cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pl35x-nand-controller.c (33216B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * ARM PL35X NAND flash controller driver
      4 *
      5 * Copyright (C) 2017 Xilinx, Inc
      6 * Author:
      7 *   Miquel Raynal <miquel.raynal@bootlin.com>
      8 * Original work (rewritten):
      9 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
     10 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
     11 */
     12
     13#include <linux/amba/bus.h>
     14#include <linux/err.h>
     15#include <linux/delay.h>
     16#include <linux/interrupt.h>
     17#include <linux/io.h>
     18#include <linux/ioport.h>
     19#include <linux/iopoll.h>
     20#include <linux/irq.h>
     21#include <linux/module.h>
     22#include <linux/moduleparam.h>
     23#include <linux/mtd/mtd.h>
     24#include <linux/mtd/rawnand.h>
     25#include <linux/mtd/partitions.h>
     26#include <linux/of_address.h>
     27#include <linux/of_device.h>
     28#include <linux/of_platform.h>
     29#include <linux/platform_device.h>
     30#include <linux/slab.h>
     31#include <linux/clk.h>
     32
     33#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
     34
     35/* SMC controller status register (RO) */
     36#define PL35X_SMC_MEMC_STATUS 0x0
     37#define   PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1	BIT(6)
     38/* SMC clear config register (WO) */
     39#define PL35X_SMC_MEMC_CFG_CLR 0xC
     40#define   PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1	BIT(1)
     41#define   PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1	BIT(4)
     42#define   PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1	BIT(6)
     43/* SMC direct command register (WO) */
     44#define PL35X_SMC_DIRECT_CMD 0x10
     45#define   PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
     46#define   PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
     47/* SMC set cycles register (WO) */
     48#define PL35X_SMC_CYCLES 0x14
     49#define   PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
     50#define   PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
     51#define   PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
     52#define   PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
     53#define   PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
     54#define   PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
     55#define   PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
     56/* SMC set opmode register (WO) */
     57#define PL35X_SMC_OPMODE 0x18
     58#define   PL35X_SMC_OPMODE_BW_8 0
     59#define   PL35X_SMC_OPMODE_BW_16 1
     60/* SMC ECC status register (RO) */
     61#define PL35X_SMC_ECC_STATUS 0x400
     62#define   PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
     63/* SMC ECC configuration register */
     64#define PL35X_SMC_ECC_CFG 0x404
     65#define   PL35X_SMC_ECC_CFG_MODE_MASK 0xC
     66#define   PL35X_SMC_ECC_CFG_MODE_BYPASS 0
     67#define   PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
     68#define   PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
     69#define   PL35X_SMC_ECC_CFG_PGSIZE_MASK	0x3
     70/* SMC ECC command 1 register */
     71#define PL35X_SMC_ECC_CMD1 0x408
     72#define   PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
     73#define   PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
     74#define   PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
     75#define   PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
     76/* SMC ECC command 2 register */
     77#define PL35X_SMC_ECC_CMD2 0x40C
     78#define   PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
     79#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
     80#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
     81#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
     82/* SMC ECC value registers (RO) */
     83#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
     84#define   PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
     85#define   PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
     86#define   PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
     87
     88/* NAND AXI interface */
     89#define PL35X_SMC_CMD_PHASE 0
     90#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
     91#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
     92#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
     93#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
     94#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
     95#define PL35X_SMC_DATA_PHASE BIT(19)
     96#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
     97#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
     98
     99#define PL35X_NAND_MAX_CS 1
    100#define PL35X_NAND_LAST_XFER_SZ 4
    101#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
    102
    103#define PL35X_NAND_ECC_BITS_MASK 0xFFF
    104#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
    105#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
    106
    107struct pl35x_nand_timings {
    108	unsigned int t_rc:4;
    109	unsigned int t_wc:4;
    110	unsigned int t_rea:3;
    111	unsigned int t_wp:3;
