cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nand_micron.c (15811B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2017 Free Electrons
      4 * Copyright (C) 2017 NextThing Co
      5 *
      6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
      7 */
      8
      9#include <linux/slab.h>
     10
     11#include "internals.h"
     12
     13/*
     14 * Special Micron status bit 3 indicates that the block has been
     15 * corrected by on-die ECC and should be rewritten.
     16 */
     17#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
     18
     19/*
     20 * On chips with 8-bit ECC and additional bit can be used to distinguish
     21 * cases where a errors were corrected without needing a rewrite
     22 *
     23 * Bit 4 Bit 3 Bit 0 Description
     24 * ----- ----- ----- -----------
     25 * 0     0     0     No Errors
     26 * 0     0     1     Multiple uncorrected errors
     27 * 0     1     0     4 - 6 errors corrected, recommend rewrite
     28 * 0     1     1     Reserved
     29 * 1     0     0     1 - 3 errors corrected
     30 * 1     0     1     Reserved
     31 * 1     1     0     7 - 8 errors corrected, recommend rewrite
     32 */
     33#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
     34#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
     35#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
     36#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
     37#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
     38
     39struct nand_onfi_vendor_micron {
     40	u8 two_plane_read;
     41	u8 read_cache;
     42	u8 read_unique_id;
     43	u8 dq_imped;
     44	u8 dq_imped_num_settings;
     45	u8 dq_imped_feat_addr;
     46	u8 rb_pulldown_strength;
     47	u8 rb_pulldown_strength_feat_addr;
     48	u8 rb_pulldown_strength_num_settings;
     49	u8 otp_mode;
     50	u8 otp_page_start;
     51	u8 otp_data_prot_addr;
     52	u8 otp_num_pages;
     53	u8 otp_feat_addr;
     54	u8 read_retry_options;
     55	u8 reserved[72];
     56	u8 param_revision;
     57} __packed;
     58
     59struct micron_on_die_ecc {
     60	bool forced;
     61	bool enabled;
     62	void *rawbuf;
     63};
     64
     65struct micron_nand {
     66	struct micron_on_die_ecc ecc;
     67};
     68
     69static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
     70{
     71	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
     72
     73	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
     74}
     75
     76/*
     77 * Configure chip properties from Micron vendor-specific ONFI table
     78 */
     79static int micron_nand_onfi_init(struct nand_chip *chip)
     80{
     81	struct nand_parameters *p = &chip->parameters;
     82
     83	if (p->onfi) {
     84		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
     85
     86		chip->read_retries = micron->read_retry_options;
     87		chip->ops.setup_read_retry = micron_nand_setup_read_retry;
     88	}
     89
     90	if (p->supports_set_get_features) {
     91		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
     92		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
     93		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
     94		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
     95	}
     96
     97	return 0;
     98}
     99
    100static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
    101					      int section,
    102					      struct mtd_oob_region *oobregion)
    103{
    104	if (section >= 4)
    105		return -ERANGE;
    106
    107	oobregion->offset = (section * 16) + 8;
    108	oobregion->length = 8;
    109
    110	return 0;
    111}
    112
    113static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
    114					       int section,
    115					       struct mtd_oob_region *oobregion)
    116{
    117	if (section >= 4)
    118		return -ERANGE;
    119
    120	oobregion->offset = (section * 16) + 2;
    121	oobregion->length = 6;
    122
    123	return 0;
    124}
    125
    126static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
    127	.ecc = micron_nand_on_die_4_ooblayout_ecc,
    128	.free = micron_nand_on_die_4_ooblayout_free,
    129};
    130
    131static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
    132					      int section,
    133					      struct mtd_oob_region *oobregion)
    134{
    135	struct nand_chip *chip = mtd_to_nand(mtd);
    136
    137	if (section)
    138		return -ERANGE;
    139
    140	oobregion->offset = mtd->oobsize - chip->ecc.total;
    141	oobregion->length = chip->ecc.total;
    142
    143	return 0;
