cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

omap2.c (64505B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
      4 * Copyright © 2004 Micron Technology Inc.
      5 * Copyright © 2004 David Brownell
      6 */
      7
      8#include <linux/platform_device.h>
      9#include <linux/dmaengine.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/delay.h>
     12#include <linux/gpio/consumer.h>
     13#include <linux/module.h>
     14#include <linux/interrupt.h>
     15#include <linux/jiffies.h>
     16#include <linux/sched.h>
     17#include <linux/mtd/mtd.h>
     18#include <linux/mtd/nand-ecc-sw-bch.h>
     19#include <linux/mtd/rawnand.h>
     20#include <linux/mtd/partitions.h>
     21#include <linux/omap-dma.h>
     22#include <linux/iopoll.h>
     23#include <linux/slab.h>
     24#include <linux/of.h>
     25#include <linux/of_device.h>
     26
     27#include <linux/platform_data/elm.h>
     28
     29#include <linux/omap-gpmc.h>
     30#include <linux/platform_data/mtd-nand-omap2.h>
     31
     32#define	DRIVER_NAME	"omap2-nand"
     33#define	OMAP_NAND_TIMEOUT_MS	5000
     34
     35#define NAND_Ecc_P1e		(1 << 0)
     36#define NAND_Ecc_P2e		(1 << 1)
     37#define NAND_Ecc_P4e		(1 << 2)
     38#define NAND_Ecc_P8e		(1 << 3)
     39#define NAND_Ecc_P16e		(1 << 4)
     40#define NAND_Ecc_P32e		(1 << 5)
     41#define NAND_Ecc_P64e		(1 << 6)
     42#define NAND_Ecc_P128e		(1 << 7)
     43#define NAND_Ecc_P256e		(1 << 8)
     44#define NAND_Ecc_P512e		(1 << 9)
     45#define NAND_Ecc_P1024e		(1 << 10)
     46#define NAND_Ecc_P2048e		(1 << 11)
     47
     48#define NAND_Ecc_P1o		(1 << 16)
     49#define NAND_Ecc_P2o		(1 << 17)
     50#define NAND_Ecc_P4o		(1 << 18)
     51#define NAND_Ecc_P8o		(1 << 19)
     52#define NAND_Ecc_P16o		(1 << 20)
     53#define NAND_Ecc_P32o		(1 << 21)
     54#define NAND_Ecc_P64o		(1 << 22)
     55#define NAND_Ecc_P128o		(1 << 23)
     56#define NAND_Ecc_P256o		(1 << 24)
     57#define NAND_Ecc_P512o		(1 << 25)
     58#define NAND_Ecc_P1024o		(1 << 26)
     59#define NAND_Ecc_P2048o		(1 << 27)
     60
     61#define TF(value)	(value ? 1 : 0)
     62
     63#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
     64#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
     65#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
     66#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
     67#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
     68#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
     69#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
     70#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
     71
     72#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
     73#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
     74#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
     75#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
     76#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
     77#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
     78#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
     79#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
     80
     81#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
     82#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
     83#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
     84#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
     85#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
     86#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
     87#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
     88#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
     89
     90#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
     91#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
     92#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
     93#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
     94#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
     95#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
     96#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
     97#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
     98
     99#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
    100#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
    101
    102#define	PREFETCH_CONFIG1_CS_SHIFT	24
    103#define	ECC_CONFIG_CS_SHIFT		1
    104#define	CS_MASK				0x7
    105#define	ENABLE_PREFETCH			(0x1 << 7)
    106#define	DMA_MPU_MODE_SHIFT		2
    107#define	ECCSIZE0_SHIFT			12
    108#define	ECCSIZE1_SHIFT			22
    109#define	ECC1RESULTSIZE			0x1
    110#define	ECCCLEAR			0x100
    111#define	ECC1				0x1
    112#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
    113#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
    114#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
    115#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
    116#define	STATUS_BUFF_EMPTY		0x00000001
    117
    118#define SECTOR_BYTES		512
    119/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
    120#define BCH4_BIT_PAD		4
    121
    122/* GPMC ecc engine settings for read */
    123#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
    124#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
    125#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
    126#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
    127#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
    128
    129/* GPMC ecc engine settings for write */
    130#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
    131#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
    132#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
    133
    134#define BBM_LEN			2
    135
    136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
    137				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
    138				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
    139				0x07, 0x0e};
    140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
    141	0xac, 0x6b, 0xff, 0x99, 0x7b};
    142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
    143
    144struct omap_nand_info {
    145	struct nand_chip		nand;
    146	struct platform_device		*pdev;
    147
    148	int				gpmc_cs;
    149	bool				dev_ready;
    150	enum nand_io			xfer_type;
    151	enum omap_ecc			ecc_opt;
    152	struct device_node		*elm_of_node;
    153
    154	unsigned long			phys_base;
    155	struct completion		comp;
    156	struct dma_chan			*dma;
    157	int				gpmc_irq_fifo;
    158	int				gpmc_irq_count;
    159	enum {
    160		OMAP_NAND_IO_READ = 0,	/* read */
    161		OMAP_NAND_IO_WRITE,	/* write */
    162	} iomode;
    163	u_char				*buf;
    164	int					buf_len;
    165	/* Interface to GPMC */
    166	void __iomem			*fifo;
    167	struct gpmc_nand_regs		reg;
    168	struct gpmc_nand_ops		*ops;
    169	bool				flash_bbt;
    170	/* fields specific for BCHx_HW ECC scheme */
    171	struct device			*elm_dev;
    172	/* NAND ready gpio */
    173	struct gpio_desc		*ready_gpiod;
    174	unsigned int			neccpg;
    175	unsigned int			nsteps_per_eccpg;
    176	unsigned int			eccpg_size;
    177	unsigned int			eccpg_bytes;
    178	void (*data_in)(struct nand_chip *chip, void *buf,
    179			unsigned int len, bool force_8bit);
    180	void (*data_out)(struct nand_chip *chip,
    181			 const void *buf, unsigned int len,
    182			 bool force_8bit);
    183};
    184
    185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
    186{
    187	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
    188}
    189
    190static void omap_nand_data_in(struct nand_chip *chip, void *buf,
    191			      unsigned int len, bool force_8bit);
    192
    193static void omap_nand_data_out(struct nand_chip *chip,
    194			       const void *buf, unsigned int len,
    195			       bool force_8bit);
    196
    197/**
    198 * omap_prefetch_enable - configures and starts prefetch transfer
    199 * @cs: cs (chip select) number
    200 * @fifo_th: fifo threshold to be used for read/ write
    201 * @dma_mode: dma mode enable (1) or disable (0)
    202 * @u32_count: number of bytes to be transferred
    203 * @is_write: prefetch read(0) or write post(1) mode
    204 * @info: NAND device structure containing platform data
    205 */
    206static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
    207	unsigned int u32_count, int is_write, struct omap_nand_info *info)
    208{
    209	u32 val;
    210
    211	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
    212		return -1;
    213
    214	if (readl(info->reg.gpmc_prefetch_control))
    215		return -EBUSY;
    216
    217	/* Set the amount of bytes to be prefetched */
    218	writel(u32_count, info->reg.gpmc_prefetch_config2);
    219
    220	/* Set dma/mpu mode, the prefetch read / post write and
    221	 * enable the engine. Set which cs is has requested for.
