pl35x-nand-controller.c (33216B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * ARM PL35X NAND flash controller driver 4 * 5 * Copyright (C) 2017 Xilinx, Inc 6 * Author: 7 * Miquel Raynal <miquel.raynal@bootlin.com> 8 * Original work (rewritten): 9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com> 10 * Naga Sureshkumar Relli <nagasure@xilinx.com> 11 */ 12 13#include <linux/amba/bus.h> 14#include <linux/err.h> 15#include <linux/delay.h> 16#include <linux/interrupt.h> 17#include <linux/io.h> 18#include <linux/ioport.h> 19#include <linux/iopoll.h> 20#include <linux/irq.h> 21#include <linux/module.h> 22#include <linux/moduleparam.h> 23#include <linux/mtd/mtd.h> 24#include <linux/mtd/rawnand.h> 25#include <linux/mtd/partitions.h> 26#include <linux/of_address.h> 27#include <linux/of_device.h> 28#include <linux/of_platform.h> 29#include <linux/platform_device.h> 30#include <linux/slab.h> 31#include <linux/clk.h> 32 33#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller" 34 35/* SMC controller status register (RO) */ 36#define PL35X_SMC_MEMC_STATUS 0x0 37#define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6) 38/* SMC clear config register (WO) */ 39#define PL35X_SMC_MEMC_CFG_CLR 0xC 40#define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1) 41#define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4) 42#define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6) 43/* SMC direct command register (WO) */ 44#define PL35X_SMC_DIRECT_CMD 0x10 45#define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23) 46#define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21) 47/* SMC set cycles register (WO) */ 48#define PL35X_SMC_CYCLES 0x14 49#define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0) 50#define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4) 51#define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8) 52#define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11) 53#define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14) 54#define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17) 55#define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20) 56/* SMC set opmode register (WO) */ 57#define PL35X_SMC_OPMODE 0x18 58#define PL35X_SMC_OPMODE_BW_8 0 59#define PL35X_SMC_OPMODE_BW_16 1 60/* SMC ECC status register (RO) */ 61#define PL35X_SMC_ECC_STATUS 0x400 62#define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6) 63/* SMC ECC configuration register */ 64#define PL35X_SMC_ECC_CFG 0x404 65#define PL35X_SMC_ECC_CFG_MODE_MASK 0xC 66#define PL35X_SMC_ECC_CFG_MODE_BYPASS 0 67#define PL35X_SMC_ECC_CFG_MODE_APB BIT(2) 68#define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3) 69#define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3 70/* SMC ECC command 1 register */ 71#define PL35X_SMC_ECC_CMD1 0x408 72#define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0) 73#define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8) 74#define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16) 75#define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24) 76/* SMC ECC command 2 register */ 77#define PL35X_SMC_ECC_CMD2 0x40C 78#define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0) 79#define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8) 80#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16) 81#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24) 82/* SMC ECC value registers (RO) */ 83#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x))) 84#define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27)) 85#define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28)) 86#define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30)) 87 88/* NAND AXI interface */ 89#define PL35X_SMC_CMD_PHASE 0 90#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3) 91#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11) 92#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20) 93#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos))) 94#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21) 95#define PL35X_SMC_DATA_PHASE BIT(19) 96#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10) 97#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21) 98 99#define PL35X_NAND_MAX_CS 1 100#define PL35X_NAND_LAST_XFER_SZ 4 101#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns)) 102 103#define PL35X_NAND_ECC_BITS_MASK 0xFFF 104#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF 105#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7 106 107struct pl35x_nand_timings { 108 unsigned int t_rc:4; 