    675				fsmc_write_buf(host, instr->ctx.data.buf.out,
    676					       instr->ctx.data.len);
    677			break;
    678
    679		case NAND_OP_WAITRDY_INSTR:
    680			ret = nand_soft_waitrdy(chip,
    681						instr->ctx.waitrdy.timeout_ms);
    682			break;
    683		}
    684
    685		if (instr->delay_ns)
    686			ndelay(instr->delay_ns);
    687	}
    688
    689	return ret;
    690}
    691
    692/*
    693 * fsmc_read_page_hwecc
    694 * @chip:	nand chip info structure
    695 * @buf:	buffer to store read data
    696 * @oob_required:	caller expects OOB data read to chip->oob_poi
    697 * @page:	page number to read
    698 *
    699 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
    700 * performed in a strict sequence as follows:
    701 * data(512 byte) -> ecc(13 byte)
    702 * After this read, fsmc hardware generates and reports error data bits(up to a
    703 * max of 8 bits)
    704 */
    705static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
    706				int oob_required, int page)
    707{
    708	struct mtd_info *mtd = nand_to_mtd(chip);
    709	int i, j, s, stat, eccsize = chip->ecc.size;
    710	int eccbytes = chip->ecc.bytes;
    711	int eccsteps = chip->ecc.steps;
    712	u8 *p = buf;
    713	u8 *ecc_calc = chip->ecc.calc_buf;
    714	u8 *ecc_code = chip->ecc.code_buf;
    715	int off, len, ret, group = 0;
    716	/*
    717	 * ecc_oob is intentionally taken as u16. In 16bit devices, we
    718	 * end up reading 14 bytes (7 words) from oob. The local array is
    719	 * to maintain word alignment
    720	 */
    721	u16 ecc_oob[7];
    722	u8 *oob = (u8 *)&ecc_oob[0];
    723	unsigned int max_bitflips = 0;
    724
    725	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
    726		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
    727		chip->ecc.hwctl(chip, NAND_ECC_READ);
    728		ret = nand_read_data_op(chip, p, eccsize, false, false);
    729		if (ret)
    730			return ret;
    731
    732		for (j = 0; j < eccbytes;) {
    733			struct mtd_oob_region oobregion;
    734
    735			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
    736			if (ret)
    737				return ret;
    738
    739			off = oobregion.offset;
    740			len = oobregion.length;
    741
    742			/*
    743			 * length is intentionally kept a higher multiple of 2
    744			 * to read at least 13 bytes even in case of 16 bit NAND
    745			 * devices
    746			 */
    747			if (chip->options & NAND_BUSWIDTH_16)
    748				len = roundup(len, 2);
    749
    750			nand_read_oob_op(chip, page, off, oob + j, len);
    751			j += len;
    752		}
    753
    754		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
    755		chip->ecc.calculate(chip, p, &ecc_calc[i]);
    756
    757		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
    758		if (stat < 0) {
    759			mtd->ecc_stats.failed++;
    760		} else {
    761			mtd->ecc_stats.corrected += stat;
    762			max_bitflips = max_t(unsigned int, max_bitflips, stat);
    763		}
    764	}
    765
    766	return max_bitflips;
    767}
    768
    769/*
    770 * fsmc_bch8_correct_data
    771 * @mtd:	mtd info structure
    772 * @dat:	buffer of read data
    773 * @read_ecc:	ecc read from device spare area
    774 * @calc_ecc:	ecc calculated from read data
    775 *
    776 * calc_ecc is a 104 bit information containing maximum of 8 error
    777 * offset information of 13 bits each in 512 bytes of read data.
    778 */
    779static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
    780				  u8 *read_ecc, u8 *calc_ecc)
    781{
    782	struct fsmc_nand_data *host = nand_to_fsmc(chip);
    783	u32 err_idx[8];
    784	u32 num_err, i;
    785	u32 ecc1, ecc2, ecc3, ecc4;
    786
    787	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
    788
    789	/* no bit flipping */
    790	if (likely(num_err == 0))
    791		return 0;
    792
    793	/* too many errors */
    794	if (unlikely(num_err > 8)) {
    795		/*
    796		 * This is a temporary erase check. A newly erased page read
    797		 * would result in an ecc error because the oob data is also
    798		 * erased to FF and the calculated ecc for an FF data is not
    799		 * FF..FF.
