cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rockchip-nand-controller.c (37870B)


      1// SPDX-License-Identifier: GPL-2.0 OR MIT
      2/*
      3 * Rockchip NAND Flash controller driver.
      4 * Copyright (C) 2020 Rockchip Inc.
      5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
      6 */
      7
      8#include <linux/clk.h>
      9#include <linux/delay.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/dmaengine.h>
     12#include <linux/interrupt.h>
     13#include <linux/iopoll.h>
     14#include <linux/module.h>
     15#include <linux/mtd/mtd.h>
     16#include <linux/mtd/rawnand.h>
     17#include <linux/of.h>
     18#include <linux/of_device.h>
     19#include <linux/platform_device.h>
     20#include <linux/slab.h>
     21
     22/*
     23 * NFC Page Data Layout:
     24 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
     25 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
     26 *	......
     27 * NAND Page Data Layout:
     28 *	1024 * n data + m Bytes oob
     29 * Original Bad Block Mask Location:
     30 *	First byte of oob(spare).
     31 * nand_chip->oob_poi data layout:
     32 *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
     33 */
     34
     35/* NAND controller register definition */
     36#define NFC_READ			(0)
     37#define NFC_WRITE			(1)
     38
     39#define NFC_FMCTL			(0x00)
     40#define   FMCTL_CE_SEL_M		0xFF
     41#define   FMCTL_CE_SEL(x)		(1 << (x))
     42#define   FMCTL_WP			BIT(8)
     43#define   FMCTL_RDY			BIT(9)
     44
     45#define NFC_FMWAIT			(0x04)
     46#define   FLCTL_RST			BIT(0)
     47#define   FLCTL_WR			(1)	/* 0: read, 1: write */
     48#define   FLCTL_XFER_ST			BIT(2)
     49#define   FLCTL_XFER_EN			BIT(3)
     50#define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
     51#define   FLCTL_XFER_READY		BIT(20)
     52#define   FLCTL_XFER_SECTOR		(22)
     53#define   FLCTL_TOG_FIX			BIT(29)
     54
     55#define   BCHCTL_BANK_M			(7 << 5)
     56#define   BCHCTL_BANK			(5)
     57
     58#define   DMA_ST			BIT(0)
     59#define   DMA_WR			(1)	/* 0: write, 1: read */
     60#define   DMA_EN			BIT(2)
     61#define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
     62#define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
     63#define   DMA_INC_NUM			(9)	/* 1 - 16 */
     64
     65#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
     66	  (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
     67#define   INT_DMA			BIT(0)
     68#define NFC_BANK			(0x800)
     69#define NFC_BANK_STEP			(0x100)
     70#define   BANK_DATA			(0x00)
     71#define   BANK_ADDR			(0x04)
     72#define   BANK_CMD			(0x08)
     73#define NFC_SRAM0			(0x1000)
     74#define NFC_SRAM1			(0x1400)
     75#define NFC_SRAM_SIZE			(0x400)
     76#define NFC_TIMEOUT			(500000)
     77#define NFC_MAX_OOB_PER_STEP		128
     78#define NFC_MIN_OOB_PER_STEP		64
     79#define MAX_DATA_SIZE			0xFFFC
     80#define MAX_ADDRESS_CYC			6
     81#define NFC_ECC_MAX_MODES		4
     82#define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
     83#define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
     84#define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
     85#define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))
     86
     87enum nfc_type {
     88	NFC_V6,
     89	NFC_V8,
     90	NFC_V9,
     91};
     92
     93/**
     94 * struct rk_ecc_cnt_status: represent a ecc status data.
     95 * @err_flag_bit: error flag bit index at register.
     96 * @low: ECC count low bit index at register.
     97 * @low_mask: mask bit.
     98 * @low_bn: ECC count low bit number.
     99 * @high: ECC count high bit index at register.