    222	 */
    223	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
    224		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
    225		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
    226	writel(val, info->reg.gpmc_prefetch_config1);
    227
    228	/*  Start the prefetch engine */
    229	writel(0x1, info->reg.gpmc_prefetch_control);
    230
    231	return 0;
    232}
    233
    234/*
    235 * omap_prefetch_reset - disables and stops the prefetch engine
    236 */
    237static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
    238{
    239	u32 config1;
    240
    241	/* check if the same module/cs is trying to reset */
    242	config1 = readl(info->reg.gpmc_prefetch_config1);
    243	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
    244		return -EINVAL;
    245
    246	/* Stop the PFPW engine */
    247	writel(0x0, info->reg.gpmc_prefetch_control);
    248
    249	/* Reset/disable the PFPW engine */
    250	writel(0x0, info->reg.gpmc_prefetch_config1);
    251
    252	return 0;
    253}
    254
    255/**
    256 * omap_nand_data_in_pref - NAND data in using prefetch engine
    257 */
    258static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
    259				   unsigned int len, bool force_8bit)
    260{
    261	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    262	uint32_t r_count = 0;
    263	int ret = 0;
    264	u32 *p = (u32 *)buf;
    265	unsigned int pref_len;
    266
    267	if (force_8bit) {
    268		omap_nand_data_in(chip, buf, len, force_8bit);
    269		return;
    270	}
    271
    272	/* read 32-bit words using prefetch and remaining bytes normally */
    273
    274	/* configure and start prefetch transfer */
    275	pref_len = len - (len & 3);
    276	ret = omap_prefetch_enable(info->gpmc_cs,
    277			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
    278	if (ret) {
    279		/* prefetch engine is busy, use CPU copy method */
    280		omap_nand_data_in(chip, buf, len, false);
    281	} else {
    282		do {
    283			r_count = readl(info->reg.gpmc_prefetch_status);
    284			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
    285			r_count = r_count >> 2;
    286			ioread32_rep(info->fifo, p, r_count);
    287			p += r_count;
    288			pref_len -= r_count << 2;
    289		} while (pref_len);
    290		/* disable and stop the Prefetch engine */
    291		omap_prefetch_reset(info->gpmc_cs, info);
    292		/* fetch any remaining bytes */
    293		if (len & 3)
    294			omap_nand_data_in(chip, p, len & 3, false);
    295	}
    296}
    297
    298/**
    299 * omap_nand_data_out_pref - NAND data out using Write Posting engine
    300 */
    301static void omap_nand_data_out_pref(struct nand_chip *chip,
    302				    const void *buf, unsigned int len,
    303				    bool force_8bit)
    304{
    305	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    306	uint32_t w_count = 0;
    307	int i = 0, ret = 0;
    308	u16 *p = (u16 *)buf;
    309	unsigned long tim, limit;
    310	u32 val;
    311
    312	if (force_8bit) {
    313		omap_nand_data_out(chip, buf, len, force_8bit);
    314		return;
    315	}
    316
    317	/* take care of subpage writes */
    318	if (len % 2 != 0) {
    319		writeb(*(u8 *)buf, info->fifo);
    320		p = (u16 *)(buf + 1);
    321		len--;
    322	}
    323
    324	/*  configure and start prefetch transfer */
    325	ret = omap_prefetch_enable(info->gpmc_cs,
    326			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
    327	if (ret) {
    328		/* write posting engine is busy, use CPU copy method */
    329		omap_nand_data_out(chip, buf, len, false);
    330	} else {
    331		while (len) {
    332			w_count = readl(info->reg.gpmc_prefetch_status);
    333			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
    334			w_count = w_count >> 1;
    335			for (i = 0; (i < w_count) && len; i++, len -= 2)
    336				iowrite16(*p++, info->fifo);
    337		}
    338		/* wait for data to flushed-out before reset the prefetch */
    339		tim = 0;
    340		limit = (loops_per_jiffy *
    341					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    342		do {
    343			cpu_relax();
    344			val = readl(info->reg.gpmc_prefetch_status);
    345			val = PREFETCH_STATUS_COUNT(val);
    346		} while (val && (tim++ < limit));
    347
    348		/* disable and stop the PFPW engine */
    349		omap_prefetch_reset(info->gpmc_cs, info);
    350	}
    351}
    352
    353/*
    354 * omap_nand_dma_callback: callback on the completion of dma transfer
    355 * @data: pointer to completion data structure
    356 */
    357static void omap_nand_dma_callback(void *data)
    358{
    359	complete((struct completion *) data);
    360}
    361
    362/*
    363 * omap_nand_dma_transfer: configure and start dma transfer
    364 * @chip: nand chip structure
    365 * @addr: virtual address in RAM of source/destination
    366 * @len: number of data bytes to be transferred
    367 * @is_write: flag for read/write operation
    368 */
    369static inline int omap_nand_dma_transfer(struct nand_chip *chip,
    370					 const void *addr, unsigned int len,
    371					 int is_write)
    372{
    373	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    374	struct dma_async_tx_descriptor *tx;
    375	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
    376							DMA_FROM_DEVICE;
    377	struct scatterlist sg;
    378	unsigned long tim, limit;
    379	unsigned n;
    380	int ret;
    381	u32 val;
    382
    383	if (!virt_addr_valid(addr))
    384		goto out_copy;
    385
    386	sg_init_one(&sg, addr, len);
    387	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
    388	if (n == 0) {
    389		dev_err(&info->pdev->dev,
    390			"Couldn't DMA map a %d byte buffer\n", len);
    391		goto out_copy;
    392	}
    393
    394	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
    395		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
    396		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    397	if (!tx)
    398		goto out_copy_unmap;
    399
    400	tx->callback = omap_nand_dma_callback;
    401	tx->callback_param = &info->comp;
    402	dmaengine_submit(tx);
    403
    404	init_completion(&info->comp);
    405
    406	/* setup and start DMA using dma_addr */
    407	dma_async_issue_pending(info->dma);
    408
    409	/*  configure and start prefetch transfer */
    410	ret = omap_prefetch_enable(info->gpmc_cs,
    411		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
    412	if (ret)
    413		/* PFPW engine is busy, use cpu copy method */
    414		goto out_copy_unmap;
    415
    416	wait_for_completion(&info->comp);
    417	tim = 0;
    418	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    419
    420	do {
    421		cpu_relax();
    422		val = readl(info->reg.gpmc_prefetch_status);
    423		val = PREFETCH_STATUS_COUNT(val);
    424	} while (val && (tim++ < limit));
    425
    426	/* disable and stop the PFPW engine */
    427	omap_prefetch_reset(info->gpmc_cs, info);
    428
    429	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
    430	return 0;
    431
    432out_copy_unmap:
    433	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
    434out_copy:
    435	is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
    436		      : omap_nand_data_out(chip, addr, len, false);
    437
    438	return 0;
    439}
    440
    441/**
    442 * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
    443 */
    444static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
    445				       unsigned int len, bool force_8bit)
    446{
    447	struct mtd_info *mtd = nand_to_mtd(chip);
    448
    449	if (force_8bit) {
    450		omap_nand_data_in(chip, buf, len, force_8bit);
    451		return;
    452	}
    453
    454	if (len <= mtd->oobsize)
    455		omap_nand_data_in_pref(chip, buf, len, false);
    456	else
    457		/* start transfer in DMA mode */
    458		omap_nand_dma_transfer(chip, buf, len, 0x0);
    459}
    460
    461/**
    462 * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
    463 */
    464static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
    465					const void *buf, unsigned int len,
    466					bool force_8bit)
    467{
    468	struct mtd_info *mtd = nand_to_mtd(chip);
    469
    470	if (force_8bit) {
    471		omap_nand_data_out(chip, buf, len, force_8bit);
    472		return;
    473	}
    474
    475	if (len <= mtd->oobsize)
    476		omap_nand_data_out_pref(chip, buf, len, false);
    477	else
    478		/* start transfer in DMA mode */
    479		omap_nand_dma_transfer(chip, buf, len, 0x1);
    480}
    481
    482/*
    483 * omap_nand_irq - GPMC irq handler
    484 * @this_irq: gpmc irq number
    485 * @dev: omap_nand_info structure pointer is passed here
    486 */
    487static irqreturn_t omap_nand_irq(int this_irq, void *dev)
    488{
    489	struct omap_nand_info *info = (struct omap_nand_info *) dev;
    490	u32 bytes;
    491
    492	bytes = readl(info->reg.gpmc_prefetch_status);
    493	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
    494	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
    495	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
    496		if (this_irq == info->gpmc_irq_count)
    497			goto done;
    498
    499		if (info->buf_len && (info->buf_len < bytes))
    500			bytes = info->buf_len;
    501		else if (!info->buf_len)
    502			bytes = 0;
    503		iowrite32_rep(info->fifo, (u32 *)info->buf,
    504			      bytes >> 2);
    505		info->buf = info->buf + bytes;
    506		info->buf_len -= bytes;
    507
    508	} else {
    509		ioread32_rep(info->fifo, (u32 *)info->buf,
    510			     bytes >> 2);
    511		info->buf = info->buf + bytes;
    512
    513		if (this_irq == info->gpmc_irq_count)
    514			goto done;
    515	}
    516
    517	return IRQ_HANDLED;
    518
    519done:
    520	complete(&info->comp);
    521
    522	disable_irq_nosync(info->gpmc_irq_fifo);
    523	disable_irq_nosync(info->gpmc_irq_count);
    524
    525	return IRQ_HANDLED;
    526}
    527
    528/*
    529 * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
    530 */
    531static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
    532				       unsigned int len, bool force_8bit)
    533{
    534	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    535	struct mtd_info *mtd = nand_to_mtd(&info->nand);
    536	int ret = 0;
    537
    538	if (len <= mtd->oobsize || force_8bit) {
    539		omap_nand_data_in(chip, buf, len, force_8bit);
    540		return;
    541	}
    542
    543	info->iomode = OMAP_NAND_IO_READ;
    544	info->buf = buf;
    545	init_completion(&info->comp);
    546
    547	/*  configure and start prefetch transfer */
    548	ret = omap_prefetch_enable(info->gpmc_cs,
    549			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
    550	if (ret) {
    551		/* PFPW engine is busy, use cpu copy method */
    552		omap_nand_data_in(chip, buf, len, false);
    553		return;
    554	}
    555
    556	info->buf_len = len;
    557
    558	enable_irq(info->gpmc_irq_count);
    559	enable_irq(info->gpmc_irq_fifo);
    560
    561	/* waiting for read to complete */
    562	wait_for_completion(&info->comp);
    563
    564	/* disable and stop the PFPW engine */
    565	omap_prefetch_reset(info->gpmc_cs, info);
    566	return;
    567}
    568
    569/*
    570 * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
    571 */
    572static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
    573					const void *buf, unsigned int len,
    574					bool force_8bit)
    575{
    576	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    577	struct mtd_info *mtd = nand_to_mtd(&info->nand);
    578	int ret = 0;
    579	unsigned long tim, limit;
    580	u32 val;
    581
    582	if (len <= mtd->oobsize || force_8bit) {
    583		omap_nand_data_out(chip, buf, len, force_8bit);
    584		return;
    585	}
    586
    587	info->iomode = OMAP_NAND_IO_WRITE;
    588	info->buf = (u_char *) buf;
    589	init_completion(&info->comp);
    590
    591	/* configure and start prefetch transfer : size=24 */
    592	ret = omap_prefetch_enable(info->gpmc_cs,
    593		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
    594	if (ret) {
    595		/* PFPW engine is busy, use cpu copy method */
    596		omap_nand_data_out(chip, buf, len, false);
    597		return;
    598	}
    599
    600	info->buf_len = len;
    601
    602	enable_irq(info->gpmc_irq_count);
    603	enable_irq(info->gpmc_irq_fifo);
    604
    605	/* waiting for write to complete */
    606	wait_for_completion(&info->comp);
    607
    608	/* wait for data to flushed-out before reset the prefetch */
    609	tim = 0;
    610	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
    611	do {
    612		val = readl(info->reg.gpmc_prefetch_status);
    613		val = PREFETCH_STATUS_COUNT(val);
    614		cpu_relax();
    615	} while (val && (tim++ < limit));
    616
    617	/* disable and stop the PFPW engine */
    618	omap_prefetch_reset(info->gpmc_cs, info);
    619	return;
    620}
    621
    622/**
    623 * gen_true_ecc - This function will generate true ECC value
    624 * @ecc_buf: buffer to store ecc code
    625 *
    626 * This generated true ECC value can be used when correcting
    627 * data read from NAND flash memory core
    628 */
    629static void gen_true_ecc(u8 *ecc_buf)
    630{
    631	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
    632		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
    633
    634	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
    635			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
    636	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
    637			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
    638	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
    639			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
    640}
    641
    642/**
    643 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
    644 * @ecc_data1:  ecc code from nand spare area
    645 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
    646 * @page_data:  page data
    647 *
    648 * This function compares two ECC's and indicates if there is an error.