    800		 * This is a workaround to skip performing correction in case
    801		 * data is FF..FF
    802		 *
    803		 * Logic:
    804		 * For every page, each bit written as 0 is counted until these
    805		 * number of bits are greater than 8 (the maximum correction
    806		 * capability of FSMC for each 512 + 13 bytes)
    807		 */
    808
    809		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
    810		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
    811
    812		if ((bits_ecc + bits_data) <= 8) {
    813			if (bits_data)
    814				memset(dat, 0xff, chip->ecc.size);
    815			return bits_data;
    816		}
    817
    818		return -EBADMSG;
    819	}
    820
    821	/*
    822	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
    823	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
    824	 *
    825	 * calc_ecc is a 104 bit information containing maximum of 8 error
    826	 * offset information of 13 bits each. calc_ecc is copied into a
    827	 * u64 array and error offset indexes are populated in err_idx
    828	 * array
    829	 */
    830	ecc1 = readl_relaxed(host->regs_va + ECC1);
    831	ecc2 = readl_relaxed(host->regs_va + ECC2);
    832	ecc3 = readl_relaxed(host->regs_va + ECC3);
    833	ecc4 = readl_relaxed(host->regs_va + STS);
    834
    835	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
    836	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
    837	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
    838	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
    839	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
    840	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
    841	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
    842	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
    843
    844	i = 0;
    845	while (num_err--) {
    846		err_idx[i] ^= 3;
    847
    848		if (err_idx[i] < chip->ecc.size * 8) {
    849			int err = err_idx[i];
    850
    851			dat[err >> 3] ^= BIT(err & 7);
    852			i++;
    853		}
    854	}
    855	return i;
    856}
    857
    858static bool filter(struct dma_chan *chan, void *slave)
    859{
    860	chan->private = slave;
    861	return true;
    862}
    863
    864static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
    865				     struct fsmc_nand_data *host,
    866				     struct nand_chip *nand)
    867{
    868	struct device_node *np = pdev->dev.of_node;
    869	u32 val;
    870	int ret;
    871
    872	nand->options = 0;
    873
    874	if (!of_property_read_u32(np, "bank-width", &val)) {
    875		if (val == 2) {
    876			nand->options |= NAND_BUSWIDTH_16;
    877		} else if (val != 1) {
    878			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
    879			return -EINVAL;
    880		}
    881	}
    882
    883	if (of_get_property(np, "nand-skip-bbtscan", NULL))
    884		nand->options |= NAND_SKIP_BBTSCAN;
    885
    886	host->dev_timings = devm_kzalloc(&pdev->dev,
    887					 sizeof(*host->dev_timings),
    888					 GFP_KERNEL);
    889	if (!host->dev_timings)
    890		return -ENOMEM;
    891
    892	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
    893					sizeof(*host->dev_timings));
    894	if (ret)
    895		host->dev_timings = NULL;
    896
    897	/* Set default NAND bank to 0 */
    898	host->bank = 0;
    899	if (!of_property_read_u32(np, "bank", &val)) {
    900		if (val > 3) {
    901			dev_err(&pdev->dev, "invalid bank %u\n", val);
    902			return -EINVAL;
    903		}
    904		host->bank = val;
    905	}
    906	return 0;
    907}
    908
    909static int fsmc_nand_attach_chip(struct nand_chip *nand)
    910{
    911	struct mtd_info *mtd = nand_to_mtd(nand);
    912	struct fsmc_nand_data *host = nand_to_fsmc(nand);
    913
    914	if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
    915		nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
    916
    917	if (!nand->ecc.size)
    918		nand->ecc.size = 512;
    919
    920	if (AMBA_REV_BITS(host->pid) >= 8) {
    921		nand->ecc.read_page = fsmc_read_page_hwecc;
    922		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
    923		nand->ecc.correct = fsmc_bch8_correct_data;
    924		nand->ecc.bytes = 13;
    925		nand->ecc.strength = 8;
    926	}
    927
    928	if (AMBA_REV_BITS(host->pid) >= 8) {
    929		switch (mtd->oobsize) {
    930		case 16:
    931		case 64:
    932		case 128:
    933		case 224:
    934		case 256:
    935			break;
    936		default:
    937			dev_warn(host->dev,
    938				 "No oob scheme defined for oobsize %d\n",
    939				 mtd->oobsize);
    940			return -EINVAL;
    941		}
    942
    943		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
    944
    945		return 0;
    946	}
    947
    948	switch (nand->ecc.engine_type) {
    949	case NAND_ECC_ENGINE_TYPE_ON_HOST:
    950		dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
    951		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
    952		nand->ecc.correct = fsmc_correct_ecc1;
    953		nand->ecc.hwctl = fsmc_enable_hwecc;
    954		nand->ecc.bytes = 3;
    955		nand->ecc.strength = 1;
    956		nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
    957		break;
    958
    959	case NAND_ECC_ENGINE_TYPE_SOFT:
    960		if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
    961			dev_info(host->dev,
    962				 "Using 4-bit SW BCH ECC scheme\n");
    963			break;
    964		}
    965		break;
    966
    967	case NAND_ECC_ENGINE_TYPE_ON_DIE:
    968		break;
    969
    970	default:
    971		dev_err(host->dev, "Unsupported ECC mode!\n");
    972		return -ENOTSUPP;
    973	}
    974
    975	/*
    976	 * Don't set layout for BCH4 SW ECC. This will be
    977	 * generated later during BCH initialization.
