cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lpc32xx_mlc.c (25087B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Driver for NAND MLC Controller in LPC32xx
      4 *
      5 * Author: Roland Stigge <stigge@antcom.de>
      6 *
      7 * Copyright © 2011 WORK Microwave GmbH
      8 * Copyright © 2011, 2012 Roland Stigge
      9 *
     10 * NAND Flash Controller Operation:
     11 * - Read: Auto Decode
     12 * - Write: Auto Encode
     13 * - Tested Page Sizes: 2048, 4096
     14 */
     15
     16#include <linux/slab.h>
     17#include <linux/module.h>
     18#include <linux/platform_device.h>
     19#include <linux/mtd/mtd.h>
     20#include <linux/mtd/rawnand.h>
     21#include <linux/mtd/partitions.h>
     22#include <linux/clk.h>
     23#include <linux/err.h>
     24#include <linux/delay.h>
     25#include <linux/completion.h>
     26#include <linux/interrupt.h>
     27#include <linux/of.h>
     28#include <linux/of_gpio.h>
     29#include <linux/mtd/lpc32xx_mlc.h>
     30#include <linux/io.h>
     31#include <linux/mm.h>
     32#include <linux/dma-mapping.h>
     33#include <linux/dmaengine.h>
     34
     35#define DRV_NAME "lpc32xx_mlc"
     36
     37/**********************************************************************
     38* MLC NAND controller register offsets
     39**********************************************************************/
     40
     41#define MLC_BUFF(x)			(x + 0x00000)
     42#define MLC_DATA(x)			(x + 0x08000)
     43#define MLC_CMD(x)			(x + 0x10000)
     44#define MLC_ADDR(x)			(x + 0x10004)
     45#define MLC_ECC_ENC_REG(x)		(x + 0x10008)
     46#define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
     47#define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
     48#define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
     49#define MLC_RPR(x)			(x + 0x10018)
     50#define MLC_WPR(x)			(x + 0x1001C)
     51#define MLC_RUBP(x)			(x + 0x10020)
     52#define MLC_ROBP(x)			(x + 0x10024)
     53#define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
     54#define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
     55#define MLC_ICR(x)			(x + 0x10030)
     56#define MLC_TIME_REG(x)			(x + 0x10034)
     57#define MLC_IRQ_MR(x)			(x + 0x10038)
     58#define MLC_IRQ_SR(x)			(x + 0x1003C)
     59#define MLC_LOCK_PR(x)			(x + 0x10044)
     60#define MLC_ISR(x)			(x + 0x10048)
     61#define MLC_CEH(x)			(x + 0x1004C)
     62
     63/**********************************************************************
     64* MLC_CMD bit definitions
     65**********************************************************************/
     66#define MLCCMD_RESET			0xFF
     67
     68/**********************************************************************
     69* MLC_ICR bit definitions
     70**********************************************************************/
     71#define MLCICR_WPROT			(1 << 3)
     72#define MLCICR_LARGEBLOCK		(1 << 2)
     73#define MLCICR_LONGADDR			(1 << 1)
     74#define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
     75
     76/**********************************************************************
     77* MLC_TIME_REG bit definitions
     78**********************************************************************/
     79#define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
     80#define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
     81#define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
     82#define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
     83#define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
     84#define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
     85#define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
     86
     87/**********************************************************************
     88* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
     89**********************************************************************/
     90#define MLCIRQ_NAND_READY		(1 << 5)
     91#define MLCIRQ_CONTROLLER_READY		(1 << 4)
     92#define MLCIRQ_DECODE_FAILURE		(1 << 3)