109 unsigned int t_wc:4; 110 unsigned int t_rea:3; 111 unsigned int t_wp:3; 112 unsigned int t_clr:3; 113 unsigned int t_ar:3; 114 unsigned int t_rr:4; 115 unsigned int rsvd:8; 116}; 117 118struct pl35x_nand { 119 struct list_head node; 120 struct nand_chip chip; 121 unsigned int cs; 122 unsigned int addr_cycles; 123 u32 ecc_cfg; 124 u32 timings; 125}; 126 127/** 128 * struct pl35x_nandc - NAND flash controller driver structure 129 * @dev: Kernel device 130 * @conf_regs: SMC configuration registers for command phase 131 * @io_regs: NAND data registers for data phase 132 * @controller: Core NAND controller structure 133 * @chip: NAND chip information structure 134 * @selected_chip: NAND chip currently selected by the controller 135 * @assigned_cs: List of assigned CS 136 * @ecc_buf: Temporary buffer to extract ECC bytes 137 */ 138struct pl35x_nandc { 139 struct device *dev; 140 void __iomem *conf_regs; 141 void __iomem *io_regs; 142 struct nand_controller controller; 143 struct list_head chips; 144 struct nand_chip *selected_chip; 145 unsigned long assigned_cs; 146 u8 *ecc_buf; 147}; 148 149static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl) 150{ 151 return container_of(ctrl, struct pl35x_nandc, controller); 152} 153 154static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip) 155{ 156 return container_of(chip, struct pl35x_nand, chip); 157} 158 159static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, 160 struct mtd_oob_region *oobregion) 161{ 162 struct nand_chip *chip = mtd_to_nand(mtd); 163 164 if (section >= chip->ecc.steps) 165 return -ERANGE; 166 167 oobregion->offset = (section * chip->ecc.bytes); 168 oobregion->length = chip->ecc.bytes; 169 170 return 0; 171} 172 173static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section, 174 struct mtd_oob_region *oobregion) 175{ 176 struct nand_chip *chip = mtd_to_nand(mtd); 177 178 if (section >= chip->ecc.steps) 179 return -ERANGE; 180 181 oobregion->offset = (section * chip->ecc.bytes) + 8; 182 oobregion->length = 8; 183 184 return 0; 185} 186 187static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = { 188 .ecc = pl35x_ecc_ooblayout16_ecc, 189 .free = pl35x_ecc_ooblayout16_free, 190}; 191 192/* Generic flash bbt decriptors */ 193static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; 194static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; 195 196static struct nand_bbt_descr bbt_main_descr = { 197 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 198 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 199 .offs = 4, 200 .len = 4, 201 .veroffs = 20, 202 .maxblocks = 4, 203 .pattern = bbt_pattern 204}; 205 206static struct nand_bbt_descr bbt_mirror_descr = { 207 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 208 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 209 .offs = 4, 210 .len = 4, 211 .veroffs = 20, 212 .maxblocks = 4, 213 .pattern = mirror_pattern 214}; 215 216static void pl35x_smc_update_regs(struct pl35x_nandc *nfc) 217{ 218 writel(PL35X_SMC_DIRECT_CMD_NAND_CS | 219 PL35X_SMC_DIRECT_CMD_UPD_REGS, 220 nfc->conf_regs + PL35X_SMC_DIRECT_CMD); 221} 222 223static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw) 224{ 225 if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16) 226 return -EINVAL; 227 228 writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE); 229 pl35x_smc_update_regs(nfc); 230 231 return 0; 232} 233 234static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc) 235{ 236 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1, 237 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); 238} 239 240static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc) 241{ 242 u32 reg; 243 int ret; 244 245 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg, 246 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1, 247 10, 1000000); 248 if (ret) 249 dev_err(nfc->dev, 250 "Timeout polling on NAND controller interrupt (0x%x)\n", 251 reg); 252 253 pl35x_smc_clear_irq(nfc); 254 255 return ret; 256} 257 258static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc) 259{ 260 u32 reg; 261 int ret; 262 263 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg, 264 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY), 265 10, 1000000); 266 if (ret) 267 dev_err(nfc->dev, 268 "Timeout polling on ECC controller interrupt\n"); 269 270 return ret; 271} 272 273static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc, 274 struct nand_chip *chip, 275 unsigned int mode) 276{ 277 struct pl35x_nand *plnand; 278 u32 ecc_cfg; 279 280 ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); 281 ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK; 282 ecc_cfg |= mode; 283 writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); 284 285 if (chip) { 286 plnand = to_pl35x_nand(chip); 287 plnand->ecc_cfg = ecc_cfg; 288 } 289 290 if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS) 291 return pl35x_smc_wait_for_ecc_done(nfc); 292 293 return 0; 294} 295 296static void pl35x_smc_force_byte_access(struct nand_chip *chip, 297 bool force_8bit) 298{ 299 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 300 int ret; 301 302 if (!