    112	unsigned int t_clr:3;
    113	unsigned int t_ar:3;
    114	unsigned int t_rr:4;
    115	unsigned int rsvd:8;
    116};
    117
    118struct pl35x_nand {
    119	struct list_head node;
    120	struct nand_chip chip;
    121	unsigned int cs;
    122	unsigned int addr_cycles;
    123	u32 ecc_cfg;
    124	u32 timings;
    125};
    126
    127/**
    128 * struct pl35x_nandc - NAND flash controller driver structure
    129 * @dev: Kernel device
    130 * @conf_regs: SMC configuration registers for command phase
    131 * @io_regs: NAND data registers for data phase
    132 * @controller: Core NAND controller structure
    133 * @chip: NAND chip information structure
    134 * @selected_chip: NAND chip currently selected by the controller
    135 * @assigned_cs: List of assigned CS
    136 * @ecc_buf: Temporary buffer to extract ECC bytes
    137 */
    138struct pl35x_nandc {
    139	struct device *dev;
    140	void __iomem *conf_regs;
    141	void __iomem *io_regs;
    142	struct nand_controller controller;
    143	struct list_head chips;
    144	struct nand_chip *selected_chip;
    145	unsigned long assigned_cs;
    146	u8 *ecc_buf;
    147};
    148
    149static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
    150{
    151	return container_of(ctrl, struct pl35x_nandc, controller);
    152}
    153
    154static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
    155{
    156	return container_of(chip, struct pl35x_nand, chip);
    157}
    158
    159static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
    160				     struct mtd_oob_region *oobregion)
    161{
    162	struct nand_chip *chip = mtd_to_nand(mtd);
    163
    164	if (section >= chip->ecc.steps)
    165		return -ERANGE;
    166
    167	oobregion->offset = (section * chip->ecc.bytes);
    168	oobregion->length = chip->ecc.bytes;
    169
    170	return 0;
    171}
    172
    173static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
    174				      struct mtd_oob_region *oobregion)
    175{
    176	struct nand_chip *chip = mtd_to_nand(mtd);
    177
    178	if (section >= chip->ecc.steps)
    179		return -ERANGE;
    180
    181	oobregion->offset = (section * chip->ecc.bytes) + 8;
    182	oobregion->length = 8;
    183
    184	return 0;
    185}
    186
    187static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
    188	.ecc = pl35x_ecc_ooblayout16_ecc,
    189	.free = pl35x_ecc_ooblayout16_free,
    190};
    191
    192/* Generic flash bbt decriptors */
    193static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
    194static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
    195
    196static struct nand_bbt_descr bbt_main_descr = {
    197	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    198		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    199	.offs = 4,
    200	.len = 4,
    201	.veroffs = 20,
    202	.maxblocks = 4,
    203	.pattern = bbt_pattern
    204};
    205
    206static struct nand_bbt_descr bbt_mirror_descr = {
    207	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    208		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    209	.offs = 4,
    210	.len = 4,
    211	.veroffs = 20,
    212	.maxblocks = 4,
    213	.pattern = mirror_pattern
    214};
    215
    216static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
    217{
    218	writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
    219	       PL35X_SMC_DIRECT_CMD_UPD_REGS,
    220	       nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
    221}
    222
    223static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
    224{
    225	if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
    226		return -EINVAL;
    227
    228	writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
    229	pl35x_smc_update_regs(nfc);
    230
    231	return 0;
    232}
    233
    234static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
    235{
    236	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
    237	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
    238}
    239
    240static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
    241{
    242	u32 reg;
    243	int ret;
    244
    245	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
    246				 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
    247				 10, 1000000);
    248	if (ret)
    249		dev_err(nfc->dev,
    250			"Timeout polling on NAND controller interrupt (0x%x)\n",
    251			reg);
    252
    253	pl35x_smc_clear_irq(nfc);
    254
    255	return ret;
    256}
    257
    258static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
    259{
    260	u32 reg;
    261	int ret;
    262
    263	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
    264				 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
    265				 10, 1000000);
    266	if (ret)
    267		dev_err(nfc->dev,
    268			"Timeout polling on ECC controller interrupt\n");
    269
    270	return ret;
    271}
    272
    273static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
    274				  struct nand_chip *chip,
    275				  unsigned int mode)
    276{
    277	struct pl35x_nand *plnand;
    278	u32 ecc_cfg;
    279
    280	ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
    281	ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