     93#define MLCIRQ_DECODE_ERROR		(1 << 2)
     94#define MLCIRQ_ECC_READY		(1 << 1)
     95#define MLCIRQ_WRPROT_FAULT		(1 << 0)
     96
     97/**********************************************************************
     98* MLC_LOCK_PR bit definitions
     99**********************************************************************/
    100#define MLCLOCKPR_MAGIC			0xA25E
    101
    102/**********************************************************************
    103* MLC_ISR bit definitions
    104**********************************************************************/
    105#define MLCISR_DECODER_FAILURE		(1 << 6)
    106#define MLCISR_ERRORS			((1 << 4) | (1 << 5))
    107#define MLCISR_ERRORS_DETECTED		(1 << 3)
    108#define MLCISR_ECC_READY		(1 << 2)
    109#define MLCISR_CONTROLLER_READY		(1 << 1)
    110#define MLCISR_NAND_READY		(1 << 0)
    111
    112/**********************************************************************
    113* MLC_CEH bit definitions
    114**********************************************************************/
    115#define MLCCEH_NORMAL			(1 << 0)
    116
    117struct lpc32xx_nand_cfg_mlc {
    118	uint32_t tcea_delay;
    119	uint32_t busy_delay;
    120	uint32_t nand_ta;
    121	uint32_t rd_high;
    122	uint32_t rd_low;
    123	uint32_t wr_high;
    124	uint32_t wr_low;
    125	int wp_gpio;
    126	struct mtd_partition *parts;
    127	unsigned num_parts;
    128};
    129
    130static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
    131				 struct mtd_oob_region *oobregion)
    132{
    133	struct nand_chip *nand_chip = mtd_to_nand(mtd);
    134
    135	if (section >= nand_chip->ecc.steps)
    136		return -ERANGE;
    137
    138	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
    139	oobregion->length = nand_chip->ecc.bytes;
    140
    141	return 0;
    142}
    143
    144static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
    145				  struct mtd_oob_region *oobregion)
    146{
    147	struct nand_chip *nand_chip = mtd_to_nand(mtd);
    148
    149	if (section >= nand_chip->ecc.steps)
    150		return -ERANGE;
    151
    152	oobregion->offset = 16 * section;
    153	oobregion->length = 16 - nand_chip->ecc.bytes;
    154
    155	return 0;
    156}
    157
    158static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
    159	.ecc = lpc32xx_ooblayout_ecc,
    160	.free = lpc32xx_ooblayout_free,
    161};
    162
    163static struct nand_bbt_descr lpc32xx_nand_bbt = {
    164	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
    165		   NAND_BBT_WRITE,
    166	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
    167};
    168
    169static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
    170	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
    171		   NAND_BBT_WRITE,
    172	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
    173};
    174
    175struct lpc32xx_nand_host {
    176	struct platform_device	*pdev;
    177	struct nand_chip	nand_chip;
    178	struct lpc32xx_mlc_platform_data *pdata;
    179	struct clk		*clk;
    180	void __iomem		*io_base;
    181	int			irq;
    182	struct lpc32xx_nand_cfg_mlc	*ncfg;
    183	struct completion       comp_nand;
    184	struct completion       comp_controller;
    185	uint32_t llptr;
    186	/*
    187	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
    188	 */
    189	dma_addr_t		oob_buf_phy;
    190	/*
    191	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
    192	 */
    193	uint8_t			*oob_buf;
    194	/* Physical address of DMA base address */
    195	dma_addr_t		io_base_phy;
    196
    197	struct completion	comp_dma;
    198	struct dma_chan		*dma_chan;
    199	struct dma_slave_config	dma_slave_config;
    200	struct scatterlist	sgl;
    201	uint8_t			*dma_buf;
    202	uint8_t			*dummy_buf;
    203	int			mlcsubpages; /* number of 512bytes-subpages */
    204};
    205
    206/*
    207 * Activate/Deactivate DMA Operation:
    208 *
    209 * Using the PL080 DMA Controller for transferring the 512 byte subpages
    210 * instead of doing readl() / writel() in a loop slows it down significantly.