    144}
    145
    146static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
    147					       int section,
    148					       struct mtd_oob_region *oobregion)
    149{
    150	struct nand_chip *chip = mtd_to_nand(mtd);
    151
    152	if (section)
    153		return -ERANGE;
    154
    155	oobregion->offset = 2;
    156	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
    157
    158	return 0;
    159}
    160
    161static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
    162	.ecc = micron_nand_on_die_8_ooblayout_ecc,
    163	.free = micron_nand_on_die_8_ooblayout_free,
    164};
    165
    166static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
    167{
    168	struct micron_nand *micron = nand_get_manufacturer_data(chip);
    169	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
    170	int ret;
    171
    172	if (micron->ecc.forced)
    173		return 0;
    174
    175	if (micron->ecc.enabled == enable)
    176		return 0;
    177
    178	if (enable)
    179		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
    180
    181	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
    182	if (!ret)
    183		micron->ecc.enabled = enable;
    184
    185	return ret;
    186}
    187
    188static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
    189					   void *buf, int page,
    190					   int oob_required)
    191{
    192	struct micron_nand *micron = nand_get_manufacturer_data(chip);
    193	struct mtd_info *mtd = nand_to_mtd(chip);
    194	unsigned int step, max_bitflips = 0;
    195	bool use_datain = false;
    196	int ret;
    197
    198	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
    199		if (status & NAND_STATUS_FAIL)
    200			mtd->ecc_stats.failed++;
    201
    202		return 0;
    203	}
    204
    205	/*
    206	 * The internal ECC doesn't tell us the number of bitflips that have
    207	 * been corrected, but tells us if it recommends to rewrite the block.
    208	 * If it's the case, we need to read the page in raw mode and compare
    209	 * its content to the corrected version to extract the actual number of
    210	 * bitflips.
    211	 * But before we do that, we must make sure we have all OOB bytes read
    212	 * in non-raw mode, even if the user did not request those bytes.
    213	 */
    214	if (!oob_required) {
    215		/*
    216		 * We first check which operation is supported by the controller
    217		 * before running it. This trick makes it possible to support
    218		 * all controllers, even the most constraints, without almost
    219		 * any performance hit.
    220		 *
    221		 * TODO: could be enhanced to avoid repeating the same check
    222		 * over and over in the fast path.
    223		 */
    224		if (!nand_has_exec_op(chip) ||
    225		    !nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
    226				       true))
    227			use_datain = true;
    228
    229		if (use_datain)
    230			ret = nand_read_data_op(chip, chip->oob_poi,
    231						mtd->oobsize, false, false);
    232		else
    233			ret = nand_change_read_column_op(chip, mtd->writesize,
    234							 chip->oob_poi,
    235							 mtd->oobsize, false);
    236		if (ret)
    237			return ret;
    238	}
    239
    240	micron_nand_on_die_ecc_setup(chip, false);
    241
    242	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
    243				mtd->writesize + mtd->oobsize);
    244	if (ret)
    245		return ret;
    246
    247	for (step = 0; step < chip->ecc.steps; step++) {
    248		unsigned int offs, i, nbitflips = 0;
    249		u8 *rawbuf, *corrbuf;
    250
    251		offs = step * chip->ecc.size;
    252		rawbuf = micron->ecc.rawbuf + offs;
    253		corrbuf = buf + offs;
    254
    255		for (i = 0; i < chip->ecc.size; i++)
    256			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
    257
    258		offs = (step * 16) + 4;
    259		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
    260		corrbuf = chip->oob_poi + offs;
    261
    262		for (i = 0; i < chip->ecc.bytes + 4; i++)
    263			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
    264
    265		if (WARN_ON(nbitflips > chip->ecc.strength))
    266			return -EINVAL;
    267
    268		max_bitflips = max(nbitflips, max_bitflips);
    269		mtd->ecc_stats.corrected += nbitflips;
    270	}
    271
    272	return max_bitflips;
    273}
    274
    275static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
    276{
    277	struct mtd_info *mtd = nand_to_mtd(chip);
    278
    279	/*
    280	 * With 8/512 we have more information but still don't know precisely
    281	 * how many bit-flips were seen.