    282	ecc_cfg |= mode;
    283	writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
    284
    285	if (chip) {
    286		plnand = to_pl35x_nand(chip);
    287		plnand->ecc_cfg = ecc_cfg;
    288	}
    289
    290	if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
    291		return pl35x_smc_wait_for_ecc_done(nfc);
    292
    293	return 0;
    294}
    295
    296static void pl35x_smc_force_byte_access(struct nand_chip *chip,
    297					bool force_8bit)
    298{
    299	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    300	int ret;
    301
    302	if (!(chip->options & NAND_BUSWIDTH_16))
    303		return;
    304
    305	if (force_8bit)
    306		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
    307	else
    308		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
    309
    310	if (ret)
    311		dev_err(nfc->dev, "Error in Buswidth\n");
    312}
    313
    314static void pl35x_nand_select_target(struct nand_chip *chip,
    315				     unsigned int die_nr)
    316{
    317	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    318	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    319
    320	if (chip == nfc->selected_chip)
    321		return;
    322
    323	/* Setup the timings */
    324	writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
    325	pl35x_smc_update_regs(nfc);
    326
    327	/* Configure the ECC engine */
    328	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
    329
    330	nfc->selected_chip = chip;
    331}
    332
    333static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
    334				    unsigned int len, bool force_8bit,
    335				    unsigned int flags, unsigned int last_flags)
    336{
    337	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    338	unsigned int buf_end = len / 4;
    339	unsigned int in_start = round_down(len, 4);
    340	unsigned int data_phase_addr;
    341	u32 *buf32 = (u32 *)in;
    342	u8 *buf8 = (u8 *)in;
    343	int i;
    344
    345	if (force_8bit)
    346		pl35x_smc_force_byte_access(chip, true);
    347
    348	for (i = 0; i < buf_end; i++) {
    349		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
    350		if (i + 1 == buf_end)
    351			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
    352
    353		buf32[i] = readl(nfc->io_regs + data_phase_addr);
    354	}
    355
    356	/* No working extra flags on unaligned data accesses */
    357	for (i = in_start; i < len; i++)
    358		buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
    359
    360	if (force_8bit)
    361		pl35x_smc_force_byte_access(chip, false);
    362}
    363
    364static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
    365				     int len, bool force_8bit,
    366				     unsigned int flags,
    367				     unsigned int last_flags)
    368{
    369	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    370	unsigned int buf_end = len / 4;
    371	unsigned int in_start = round_down(len, 4);
    372	const u32 *buf32 = (const u32 *)out;
    373	const u8 *buf8 = (const u8 *)out;
    374	unsigned int data_phase_addr;
    375	int i;
    376
    377	if (force_8bit)
    378		pl35x_smc_force_byte_access(chip, true);
    379
    380	for (i = 0; i < buf_end; i++) {
    381		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
    382		if (i + 1 == buf_end)
    383			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
    384
    385		writel(buf32[i], nfc->io_regs + data_phase_addr);
    386	}
    387
    388	/* No working extra flags on unaligned data accesses */
    389	for (i = in_start; i < len; i++)
    390		writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
    391
    392	if (force_8bit)
    393		pl35x_smc_force_byte_access(chip, false);
    394}
    395
    396static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
    397				   unsigned char *read_ecc,
    398				   unsigned char *calc_ecc)
    399{
    400	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
    401	unsigned short calc_ecc_lower, calc_ecc_upper;
    402	unsigned short byte_addr, bit_addr;
    403
    404	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
    405			 PL35X_NAND_ECC_BITS_MASK;
    406	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
    407			 PL35X_NAND_ECC_BITS_MASK;
    408
    409	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
    410			 PL35X_NAND_ECC_BITS_MASK;
    411	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
    412			 PL35X_NAND_ECC_BITS_MASK;
    413
    414	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
    415	ecc_even = read_ecc_upper ^ calc_ecc_upper;
    416
    417	/* No error */
    418	if (likely(!ecc_odd && !ecc_even))
    419		return 0;
    420
    421	/* One error in the main data; to be corrected */
    422	if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
    423		/* Bits [11:3] of error code give the byte offset */
    424		byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
    425		/* Bits [2:0] of error code give the bit offset */
    426		bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
    427		/* Toggle the faulty bit */
    428		buf[byte_addr] ^= (BIT(bit_addr));
    429
    430		return 1;
    431	}
    432
    433	/* One error in the ECC data; no action needed */
    434	if (hweight32(ecc_odd | ecc_even) == 1)