    211 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
    212 *
    213 * - readl() of 128 x 32 bits in a loop: ~20us
    214 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
    215 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
    216 *
    217 * This applies to the transfer itself. In the DMA case: only the
    218 * wait_for_completion() (DMA setup _not_ included).
    219 *
    220 * Note that the 512 bytes subpage transfer is done directly from/to a
    221 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
    222 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
    223 * controller transferring data between its internal buffer to/from the NAND
    224 * chip.)
    225 *
    226 * Therefore, using the PL080 DMA is disabled by default, for now.
    227 *
    228 */
    229static int use_dma;
    230
    231static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
    232{
    233	uint32_t clkrate, tmp;
    234
    235	/* Reset MLC controller */
    236	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
    237	udelay(1000);
    238
    239	/* Get base clock for MLC block */
    240	clkrate = clk_get_rate(host->clk);
    241	if (clkrate == 0)
    242		clkrate = 104000000;
    243
    244	/* Unlock MLC_ICR
    245	 * (among others, will be locked again automatically) */
    246	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
    247
    248	/* Configure MLC Controller: Large Block, 5 Byte Address */
    249	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
    250	writel(tmp, MLC_ICR(host->io_base));
    251
    252	/* Unlock MLC_TIME_REG
    253	 * (among others, will be locked again automatically) */
    254	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
    255
    256	/* Compute clock setup values, see LPC and NAND manual */
    257	tmp = 0;
    258	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
    259	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
    260	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
    261	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
    262	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
    263	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
    264	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
    265	writel(tmp, MLC_TIME_REG(host->io_base));
    266
    267	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
    268	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
    269			MLC_IRQ_MR(host->io_base));
    270
    271	/* Normal nCE operation: nCE controlled by controller */
    272	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
    273}
    274
    275/*
    276 * Hardware specific access to control lines
    277 */
    278static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
    279				  unsigned int ctrl)
    280{
    281	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
    282
    283	if (cmd != NAND_CMD_NONE) {
    284		if (ctrl & NAND_CLE)
    285			writel(cmd, MLC_CMD(host->io_base));
    286		else
    287			writel(cmd, MLC_ADDR(host->io_base));
    288	}
    289}
    290
    291/*
    292 * Read Device Ready (NAND device _and_ controller ready)
    293 */
    294static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
    295{
    296	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
    297
    298	if ((readb(MLC_ISR(host->io_base)) &
    299	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
    300	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
    301		return  1;
    302
    303	return 0;
    304}
    305
    306static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
    307{
    308	uint8_t sr;
    309
    310	/* Clear interrupt flag by reading status */
    311	sr = readb(MLC_IRQ_SR(host->io_base));
    312	if (sr & MLCIRQ_NAND_READY)
    313		complete(&host->comp_nand);
    314	if (sr & MLCIRQ_CONTROLLER_READY)
    315		complete(&host->comp_controller);
    316
    317	return IRQ_HANDLED;
    318}
    319
    320static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
    321{
    322	struct mtd_info *mtd = nand_to_mtd(chip);
    323	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    324
    325	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
    326		goto exit;
    327
    328	wait_for_completion(&host->comp_nand);
    329
    330	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
    331		/* Seems to be delayed sometimes by controller */
    332		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
    333		cpu_relax();
    334	}
    335
    336exit:
    337	return NAND_STATUS_READY;
    338}
    339
    340static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
    341{
    342	struct mtd_info *mtd = nand_to_mtd(chip);
    343	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    344
    345	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
    346		goto exit;
    347