    649 * If the error can be corrected it will be corrected to the buffer.
    650 * If there is no error, %0 is returned. If there is an error but it
    651 * was corrected, %1 is returned. Otherwise, %-1 is returned.
    652 */
    653static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
    654			    u8 *ecc_data2,	/* read from register */
    655			    u8 *page_data)
    656{
    657	uint	i;
    658	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
    659	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
    660	u8	ecc_bit[24];
    661	u8	ecc_sum = 0;
    662	u8	find_bit = 0;
    663	uint	find_byte = 0;
    664	int	isEccFF;
    665
    666	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
    667
    668	gen_true_ecc(ecc_data1);
    669	gen_true_ecc(ecc_data2);
    670
    671	for (i = 0; i <= 2; i++) {
    672		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
    673		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
    674	}
    675
    676	for (i = 0; i < 8; i++) {
    677		tmp0_bit[i]     = *ecc_data1 % 2;
    678		*ecc_data1	= *ecc_data1 / 2;
    679	}
    680
    681	for (i = 0; i < 8; i++) {
    682		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
    683		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
    684	}
    685
    686	for (i = 0; i < 8; i++) {
    687		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
    688		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
    689	}
    690
    691	for (i = 0; i < 8; i++) {
    692		comp0_bit[i]     = *ecc_data2 % 2;
    693		*ecc_data2       = *ecc_data2 / 2;
    694	}
    695
    696	for (i = 0; i < 8; i++) {
    697		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
    698		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
    699	}
    700
    701	for (i = 0; i < 8; i++) {
    702		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
    703		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
    704	}
    705
    706	for (i = 0; i < 6; i++)
    707		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
    708
    709	for (i = 0; i < 8; i++)
    710		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
    711
    712	for (i = 0; i < 8; i++)
    713		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
    714
    715	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
    716	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
    717
    718	for (i = 0; i < 24; i++)
    719		ecc_sum += ecc_bit[i];
    720
    721	switch (ecc_sum) {
    722	case 0:
    723		/* Not reached because this function is not called if
    724		 *  ECC values are equal
    725		 */
    726		return 0;
    727
    728	case 1:
    729		/* Uncorrectable error */
    730		pr_debug("ECC UNCORRECTED_ERROR 1\n");
    731		return -EBADMSG;
    732
    733	case 11:
    734		/* UN-Correctable error */
    735		pr_debug("ECC UNCORRECTED_ERROR B\n");
    736		return -EBADMSG;
    737
    738	case 12:
    739		/* Correctable error */
    740		find_byte = (ecc_bit[23] << 8) +
    741			    (ecc_bit[21] << 7) +
    742			    (ecc_bit[19] << 6) +
    743			    (ecc_bit[17] << 5) +
    744			    (ecc_bit[15] << 4) +
    745			    (ecc_bit[13] << 3) +
    746			    (ecc_bit[11] << 2) +
    747			    (ecc_bit[9]  << 1) +
    748			    ecc_bit[7];
    749
    750		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
    751
    752		pr_debug("Correcting single bit ECC error at offset: "
    753				"%d, bit: %d\n", find_byte, find_bit);
    754
    755		page_data[find_byte] ^= (1 << find_bit);
    756
    757		return 1;
    758	default:
    759		if (isEccFF) {
    760			if (ecc_data2[0] == 0 &&
    761			    ecc_data2[1] == 0 &&
    762			    ecc_data2[2] == 0)
    763				return 0;
    764		}
    765		pr_debug("UNCORRECTED_ERROR default\n");
    766		return -EBADMSG;
    767	}
    768}
    769
    770/**
    771 * omap_correct_data - Compares the ECC read with HW generated ECC
    772 * @chip: NAND chip object
    773 * @dat: page data
    774 * @read_ecc: ecc read from nand flash
    775 * @calc_ecc: ecc read from HW ECC registers
    776 *
    777 * Compares the ecc read from nand spare area with ECC registers values
    778 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
    779 * detection and correction. If there are no errors, %0 is returned. If
    780 * there were errors and all of the errors were corrected, the number of
    781 * corrected errors is returned. If uncorrectable errors exist, %-1 is
    782 * returned.
    783 */
    784static int omap_correct_data(struct nand_chip *chip, u_char *dat,
    785			     u_char *read_ecc, u_char *calc_ecc)
    786{
    787	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    788	int blockCnt = 0, i = 0, ret = 0;
    789	int stat = 0;
    790
    791	/* Ex NAND_ECC_HW12_2048 */
    792	if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
    793	    info->nand.ecc.size == 2048)
    794		blockCnt = 4;
    795	else
    796		blockCnt = 1;
    797
    798	for (i = 0; i < blockCnt; i++) {
    799		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
    800			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
    801			if (ret < 0)
    802				return ret;
    803			/* keep track of the number of corrected errors */
    804			stat += ret;
    805		}
    806		read_ecc += 3;
    807		calc_ecc += 3;
    808		dat      += 512;
    809	}
    810	return stat;
    811}
    812
    813/**
    814 * omap_calculate_ecc - Generate non-inverted ECC bytes.
    815 * @chip: NAND chip object
    816 * @dat: The pointer to data on which ecc is computed
    817 * @ecc_code: The ecc_code buffer
    818 *
    819 * Using noninverted ECC can be considered ugly since writing a blank
    820 * page ie. padding will clear the ECC bytes. This is no problem as long
    821 * nobody is trying to write data on the seemingly unused page. Reading
    822 * an erased page will produce an ECC mismatch between generated and read
    823 * ECC bytes that has to be dealt with separately.
    824 */
    825static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
    826			      u_char *ecc_code)
    827{
    828	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    829	u32 val;
    830
    831	val = readl(info->reg.gpmc_ecc_config);
    832	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
    833		return -EINVAL;
    834
    835	/* read ecc result */
    836	val = readl(info->reg.gpmc_ecc1_result);
    837	*ecc_code++ = val;          /* P128e, ..., P1e */
    838	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
    839	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
    840	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
    841
    842	return 0;
    843}
    844
    845/**
    846 * omap_enable_hwecc - This function enables the hardware ecc functionality
    847 * @chip: NAND chip object
    848 * @mode: Read/Write mode
    849 */
    850static void omap_enable_hwecc(struct nand_chip *chip, int mode)
    851{
    852	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    853	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
    854	u32 val;
    855
    856	/* clear ecc and enable bits */
    857	val = ECCCLEAR | ECC1;
    858	writel(val, info->reg.gpmc_ecc_control);
    859
    860	/* program ecc and result sizes */
    861	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
    862			 ECC1RESULTSIZE);
    863	writel(val, info->reg.gpmc_ecc_size_config);
    864
    865	switch (mode) {
    866	case NAND_ECC_READ:
    867	case NAND_ECC_WRITE:
    868		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
    869		break;
    870	case NAND_ECC_READSYN:
    871		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
    872		break;
    873	default:
    874		dev_info(&info->pdev->dev,
    875			"error: unrecognized Mode[%d]!\n", mode);
    876		break;
    877	}
    878
    879	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
    880	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
    881	writel(val, info->reg.gpmc_ecc_config);
    882}
    883
    884/**
    885 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
    886 * @chip: NAND chip object
    887 * @mode: Read/Write mode
    888 *
    889 * When using BCH with SW correction (i.e. no ELM), sector size is set
    890 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
    891 * for both reading and writing with:
    892 * eccsize0 = 0  (no additional protected byte in spare area)
    893 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
    894 */
    895static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
    896						 int mode)
    897{
    898	unsigned int bch_type;
    899	unsigned int dev_width, nsectors;
    900	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
    901	enum omap_ecc ecc_opt = info->ecc_opt;
    902	u32 val, wr_mode;
    903	unsigned int ecc_size1, ecc_size0;
    904
    905	/* GPMC configurations for calculating ECC */
    906	switch (ecc_opt) {
    907	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
    908		bch_type = 0;
    909		nsectors = 1;
    910		wr_mode	  = BCH_WRAPMODE_6;
    911		ecc_size0 = BCH_ECC_SIZE0;
    912		ecc_size1 = BCH_ECC_SIZE1;
    913		break;
    914	case OMAP_ECC_BCH4_CODE_HW:
    915		bch_type = 0;
    916		nsectors = chip->ecc.steps;
    917		if (mode == NAND_ECC_READ) {
    918			wr_mode	  = BCH_WRAPMODE_1;
    919			ecc_size0 = BCH4R_ECC_SIZE0;
    920			ecc_size1 = BCH4R_ECC_SIZE1;
    921		} else {
    922			wr_mode   = BCH_WRAPMODE_6;
    923			ecc_size0 = BCH_ECC_SIZE0;
    924			ecc_size1 = BCH_ECC_SIZE1;
    925		}
    926		break;
    927	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    928		bch_type = 1;
    929		nsectors = 1;
    930		wr_mode	  = BCH_WRAPMODE_6;
    931		ecc_size0 = BCH_ECC_SIZE0;
    932		ecc_size1 = BCH_ECC_SIZE1;
    933		break;
    934	case OMAP_ECC_BCH8_CODE_HW:
    935		bch_type = 1;
    936		nsectors = chip->ecc.steps;
    937		if (mode == NAND_ECC_READ) {
    938			wr_mode	  = BCH_WRAPMODE_1;
    939			ecc_size0 = BCH8R_ECC_SIZE0;
    940			ecc_size1 = BCH8R_ECC_SIZE1;
    941		} else {
    942			wr_mode   = BCH_WRAPMODE_6;
    943			ecc_size0 = BCH_ECC_SIZE0;
    944			ecc_size1 = BCH_ECC_SIZE1;
    945		}
    946		break;
    947	case OMAP_ECC_BCH16_CODE_HW:
    948		bch_type = 0x2;
    949		nsectors = chip->ecc.steps;
    950		if (mode == NAND_ECC_READ) {
    951			wr_mode	  = 0x01;
    952			ecc_size0 = 52; /* ECC bits in nibbles per sector */
    953			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
    954		} else {
    955			wr_mode	  = 0x01;
    956			ecc_size0 = 0;  /* extra bits in nibbles per sector */
    957			ecc_size1 = 52; /* OOB bits in nibbles per sector */
    958		}
    959		break;
    960	default:
    961		return;
    962	}
    963
    964	writel(ECC1, info->reg.gpmc_ecc_control);
    965
    966	/* Configure ecc size for BCH */
    967	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
    968	writel(val, info->reg.gpmc_ecc_size_config);
    969
    970	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
    971
    972	/* BCH configuration */
    973	val = ((1                        << 16) | /* enable BCH */
    974	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
    975	       (wr_mode                  <<  8) | /* wrap mode */
    976	       (dev_width                <<  7) | /* bus width */
    977	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
    978	       (info->gpmc_cs            <<  1) | /* ECC CS */
    979	       (0x1));                            /* enable ECC */
    980
    981	writel(val, info->reg.gpmc_ecc_config);
    982
    983	/* Clear ecc and enable bits */
    984	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
    985}
    986
    987static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
    988static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
    989				0x97, 0x79, 0xe5, 0x24, 0xb5};
    990
    991/**
    992 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
    993 * @mtd:	MTD device structure
    994 * @dat:	The pointer to data on which ecc is computed
    995 * @ecc_calc:	The ecc_code buffer
    996 * @i:		The sector number (for a multi sector page)
    997 *
    998 * Support calculating of BCH4/8/16 ECC vectors for one sector
    999 * within a page. Sector number is in @i.