    435		return 1;
    436
    437	return -EBADMSG;
    438}
    439
    440static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
    441					u8 *ecc_array)
    442{
    443	u32 ecc_value = ~ecc_reg;
    444	unsigned int ecc_byte;
    445
    446	for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
    447		ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
    448}
    449
    450static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
    451				    struct nand_chip *chip, u8 *read_ecc)
    452{
    453	u32 ecc_value;
    454	int chunk;
    455
    456	for (chunk = 0; chunk < chip->ecc.steps;
    457	     chunk++, read_ecc += chip->ecc.bytes) {
    458		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
    459		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
    460			return -EINVAL;
    461
    462		pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
    463	}
    464
    465	return 0;
    466}
    467
    468static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
    469					 struct nand_chip *chip, u8 *data,
    470					 u8 *read_ecc)
    471{
    472	struct mtd_info *mtd = nand_to_mtd(chip);
    473	unsigned int max_bitflips = 0, chunk;
    474	u8 calc_ecc[3];
    475	u32 ecc_value;
    476	int stats;
    477
    478	for (chunk = 0; chunk < chip->ecc.steps;
    479	     chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
    480		/* Read ECC value for each chunk */
    481		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
    482
    483		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
    484			return -EINVAL;
    485
    486		if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
    487			mtd->ecc_stats.failed++;
    488			continue;
    489		}
    490
    491		pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
    492		stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
    493		if (stats < 0) {
    494			mtd->ecc_stats.failed++;
    495		} else {
    496			mtd->ecc_stats.corrected += stats;
    497			max_bitflips = max_t(unsigned int, max_bitflips, stats);
    498		}
    499	}
    500
    501	return max_bitflips;
    502}
    503
    504static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
    505				       const u8 *buf, int oob_required,
    506				       int page)
    507{
    508	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    509	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    510	struct mtd_info *mtd = nand_to_mtd(chip);
    511	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
    512	unsigned int nrows = plnand->addr_cycles;
    513	u32 addr1 = 0, addr2 = 0, row;
    514	u32 cmd_addr;
    515	int i, ret;
    516
    517	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
    518	if (ret)
    519		return ret;
    520
    521	cmd_addr = PL35X_SMC_CMD_PHASE |
    522		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
    523		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
    524
    525	for (i = 0, row = first_row; row < nrows; i++, row++) {
    526		u8 addr = page >> ((i * 8) & 0xFF);
    527
    528		if (row < 4)
    529			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
    530		else
    531			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
    532	}
    533
    534	/* Send the command and address cycles */
    535	writel(addr1, nfc->io_regs + cmd_addr);
    536	if (plnand->addr_cycles > 4)
    537		writel(addr2, nfc->io_regs + cmd_addr);
    538
    539	/* Write the data with the engine enabled */
    540	pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
    541				 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
    542	ret = pl35x_smc_wait_for_ecc_done(nfc);
    543	if (ret)
    544		goto disable_ecc_engine;
    545
    546	/* Copy the HW calculated ECC bytes in the OOB buffer */
    547	ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
    548	if (ret)
    549		goto disable_ecc_engine;
    550
    551	if (!oob_required)
    552		memset(chip->oob_poi, 0xFF, mtd->oobsize);
    553
    554	ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
    555					 0, chip->ecc.total);
    556	if (ret)
    557		goto disable_ecc_engine;
    558
    559	/* Write the spare area with ECC bytes */
    560	pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
    561				 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
    562				 PL35X_SMC_CMD_PHASE_CMD1_VALID |
    563				 PL35X_SMC_DATA_PHASE_CLEAR_CS);
    564	ret = pl35x_smc_wait_for_irq(nfc);
    565	if (ret)
    566		goto disable_ecc_engine;
    567
    568disable_ecc_engine:
    569	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
    570
    571	return ret;
    572}
    573
    574/*
    575 * This functions reads data and checks the data integrity by comparing hardware
    576 * generated ECC values and read ECC values from spare area.
    577 *
    578 * There is a limitation with SMC controller: ECC_LAST must be set on the
    579 * last data access to tell the ECC engine not to expect any further data.
    580 * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
    581 * and doing a last 4-byte transfer with the additional bit set. The last block
    582 * should be aligned with the end of an ECC block. Because of this limitation,
    583 * it is not possible to use the core routines.