    978	 */
    979	if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
    980		switch (mtd->oobsize) {
    981		case 16:
    982		case 64:
    983		case 128:
    984			mtd_set_ooblayout(mtd,
    985					  &fsmc_ecc1_ooblayout_ops);
    986			break;
    987		default:
    988			dev_warn(host->dev,
    989				 "No oob scheme defined for oobsize %d\n",
    990				 mtd->oobsize);
    991			return -EINVAL;
    992		}
    993	}
    994
    995	return 0;
    996}
    997
    998static const struct nand_controller_ops fsmc_nand_controller_ops = {
    999	.attach_chip = fsmc_nand_attach_chip,
   1000	.exec_op = fsmc_exec_op,
   1001	.setup_interface = fsmc_setup_interface,
   1002};
   1003
   1004/**
   1005 * fsmc_nand_disable() - Disables the NAND bank
   1006 * @host: The instance to disable
   1007 */
   1008static void fsmc_nand_disable(struct fsmc_nand_data *host)
   1009{
   1010	u32 val;
   1011
   1012	val = readl(host->regs_va + FSMC_PC);
   1013	val &= ~FSMC_ENABLE;
   1014	writel(val, host->regs_va + FSMC_PC);
   1015}
   1016
   1017/*
   1018 * fsmc_nand_probe - Probe function
   1019 * @pdev:       platform device structure
   1020 */
   1021static int __init fsmc_nand_probe(struct platform_device *pdev)
   1022{
   1023	struct fsmc_nand_data *host;
   1024	struct mtd_info *mtd;
   1025	struct nand_chip *nand;
   1026	struct resource *res;
   1027	void __iomem *base;
   1028	dma_cap_mask_t mask;
   1029	int ret = 0;
   1030	u32 pid;
   1031	int i;
   1032
   1033	/* Allocate memory for the device structure (and zero it) */
   1034	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
   1035	if (!host)
   1036		return -ENOMEM;
   1037
   1038	nand = &host->nand;
   1039
   1040	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
   1041	if (ret)
   1042		return ret;
   1043
   1044	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
   1045	host->data_va = devm_ioremap_resource(&pdev->dev, res);
   1046	if (IS_ERR(host->data_va))
   1047		return PTR_ERR(host->data_va);
   1048
   1049	host->data_pa = (dma_addr_t)res->start;
   1050
   1051	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
   1052	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
   1053	if (IS_ERR(host->addr_va))
   1054		return PTR_ERR(host->addr_va);
   1055
   1056	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
   1057	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
   1058	if (IS_ERR(host->cmd_va))
   1059		return PTR_ERR(host->cmd_va);
   1060
   1061	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
   1062	base = devm_ioremap_resource(&pdev->dev, res);
   1063	if (IS_ERR(base))
   1064		return PTR_ERR(base);
   1065
   1066	host->regs_va = base + FSMC_NOR_REG_SIZE +
   1067		(host->bank * FSMC_NAND_BANK_SZ);
   1068
   1069	host->clk = devm_clk_get(&pdev->dev, NULL);
   1070	if (IS_ERR(host->clk)) {
   1071		dev_err(&pdev->dev, "failed to fetch block clock\n");
   1072		return PTR_ERR(host->clk);
   1073	}
   1074
   1075	ret = clk_prepare_enable(host->clk);
   1076	if (ret)
   1077		return ret;
   1078
   1079	/*
   1080	 * This device ID is actually a common AMBA ID as used on the
   1081	 * AMBA PrimeCell bus. However it is not a PrimeCell.