   1000 */
   1001static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
   1002				   const u_char *dat, u_char *ecc_calc, int i)
   1003{
   1004	struct omap_nand_info *info = mtd_to_omap(mtd);
   1005	int eccbytes	= info->nand.ecc.bytes;
   1006	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
   1007	u8 *ecc_code;
   1008	unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
   1009	u32 val;
   1010	int j;
   1011
   1012	ecc_code = ecc_calc;
   1013	switch (info->ecc_opt) {
   1014	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
   1015	case OMAP_ECC_BCH8_CODE_HW:
   1016		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
   1017		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
   1018		bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
   1019		bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
   1020		*ecc_code++ = (bch_val4 & 0xFF);
   1021		*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
   1022		*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
   1023		*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
   1024		*ecc_code++ = (bch_val3 & 0xFF);
   1025		*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
   1026		*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
   1027		*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
   1028		*ecc_code++ = (bch_val2 & 0xFF);
   1029		*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
   1030		*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
   1031		*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
   1032		*ecc_code++ = (bch_val1 & 0xFF);
   1033		break;
   1034	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
   1035	case OMAP_ECC_BCH4_CODE_HW:
   1036		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
   1037		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
   1038		*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
   1039		*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
   1040		*ecc_code++ = ((bch_val2 & 0xF) << 4) |
   1041			((bch_val1 >> 28) & 0xF);
   1042		*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
   1043		*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
   1044		*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
   1045		*ecc_code++ = ((bch_val1 & 0xF) << 4);
   1046		break;
   1047	case OMAP_ECC_BCH16_CODE_HW:
   1048		val = readl(gpmc_regs->gpmc_bch_result6[i]);
   1049		ecc_code[0]  = ((val >>  8) & 0xFF);
   1050		ecc_code[1]  = ((val >>  0) & 0xFF);
   1051		val = readl(gpmc_regs->gpmc_bch_result5[i]);
   1052		ecc_code[2]  = ((val >> 24) & 0xFF);
   1053		ecc_code[3]  = ((val >> 16) & 0xFF);
   1054		ecc_code[4]  = ((val >>  8) & 0xFF);
   1055		ecc_code[5]  = ((val >>  0) & 0xFF);
   1056		val = readl(gpmc_regs->gpmc_bch_result4[i]);
   1057		ecc_code[6]  = ((val >> 24) & 0xFF);
   1058		ecc_code[7]  = ((val >> 16) & 0xFF);
   1059		ecc_code[8]  = ((val >>  8) & 0xFF);
   1060		ecc_code[9]  = ((val >>  0) & 0xFF);
   1061		val = readl(gpmc_regs->gpmc_bch_result3[i]);
   1062		ecc_code[10] = ((val >> 24) & 0xFF);
   1063		ecc_code[11] = ((val >> 16) & 0xFF);
   1064		ecc_code[12] = ((val >>  8) & 0xFF);
   1065		ecc_code[13] = ((val >>  0) & 0xFF);
   1066		val = readl(gpmc_regs->gpmc_bch_result2[i]);
   1067		ecc_code[14] = ((val >> 24) & 0xFF);
   1068		ecc_code[15] = ((val >> 16) & 0xFF);
   1069		ecc_code[16] = ((val >>  8) & 0xFF);
   1070		ecc_code[17] = ((val >>  0) & 0xFF);
   1071		val = readl(gpmc_regs->gpmc_bch_result1[i]);
   1072		ecc_code[18] = ((val >> 24) & 0xFF);
   1073		ecc_code[19] = ((val >> 16) & 0xFF);
   1074		ecc_code[20] = ((val >>  8) & 0xFF);
   1075		ecc_code[21] = ((val >>  0) & 0xFF);
   1076		val = readl(gpmc_regs->gpmc_bch_result0[i]);
   1077		ecc_code[22] = ((val >> 24) & 0xFF);
   1078		ecc_code[23] = ((val >> 16) & 0xFF);
   1079		ecc_code[24] = ((val >>  8) & 0xFF);
   1080		ecc_code[25] = ((val >>  0) & 0xFF);
   1081		break;
   1082	default:
   1083		return -EINVAL;
   1084	}
   1085
   1086	/* ECC scheme specific syndrome customizations */
   1087	switch (info->ecc_opt) {
   1088	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
   1089		/* Add constant polynomial to remainder, so that
   1090		 * ECC of blank pages results in 0x0 on reading back
   1091		 */
   1092		for (j = 0; j < eccbytes; j++)
   1093			ecc_calc[j] ^= bch4_polynomial[j];
   1094		break;
   1095	case OMAP_ECC_BCH4_CODE_HW:
   1096		/* Set  8th ECC byte as 0x0 for ROM compatibility */
   1097		ecc_calc[eccbytes - 1] = 0x0;
   1098		break;
   1099	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
   1100		/* Add constant polynomial to remainder, so that
   1101		 * ECC of blank pages results in 0x0 on reading back
   1102		 */
   1103		for (j = 0; j < eccbytes; j++)
   1104			ecc_calc[j] ^= bch8_polynomial[j];
   1105		break;
   1106	case OMAP_ECC_BCH8_CODE_HW:
   1107		/* Set 14th ECC byte as 0x0 for ROM compatibility */
   1108		ecc_calc[eccbytes - 1] = 0x0;
   1109		break;
   1110	case OMAP_ECC_BCH16_CODE_HW:
   1111		break;
   1112	default:
   1113		return -EINVAL;
   1114	}
   1115
   1116	return 0;
   1117}
   1118
   1119/**
   1120 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
   1121 * @chip:	NAND chip object
   1122 * @dat:	The pointer to data on which ecc is computed
   1123 * @ecc_calc:	Buffer storing the calculated ECC bytes
   1124 *
   1125 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
   1126 * when SW based correction is required as ECC is required for one sector
   1127 * at a time.
   1128 */
   1129static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
   1130				     const u_char *dat, u_char *ecc_calc)
   1131{
   1132	return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
   1133}
   1134
   1135/**
   1136 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
   1137 * @mtd:	MTD device structure
   1138 * @dat:	The pointer to data on which ecc is computed
   1139 * @ecc_calc:	Buffer storing the calculated ECC bytes
   1140 *
   1141 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
   1142 */
   1143static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
   1144					const u_char *dat, u_char *ecc_calc)
   1145{
   1146	struct omap_nand_info *info = mtd_to_omap(mtd);
   1147	int eccbytes = info->nand.ecc.bytes;
   1148	unsigned long nsectors;
   1149	int i, ret;
   1150
   1151	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
   1152	for (i = 0; i < nsectors; i++) {
   1153		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
   1154		if (ret)
   1155			return ret;
   1156
   1157		ecc_calc += eccbytes;
   1158	}
   1159
   1160	return 0;
   1161}
   1162
   1163/**
   1164 * erased_sector_bitflips - count bit flips
   1165 * @data:	data sector buffer
   1166 * @oob:	oob buffer
   1167 * @info:	omap_nand_info
   1168 *
   1169 * Check the bit flips in erased page falls below correctable level.
   1170 * If falls below, report the page as erased with correctable bit
   1171 * flip, else report as uncorrectable page.
   1172 */
   1173static int erased_sector_bitflips(u_char *data, u_char *oob,
   1174		struct omap_nand_info *info)
   1175{
   1176	int flip_bits = 0, i;
   1177
   1178	for (i = 0; i < info->nand.ecc.size; i++) {
   1179		flip_bits += hweight8(~data[i]);
   1180		if (flip_bits > info->nand.ecc.strength)
   1181			return 0;
   1182	}
   1183
   1184	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
   1185		flip_bits += hweight8(~oob[i]);
   1186		if (flip_bits > info->nand.ecc.strength)
   1187			return 0;
   1188	}
   1189
   1190	/*
   1191	 * Bit flips falls in correctable level.