    348	wait_for_completion(&host->comp_controller);
    349
    350	while (!(readb(MLC_ISR(host->io_base)) &
    351		 MLCISR_CONTROLLER_READY)) {
    352		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
    353		cpu_relax();
    354	}
    355
    356exit:
    357	return NAND_STATUS_READY;
    358}
    359
    360static int lpc32xx_waitfunc(struct nand_chip *chip)
    361{
    362	lpc32xx_waitfunc_nand(chip);
    363	lpc32xx_waitfunc_controller(chip);
    364
    365	return NAND_STATUS_READY;
    366}
    367
    368/*
    369 * Enable NAND write protect
    370 */
    371static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
    372{
    373	if (gpio_is_valid(host->ncfg->wp_gpio))
    374		gpio_set_value(host->ncfg->wp_gpio, 0);
    375}
    376
    377/*
    378 * Disable NAND write protect
    379 */
    380static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
    381{
    382	if (gpio_is_valid(host->ncfg->wp_gpio))
    383		gpio_set_value(host->ncfg->wp_gpio, 1);
    384}
    385
    386static void lpc32xx_dma_complete_func(void *completion)
    387{
    388	complete(completion);
    389}
    390
    391static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
    392			    enum dma_transfer_direction dir)
    393{
    394	struct nand_chip *chip = mtd_to_nand(mtd);
    395	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    396	struct dma_async_tx_descriptor *desc;
    397	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
    398	int res;
    399
    400	sg_init_one(&host->sgl, mem, len);
    401
    402	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
    403			 DMA_BIDIRECTIONAL);
    404	if (res != 1) {
    405		dev_err(mtd->dev.parent, "Failed to map sg list\n");
    406		return -ENXIO;
    407	}
    408	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
    409				       flags);
    410	if (!desc) {
    411		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
    412		goto out1;
    413	}
    414
    415	init_completion(&host->comp_dma);
    416	desc->callback = lpc32xx_dma_complete_func;
    417	desc->callback_param = &host->comp_dma;
    418
    419	dmaengine_submit(desc);
    420	dma_async_issue_pending(host->dma_chan);
    421
    422	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
    423
    424	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
    425		     DMA_BIDIRECTIONAL);
    426	return 0;
    427out1:
    428	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
    429		     DMA_BIDIRECTIONAL);
    430	return -ENXIO;
    431}
    432
    433static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
    434			     int oob_required, int page)
    435{
    436	struct mtd_info *mtd = nand_to_mtd(chip);
    437	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    438	int i, j;
    439	uint8_t *oobbuf = chip->oob_poi;
    440	uint32_t mlc_isr;
    441	int res;
    442	uint8_t *dma_buf;
    443	bool dma_mapped;
    444
    445	if ((void *)buf <= high_memory) {
    446		dma_buf = buf;
    447		dma_mapped = true;
    448	} else {
    449		dma_buf = host->dma_buf;
    450		dma_mapped = false;
    451	}
    452
    453	/* Writing Command and Address */
    454	nand_read_page_op(chip, page, 0, NULL, 0);
    455
    456	/* For all sub-pages */
    457	for (i = 0; i < host->mlcsubpages; i++) {
    458		/* Start Auto Decode Command */
    459		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
    460
    461		/* Wait for Controller Ready */
    462		lpc32xx_waitfunc_controller(chip);
    463
    464		/* Check ECC Error status */
    465		mlc_isr = readl(MLC_ISR(host->io_base));
    466		if (mlc_isr & MLCISR_DECODER_FAILURE) {
    467			mtd->ecc_stats.failed++;
    468			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
    469		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
    470			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
    471		}
    472
    473		/* Read 512 + 16 Bytes */
    474		if (use_dma) {
    475			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
    476					       DMA_DEV_TO_MEM);
    477			if (res)
    478				return res;
    479		} else {
    480			for (j = 0; j < (512 >> 2); j++) {
    481				*((uint32_t *)(buf)) =
    482					readl(MLC_BUFF(host->io_base));
    483				buf += 4;
    484			}
    485		}
    486		for (j = 0; j < (16 >> 2); j++) {
    487			*((uint32_t *)(oobbuf)) =
    488				readl(MLC_BUFF(host->io_base));
    489			oobbuf += 4;
    490		}
    491	}
    492
    493	if (use_dma && !dma_mapped)
    494		memcpy(buf, dma_buf, mtd->writesize);
    495
    496	return 0;
    497}
    498
    499static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
    500				       const uint8_t *buf, int oob_required,
    501				       int page)
    502{
    503	struct mtd_info *mtd = nand_to_mtd(chip);
    504	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    505	const uint8_t *oobbuf = chip->oob_poi;