(chip->options & NAND_BUSWIDTH_16)) 303 return; 304 305 if (force_8bit) 306 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); 307 else 308 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16); 309 310 if (ret) 311 dev_err(nfc->dev, "Error in Buswidth\n"); 312} 313 314static void pl35x_nand_select_target(struct nand_chip *chip, 315 unsigned int die_nr) 316{ 317 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 318 struct pl35x_nand *plnand = to_pl35x_nand(chip); 319 320 if (chip == nfc->selected_chip) 321 return; 322 323 /* Setup the timings */ 324 writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES); 325 pl35x_smc_update_regs(nfc); 326 327 /* Configure the ECC engine */ 328 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); 329 330 nfc->selected_chip = chip; 331} 332 333static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in, 334 unsigned int len, bool force_8bit, 335 unsigned int flags, unsigned int last_flags) 336{ 337 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 338 unsigned int buf_end = len / 4; 339 unsigned int in_start = round_down(len, 4); 340 unsigned int data_phase_addr; 341 u32 *buf32 = (u32 *)in; 342 u8 *buf8 = (u8 *)in; 343 int i; 344 345 if (force_8bit) 346 pl35x_smc_force_byte_access(chip, true); 347 348 for (i = 0; i < buf_end; i++) { 349 data_phase_addr = PL35X_SMC_DATA_PHASE + flags; 350 if (i + 1 == buf_end) 351 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; 352 353 buf32[i] = readl(nfc->io_regs + data_phase_addr); 354 } 355 356 /* No working extra flags on unaligned data accesses */ 357 for (i = in_start; i < len; i++) 358 buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE); 359 360 if (force_8bit) 361 pl35x_smc_force_byte_access(chip, false); 362} 363 364static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out, 365 int len, bool force_8bit, 366 unsigned int flags, 367 unsigned int last_flags) 368{ 369 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 370 unsigned int buf_end = len / 4; 371 unsigned int in_start = round_down(len, 4); 372 const u32 *buf32 = (const u32 *)out; 373 const u8 *buf8 = (const u8 *)out; 374 unsigned int data_phase_addr; 375 int i; 376 377 if (force_8bit) 378 pl35x_smc_force_byte_access(chip, true); 379 380 for (i = 0; i < buf_end; i++) { 381 data_phase_addr = PL35X_SMC_DATA_PHASE + flags; 382 if (i + 1 == buf_end) 383 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; 384 385 writel(buf32[i], nfc->io_regs + data_phase_addr); 386 } 387 388 /* No working extra flags on unaligned data accesses */ 389 for (i = in_start; i < len; i++) 390 writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE); 391 392 if (force_8bit) 393 pl35x_smc_force_byte_access(chip, false); 394} 395 396static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf, 397 unsigned char *read_ecc, 398 unsigned char *calc_ecc) 399{ 400 unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; 401 unsigned short calc_ecc_lower, calc_ecc_upper; 402 unsigned short byte_addr, bit_addr; 403 404 read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 405 PL35X_NAND_ECC_BITS_MASK; 406 read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 407 PL35X_NAND_ECC_BITS_MASK; 408 409 calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 410 PL35X_NAND_ECC_BITS_MASK; 411 calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 412 PL35X_NAND_ECC_BITS_MASK; 413 414 ecc_odd = read_ecc_lower ^ calc_ecc_lower; 415 ecc_even = read_ecc_upper ^ calc_ecc_upper; 416 417 /* No error */ 418 if (likely(!ecc_odd && !ecc_even)) 419 return 0; 420 421 /* One error in the main data; to be corrected */ 422 if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) { 423 /* Bits [11:3] of error code give the byte offset */ 424 byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK; 425 /* Bits [2:0] of error code give the bit offset */ 426 bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK; 427 /* Toggle the faulty bit */ 428 buf[byte_addr] ^= (BIT(bit_addr)); 429 430 return 1; 431 } 432 