   1192	 * Fill data area with 0xFF
   1193	 */
   1194	if (flip_bits) {
   1195		memset(data, 0xFF, info->nand.ecc.size);
   1196		memset(oob, 0xFF, info->nand.ecc.bytes);
   1197	}
   1198
   1199	return flip_bits;
   1200}
   1201
   1202/**
   1203 * omap_elm_correct_data - corrects page data area in case error reported
   1204 * @chip:	NAND chip object
   1205 * @data:	page data
   1206 * @read_ecc:	ecc read from nand flash
   1207 * @calc_ecc:	ecc read from HW ECC registers
   1208 *
   1209 * Calculated ecc vector reported as zero in case of non-error pages.
   1210 * In case of non-zero ecc vector, first filter out erased-pages, and
   1211 * then process data via ELM to detect bit-flips.
   1212 */
   1213static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
   1214				 u_char *read_ecc, u_char *calc_ecc)
   1215{
   1216	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
   1217	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
   1218	int eccsteps = info->nsteps_per_eccpg;
   1219	int i , j, stat = 0;
   1220	int eccflag, actual_eccbytes;
   1221	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
   1222	u_char *ecc_vec = calc_ecc;
   1223	u_char *spare_ecc = read_ecc;
   1224	u_char *erased_ecc_vec;
   1225	u_char *buf;
   1226	int bitflip_count;
   1227	bool is_error_reported = false;
   1228	u32 bit_pos, byte_pos, error_max, pos;
   1229	int err;
   1230
   1231	switch (info->ecc_opt) {
   1232	case OMAP_ECC_BCH4_CODE_HW:
   1233		/* omit  7th ECC byte reserved for ROM code compatibility */
   1234		actual_eccbytes = ecc->bytes - 1;
   1235		erased_ecc_vec = bch4_vector;
   1236		break;
   1237	case OMAP_ECC_BCH8_CODE_HW:
   1238		/* omit 14th ECC byte reserved for ROM code compatibility */
   1239		actual_eccbytes = ecc->bytes - 1;
   1240		erased_ecc_vec = bch8_vector;
   1241		break;
   1242	case OMAP_ECC_BCH16_CODE_HW:
   1243		actual_eccbytes = ecc->bytes;
   1244		erased_ecc_vec = bch16_vector;
   1245		break;
   1246	default:
   1247		dev_err(&info->pdev->dev, "invalid driver configuration\n");
   1248		return -EINVAL;
   1249	}
   1250
   1251	/* Initialize elm error vector to zero */
   1252	memset(err_vec, 0, sizeof(err_vec));
   1253
   1254	for (i = 0; i < eccsteps ; i++) {
   1255		eccflag = 0;	/* initialize eccflag */
   1256
   1257		/*
   1258		 * Check any error reported,
   1259		 * In case of error, non zero ecc reported.
   1260		 */
   1261		for (j = 0; j < actual_eccbytes; j++) {
   1262			if (calc_ecc[j] != 0) {
   1263				eccflag = 1; /* non zero ecc, error present */
   1264				break;
   1265			}
   1266		}
   1267
   1268		if (eccflag == 1) {
   1269			if (memcmp(calc_ecc, erased_ecc_vec,
   1270						actual_eccbytes) == 0) {
   1271				/*
   1272				 * calc_ecc[] matches pattern for ECC(all 0xff)
   1273				 * so this is definitely an erased-page
   1274				 */
   1275			} else {
   1276				buf = &data[info->nand.ecc.size * i];
   1277				/*
   1278				 * count number of 0-bits in read_buf.
   1279				 * This check can be removed once a similar
   1280				 * check is introduced in generic NAND driver
   1281				 */
   1282				bitflip_count = erased_sector_bitflips(
   1283						buf, read_ecc, info);
   1284				if (bitflip_count) {
   1285					/*
   1286					 * number of 0-bits within ECC limits
   1287					 * So this may be an erased-page
   1288					 */
   1289					stat += bitflip_count;
   1290				} else {
   1291					/*
   1292					 * Too many 0-bits. It may be a
   1293					 * - programmed-page, OR
   1294					 * - erased-page with many bit-flips
   1295					 * So this page requires check by ELM
   1296					 */
   1297					err_vec[i].error_reported = true;
   1298					is_error_reported = true;
   1299				}
   1300			}
   1301		}
   1302
   1303		/* Update the ecc vector */
   1304		calc_ecc += ecc->bytes;
   1305		read_ecc += ecc->bytes;
   1306	}
   1307
   1308	/* Check if any error reported */
   1309	if (!is_error_reported)
   1310		return stat;
   1311
   1312	/* Decode BCH error using ELM module */
   1313	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
   1314
   1315	err = 0;
   1316	for (i = 0; i < eccsteps; i++) {
   1317		if (err_vec[i].error_uncorrectable) {
   1318			dev_err(&info->pdev->dev,
   1319				"uncorrectable bit-flips found\n");
   1320			err = -EBADMSG;
   1321		} else if (err_vec[i].error_reported) {
   1322			for (j = 0; j < err_vec[i].error_count; j++) {
   1323				switch (info->ecc_opt) {
   1324				case OMAP_ECC_BCH4_CODE_HW:
   1325					/* Add 4 bits to take care of padding */
   1326					pos = err_vec[i].error_loc[j] +
   1327						BCH4_BIT_PAD;
   1328					break;
   1329				case OMAP_ECC_BCH8_CODE_HW:
   1330				case OMAP_ECC_BCH16_CODE_HW:
   1331					pos = err_vec[i].error_loc[j];
   1332					break;
   1333				default:
   1334					return -EINVAL;
   1335				}
   1336				error_max = (ecc->size + actual_eccbytes) * 8;
   1337				/* Calculate bit position of error */
   1338				bit_pos = pos % 8;
   1339
   1340				/* Calculate byte position of error */
   1341				byte_pos = (error_max - pos - 1) / 8;
   1342
   1343				if (pos < error_max) {
   1344					if (byte_pos < 512) {
   1345						pr_debug("bitflip@dat[%d]=%x\n",
   1346						     byte_pos, data[byte_pos]);
   1347						data[byte_pos] ^= 1 << bit_pos;
   1348					} else {
   1349						pr_debug("bitflip@oob[%d]=%x\n",
   1350							(byte_pos - 512),
   1351						     spare_ecc[byte_pos - 512]);
   1352						spare_ecc[byte_pos - 512] ^=
   1353							1 << bit_pos;
   1354					}
   1355				} else {
   1356					dev_err(&info->pdev->dev,
   1357						"invalid bit-flip @ %d:%d\n",
   1358						byte_pos, bit_pos);
   1359					err = -EBADMSG;
   1360				}
   1361			}
   1362		}
   1363
   1364		/* Update number of correctable errors */
   1365		stat = max_t(unsigned int, stat, err_vec[i].error_count);
   1366
   1367		/* Update page data with sector size */
   1368		data += ecc->size;
   1369		spare_ecc += ecc->bytes;
   1370	}
   1371
   1372	return (err) ? err : stat;
   1373}
   1374
   1375/**
   1376 * omap_write_page_bch - BCH ecc based write page function for entire page
   1377 * @chip:		nand chip info structure
   1378 * @buf:		data buffer
   1379 * @oob_required:	must write chip->oob_poi to OOB
   1380 * @page:		page
   1381 *
   1382 * Custom write page method evolved to support multi sector writing in one shot
   1383 */
   1384static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
   1385			       int oob_required, int page)
   1386{
   1387	struct mtd_info *mtd = nand_to_mtd(chip);
   1388	struct omap_nand_info *info = mtd_to_omap(mtd);
   1389	uint8_t *ecc_calc = chip->ecc.calc_buf;
   1390	unsigned int eccpg;
   1391	int ret;
   1392
   1393	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
   1394	if (ret)
   1395		return ret;
   1396
   1397	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
   1398		/* Enable GPMC ecc engine */
   1399		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
   1400
   1401		/* Write data */
   1402		info->data_out(chip, buf + (eccpg * info->eccpg_size),
   1403			       info->eccpg_size, false);
   1404
   1405		/* Update ecc vector from GPMC result registers */
   1406		ret = omap_calculate_ecc_bch_multi(mtd,
   1407						   buf + (eccpg * info->eccpg_size),
   1408						   ecc_calc);
   1409		if (ret)
   1410			return ret;
   1411
   1412		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
   1413						 chip->oob_poi,
   1414						 eccpg * info->eccpg_bytes,
   1415						 info->eccpg_bytes);
   1416		if (ret)
   1417			return ret;
   1418	}
   1419
   1420	/* Write ecc vector to OOB area */
   1421	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
   1422
   1423	return nand_prog_page_end_op(chip);
   1424}
   1425
   1426/**
   1427 * omap_write_subpage_bch - BCH hardware ECC based subpage write
   1428 * @chip:	nand chip info structure
   1429 * @offset:	column address of subpage within the page
   1430 * @data_len:	data length
   1431 * @buf:	data buffer
   1432 * @oob_required: must write chip->oob_poi to OOB
   1433 * @page: page number to write
   1434 *
   1435 * OMAP optimized subpage write method.
   1436 */
   1437static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
   1438				  u32 data_len, const u8 *buf,
   1439				  int oob_required, int page)
   1440{
   1441	struct mtd_info *mtd = nand_to_mtd(chip);
   1442	struct omap_nand_info *info = mtd_to_omap(mtd);
   1443	u8 *ecc_calc = chip->ecc.calc_buf;
   1444	int ecc_size      = chip->ecc.size;
   1445	int ecc_bytes     = chip->ecc.bytes;
   1446	u32 start_step = offset / ecc_size;
   1447	u32 end_step   = (offset + data_len - 1) / ecc_size;
   1448	unsigned int eccpg;
   1449	int step, ret = 0;
   1450
   1451	/*
   1452	 * Write entire page at one go as it would be optimal
   1453	 * as ECC is calculated by hardware.
   1454	 * ECC is calculated for all subpages but we choose
   1455	 * only what we want.