    506	uint8_t *dma_buf = (uint8_t *)buf;
    507	int res;
    508	int i, j;
    509
    510	if (use_dma && (void *)buf >= high_memory) {
    511		dma_buf = host->dma_buf;
    512		memcpy(dma_buf, buf, mtd->writesize);
    513	}
    514
    515	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
    516
    517	for (i = 0; i < host->mlcsubpages; i++) {
    518		/* Start Encode */
    519		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
    520
    521		/* Write 512 + 6 Bytes to Buffer */
    522		if (use_dma) {
    523			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
    524					       DMA_MEM_TO_DEV);
    525			if (res)
    526				return res;
    527		} else {
    528			for (j = 0; j < (512 >> 2); j++) {
    529				writel(*((uint32_t *)(buf)),
    530				       MLC_BUFF(host->io_base));
    531				buf += 4;
    532			}
    533		}
    534		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
    535		oobbuf += 4;
    536		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
    537		oobbuf += 12;
    538
    539		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
    540		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
    541
    542		/* Wait for Controller Ready */
    543		lpc32xx_waitfunc_controller(chip);
    544	}
    545
    546	return nand_prog_page_end_op(chip);
    547}
    548
    549static int lpc32xx_read_oob(struct nand_chip *chip, int page)
    550{
    551	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    552
    553	/* Read whole page - necessary with MLC controller! */
    554	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
    555
    556	return 0;
    557}
    558
    559static int lpc32xx_write_oob(struct nand_chip *chip, int page)
    560{
    561	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
    562	return 0;
    563}
    564
    565/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
    566static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
    567{
    568	/* Always enabled! */
    569}
    570
    571static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
    572{
    573	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
    574	dma_cap_mask_t mask;
    575
    576	if (!host->pdata || !host->pdata->dma_filter) {
    577		dev_err(mtd->dev.parent, "no DMA platform data\n");
    578		return -ENOENT;
    579	}
    580
    581	dma_cap_zero(mask);
    582	dma_cap_set(DMA_SLAVE, mask);
    583	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
    584					     "nand-mlc");
    585	if (!host->dma_chan) {
    586		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
    587		return -EBUSY;
    588	}
    589
    590	/*
    591	 * Set direction to a sensible value even if the dmaengine driver
    592	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
    593	 * driver criticizes it as "alien transfer direction".
    594	 */
    595	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
    596	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    597	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    598	host->dma_slave_config.src_maxburst = 128;
    599	host->dma_slave_config.dst_maxburst = 128;
    600	/* DMA controller does flow control: */
    601	host->dma_slave_config.device_fc = false;
    602	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
    603	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
    604	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
    605		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
    606		goto out1;
    607	}
    608
    609	return 0;
    610out1:
    611	dma_release_channel(host->dma_chan);
    612	return -ENXIO;
    613}
    614
    615static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
    616{
    617	struct lpc32xx_nand_cfg_mlc *ncfg;
    618	struct device_node *np = dev->of_node;
    619
    620	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
    621	if (!ncfg)
    622		return NULL;
    623
    624	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
    625	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
    626	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
    627	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
    628	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
    629	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
    630	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
    631
    632	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
    633	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
    634	    !ncfg->wr_low) {
    635		dev_err(dev, "chip parameters not specified correctly\n");
    636		return NULL;
    637	}
    638
    639	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
    640
    641	return ncfg;
    642}
    643
    644static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
    645{
    646	struct mtd_info *mtd = nand_to_mtd(chip);