    584 */
    585static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
    586				      u8 *buf, int oob_required, int page)
    587{
    588	const struct nand_sdr_timings *sdr =
    589		nand_get_sdr_timings(nand_get_interface_config(chip));
    590	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    591	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    592	struct mtd_info *mtd = nand_to_mtd(chip);
    593	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
    594	unsigned int nrows = plnand->addr_cycles;
    595	unsigned int addr1 = 0, addr2 = 0, row;
    596	u32 cmd_addr;
    597	int i, ret;
    598
    599	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
    600	if (ret)
    601		return ret;
    602
    603	cmd_addr = PL35X_SMC_CMD_PHASE |
    604		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
    605		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
    606		   PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
    607		   PL35X_SMC_CMD_PHASE_CMD1_VALID;
    608
    609	for (i = 0, row = first_row; row < nrows; i++, row++) {
    610		u8 addr = page >> ((i * 8) & 0xFF);
    611
    612		if (row < 4)
    613			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
    614		else
    615			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
    616	}
    617
    618	/* Send the command and address cycles */
    619	writel(addr1, nfc->io_regs + cmd_addr);
    620	if (plnand->addr_cycles > 4)
    621		writel(addr2, nfc->io_regs + cmd_addr);
    622
    623	/* Wait the data to be available in the NAND cache */
    624	ndelay(PSEC_TO_NSEC(sdr->tRR_min));
    625	ret = pl35x_smc_wait_for_irq(nfc);
    626	if (ret)
    627		goto disable_ecc_engine;
    628
    629	/* Retrieve the raw data with the engine enabled */
    630	pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
    631				0, PL35X_SMC_DATA_PHASE_ECC_LAST);
    632	ret = pl35x_smc_wait_for_ecc_done(nfc);
    633	if (ret)
    634		goto disable_ecc_engine;
    635
    636	/* Retrieve the stored ECC bytes */
    637	pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
    638				0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
    639	ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
    640					 chip->ecc.total);
    641	if (ret)
    642		goto disable_ecc_engine;
    643
    644	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
    645
    646	/* Correct the data and report failures */
    647	return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
    648
    649disable_ecc_engine:
    650	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
    651
    652	return ret;
    653}
    654
    655static int pl35x_nand_exec_op(struct nand_chip *chip,
    656			      const struct nand_subop *subop)
    657{
    658	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    659	const struct nand_op_instr *instr, *data_instr = NULL;
    660	unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
    661	u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
    662	unsigned int op_id, len, offset, rdy_del_ns;
    663	int last_instr_type = -1;
    664	bool cmd1_valid = false;
    665	const u8 *addrs;
    666	int i, ret;
    667
    668	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
    669		instr = &subop->instrs[op_id];
    670
    671		switch (instr->type) {
    672		case NAND_OP_CMD_INSTR:
    673			if (!cmds) {
    674				cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
    675			} else {
    676				cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
    677				if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
    678					cmd1_valid = true;
    679			}
    680			cmds++;
    681			break;
    682
    683		case NAND_OP_ADDR_INSTR:
    684			offset = nand_subop_get_addr_start_off(subop, op_id);
    685			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
    686			addrs = &instr->ctx.addr.addrs[offset];
    687			cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
    688
    689			for (i = offset; i < naddrs; i++) {
    690				if (i < 4)
    691					addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
    692				else
    693					addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
    694			}
    695			break;
    696
    697		case NAND_OP_DATA_IN_INSTR:
    698		case NAND_OP_DATA_OUT_INSTR:
    699			data_instr = instr;
    700			len = nand_subop_get_data_len(subop, op_id);
    701			break;
    702
    703		case NAND_OP_WAITRDY_INSTR:
    704			rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
    705			rdy_del_ns = instr->delay_ns;
    706			break;
    707		}
    708
    709		last_instr_type = instr->type;
    710	}
    711
    712	/* Command phase */
    713	cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
    714		    (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
    715	writel(addr1, nfc->io_regs + cmd_addr);
    716	if (naddrs > 4)
    717		writel(addr2, nfc->io_regs + cmd_addr);
    718
    719	/* Data phase */
    720	if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
    721		last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
    722		if (cmds == 2)
    723			last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
    724
    725		pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
    726					 len, data_instr->ctx.data.force_8bit,
    727					 0, last_flags);
    728	}
    729
    730	if (rdy_tim_ms) {
    731		ndelay(rdy_del_ns);
    732		ret = pl35x_smc_wait_for_irq(nfc);
    733		if (ret)
    734			return ret;
    735	}
    736
    737	if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
    738		pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
    739					len, data_instr->ctx.data.force_8bit,
    740					0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
    741
    742	return 0;
    743}
    744
    745static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
    746	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
    747			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
    748			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
    749			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
    750			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
    751			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
    752	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
    753			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
    754			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
    755			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
    756			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
    757			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
    758	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
    759			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
    760			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
    761			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
    762			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
    763			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
    764	);
    765
    766static int pl35x_nfc_exec_op(struct nand_chip *chip,
    767			     const struct nand_operation *op,
    768			     bool check_only)
    769{
    770	if (!check_only)
    771		pl35x_nand_select_target(chip, op->cs);
    772
    773	return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
    774				      op, check_only);
    775}
    776
    777static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
    778				     const struct nand_interface_config *conf)
    779{
    780	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    781	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    782	struct pl35x_nand_timings tmgs = {};
    783	const struct nand_sdr_timings *sdr;
    784	unsigned int period_ns, val;
    785	struct clk *mclk;
    786
    787	sdr = nand_get_sdr_timings(conf);
    788	if (IS_ERR(sdr))
    789		return PTR_ERR(sdr);
    790
    791	mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
    792	if (IS_ERR(mclk)) {
    793		dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
    794		return PTR_ERR(mclk);
    795	}
    796
    797	/*
    798	 * SDR timings are given in pico-seconds while NFC timings must be
    799	 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
    800	 * macro to convert from one to the other.