   1456	 */
   1457	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
   1458	if (ret)
   1459		return ret;
   1460
   1461	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
   1462		/* Enable GPMC ECC engine */
   1463		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
   1464
   1465		/* Write data */
   1466		info->data_out(chip, buf + (eccpg * info->eccpg_size),
   1467			       info->eccpg_size, false);
   1468
   1469		for (step = 0; step < info->nsteps_per_eccpg; step++) {
   1470			unsigned int base_step = eccpg * info->nsteps_per_eccpg;
   1471			const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
   1472
   1473			/* Mask ECC of un-touched subpages with 0xFFs */
   1474			if ((step + base_step) < start_step ||
   1475			    (step + base_step) > end_step)
   1476				memset(ecc_calc + (step * ecc_bytes), 0xff,
   1477				       ecc_bytes);
   1478			else
   1479				ret = _omap_calculate_ecc_bch(mtd,
   1480							      bufoffs + (step * ecc_size),
   1481							      ecc_calc + (step * ecc_bytes),
   1482							      step);
   1483
   1484			if (ret)
   1485				return ret;
   1486		}
   1487
   1488		/*
   1489		 * Copy the calculated ECC for the whole page including the
   1490		 * masked values (0xFF) corresponding to unwritten subpages.
   1491		 */
   1492		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
   1493						 eccpg * info->eccpg_bytes,
   1494						 info->eccpg_bytes);
   1495		if (ret)
   1496			return ret;
   1497	}
   1498
   1499	/* write OOB buffer to NAND device */
   1500	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
   1501
   1502	return nand_prog_page_end_op(chip);
   1503}
   1504
   1505/**
   1506 * omap_read_page_bch - BCH ecc based page read function for entire page
   1507 * @chip:		nand chip info structure
   1508 * @buf:		buffer to store read data
   1509 * @oob_required:	caller requires OOB data read to chip->oob_poi
   1510 * @page:		page number to read
   1511 *
   1512 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
   1513 * used for error correction.
   1514 * Custom method evolved to support ELM error correction & multi sector
   1515 * reading. On reading page data area is read along with OOB data with
   1516 * ecc engine enabled. ecc vector updated after read of OOB data.
   1517 * For non error pages ecc vector reported as zero.
   1518 */
   1519static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
   1520			      int oob_required, int page)
   1521{
   1522	struct mtd_info *mtd = nand_to_mtd(chip);
   1523	struct omap_nand_info *info = mtd_to_omap(mtd);
   1524	uint8_t *ecc_calc = chip->ecc.calc_buf;
   1525	uint8_t *ecc_code = chip->ecc.code_buf;
   1526	unsigned int max_bitflips = 0, eccpg;
   1527	int stat, ret;
   1528
   1529	ret = nand_read_page_op(chip, page, 0, NULL, 0);
   1530	if (ret)
   1531		return ret;
   1532
   1533	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
   1534		/* Enable GPMC ecc engine */
   1535		chip->ecc.hwctl(chip, NAND_ECC_READ);
   1536
   1537		/* Read data */
   1538		ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
   1539						 buf + (eccpg * info->eccpg_size),
   1540						 info->eccpg_size, false);
   1541		if (ret)
   1542			return ret;
   1543
   1544		/* Read oob bytes */
   1545		ret = nand_change_read_column_op(chip,
   1546						 mtd->writesize + BBM_LEN +
   1547						 (eccpg * info->eccpg_bytes),
   1548						 chip->oob_poi + BBM_LEN +
   1549						 (eccpg * info->eccpg_bytes),
   1550						 info->eccpg_bytes, false);
   1551		if (ret)
   1552			return ret;
   1553
   1554		/* Calculate ecc bytes */
   1555		ret = omap_calculate_ecc_bch_multi(mtd,
   1556						   buf + (eccpg * info->eccpg_size),
   1557						   ecc_calc);
   1558		if (ret)
   1559			return ret;
   1560
   1561		ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
   1562						 chip->oob_poi,
   1563						 eccpg * info->eccpg_bytes,
   1564						 info->eccpg_bytes);
   1565		if (ret)
   1566			return ret;
   1567
   1568		stat = chip->ecc.correct(chip,
   1569					 buf + (eccpg * info->eccpg_size),
   1570					 ecc_code, ecc_calc);
   1571		if (stat < 0) {
   1572			mtd->ecc_stats.failed++;
   1573		} else {
   1574			mtd->ecc_stats.corrected += stat;
   1575			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1576		}
   1577	}
   1578
   1579	return max_bitflips;
   1580}
   1581
   1582/**
   1583 * is_elm_present - checks for presence of ELM module by scanning DT nodes
   1584 * @info: NAND device structure containing platform data
   1585 * @elm_node: ELM's DT node
   1586 */
   1587static bool is_elm_present(struct omap_nand_info *info,
   1588			   struct device_node *elm_node)
   1589{
   1590	struct platform_device *pdev;
   1591
   1592	/* check whether elm-id is passed via DT */
   1593	if (!elm_node) {
   1594		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
   1595		return false;
   1596	}
   1597	pdev = of_find_device_by_node(elm_node);
   1598	/* check whether ELM device is registered */
   1599	if (!pdev) {
   1600		dev_err(&info->pdev->dev, "ELM device not found\n");
   1601		return false;
   1602	}
   1603	/* ELM module available, now configure it */
   1604	info->elm_dev = &pdev->dev;
   1605	return true;
   1606}
   1607
   1608static bool omap2_nand_ecc_check(struct omap_nand_info *info)
   1609{
   1610	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
   1611
   1612	switch (info->ecc_opt) {
   1613	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
   1614	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
   1615		ecc_needs_omap_bch = false;
   1616		ecc_needs_bch = true;
   1617		ecc_needs_elm = false;
   1618		break;
   1619	case OMAP_ECC_BCH4_CODE_HW:
   1620	case OMAP_ECC_BCH8_CODE_HW:
   1621	case OMAP_ECC_BCH16_CODE_HW:
   1622		ecc_needs_omap_bch = true;
   1623		ecc_needs_bch = false;
   1624		ecc_needs_elm = true;
   1625		break;
   1626	default:
   1627		ecc_needs_omap_bch = false;
   1628		ecc_needs_bch = false;
   1629		ecc_needs_elm = false;
   1630		break;
   1631	}
   1632
   1633	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
   1634		dev_err(&info->pdev->dev,
   1635			"CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
   1636		return false;
   1637	}
   1638	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
   1639		dev_err(&info->pdev->dev,
   1640			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
   1641		return false;
   1642	}
   1643	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
   1644		dev_err(&info->pdev->dev, "ELM not available\n");
   1645		return false;
   1646	}
   1647
   1648	return true;
   1649}
   1650
   1651static const char * const nand_xfer_types[] = {
   1652	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
   1653	[NAND_OMAP_POLLED] = "polled",
   1654	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
   1655	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
   1656};
   1657
   1658static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
   1659{
   1660	struct device_node *child = dev->of_node;
   1661	int i;
   1662	const char *s;
   1663	u32 cs;
   1664
   1665	if (of_property_read_u32(child, "reg", &cs) < 0) {
   1666		dev_err(dev, "reg not found in DT\n");
   1667		return -EINVAL;
   1668	}
   1669
   1670	info->gpmc_cs = cs;
   1671
   1672	/* detect availability of ELM module. Won't be present pre-OMAP4 */
   1673	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
   1674	if (!info->elm_of_node) {
   1675		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
   1676		if (!info->elm_of_node)
   1677			dev_dbg(dev, "ti,elm-id not in DT\n");
   1678	}
   1679
   1680	/* select ecc-scheme for NAND */
   1681	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
   1682		dev_err(dev, "ti,nand-ecc-opt not found\n");
   1683		return -EINVAL;
   1684	}
   1685
   1686	if (!strcmp(s, "sw")) {
   1687		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
   1688	} else if (!strcmp(s, "ham1") ||
   1689		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
   1690		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
   1691	} else if (!strcmp(s, "bch4")) {
   1692		if (info->elm_of_node)
   1693			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
   1694		else
   1695			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
   1696	} else if (!strcmp(s, "bch8")) {
   1697		if (info->elm_of_node)
   1698			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
   1699		else
   1700			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
   1701	} else if (!strcmp(s, "bch16")) {
   1702		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
   1703	} else {
   1704		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
   1705		return -EINVAL;
   1706	}
   1707
   1708	/* select data transfer mode */
   1709	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
   1710		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
   1711			if (!strcasecmp(s, nand_xfer_types[i])) {
   1712				info->xfer_type = i;
   1713				return 0;
   1714			}
   1715		}
   1716
   1717		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
   1718		return -EINVAL;
   1719	}
   1720
   1721	return 0;
   1722}
   1723
   1724static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
   1725			      struct mtd_oob_region *oobregion)
   1726{
   1727	struct omap_nand_info *info = mtd_to_omap(mtd);
   1728	struct nand_chip *chip = &info->nand;
   1729	int off = BBM_LEN;
   1730
   1731	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
   1732	    !(chip->options & NAND_BUSWIDTH_16))
   1733		off = 1;
   1734
   1735	if (section)
   1736		return -ERANGE;
   1737
   1738	oobregion->offset = off;
   1739	oobregion->length = chip->ecc.total;
   1740
   1741	return 0;
   1742}
   1743
   1744static int omap_ooblayout_free(struct mtd_info *mtd, int section,
   1745			       struct mtd_oob_region *oobregion)
   1746{
   1747	struct omap_nand_info *info = mtd_to_omap(mtd);
   1748	struct nand_chip *chip = &info->nand;
   1749	int off = BBM_LEN;
   1750
   1751	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
   1752	    !(chip->options & NAND_BUSWIDTH_16))
   1753		off = 1;
   1754
   1755	if (section)
   1756		return -ERANGE;
   1757
   1758	off += chip->ecc.total;
   1759	if (off >= mtd->oobsize)
   1760		return -ERANGE;
   1761
   1762	oobregion->offset = off;
   1763	oobregion->length = mtd->oobsize - off;
   1764
   1765	return 0;
   1766}
   1767
   1768static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
   1769	.ecc = omap_ooblayout_ecc,
   1770	.free = omap_ooblayout_free,
   1771};
   1772
   1773static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
   1774				 struct mtd_oob_region *oobregion)
   1775{
   1776	struct nand_device *nand = mtd_to_nanddev(mtd);
   1777	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
   1778	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
   1779	int off = BBM_LEN;
   1780
   1781	if (section >= nsteps)
   1782		return -ERANGE;
   1783
   1784	/*
   1785	 * When SW correction is employed, one OMAP specific marker byte is
   1786	 * reserved after each ECC step.