433 /* One error in the ECC data; no action needed */ 434 if (hweight32(ecc_odd | ecc_even) == 1) 435 return 1; 436 437 return -EBADMSG; 438} 439 440static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg, 441 u8 *ecc_array) 442{ 443 u32 ecc_value = ~ecc_reg; 444 unsigned int ecc_byte; 445 446 for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++) 447 ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte); 448} 449 450static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc, 451 struct nand_chip *chip, u8 *read_ecc) 452{ 453 u32 ecc_value; 454 int chunk; 455 456 for (chunk = 0; chunk < chip->ecc.steps; 457 chunk++, read_ecc += chip->ecc.bytes) { 458 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); 459 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) 460 return -EINVAL; 461 462 pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc); 463 } 464 465 return 0; 466} 467 468static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc, 469 struct nand_chip *chip, u8 *data, 470 u8 *read_ecc) 471{ 472 struct mtd_info *mtd = nand_to_mtd(chip); 473 unsigned int max_bitflips = 0, chunk; 474 u8 calc_ecc[3]; 475 u32 ecc_value; 476 int stats; 477 478 for (chunk = 0; chunk < chip->ecc.steps; 479 chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) { 480 /* Read ECC value for each chunk */ 481 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); 482 483 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) 484 return -EINVAL; 485 486 if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) { 487 mtd->ecc_stats.failed++; 488 continue; 489 } 490 491 pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc); 492 stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc); 493 if (stats < 0) { 494 mtd->ecc_stats.failed++; 495 } else { 496 mtd->ecc_stats.corrected += stats; 497 max_bitflips = max_t(unsigned int, max_bitflips, stats); 498 } 499 } 500 501 return max_bitflips; 502} 503 504static int pl35x_nand_write_page_hwecc(struct nand_chip *chip, 505 const u8 *buf, int oob_required, 506 int page) 507{ 508 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 509 struct pl35x_nand *plnand = to_pl35x_nand(chip); 510 struct mtd_info *mtd = nand_to_mtd(chip); 511 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; 512 unsigned int nrows = plnand->addr_cycles; 513 u32 addr1 = 0, addr2 = 0, row; 514 u32 cmd_addr; 515 int i, ret; 516 517 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); 518 if (ret) 519 return ret; 520 521 cmd_addr = PL35X_SMC_CMD_PHASE | 522 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | 523 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN); 524 525 for (i = 0, row = first_row; row < nrows; i++, row++) { 526 u8 addr = page >> ((i * 8) & 0xFF); 527 528 if (row < 4) 529 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); 530 else 531 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); 532 } 533 534 /* Send the command and address cycles */ 535 writel(addr1, nfc->io_regs + cmd_addr); 536 if (plnand->addr_cycles > 4) 537 writel(addr2, nfc->io_regs + cmd_addr); 538 539 /* Write the data with the engine enabled */ 540 pl35x_nand_write_data_op(chip, buf, mtd->writesize, false, 541 0, PL35X_SMC_DATA_PHASE_ECC_LAST); 542 ret = pl35x_smc_wait_for_ecc_done(nfc); 543 if (ret) 544 goto disable_ecc_engine; 545 546 /* Copy the HW calculated ECC bytes in the OOB buffer */ 547 ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf); 548 if (ret) 549 goto disable_ecc_engine; 550 551 if (!oob_required) 552 memset(chip->oob_poi, 0xFF, mtd->oobsize); 553 554 ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 555 0, chip->ecc.total); 556 if (ret) 557 goto disable_ecc_engine; 558 559 /* Write the spare area with ECC bytes */ 560 pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0, 561 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) | 562 PL35X_SMC_CMD_PHASE_CMD1_VALID | 563 PL35X_SMC_DATA_PHASE_CLEAR_CS); 564 ret = pl35x_smc_wait_for_irq(nfc); 565 if (ret) 566 goto disable_ecc_engine; 567 568disable_ecc_engine: 569 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); 570 571 return ret; 572} 573 574/* 575 * This functions reads data and checks the data integrity by comparing hardware 576 * generated ECC values and read ECC values from spare area. 577 * 578 * There is a limitation with SMC controller: ECC_LAST must be set on the 579 * last data access to tell the ECC engine not to expect any further data. 580 * In practice, this implies to shrink the last data transfert by eg. 4 bytes, 581 * and doing a last 4-byte transfer with the additional bit set. The last block 582 * should be aligned with the end of an ECC block. Because of this limitation, 583 * it is not possible to use the core routines. 