    801	 */
    802	period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
    803
    804	/*
    805	 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
    806	 * written anywhere in the datasheet but is an empirical observation.
    807	 */
    808	val = TO_CYCLES(sdr->tRC_min, period_ns);
    809	if (sdr->tRC_min <= 20000)
    810		val++;
    811
    812	tmgs.t_rc = val;
    813	if (tmgs.t_rc != val || tmgs.t_rc < 2)
    814		return -EINVAL;
    815
    816	val = TO_CYCLES(sdr->tWC_min, period_ns);
    817	tmgs.t_wc = val;
    818	if (tmgs.t_wc != val || tmgs.t_wc < 2)
    819		return -EINVAL;
    820
    821	/*
    822	 * For all SDR modes, PL35X SMC needs tREA_max being 1,
    823	 * this is also an empirical result.
    824	 */
    825	tmgs.t_rea = 1;
    826
    827	val = TO_CYCLES(sdr->tWP_min, period_ns);
    828	tmgs.t_wp = val;
    829	if (tmgs.t_wp != val || tmgs.t_wp < 1)
    830		return -EINVAL;
    831
    832	val = TO_CYCLES(sdr->tCLR_min, period_ns);
    833	tmgs.t_clr = val;
    834	if (tmgs.t_clr != val)
    835		return -EINVAL;
    836
    837	val = TO_CYCLES(sdr->tAR_min, period_ns);
    838	tmgs.t_ar = val;
    839	if (tmgs.t_ar != val)
    840		return -EINVAL;
    841
    842	val = TO_CYCLES(sdr->tRR_min, period_ns);
    843	tmgs.t_rr = val;
    844	if (tmgs.t_rr != val)
    845		return -EINVAL;
    846
    847	if (cs == NAND_DATA_IFACE_CHECK_ONLY)
    848		return 0;
    849
    850	plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
    851			  PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
    852			  PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
    853			  PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
    854			  PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
    855			  PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
    856			  PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
    857
    858	return 0;
    859}
    860
    861static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
    862				      struct nand_chip *chip,
    863				      unsigned int pg_sz)
    864{
    865	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    866	u32 sz;
    867
    868	switch (pg_sz) {
    869	case SZ_512:
    870		sz = 1;
    871		break;
    872	case SZ_1K:
    873		sz = 2;
    874		break;
    875	case SZ_2K:
    876		sz = 3;
    877		break;
    878	default:
    879		sz = 0;
    880		break;
    881	}
    882
    883	plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
    884	plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
    885	plnand->ecc_cfg |= sz;
    886	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
    887}
    888
    889static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
    890					     struct nand_chip *chip)
    891{
    892	struct mtd_info *mtd = nand_to_mtd(chip);
    893	int ret = 0;
    894
    895	if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
    896		dev_err(nfc->dev,
    897			"The hardware ECC engine is limited to pages up to 2kiB\n");
    898		return -EOPNOTSUPP;
    899	}
    900
    901	chip->ecc.strength = 1;
    902	chip->ecc.bytes = 3;
    903	chip->ecc.size = SZ_512;
    904	chip->ecc.steps = mtd->writesize / chip->ecc.size;
    905	chip->ecc.read_page = pl35x_nand_read_page_hwecc;
    906	chip->ecc.write_page = pl35x_nand_write_page_hwecc;
    907	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
    908	pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
    909
    910	nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