   1787	 */
   1788	oobregion->offset = off + (section * (ecc_bytes + 1));
   1789	oobregion->length = ecc_bytes;
   1790
   1791	return 0;
   1792}
   1793
   1794static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
   1795				  struct mtd_oob_region *oobregion)
   1796{
   1797	struct nand_device *nand = mtd_to_nanddev(mtd);
   1798	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
   1799	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
   1800	int off = BBM_LEN;
   1801
   1802	if (section)
   1803		return -ERANGE;
   1804
   1805	/*
   1806	 * When SW correction is employed, one OMAP specific marker byte is
   1807	 * reserved after each ECC step.
   1808	 */
   1809	off += ((ecc_bytes + 1) * nsteps);
   1810	if (off >= mtd->oobsize)
   1811		return -ERANGE;
   1812
   1813	oobregion->offset = off;
   1814	oobregion->length = mtd->oobsize - off;
   1815
   1816	return 0;
   1817}
   1818
   1819static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
   1820	.ecc = omap_sw_ooblayout_ecc,
   1821	.free = omap_sw_ooblayout_free,
   1822};
   1823
   1824static int omap_nand_attach_chip(struct nand_chip *chip)
   1825{
   1826	struct mtd_info *mtd = nand_to_mtd(chip);
   1827	struct omap_nand_info *info = mtd_to_omap(mtd);
   1828	struct device *dev = &info->pdev->dev;
   1829	int min_oobbytes = BBM_LEN;
   1830	int elm_bch_strength = -1;
   1831	int oobbytes_per_step;
   1832	dma_cap_mask_t mask;
   1833	int err;
   1834
   1835	if (chip->bbt_options & NAND_BBT_USE_FLASH)
   1836		chip->bbt_options |= NAND_BBT_NO_OOB;
   1837	else
   1838		chip->options |= NAND_SKIP_BBTSCAN;
   1839
   1840	/* Re-populate low-level callbacks based on xfer modes */
   1841	switch (info->xfer_type) {
   1842	case NAND_OMAP_PREFETCH_POLLED:
   1843		info->data_in = omap_nand_data_in_pref;
   1844		info->data_out = omap_nand_data_out_pref;
   1845		break;
   1846
   1847	case NAND_OMAP_POLLED:
   1848		/* Use nand_base defaults for {read,write}_buf */
   1849		break;
   1850
   1851	case NAND_OMAP_PREFETCH_DMA:
   1852		dma_cap_zero(mask);
   1853		dma_cap_set(DMA_SLAVE, mask);
   1854		info->dma = dma_request_chan(dev->parent, "rxtx");
   1855
   1856		if (IS_ERR(info->dma)) {
   1857			dev_err(dev, "DMA engine request failed\n");
   1858			return PTR_ERR(info->dma);
   1859		} else {
   1860			struct dma_slave_config cfg;
   1861
   1862			memset(&cfg, 0, sizeof(cfg));
   1863			cfg.src_addr = info->phys_base;
   1864			cfg.dst_addr = info->phys_base;
   1865			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
   1866			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
   1867			cfg.src_maxburst = 16;
   1868			cfg.dst_maxburst = 16;
   1869			err = dmaengine_slave_config(info->dma, &cfg);
   1870			if (err) {
   1871				dev_err(dev,
   1872					"DMA engine slave config failed: %d\n",
   1873					err);
   1874				return err;
   1875			}
   1876
   1877			info->data_in = omap_nand_data_in_dma_pref;
   1878			info->data_out = omap_nand_data_out_dma_pref;
   1879		}
   1880		break;
   1881
   1882	case NAND_OMAP_PREFETCH_IRQ:
   1883		info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
   1884		if (info->gpmc_irq_fifo <= 0)
   1885			return -ENODEV;
   1886		err = devm_request_irq(dev, info->gpmc_irq_fifo,
   1887				       omap_nand_irq, IRQF_SHARED,
   1888				       "gpmc-nand-fifo", info);
   1889		if (err) {
   1890			dev_err(dev, "Requesting IRQ %d, error %d\n",
   1891				info->gpmc_irq_fifo, err);
   1892			info->gpmc_irq_fifo = 0;
   1893			return err;
   1894		}
   1895
   1896		info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
   1897		if (info->gpmc_irq_count <= 0)
   1898			return -ENODEV;
   1899		err = devm_request_irq(dev, info->gpmc_irq_count,
   1900				       omap_nand_irq, IRQF_SHARED,
   1901				       "gpmc-nand-count", info);
   1902		if (err) {
   1903			dev_err(dev, "Requesting IRQ %d, error %d\n",
   1904				info->gpmc_irq_count, err);
   1905			info->gpmc_irq_count = 0;
   1906			return err;
   1907		}
   1908
   1909		info->data_in = omap_nand_data_in_irq_pref;
   1910		info->data_out = omap_nand_data_out_irq_pref;
   1911		break;
   1912
   1913	default:
   1914		dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
   1915		return -EINVAL;
   1916	}
   1917
   1918	if (!omap2_nand_ecc_check(info))
   1919		return -EINVAL;
   1920
   1921	/*
   1922	 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
   1923	 * ooblayout instead of using ours.
   1924	 */
   1925	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
   1926		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
   1927		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
   1928		return 0;
   1929	}
   1930
   1931	/* Populate MTD interface based on ECC scheme */
   1932	switch (info->ecc_opt) {
   1933	case OMAP_ECC_HAM1_CODE_HW:
   1934		dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
   1935		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   1936		chip->ecc.bytes		= 3;
   1937		chip->ecc.size		= 512;
   1938		chip->ecc.strength	= 1;
   1939		chip->ecc.calculate	= omap_calculate_ecc;
   1940		chip->ecc.hwctl		= omap_enable_hwecc;
   1941		chip->ecc.correct	= omap_correct_data;
   1942		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
   1943		oobbytes_per_step	= chip->ecc.bytes;
   1944
   1945		if (!(chip->options & NAND_BUSWIDTH_16))
   1946			min_oobbytes	= 1;
   1947
   1948		break;
   1949
   1950	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
   1951		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
   1952		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   1953		chip->ecc.size		= 512;
   1954		chip->ecc.bytes		= 7;
   1955		chip->ecc.strength	= 4;
   1956		chip->ecc.hwctl		= omap_enable_hwecc_bch;
   1957		chip->ecc.correct	= rawnand_sw_bch_correct;
   1958		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
   1959		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
   1960		/* Reserve one byte for the OMAP marker */
   1961		oobbytes_per_step	= chip->ecc.bytes + 1;
   1962		/* Software BCH library is used for locating errors */
   1963		err = rawnand_sw_bch_init(chip);
   1964		if (err) {
   1965			dev_err(dev, "Unable to use BCH library\n");
   1966			return err;
   1967		}
   1968		break;
   1969
   1970	case OMAP_ECC_BCH4_CODE_HW:
   1971		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
   1972		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   1973		chip->ecc.size		= 512;
   1974		/* 14th bit is kept reserved for ROM-code compatibility */
   1975		chip->ecc.bytes		= 7 + 1;
   1976		chip->ecc.strength	= 4;
   1977		chip->ecc.hwctl		= omap_enable_hwecc_bch;
   1978		chip->ecc.correct	= omap_elm_correct_data;
   1979		chip->ecc.read_page	= omap_read_page_bch;
   1980		chip->ecc.write_page	= omap_write_page_bch;
   1981		chip->ecc.write_subpage	= omap_write_subpage_bch;
   1982		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
   1983		oobbytes_per_step	= chip->ecc.bytes;
   1984		elm_bch_strength = BCH4_ECC;
   1985		break;
   1986
   1987	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
   1988		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
   1989		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   1990		chip->ecc.size		= 512;
   1991		chip->ecc.bytes		= 13;
   1992		chip->ecc.strength	= 8;
   1993		chip->ecc.hwctl		= omap_enable_hwecc_bch;
   1994		chip->ecc.correct	= rawnand_sw_bch_correct;
   1995		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
   1996		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
   1997		/* Reserve one byte for the OMAP marker */
   1998		oobbytes_per_step	= chip->ecc.bytes + 1;
   1999		/* Software BCH library is used for locating errors */
   2000		err = rawnand_sw_bch_init(chip);
   2001		if (err) {
   2002			dev_err(dev, "unable to use BCH library\n");
   2003			return err;
   2004		}
   2005		break;
   2006
   2007	case OMAP_ECC_BCH8_CODE_HW:
   2008		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
   2009		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   2010		chip->ecc.size		= 512;
   2011		/* 14th bit is kept reserved for ROM-code compatibility */
   2012		chip->ecc.bytes		= 13 + 1;
   2013		chip->ecc.strength	= 8;
   2014		chip->ecc.hwctl		= omap_enable_hwecc_bch;
   2015		chip->ecc.correct	= omap_elm_correct_data;
   2016		chip->ecc.read_page	= omap_read_page_bch;
   2017		chip->ecc.write_page	= omap_write_page_bch;
   2018		chip->ecc.write_subpage	= omap_write_subpage_bch;
   2019		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
   2020		oobbytes_per_step	= chip->ecc.bytes;
   2021		elm_bch_strength = BCH8_ECC;
   2022		break;
   2023
   2024	case OMAP_ECC_BCH16_CODE_HW:
   2025		pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
   2026		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
   2027		chip->ecc.size		= 512;