    282	 */
    283	switch (status & NAND_ECC_STATUS_MASK) {
    284	case NAND_ECC_STATUS_UNCORRECTABLE:
    285		mtd->ecc_stats.failed++;
    286		return 0;
    287	case NAND_ECC_STATUS_1_3_CORRECTED:
    288		mtd->ecc_stats.corrected += 3;
    289		return 3;
    290	case NAND_ECC_STATUS_4_6_CORRECTED:
    291		mtd->ecc_stats.corrected += 6;
    292		/* rewrite recommended */
    293		return 6;
    294	case NAND_ECC_STATUS_7_8_CORRECTED:
    295		mtd->ecc_stats.corrected += 8;
    296		/* rewrite recommended */
    297		return 8;
    298	default:
    299		return 0;
    300	}
    301}
    302
    303static int
    304micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
    305				 int oob_required, int page)
    306{
    307	struct mtd_info *mtd = nand_to_mtd(chip);
    308	bool use_datain = false;
    309	u8 status;
    310	int ret, max_bitflips = 0;
    311
    312	ret = micron_nand_on_die_ecc_setup(chip, true);
    313	if (ret)
    314		return ret;
    315
    316	ret = nand_read_page_op(chip, page, 0, NULL, 0);
    317	if (ret)
    318		goto out;
    319
    320	ret = nand_status_op(chip, &status);
    321	if (ret)
    322		goto out;
    323
    324	/*
    325	 * We first check which operation is supported by the controller before
    326	 * running it. This trick makes it possible to support all controllers,
    327	 * even the most constraints, without almost any performance hit.
    328	 *
    329	 * TODO: could be enhanced to avoid repeating the same check over and
    330	 * over in the fast path.
    331	 */
    332	if (!nand_has_exec_op(chip) ||
    333	    !nand_read_data_op(chip, buf, mtd->writesize, false, true))
    334		use_datain = true;
    335
    336	if (use_datain) {
    337		ret = nand_exit_status_op(chip);
    338		if (ret)
    339			goto out;
    340
    341		ret = nand_read_data_op(chip, buf, mtd->writesize, false,
    342					false);
    343		if (!ret && oob_required)
    344			ret = nand_read_data_op(chip, chip->oob_poi,
    345						mtd->oobsize, false, false);
    346	} else {
    347		ret = nand_change_read_column_op(chip, 0, buf, mtd->writesize,
    348						 false);
    349		if (!ret && oob_required)
    350			ret = nand_change_read_column_op(chip, mtd->writesize,
    351							 chip->oob_poi,
    352							 mtd->oobsize, false);
    353	}
    354
    355	if (chip->ecc.strength == 4)
    356		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
    357							       buf, page,
    358							       oob_required);
    359	else
    360		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
    361
    362out:
    363	micron_nand_on_die_ecc_setup(chip, false);
    364
    365	return ret ? ret : max_bitflips;
    366}
    367
    368static int
    369micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
    370				  int oob_required, int page)
    371{
    372	int ret;
    373
    374	ret = micron_nand_on_die_ecc_setup(chip, true);
    375	if (ret)
    376		return ret;
    377
    378	ret = nand_write_page_raw(chip, buf, oob_required, page);
    379	micron_nand_on_die_ecc_setup(chip, false);
    380
    381	return ret;
    382}
    383
    384enum {
    385	/* The NAND flash doesn't support on-die ECC */
    386	MICRON_ON_DIE_UNSUPPORTED,
    387
    388	/*
    389	 * The NAND flash supports on-die ECC and it can be
    390	 * enabled/disabled by a set features command.