   1082	 */
   1083	for (pid = 0, i = 0; i < 4; i++)
   1084		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
   1085			255) << (i * 8);
   1086
   1087	host->pid = pid;
   1088
   1089	dev_info(&pdev->dev,
   1090		 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
   1091		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
   1092		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
   1093
   1094	host->dev = &pdev->dev;
   1095
   1096	if (host->mode == USE_DMA_ACCESS)
   1097		init_completion(&host->dma_access_complete);
   1098
   1099	/* Link all private pointers */
   1100	mtd = nand_to_mtd(&host->nand);
   1101	nand_set_flash_node(nand, pdev->dev.of_node);
   1102
   1103	mtd->dev.parent = &pdev->dev;
   1104
   1105	nand->badblockbits = 7;
   1106
   1107	if (host->mode == USE_DMA_ACCESS) {
   1108		dma_cap_zero(mask);
   1109		dma_cap_set(DMA_MEMCPY, mask);
   1110		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
   1111		if (!host->read_dma_chan) {
   1112			dev_err(&pdev->dev, "Unable to get read dma channel\n");
   1113			ret = -ENODEV;
   1114			goto disable_clk;
   1115		}
   1116		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
   1117		if (!host->write_dma_chan) {
   1118			dev_err(&pdev->dev, "Unable to get write dma channel\n");
   1119			ret = -ENODEV;
   1120			goto release_dma_read_chan;
   1121		}
   1122	}
   1123
   1124	if (host->dev_timings) {
   1125		fsmc_nand_setup(host, host->dev_timings);
   1126		nand->options |= NAND_KEEP_TIMINGS;
   1127	}
   1128
   1129	nand_controller_init(&host->base);
   1130	host->base.ops = &fsmc_nand_controller_ops;
   1131	nand->controller = &host->base;
   1132
   1133	/*
   1134	 * Scan to find existence of the device
   1135	 */
   1136	ret = nand_scan(nand, 1);
   1137	if (ret)
   1138		goto release_dma_write_chan;
   1139
   1140	mtd->name = "nand";
   1141	ret = mtd_device_register(mtd, NULL, 0);
   1142	if (ret)
   1143		goto cleanup_nand;
   1144
   1145	platform_set_drvdata(pdev, host);
   1146	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
   1147
   1148	return 0;
   1149
   1150cleanup_nand:
   1151	nand_cleanup(nand);
   1152release_dma_write_chan:
   1153	if (host->mode == USE_DMA_ACCESS)
   1154		dma_release_channel(host->write_dma_chan);
   1155release_dma_read_chan:
   1156	if (host->mode == USE_DMA_ACCESS)
   1157		dma_release_channel(host->read_dma_chan);
   1158disable_clk:
   1159	fsmc_nand_disable(host);
   1160	clk_disable_unprepare(host->clk);
   1161
   1162	return ret;
   1163}
   1164
   1165/*
   1166 * Clean up routine
   1167 */
   1168static int fsmc_nand_remove(struct platform_device *pdev)
   1169{
   1170	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
   1171
   1172	if (host) {
   1173		struct nand_chip *chip = &host->nand;
   1174		int ret;
   1175
   1176		ret = mtd_device_unregister(nand_to_mtd(chip));
   1177		WARN_ON(ret);
   1178		nand_cleanup(chip);
   1179		fsmc_nand_disable(host);
   1180
   1181		if (host->mode == USE_DMA_ACCESS) {
   1182			dma_release_channel(host->write_dma_chan);
   1183			dma_release_channel(host->read_dma_chan);
   1184		}
   1185		clk_disable_unprepare(host->clk);
   1186	}
   1187
   1188	return 0;
   1189}
   1190
   1191#ifdef CONFIG_PM_SLEEP
   1192static int fsmc_nand_suspend(struct device *dev)
   1193{
   1194	struct fsmc_nand_data *host = dev_get_drvdata(dev);
   1195
   1196	if (host)
   1197		clk_disable_unprepare(host->clk);
   1198
   1199	return 0;
   1200}
   1201
   1202static int fsmc_nand_resume(struct device *dev)
   1203{
   1204	struct fsmc_nand_data *host = dev_get_drvdata(dev);
   1205
   1206	if (host) {
   1207		clk_prepare_enable(host->clk);
   1208		if (host->dev_timings)
   1209			fsmc_nand_setup(host, host->dev_timings);
   1210		nand_reset(&host->nand, 0);
   1211	}
   1212
   1213	return 0;
   1214}
   1215#endif
   1216
   1217static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
   1218
   1219static const struct of_device_id fsmc_nand_id_table[] = {
   1220	{ .compatible = "st,spear600-fsmc-nand" },
   1221	{ .compatible = "stericsson,fsmc-nand" },
   1222	{}
   1223};
   1224MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
   1225
   1226static struct platform_driver fsmc_nand_driver = {
   1227	.remove = fsmc_nand_remove,
   1228	.driver = {
   1229		.name = "fsmc-nand",
   1230		.of_match_table = fsmc_nand_id_table,
   1231		.pm = &fsmc_nand_pm_ops,
   1232	},
   1233};
   1234
   1235module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
   1236
   1237MODULE_LICENSE("GPL v2");
   1238MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
   1239MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");