   2028		chip->ecc.bytes		= 26;
   2029		chip->ecc.strength	= 16;
   2030		chip->ecc.hwctl		= omap_enable_hwecc_bch;
   2031		chip->ecc.correct	= omap_elm_correct_data;
   2032		chip->ecc.read_page	= omap_read_page_bch;
   2033		chip->ecc.write_page	= omap_write_page_bch;
   2034		chip->ecc.write_subpage	= omap_write_subpage_bch;
   2035		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
   2036		oobbytes_per_step	= chip->ecc.bytes;
   2037		elm_bch_strength = BCH16_ECC;
   2038		break;
   2039	default:
   2040		dev_err(dev, "Invalid or unsupported ECC scheme\n");
   2041		return -EINVAL;
   2042	}
   2043
   2044	if (elm_bch_strength >= 0) {
   2045		chip->ecc.steps = mtd->writesize / chip->ecc.size;
   2046		info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
   2047		if (info->neccpg) {
   2048			info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
   2049		} else {
   2050			info->neccpg = 1;
   2051			info->nsteps_per_eccpg = chip->ecc.steps;
   2052		}
   2053		info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
   2054		info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
   2055
   2056		err = elm_config(info->elm_dev, elm_bch_strength,
   2057				 info->nsteps_per_eccpg, chip->ecc.size,
   2058				 chip->ecc.bytes);
   2059		if (err < 0)
   2060			return err;
   2061	}
   2062
   2063	/* Check if NAND device's OOB is enough to store ECC signatures */
   2064	min_oobbytes += (oobbytes_per_step *
   2065			 (mtd->writesize / chip->ecc.size));
   2066	if (mtd->oobsize < min_oobbytes) {
   2067		dev_err(dev,
   2068			"Not enough OOB bytes: required = %d, available=%d\n",
   2069			min_oobbytes, mtd->oobsize);
   2070		return -EINVAL;
   2071	}
   2072
   2073	return 0;
   2074}
   2075
   2076static void omap_nand_data_in(struct nand_chip *chip, void *buf,
   2077			      unsigned int len, bool force_8bit)
   2078{
   2079	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
   2080	u32 alignment = ((uintptr_t)buf | len) & 3;
   2081
   2082	if (force_8bit || (alignment & 1))
   2083		ioread8_rep(info->fifo, buf, len);
   2084	else if (alignment & 3)
   2085		ioread16_rep(info->fifo, buf, len >> 1);
   2086	else
   2087		ioread32_rep(info->fifo, buf, len >> 2);
   2088}
   2089
   2090static void omap_nand_data_out(struct nand_chip *chip,
   2091			       const void *buf, unsigned int len,
   2092			       bool force_8bit)
   2093{
   2094	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
   2095	u32 alignment = ((uintptr_t)buf | len) & 3;
   2096
   2097	if (force_8bit || (alignment & 1))
   2098		iowrite8_rep(info->fifo, buf, len);
   2099	else if (alignment & 3)
   2100		iowrite16_rep(info->fifo, buf, len >> 1);
   2101	else
   2102		iowrite32_rep(info->fifo, buf, len >> 2);
   2103}
   2104
   2105static int omap_nand_exec_instr(struct nand_chip *chip,
   2106				const struct nand_op_instr *instr)
   2107{
   2108	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
   2109	unsigned int i;
   2110	int ret;
   2111
   2112	switch (instr->type) {
   2113	case NAND_OP_CMD_INSTR:
   2114		iowrite8(instr->ctx.cmd.opcode,
   2115			 info->reg.gpmc_nand_command);
   2116		break;
   2117
   2118	case NAND_OP_ADDR_INSTR:
   2119		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
   2120			iowrite8(instr->ctx.addr.addrs[i],
   2121				 info->reg.gpmc_nand_address);
   2122		}
   2123		break;
   2124
   2125	case NAND_OP_DATA_IN_INSTR:
   2126		info->data_in(chip, instr->ctx.data.buf.in,
   2127			      instr->ctx.data.len,
   2128			      instr->ctx.data.force_8bit);
   2129		break;
   2130
   2131	case NAND_OP_DATA_OUT_INSTR:
   2132		info->data_out(chip, instr->ctx.data.buf.out,
   2133			       instr->ctx.data.len,
   2134			       instr->ctx.data.force_8bit);
   2135		break;
   2136
   2137	case NAND_OP_WAITRDY_INSTR:
   2138		ret = info->ready_gpiod ?
   2139			nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
   2140			nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
   2141		if (ret)
   2142			return ret;
   2143		break;
   2144	}
   2145
   2146	if (instr->delay_ns)
   2147		ndelay(instr->delay_ns);
   2148
   2149	return 0;
   2150}
   2151
   2152static int omap_nand_exec_op(struct nand_chip *chip,
   2153			     const struct nand_operation *op,
   2154			     bool check_only)
   2155{
   2156	unsigned int i;
   2157
   2158	if (check_only)
   2159		return 0;
   2160
   2161	for (i = 0; i < op->ninstrs; i++) {
   2162		int ret;
   2163
   2164		ret = omap_nand_exec_instr(chip, &op->instrs[i]);
   2165		if (ret)
   2166			return ret;
   2167	}
   2168
   2169	return 0;
   2170}
   2171
   2172static const struct nand_controller_ops omap_nand_controller_ops = {
   2173	.attach_chip = omap_nand_attach_chip,
   2174	.exec_op = omap_nand_exec_op,
   2175};
   2176
   2177/* Shared among all NAND instances to synchronize access to the ECC Engine */
   2178static struct nand_controller omap_gpmc_controller;
   2179static bool omap_gpmc_controller_initialized;
   2180
   2181static int omap_nand_probe(struct platform_device *pdev)
   2182{
   2183	struct omap_nand_info		*info;
   2184	struct mtd_info			*mtd;
   2185	struct nand_chip		*nand_chip;
   2186	int				err;
   2187	struct resource			*res;
   2188	struct device			*dev = &pdev->dev;
   2189	void __iomem *vaddr;
   2190
   2191	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
   2192				GFP_KERNEL);
   2193	if (!info)
   2194		return -ENOMEM;
   2195
   2196	info->pdev = pdev;
   2197
   2198	err = omap_get_dt_info(dev, info);
   2199	if (err)
   2200		return err;
   2201
   2202	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
   2203	if (!info->ops) {
   2204		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
   2205		return -ENODEV;
   2206	}
   2207
   2208	nand_chip		= &info->nand;
   2209	mtd			= nand_to_mtd(nand_chip);
   2210	mtd->dev.parent		= &pdev->dev;
   2211	nand_set_flash_node(nand_chip, dev->of_node);
   2212
   2213	if (!mtd->name) {
   2214		mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
   2215					   "omap2-nand.%d", info->gpmc_cs);
   2216		if (!mtd->name) {
   2217			dev_err(&pdev->dev, "Failed to set MTD name\n");
   2218			return -ENOMEM;
   2219		}
   2220	}
   2221
   2222	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   2223	vaddr = devm_ioremap_resource(&pdev->dev, res);
   2224	if (IS_ERR(vaddr))
   2225		return PTR_ERR(vaddr);
   2226
   2227	info->fifo = vaddr;
   2228	info->phys_base = res->start;
   2229
   2230	if (!omap_gpmc_controller_initialized) {
   2231		omap_gpmc_controller.ops = &omap_nand_controller_ops;
   2232		nand_controller_init(&omap_gpmc_controller);
   2233		omap_gpmc_controller_initialized = true;
   2234	}
   2235
   2236	nand_chip->controller = &omap_gpmc_controller;
   2237
   2238	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
   2239						    GPIOD_IN);
   2240	if (IS_ERR(info->ready_gpiod)) {
   2241		dev_err(dev, "failed to get ready gpio\n");
   2242		return PTR_ERR(info->ready_gpiod);
   2243	}
   2244
   2245	if (info->flash_bbt)
   2246		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
   2247
   2248	/* default operations */
   2249	info->data_in = omap_nand_data_in;
   2250	info->data_out = omap_nand_data_out;
   2251
   2252	err = nand_scan(nand_chip, 1);
   2253	if (err)
   2254		goto return_error;
   2255
   2256	err = mtd_device_register(mtd, NULL, 0);
   2257	if (err)
   2258		goto cleanup_nand;
   2259
   2260	platform_set_drvdata(pdev, mtd);
   2261
   2262	return 0;
   2263
   2264cleanup_nand:
   2265	nand_cleanup(nand_chip);
   2266
   2267return_error:
   2268	if (!IS_ERR_OR_NULL(info->dma))
   2269		dma_release_channel(info->dma);
   2270
   2271	rawnand_sw_bch_cleanup(nand_chip);
   2272
   2273	return err;
   2274}
   2275
   2276static int omap_nand_remove(struct platform_device *pdev)
   2277{
   2278	struct mtd_info *mtd = platform_get_drvdata(pdev);
   2279	struct nand_chip *nand_chip = mtd_to_nand(mtd);
   2280	struct omap_nand_info *info = mtd_to_omap(mtd);
   2281	int ret;
   2282
   2283	rawnand_sw_bch_cleanup(nand_chip);
   2284
   2285	if (info->dma)
   2286		dma_release_channel(info->dma);
   2287	ret = mtd_device_unregister(mtd);
   2288	WARN_ON(ret);
   2289	nand_cleanup(nand_chip);
   2290	return ret;
   2291}
   2292
   2293/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
   2294MODULE_DEVICE_TABLE(of, omap_nand_ids);
   2295
   2296static struct platform_driver omap_nand_driver = {
   2297	.probe		= omap_nand_probe,
   2298	.remove		= omap_nand_remove,
   2299	.driver		= {
   2300		.name	= DRIVER_NAME,
   2301		.of_match_table = omap_nand_ids,
   2302	},
   2303};
   2304
   2305module_platform_driver(omap_nand_driver);
   2306
   2307MODULE_ALIAS("platform:" DRIVER_NAME);
   2308MODULE_LICENSE("GPL");
   2309MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");