    911				    GFP_KERNEL);
    912	if (!nfc->ecc_buf)
    913		return -ENOMEM;
    914
    915	switch (mtd->oobsize) {
    916	case 16:
    917		/* Legacy Xilinx layout */
    918		mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
    919		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
    920		break;
    921	case 64:
    922		mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
    923		break;
    924	default:
    925		dev_err(nfc->dev, "Unsupported OOB size\n");
    926		return -EOPNOTSUPP;
    927	}
    928
    929	return ret;
    930}
    931
    932static int pl35x_nand_attach_chip(struct nand_chip *chip)
    933{
    934	const struct nand_ecc_props *requirements =
    935		nanddev_get_ecc_requirements(&chip->base);
    936	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
    937	struct pl35x_nand *plnand = to_pl35x_nand(chip);
    938	struct mtd_info *mtd = nand_to_mtd(chip);
    939	int ret;
    940
    941	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
    942	    (!chip->ecc.size || !chip->ecc.strength)) {
    943		if (requirements->step_size && requirements->strength) {
    944			chip->ecc.size = requirements->step_size;
    945			chip->ecc.strength = requirements->strength;
    946		} else {
    947			dev_info(nfc->dev,
    948				 "No minimum ECC strength, using 1b/512B\n");
    949			chip->ecc.size = 512;
    950			chip->ecc.strength = 1;
    951		}
    952	}
    953
    954	if (mtd->writesize <= SZ_512)
    955		plnand->addr_cycles = 1;
    956	else
    957		plnand->addr_cycles = 2;
    958
    959	if (chip->options & NAND_ROW_ADDR_3)
    960		plnand->addr_cycles += 3;
    961	else
    962		plnand->addr_cycles += 2;
    963
    964	switch (chip->ecc.engine_type) {
    965	case NAND_ECC_ENGINE_TYPE_ON_DIE:
    966		/* Keep these legacy BBT descriptors for ON_DIE situations */
    967		chip->bbt_td = &bbt_main_descr;
    968		chip->bbt_md = &bbt_mirror_descr;
    969		fallthrough;
    970	case NAND_ECC_ENGINE_TYPE_NONE:
    971	case NAND_ECC_ENGINE_TYPE_SOFT:
    972		break;
    973	case NAND_ECC_ENGINE_TYPE_ON_HOST:
    974		ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
    975		if (ret)
    976			return ret;
    977		break;
    978	default:
    979		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
    980			chip->ecc.engine_type);
    981		return -EINVAL;
    982	}
    983
    984	return 0;
    985}
    986
    987static const struct nand_controller_ops pl35x_nandc_ops = {
    988	.attach_chip = pl35x_nand_attach_chip,
    989	.exec_op = pl35x_nfc_exec_op,
    990	.setup_interface = pl35x_nfc_setup_interface,
    991};
    992
    993static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
    994{
    995	int ret;
    996
    997	/* Disable interrupts and clear their status */
    998	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
    999	       PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
   1000	       PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
   1001	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
   1002
   1003	/* Set default bus width to 8-bit */
   1004	ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
   1005	if (ret)
   1006		return ret;
   1007
   1008	/* Ensure the ECC controller is bypassed by default */
   1009	ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
   1010	if (ret)
   1011		return ret;
   1012
   1013	/*
   1014	 * Configure the commands that the ECC block uses to detect the
   1015	 * operations it should start/end.