    647	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
    648	struct device *dev = &host->pdev->dev;
    649
    650	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
    651		return 0;
    652
    653	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
    654	if (!host->dma_buf)
    655		return -ENOMEM;
    656
    657	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
    658	if (!host->dummy_buf)
    659		return -ENOMEM;
    660
    661	chip->ecc.size = 512;
    662	chip->ecc.hwctl = lpc32xx_ecc_enable;
    663	chip->ecc.read_page_raw = lpc32xx_read_page;
    664	chip->ecc.read_page = lpc32xx_read_page;
    665	chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
    666	chip->ecc.write_page = lpc32xx_write_page_lowlevel;
    667	chip->ecc.write_oob = lpc32xx_write_oob;
    668	chip->ecc.read_oob = lpc32xx_read_oob;
    669	chip->ecc.strength = 4;
    670	chip->ecc.bytes = 10;
    671
    672	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
    673	host->mlcsubpages = mtd->writesize / 512;
    674
    675	return 0;
    676}
    677
    678static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
    679	.attach_chip = lpc32xx_nand_attach_chip,
    680};
    681
    682/*
    683 * Probe for NAND controller
    684 */
    685static int lpc32xx_nand_probe(struct platform_device *pdev)
    686{
    687	struct lpc32xx_nand_host *host;
    688	struct mtd_info *mtd;
    689	struct nand_chip *nand_chip;
    690	struct resource *rc;
    691	int res;
    692
    693	/* Allocate memory for the device structure (and zero it) */
    694	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
    695	if (!host)
    696		return -ENOMEM;
    697
    698	host->pdev = pdev;
    699
    700	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    701	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
    702	if (IS_ERR(host->io_base))
    703		return PTR_ERR(host->io_base);
    704
    705	host->io_base_phy = rc->start;
    706
    707	nand_chip = &host->nand_chip;
    708	mtd = nand_to_mtd(nand_chip);
    709	if (pdev->dev.of_node)
    710		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
    711	if (!host->ncfg) {
    712		dev_err(&pdev->dev,
    713			"Missing or bad NAND config from device tree\n");
    714		return -ENOENT;
    715	}
    716	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
    717		return -EPROBE_DEFER;
    718	if (gpio_is_valid(host->ncfg->wp_gpio) &&
    719			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
    720		dev_err(&pdev->dev, "GPIO not available\n");
    721		return -EBUSY;
    722	}
    723	lpc32xx_wp_disable(host);
    724
    725	host->pdata = dev_get_platdata(&pdev->dev);
    726
    727	/* link the private data structures */
    728	nand_set_controller_data(nand_chip, host);
    729	nand_set_flash_node(nand_chip, pdev->dev.of_node);
    730	mtd->dev.parent = &pdev->dev;
    731
    732	/* Get NAND clock */
    733	host->clk = clk_get(&pdev->dev, NULL);
    734	if (IS_ERR(host->clk)) {
    735		dev_err(&pdev->dev, "Clock initialization failure\n");
    736		res = -ENOENT;
    737		goto free_gpio;
    738	}
    739	res = clk_prepare_enable(host->clk);
    740	if (res)
    741		goto put_clk;
    742
    743	nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
    744	nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
    745	nand_chip->legacy.chip_delay = 25; /* us */
    746	nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
    747	nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
    748
    749	/* Init NAND controller */
    750	lpc32xx_nand_setup(host);
    751
    752	platform_set_drvdata(pdev, host);
    753
    754	/* Initialize function pointers */
    755	nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
    756
    757	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
    758	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
    759	nand_chip->bbt_td = &lpc32xx_nand_bbt;
    760	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
    761
    762	if (use_dma) {
    763		res = lpc32xx_dma_setup(host);
    764		if (res) {
    765			res = -EIO;
    766			goto unprepare_clk;
    767		}
    768	}
    769
    770	/* initially clear interrupt status */
    771	readb(MLC_IRQ_SR(host->io_base));
    772
    773	init_completion(&host->comp_nand);
    774	init_completion(&host->comp_controller);
    775
    776	host->irq = platform_get_irq(pdev, 0);
    777	if (host->irq < 0) {
    778		res = -EINVAL;
    779		goto release_dma_chan;
    780	}
    781
    782	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
    783			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
    784		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
    785		res = -ENXIO;
    786		goto release_dma_chan;
    787	}
    788
    789	/*
    790	 * Scan to find existence of the device and get the type of NAND device:
    791	 * SMALL block or LARGE block.