    391	 */
    392	MICRON_ON_DIE_SUPPORTED,
    393
    394	/*
    395	 * The NAND flash supports on-die ECC, and it cannot be
    396	 * disabled.
    397	 */
    398	MICRON_ON_DIE_MANDATORY,
    399};
    400
    401#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
    402#define MICRON_ID_ECC_ENABLED		BIT(7)
    403
    404/*
    405 * Try to detect if the NAND support on-die ECC. To do this, we enable
    406 * the feature, and read back if it has been enabled as expected. We
    407 * also check if it can be disabled, because some Micron NANDs do not
    408 * allow disabling the on-die ECC and we don't support such NANDs for
    409 * now.
    410 *
    411 * This function also has the side effect of disabling on-die ECC if
    412 * it had been left enabled by the firmware/bootloader.
    413 */
    414static int micron_supports_on_die_ecc(struct nand_chip *chip)
    415{
    416	const struct nand_ecc_props *requirements =
    417		nanddev_get_ecc_requirements(&chip->base);
    418	u8 id[5];
    419	int ret;
    420
    421	if (!chip->parameters.onfi)
    422		return MICRON_ON_DIE_UNSUPPORTED;
    423
    424	if (nanddev_bits_per_cell(&chip->base) != 1)
    425		return MICRON_ON_DIE_UNSUPPORTED;
    426
    427	/*
    428	 * We only support on-die ECC of 4/512 or 8/512
    429	 */
    430	if  (requirements->strength != 4 && requirements->strength != 8)
    431		return MICRON_ON_DIE_UNSUPPORTED;
    432
    433	/* 0x2 means on-die ECC is available. */
    434	if (chip->id.len != 5 ||
    435	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
    436		return MICRON_ON_DIE_UNSUPPORTED;
    437
    438	/*
    439	 * It seems that there are devices which do not support ECC officially.
    440	 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
    441	 * enabling the ECC feature but don't reflect that to the READ_ID table.
    442	 * So we have to guarantee that we disable the ECC feature directly
    443	 * after we did the READ_ID table command. Later we can evaluate the
    444	 * ECC_ENABLE support.
    445	 */
    446	ret = micron_nand_on_die_ecc_setup(chip, true);
    447	if (ret)
    448		return MICRON_ON_DIE_UNSUPPORTED;
    449
    450	ret = nand_readid_op(chip, 0, id, sizeof(id));
    451	if (ret)
    452		return MICRON_ON_DIE_UNSUPPORTED;
    453
    454	ret = micron_nand_on_die_ecc_setup(chip, false);
    455	if (ret)
    456		return MICRON_ON_DIE_UNSUPPORTED;
    457
    458	if (!(id[4] & MICRON_ID_ECC_ENABLED))
    459		return MICRON_ON_DIE_UNSUPPORTED;
    460
    461	ret = nand_readid_op(chip, 0, id, sizeof(id));
    462	if (ret)
    463		return MICRON_ON_DIE_UNSUPPORTED;
    464
    465	if (id[4] & MICRON_ID_ECC_ENABLED)
    466		return MICRON_ON_DIE_MANDATORY;
    467
    468	/*
    469	 * We only support on-die ECC of 4/512 or 8/512
    470	 */
    471	if  (requirements->strength != 4 && requirements->strength != 8)
    472		return MICRON_ON_DIE_UNSUPPORTED;
    473
    474	return MICRON_ON_DIE_SUPPORTED;
    475}
    476
    477static int micron_nand_init(struct nand_chip *chip)
    478{
    479	struct nand_device *base = &chip->base;
    480	const struct nand_ecc_props *requirements =
    481		nanddev_get_ecc_requirements(base);
    482	struct mtd_info *mtd = nand_to_mtd(chip);
    483	struct micron_nand *micron;
    484	int ondie;
    485	int ret;
    486
    487	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
    488	if (!micron)
    489		return -ENOMEM;
    490
    491	nand_set_manufacturer_data(chip, micron);
    492
    493	ret = micron_nand_onfi_init(chip);
    494	if (ret)
    495		goto err_free_manuf_data;
    496