   1016	 */
   1017	writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
   1018	       PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
   1019	       PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
   1020	       PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
   1021	       nfc->conf_regs + PL35X_SMC_ECC_CMD1);
   1022	writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
   1023	       PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
   1024	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
   1025	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
   1026	       nfc->conf_regs + PL35X_SMC_ECC_CMD2);
   1027
   1028	return 0;
   1029}
   1030
   1031static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
   1032				struct device_node *np)
   1033{
   1034	struct pl35x_nand *plnand;
   1035	struct nand_chip *chip;
   1036	struct mtd_info *mtd;
   1037	int cs, ret;
   1038
   1039	plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
   1040	if (!plnand)
   1041		return -ENOMEM;
   1042
   1043	ret = of_property_read_u32(np, "reg", &cs);
   1044	if (ret)
   1045		return ret;
   1046
   1047	if (cs >= PL35X_NAND_MAX_CS) {
   1048		dev_err(nfc->dev, "Wrong CS %d\n", cs);
   1049		return -EINVAL;
   1050	}
   1051
   1052	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
   1053		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
   1054		return -EINVAL;
   1055	}
   1056
   1057	plnand->cs = cs;
   1058
   1059	chip = &plnand->chip;
   1060	chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
   1061	chip->bbt_options = NAND_BBT_USE_FLASH;
   1062	chip->controller = &nfc->controller;
   1063	mtd = nand_to_mtd(chip);
   1064	mtd->dev.parent = nfc->dev;
   1065	nand_set_flash_node(chip, np);
   1066	if (!mtd->name) {
   1067		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
   1068					   "%s", PL35X_NANDC_DRIVER_NAME);
   1069		if (!mtd->name) {
   1070			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
   1071			return -ENOMEM;
   1072		}
   1073	}
   1074
   1075	ret = nand_scan(chip, 1);
   1076	if (ret)
   1077		return ret;
   1078
   1079	ret = mtd_device_register(mtd, NULL, 0);
   1080	if (ret) {
   1081		nand_cleanup(chip);
   1082		return ret;
   1083	}
   1084
   1085	list_add_tail(&plnand->node, &nfc->chips);
   1086
   1087	return ret;
   1088}
   1089
   1090static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
   1091{
   1092	struct pl35x_nand *plnand, *tmp;
   1093	struct nand_chip *chip;
   1094	int ret;
   1095
   1096	list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
   1097		chip = &plnand->chip;
   1098		ret = mtd_device_unregister(nand_to_mtd(chip));
   1099		WARN_ON(ret);
   1100		nand_cleanup(chip);
   1101		list_del(&plnand->node);
   1102	}
   1103}
   1104
   1105static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
   1106{
   1107	struct device_node *np = nfc->dev->of_node, *nand_np;
   1108	int nchips = of_get_child_count(np);
   1109	int ret;
   1110
   1111	if (!nchips || nchips > PL35X_NAND_MAX_CS) {
   1112		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
   1113			nchips);
   1114		return -EINVAL;
   1115	}
   1116
   1117	for_each_child_of_node(np, nand_np) {
   1118		ret = pl35x_nand_chip_init(nfc, nand_np);
   1119		if (ret) {
   1120			of_node_put(nand_np);
   1121			pl35x_nand_chips_cleanup(nfc);
   1122			break;
   1123		}
   1124	}
   1125
   1126	return ret;
   1127}
   1128
   1129static int pl35x_nand_probe(struct platform_device *pdev)
   1130{
   1131	struct device *smc_dev = pdev->dev.parent;
   1132	struct amba_device *smc_amba = to_amba_device(smc_dev);
   1133	struct pl35x_nandc *nfc;
   1134	u32 ret;
   1135
   1136	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
   1137	if (!nfc)
   1138		return -ENOMEM;
   1139
   1140	nfc->dev = &pdev->dev;
   1141	nand_controller_init(&nfc->controller);
   1142	nfc->controller.ops = &pl35x_nandc_ops;
   1143	INIT_LIST_HEAD(&nfc->chips);
   1144
   1145	nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
   1146	if (IS_ERR(nfc->conf_regs))
   1147		return PTR_ERR(nfc->conf_regs);
   1148
   1149	nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
   1150	if (IS_ERR(nfc->io_regs))
   1151		return PTR_ERR(nfc->io_regs);
   1152
   1153	ret = pl35x_nand_reset_state(nfc);
   1154	if (ret)
   1155		return ret;
   1156
   1157	ret = pl35x_nand_chips_init(nfc);
   1158	if (ret)
   1159		return ret;
   1160
   1161	platform_set_drvdata(pdev, nfc);
   1162
   1163	return 0;
   1164}
   1165
   1166static int pl35x_nand_remove(struct platform_device *pdev)
   1167{
   1168	struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
   1169
   1170	pl35x_nand_chips_cleanup(nfc);
   1171
   1172	return 0;
   1173}
   1174
   1175static const struct of_device_id pl35x_nand_of_match[] = {
   1176	{ .compatible = "arm,pl353-nand-r2p1" },
   1177	{},
   1178};
   1179MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
   1180
   1181static struct platform_driver pl35x_nandc_driver = {
   1182	.probe = pl35x_nand_probe,
   1183	.remove	= pl35x_nand_remove,
   1184	.driver = {
   1185		.name = PL35X_NANDC_DRIVER_NAME,
   1186		.of_match_table = pl35x_nand_of_match,
   1187	},
   1188};
   1189module_platform_driver(pl35x_nandc_driver);
   1190
   1191MODULE_AUTHOR("Xilinx, Inc.");
   1192MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
   1193MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
   1194MODULE_LICENSE("GPL");