584 */ 585static int pl35x_nand_read_page_hwecc(struct nand_chip *chip, 586 u8 *buf, int oob_required, int page) 587{ 588 const struct nand_sdr_timings *sdr = 589 nand_get_sdr_timings(nand_get_interface_config(chip)); 590 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 591 struct pl35x_nand *plnand = to_pl35x_nand(chip); 592 struct mtd_info *mtd = nand_to_mtd(chip); 593 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; 594 unsigned int nrows = plnand->addr_cycles; 595 unsigned int addr1 = 0, addr2 = 0, row; 596 u32 cmd_addr; 597 int i, ret; 598 599 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); 600 if (ret) 601 return ret; 602 603 cmd_addr = PL35X_SMC_CMD_PHASE | 604 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | 605 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) | 606 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) | 607 PL35X_SMC_CMD_PHASE_CMD1_VALID; 608 609 for (i = 0, row = first_row; row < nrows; i++, row++) { 610 u8 addr = page >> ((i * 8) & 0xFF); 611 612 if (row < 4) 613 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); 614 else 615 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); 616 } 617 618 /* Send the command and address cycles */ 619 writel(addr1, nfc->io_regs + cmd_addr); 620 if (plnand->addr_cycles > 4) 621 writel(addr2, nfc->io_regs + cmd_addr); 622 623 /* Wait the data to be available in the NAND cache */ 624 ndelay(PSEC_TO_NSEC(sdr->tRR_min)); 625 ret = pl35x_smc_wait_for_irq(nfc); 626 if (ret) 627 goto disable_ecc_engine; 628 629 /* Retrieve the raw data with the engine enabled */ 630 pl35x_nand_read_data_op(chip, buf, mtd->writesize, false, 631 0, PL35X_SMC_DATA_PHASE_ECC_LAST); 632 ret = pl35x_smc_wait_for_ecc_done(nfc); 633 if (ret) 634 goto disable_ecc_engine; 635 636 /* Retrieve the stored ECC bytes */ 637 pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 638 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); 639 ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0, 640 chip->ecc.total); 641 if (ret) 642 goto disable_ecc_engine; 643 644 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); 645 646 /* Correct the data and report failures */ 647 return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf); 648 649disable_ecc_engine: 650 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); 651 652 return ret; 653} 654 655static int pl35x_nand_exec_op(struct nand_chip *chip, 656 const struct nand_subop *subop) 657{ 658 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 659 const struct nand_op_instr *instr, *data_instr = NULL; 660 unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0; 661 u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0; 662 unsigned int op_id, len, offset, rdy_del_ns; 663 int last_instr_type = -1; 664 bool cmd1_valid = false; 665 const u8 *addrs; 666 int i, ret; 667 668 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 669 instr = &subop->instrs[op_id]; 670 671 switch (instr->type) { 672 case NAND_OP_CMD_INSTR: 673 if (!cmds) { 674 cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode); 675 } else { 676 cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode); 677 if (last_instr_type != NAND_OP_DATA_OUT_INSTR) 678 cmd1_valid = true; 679 } 680 cmds++; 681 break; 682 683 case NAND_OP_ADDR_INSTR: 684 offset = nand_subop_get_addr_start_off(subop, op_id); 685 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 686 addrs = &instr->ctx.addr.addrs[offset]; 687 cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs); 688 689 for (i = offset; i < naddrs; i++) { 690 if (i < 4) 691 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]); 692 else 693 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]); 694 } 695 break; 696 697 case NAND_OP_DATA_IN_INSTR: 698 case NAND_OP_DATA_OUT_INSTR: 699 data_instr = instr; 700 len = nand_subop_get_data_len(subop, op_id); 701 break; 702 703 case NAND_OP_WAITRDY_INSTR: 704 rdy_tim_ms = instr->ctx.waitrdy.timeout_ms; 705 rdy_del_ns = instr->delay_ns; 706 break; 707 } 708 709 last_instr_type = instr->type; 710 } 711 712 /* Command phase */ 713 cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 | 714 (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0); 715 writel(addr1, nfc->io_regs + cmd_addr); 716 if (naddrs > 4) 717 writel(addr2, nfc->io_regs + cmd_addr); 718 719 /* Data phase */ 720 if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) { 721 last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS; 