    792	 */
    793	nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
    794	res = nand_scan(nand_chip, 1);
    795	if (res)
    796		goto free_irq;
    797
    798	mtd->name = DRV_NAME;
    799
    800	res = mtd_device_register(mtd, host->ncfg->parts,
    801				  host->ncfg->num_parts);
    802	if (res)
    803		goto cleanup_nand;
    804
    805	return 0;
    806
    807cleanup_nand:
    808	nand_cleanup(nand_chip);
    809free_irq:
    810	free_irq(host->irq, host);
    811release_dma_chan:
    812	if (use_dma)
    813		dma_release_channel(host->dma_chan);
    814unprepare_clk:
    815	clk_disable_unprepare(host->clk);
    816put_clk:
    817	clk_put(host->clk);
    818free_gpio:
    819	lpc32xx_wp_enable(host);
    820	gpio_free(host->ncfg->wp_gpio);
    821
    822	return res;
    823}
    824
    825/*
    826 * Remove NAND device
    827 */
    828static int lpc32xx_nand_remove(struct platform_device *pdev)
    829{
    830	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
    831	struct nand_chip *chip = &host->nand_chip;
    832	int ret;
    833
    834	ret = mtd_device_unregister(nand_to_mtd(chip));
    835	WARN_ON(ret);
    836	nand_cleanup(chip);
    837
    838	free_irq(host->irq, host);
    839	if (use_dma)
    840		dma_release_channel(host->dma_chan);
    841
    842	clk_disable_unprepare(host->clk);
    843	clk_put(host->clk);
    844
    845	lpc32xx_wp_enable(host);
    846	gpio_free(host->ncfg->wp_gpio);
    847
    848	return 0;
    849}
    850
    851#ifdef CONFIG_PM
    852static int lpc32xx_nand_resume(struct platform_device *pdev)
    853{
    854	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
    855	int ret;
    856
    857	/* Re-enable NAND clock */
    858	ret = clk_prepare_enable(host->clk);
    859	if (ret)
    860		return ret;
    861
    862	/* Fresh init of NAND controller */
    863	lpc32xx_nand_setup(host);
    864
    865	/* Disable write protect */
    866	lpc32xx_wp_disable(host);
    867
    868	return 0;
    869}
    870
    871static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
    872{
    873	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
    874
    875	/* Enable write protect for safety */
    876	lpc32xx_wp_enable(host);
    877
    878	/* Disable clock */
    879	clk_disable_unprepare(host->clk);
    880	return 0;
    881}
    882
    883#else
    884#define lpc32xx_nand_resume NULL
    885#define lpc32xx_nand_suspend NULL
    886#endif
    887
    888static const struct of_device_id lpc32xx_nand_match[] = {
    889	{ .compatible = "nxp,lpc3220-mlc" },
    890	{ /* sentinel */ },
    891};
    892MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
    893
    894static struct platform_driver lpc32xx_nand_driver = {
    895	.probe		= lpc32xx_nand_probe,
    896	.remove		= lpc32xx_nand_remove,
    897	.resume		= lpc32xx_nand_resume,
    898	.suspend	= lpc32xx_nand_suspend,
    899	.driver		= {
    900		.name	= DRV_NAME,
    901		.of_match_table = lpc32xx_nand_match,
    902	},
    903};
    904
    905module_platform_driver(lpc32xx_nand_driver);
    906
    907MODULE_LICENSE("GPL");
    908MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
    909MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");