    497	chip->options |= NAND_BBM_FIRSTPAGE;
    498
    499	if (mtd->writesize == 2048)
    500		chip->options |= NAND_BBM_SECONDPAGE;
    501
    502	ondie = micron_supports_on_die_ecc(chip);
    503
    504	if (ondie == MICRON_ON_DIE_MANDATORY &&
    505	    chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) {
    506		pr_err("On-die ECC forcefully enabled, not supported\n");
    507		ret = -EINVAL;
    508		goto err_free_manuf_data;
    509	}
    510
    511	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) {
    512		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
    513			pr_err("On-die ECC selected but not supported\n");
    514			ret = -EINVAL;
    515			goto err_free_manuf_data;
    516		}
    517
    518		if (ondie == MICRON_ON_DIE_MANDATORY) {
    519			micron->ecc.forced = true;
    520			micron->ecc.enabled = true;
    521		}
    522
    523		/*
    524		 * In case of 4bit on-die ECC, we need a buffer to store a
    525		 * page dumped in raw mode so that we can compare its content
    526		 * to the same page after ECC correction happened and extract
    527		 * the real number of bitflips from this comparison.
    528		 * That's not needed for 8-bit ECC, because the status expose
    529		 * a better approximation of the number of bitflips in a page.
    530		 */
    531		if (requirements->strength == 4) {
    532			micron->ecc.rawbuf = kmalloc(mtd->writesize +
    533						     mtd->oobsize,
    534						     GFP_KERNEL);
    535			if (!micron->ecc.rawbuf) {
    536				ret = -ENOMEM;
    537				goto err_free_manuf_data;
    538			}
    539		}
    540
    541		if (requirements->strength == 4)
    542			mtd_set_ooblayout(mtd,
    543					  &micron_nand_on_die_4_ooblayout_ops);
    544		else
    545			mtd_set_ooblayout(mtd,
    546					  &micron_nand_on_die_8_ooblayout_ops);
    547
    548		chip->ecc.bytes = requirements->strength * 2;
    549		chip->ecc.size = 512;
    550		chip->ecc.strength = requirements->strength;
    551		chip->ecc.algo = NAND_ECC_ALGO_BCH;
    552		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
    553		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
    554
    555		if (ondie == MICRON_ON_DIE_MANDATORY) {
    556			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
    557			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
    558		} else {
    559			if (!chip->ecc.read_page_raw)
    560				chip->ecc.read_page_raw = nand_read_page_raw;
    561			if (!chip->ecc.write_page_raw)
    562				chip->ecc.write_page_raw = nand_write_page_raw;
    563		}
    564	}
    565
    566	return 0;
    567
    568err_free_manuf_data:
    569	kfree(micron->ecc.rawbuf);
    570	kfree(micron);
    571
    572	return ret;
    573}
    574
    575static void micron_nand_cleanup(struct nand_chip *chip)
    576{
    577	struct micron_nand *micron = nand_get_manufacturer_data(chip);
    578
    579	kfree(micron->ecc.rawbuf);
    580	kfree(micron);
    581}
    582
    583static void micron_fixup_onfi_param_page(struct nand_chip *chip,
    584					 struct nand_onfi_params *p)
    585{
    586	/*
    587	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
    588	 * revision number field of the ONFI parameter page. Assume ONFI
    589	 * version 1.0 if the revision number is 00 00.
    590	 */
    591	if (le16_to_cpu(p->revision) == 0)
    592		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
    593}
    594
    595const struct nand_manufacturer_ops micron_nand_manuf_ops = {
    596	.init = micron_nand_init,
    597	.cleanup = micron_nand_cleanup,
    598	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
    599};