722 if (cmds == 2) 723 last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID; 724 725 pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out, 726 len, data_instr->ctx.data.force_8bit, 727 0, last_flags); 728 } 729 730 if (rdy_tim_ms) { 731 ndelay(rdy_del_ns); 732 ret = pl35x_smc_wait_for_irq(nfc); 733 if (ret) 734 return ret; 735 } 736 737 if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR) 738 pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in, 739 len, data_instr->ctx.data.force_8bit, 740 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); 741 742 return 0; 743} 744 745static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER( 746 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, 747 NAND_OP_PARSER_PAT_CMD_ELEM(true), 748 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), 749 NAND_OP_PARSER_PAT_CMD_ELEM(true), 750 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 751 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)), 752 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, 753 NAND_OP_PARSER_PAT_CMD_ELEM(false), 754 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), 755 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), 756 NAND_OP_PARSER_PAT_CMD_ELEM(false), 757 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 758 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, 759 NAND_OP_PARSER_PAT_CMD_ELEM(false), 760 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), 761 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), 762 NAND_OP_PARSER_PAT_CMD_ELEM(true), 763 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 764 ); 765 766static int pl35x_nfc_exec_op(struct nand_chip *chip, 767 const struct nand_operation *op, 768 bool check_only) 769{ 770 if (!check_only) 771 pl35x_nand_select_target(chip, op->cs); 772 773 return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser, 774 op, check_only); 775} 776 777static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs, 778 const struct nand_interface_config *conf) 779{ 780 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 781 struct pl35x_nand *plnand = to_pl35x_nand(chip); 782 struct pl35x_nand_timings tmgs = {}; 783 const struct nand_sdr_timings *sdr; 784 unsigned int period_ns, val; 785 struct clk *mclk; 786 787 sdr = nand_get_sdr_timings(conf); 788 if (IS_ERR(sdr)) 789 return PTR_ERR(sdr); 790 791 mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk"); 792 if (IS_ERR(mclk)) { 793 dev_err(nfc->dev, "Failed to retrieve SMC memclk\n"); 794 return PTR_ERR(mclk); 795 } 796 797 /* 798 * SDR timings are given in pico-seconds while NFC timings must be 799 * expressed in NAND controller clock cycles. We use the TO_CYCLE() 800 * macro to convert from one to the other. 801 */ 802 period_ns = NSEC_PER_SEC / clk_get_rate(mclk); 803 804 /* 805 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not 806 * written anywhere in the datasheet but is an empirical observation. 807 */ 808 val = TO_CYCLES(sdr->tRC_min, period_ns); 809 if (sdr->tRC_min <= 20000) 810 val++; 811 812 tmgs.t_rc = val; 813 if (tmgs.t_rc != val || tmgs.t_rc < 2) 814 return -EINVAL; 815 816 val = TO_CYCLES(sdr->tWC_min, period_ns); 817 tmgs.t_wc = val; 818 if (tmgs.t_wc != val || tmgs.t_wc < 2) 819 return -EINVAL; 820 821 /* 822 * For all SDR modes, PL35X SMC needs tREA_max being 1, 823 * this is also an empirical result. 824 */ 825 tmgs.t_rea = 1; 826 827 val = TO_CYCLES(sdr->tWP_min, period_ns); 828 tmgs.t_wp = val; 829 if (tmgs.t_wp != val || tmgs.t_wp < 1) 830 return -EINVAL; 831 832 val = TO_CYCLES(sdr->tCLR_min, period_ns); 833 tmgs.t_clr = val; 834 if (tmgs.t_clr != val) 835 return -EINVAL; 836 837 val = TO_CYCLES(sdr->tAR_min, period_ns); 838 tmgs.t_ar = val; 839 if (tmgs.t_ar != val) 840 return -EINVAL; 841 842 val = TO_CYCLES(sdr->tRR_min, period_ns); 843 tmgs.t_rr = val; 844 if (tmgs.t_rr != val) 845 return -EINVAL; 846 847 if (cs == NAND_DATA_IFACE_CHECK_ONLY) 848 return 0; 849 850 plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) | 851 PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) | 852 PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) | 853 PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) | 854 PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) | 855 PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) | 856 PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr); 857 858 return 0; 859} 860 861static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc, 862 struct nand_chip *chip, 863 unsigned int pg_sz) 864{ 865 struct pl35x_nand *plnand = to_pl35x_nand(chip); 866 u32 sz; 867 868 switch (pg_sz) { 869 case SZ_512: 870 sz = 1; 871 break; 872 case SZ_1K: 873 sz = 2; 874 break; 875 case SZ_2K: 876 sz = 3; 877 break; 878 default: 879 sz = 0; 880 break; 881 } 882 883 plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); 884 plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK; 885 plnand->ecc_cfg |= sz; 886 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); 887} 888 889static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc, 890 struct nand_chip *chip) 891{ 892 struct mtd_info *mtd = nand_to_mtd(chip); 893 int ret = 0; 894 895 if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) { 896 dev_err(nfc->dev, 897 "The hardware ECC engine is limited to pages up to 2kiB\n"); 898 return -EOPNOTSUPP; 899 } 900 901 chip->ecc.strength = 1; 902 chip->ecc.bytes = 3; 903 chip->ecc.size = SZ_512; 904 chip->ecc.steps = mtd->writesize / chip->ecc.size; 905 chip->ecc.read_page = pl35x_nand_read_page_hwecc; 906 chip->ecc.write_page = pl35x_nand_write_page_hwecc; 907 chip->ecc.write_page_raw = nand_monolithic_write_page_raw; 908 pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize); 909 910 nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps, 911 GFP_KERNEL); 912 if (!nfc->ecc_buf) 913 return -ENOMEM; 914 915 switch (mtd->oobsize) { 916 case 16: 917 /* Legacy Xilinx layout */ 918 mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops); 919 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 920 break; 921 case 64: 922 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); 923 break; 924 default: 925 dev_err(nfc->dev, "Unsupported OOB size\n"); 926 return -EOPNOTSUPP; 927 } 928 929 return ret; 930} 931 932static int pl35x_nand_attach_chip(struct nand_chip *chip) 933{ 934 const struct nand_ecc_props *requirements = 935 nanddev_get_ecc_requirements(&chip->base); 936 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); 937 struct pl35x_nand *plnand = to_pl35x_nand(chip); 938 struct mtd_info *mtd = nand_to_mtd(chip); 939 int ret; 940 941 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && 942 (!chip->ecc.size || !chip->ecc.strength)) { 943 if (requirements->step_size && requirements->strength) { 944 chip->ecc.size = requirements->step_size; 945 chip->ecc.strength = requirements->strength; 946 } else { 947 dev_info(nfc->dev, 948 "No minimum ECC strength, using 1b/512B\n"); 949 chip->ecc.size = 512; 950 chip->ecc.strength = 1; 951 } 952 } 953 954 if (mtd->writesize <= SZ_512) 955 plnand->addr_cycles = 1; 956 else 957 plnand->addr_cycles = 2; 958 959 if (chip->options & NAND_ROW_ADDR_3) 960 plnand->addr_cycles += 3; 961 else 962 plnand->addr_cycles += 2; 963 964 switch (chip->ecc.engine_type) { 965 case NAND_ECC_ENGINE_TYPE_ON_DIE: 966 /* Keep these legacy BBT descriptors for ON_DIE situations */ 967 chip->bbt_td = &bbt_main_descr; 968 chip->bbt_md = &bbt_mirror_descr; 969 fallthrough; 970 case NAND_ECC_ENGINE_TYPE_NONE: 971 case NAND_ECC_ENGINE_TYPE_SOFT: 972 break; 973 case NAND_ECC_ENGINE_TYPE_ON_HOST: 974 ret = pl35x_nand_init_hw_ecc_controller(nfc, chip); 975 if (ret) 976 return ret; 977 break; 978 default: 979 dev_err(nfc->dev, "Unsupported ECC mode: %d\n", 980 chip->ecc.engine_type); 981 return -EINVAL; 982 } 983 984 return 0; 985} 986 987static const struct nand_controller_ops pl35x_nandc_ops = { 988 .attach_chip = pl35x_nand_attach_chip, 989 .exec_op = pl35x_nfc_exec_op, 990 .setup_interface = pl35x_nfc_setup_interface, 991}; 992 993static int pl35x_nand_reset_state(struct pl35x_nandc *nfc) 994{ 995 int ret; 996 997 /* Disable interrupts and clear their status */ 998 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 | 999 PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 | 1000 PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1, 1001 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); 1002 1003 /* Set default bus width to 8-bit */ 1004 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); 1005 if (ret) 1006 return ret; 1007 1008 /* Ensure the ECC controller is bypassed by default */ 1009 ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS); 1010 if (ret) 1011 return ret; 1012 1013 /* 1014 * Configure the commands that the ECC block uses to detect the 1015 * operations it should start/end. 1016 */ 1017 writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) | 1018 PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) | 1019 PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) | 1020 PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1), 1021 nfc->conf_regs + PL35X_SMC_ECC_CMD1); 1022 writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) | 1023 PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) | 1024 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) | 1025 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1), 1026 nfc->conf_regs + PL35X_SMC_ECC_CMD2); 1027 1028 return 0; 1029} 1030 1031static int pl35x_nand_chip_init(struct pl35x_nandc *nfc, 1032 struct device_node *np) 1033{ 1034 struct pl35x_nand *plnand; 1035 struct nand_chip *chip; 1036 struct mtd_info *mtd; 1037 int cs, ret; 1038 1039 plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL); 1040 if (!plnand) 1041 return -ENOMEM; 1042 1043 ret = of_property_read_u32(np, "reg", &cs); 1044 if (ret) 1045 return ret; 1046 1047 if (cs >= PL35X_NAND_MAX_CS) { 1048 dev_err(nfc->dev, "Wrong CS %d\n", cs); 1049 return -EINVAL; 1050 } 1051 1052 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 1053 dev_err(nfc->dev, "Already assigned CS %d\n", cs); 1054 return -EINVAL; 1055 } 1056 1057 plnand->cs = cs; 1058 1059 chip = &plnand->chip; 1060 chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; 1061 chip->bbt_options = NAND_BBT_USE_FLASH; 1062 chip->controller = &nfc->controller; 1063 mtd = nand_to_mtd(chip); 1064 mtd->dev.parent = nfc->dev; 1065 nand_set_flash_node(chip, np); 1066 if (!mtd->name) { 1067 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 1068 "%s", PL35X_NANDC_DRIVER_NAME); 1069 if (!mtd->name) { 1070 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 1071 return -ENOMEM; 1072 } 1073 } 1074 1075 ret = nand_scan(chip, 1); 1076 if (ret) 1077 return ret; 1078 1079 ret = mtd_device_register(mtd, NULL, 0); 1080 if (ret) { 1081 nand_cleanup(chip); 1082 return ret; 1083 } 1084 1085 list_add_tail(&plnand->node, &nfc->chips); 1086 1087 return ret; 1088} 1089 1090static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc) 1091{ 1092 struct pl35x_nand *plnand, *tmp; 1093 struct nand_chip *chip; 1094 int ret; 1095 1096 list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) { 1097 chip = &plnand->chip; 1098 ret = mtd_device_unregister(nand_to_mtd(chip)); 1099 WARN_ON(ret); 1100 nand_cleanup(chip); 1101 list_del(&plnand->node); 1102 } 1103} 1104 1105static int pl35x_nand_chips_init(struct pl35x_nandc *nfc) 1106{ 1107 struct device_node *np = nfc->dev->of_node, *nand_np; 1108 int nchips = of_get_child_count(np); 1109 int ret; 1110 1111 if (!nchips || nchips > PL35X_NAND_MAX_CS) { 1112 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", 1113 nchips); 1114 return -EINVAL; 1115 } 1116 1117 for_each_child_of_node(np, nand_np) { 1118 ret = pl35x_nand_chip_init(nfc, nand_np); 1119 if (ret) { 1120 of_node_put(nand_np); 1121 pl35x_nand_chips_cleanup(nfc); 1122 break; 1123 } 1124 } 1125 1126 return ret; 1127} 1128 1129static int pl35x_nand_probe(struct platform_device *pdev) 1130{ 1131 struct device *smc_dev = pdev->dev.parent; 1132 struct amba_device *smc_amba = to_amba_device(smc_dev); 1133 struct pl35x_nandc *nfc; 1134 u32 ret; 1135 1136 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); 1137 if (!nfc) 1138 return -ENOMEM; 1139 1140 nfc->dev = &pdev->dev; 1141 nand_controller_init(&nfc->controller); 1142 nfc->controller.ops = &pl35x_nandc_ops; 1143 INIT_LIST_HEAD(&nfc->chips); 1144 1145 nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res); 1146 if (IS_ERR(nfc->conf_regs)) 1147 return PTR_ERR(nfc->conf_regs); 1148 1149 nfc->io_regs = devm_platform_ioremap_resource(pdev, 0); 1150 if (IS_ERR(nfc->io_regs)) 1151 return PTR_ERR(nfc->io_regs); 1152 1153 ret = pl35x_nand_reset_state(nfc); 1154 if (ret) 1155 return ret; 1156 1157 ret = pl35x_nand_chips_init(nfc); 1158 if (ret) 1159 return ret; 1160 1161 platform_set_drvdata(pdev, nfc); 1162 1163 return 0; 1164} 1165 1166static int pl35x_nand_remove(struct platform_device *pdev) 1167{ 1168 struct pl35x_nandc *nfc = platform_get_drvdata(pdev); 1169 1170 pl35x_nand_chips_cleanup(nfc); 1171 1172 return 0; 1173} 1174 1175static const struct of_device_id pl35x_nand_of_match[] = { 1176 { .compatible = "arm,pl353-nand-r2p1" }, 1177 {}, 1178}; 1179MODULE_DEVICE_TABLE(of, pl35x_nand_of_match); 1180 1181static struct platform_driver pl35x_nandc_driver = { 1182 .probe = pl35x_nand_probe, 1183 .remove = pl35x_nand_remove, 1184 .driver = { 1185 .name = PL35X_NANDC_DRIVER_NAME, 1186 .of_match_table = pl35x_nand_of_match, 1187 }, 1188}; 1189module_platform_driver(pl35x_nandc_driver); 1190 1191MODULE_AUTHOR("Xilinx, Inc."); 1192MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME); 1193MODULE_DESCRIPTION("ARM PL35X NAND controller driver"); 1194MODULE_LICENSE("GPL");