    100 * @high_mask: mask bit
    101 */
    102struct ecc_cnt_status {
    103	u8 err_flag_bit;
    104	u8 low;
    105	u8 low_mask;
    106	u8 low_bn;
    107	u8 high;
    108	u8 high_mask;
    109};
    110
    111/**
    112 * @type: NFC version
    113 * @ecc_strengths: ECC strengths
    114 * @ecc_cfgs: ECC config values
    115 * @flctl_off: FLCTL register offset
    116 * @bchctl_off: BCHCTL register offset
    117 * @dma_data_buf_off: DMA_DATA_BUF register offset
    118 * @dma_oob_buf_off: DMA_OOB_BUF register offset
    119 * @dma_cfg_off: DMA_CFG register offset
    120 * @dma_st_off: DMA_ST register offset
    121 * @bch_st_off: BCG_ST register offset
    122 * @randmz_off: RANDMZ register offset
    123 * @int_en_off: interrupt enable register offset
    124 * @int_clr_off: interrupt clean register offset
    125 * @int_st_off: interrupt status register offset
    126 * @oob0_off: oob0 register offset
    127 * @oob1_off: oob1 register offset
    128 * @ecc0: represent ECC0 status data
    129 * @ecc1: represent ECC1 status data
    130 */
    131struct nfc_cfg {
    132	enum nfc_type type;
    133	u8 ecc_strengths[NFC_ECC_MAX_MODES];
    134	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
    135	u32 flctl_off;
    136	u32 bchctl_off;
    137	u32 dma_cfg_off;
    138	u32 dma_data_buf_off;
    139	u32 dma_oob_buf_off;
    140	u32 dma_st_off;
    141	u32 bch_st_off;
    142	u32 randmz_off;
    143	u32 int_en_off;
    144	u32 int_clr_off;
    145	u32 int_st_off;
    146	u32 oob0_off;
    147	u32 oob1_off;
    148	struct ecc_cnt_status ecc0;
    149	struct ecc_cnt_status ecc1;
    150};
    151
    152struct rk_nfc_nand_chip {
    153	struct list_head node;
    154	struct nand_chip chip;
    155
    156	u16 boot_blks;
    157	u16 metadata_size;
    158	u32 boot_ecc;
    159	u32 timing;
    160
    161	u8 nsels;
    162	u8 sels[];
    163	/* Nothing after this field. */
    164};
    165
    166struct rk_nfc {
    167	struct nand_controller controller;
    168	const struct nfc_cfg *cfg;
    169	struct device *dev;
    170
    171	struct clk *nfc_clk;
    172	struct clk *ahb_clk;
    173	void __iomem *regs;
    174
    175	u32 selected_bank;
    176	u32 band_offset;
    177	u32 cur_ecc;
    178	u32 cur_timing;
    179
    180	struct completion done;
    181	struct list_head chips;
    182
    183	u8 *page_buf;
    184	u32 *oob_buf;
    185	u32 page_buf_size;
    186	u32 oob_buf_size;
    187
    188	unsigned long assigned_cs;
    189};
    190
    191static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
    192{
    193	return container_of(chip, struct rk_nfc_nand_chip, chip);
    194}
    195
    196static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
    197{
    198	return (u8 *)p + i * chip->ecc.size;
    199}
    200
    201static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
    202{
    203	u8 *poi;
    204
    205	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
    206
    207	return poi;
    208}
    209
    210static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
    211{
    212	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    213	u8 *poi;
    214
    215	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
    216
    217	return poi;
    218}
    219
    220static inline int rk_nfc_data_len(struct nand_chip *chip)
    221{
    222	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
    223}
    224
    225static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
    226{
    227	struct rk_nfc *nfc = nand_get_controller_data(chip);
    228
    229	return nfc->page_buf + i * rk_nfc_data_len(chip);
    230}
    231
    232static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
    233{
    234	struct rk_nfc *nfc = nand_get_controller_data(chip);
    235
    236	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
    237}
    238
    239static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
    240{
    241	struct rk_nfc *nfc = nand_get_controller_data(chip);
    242	u32 reg, i;
    243
    244	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
    245		if (strength == nfc->cfg->ecc_strengths[i]) {
    246			reg = nfc->cfg->ecc_cfgs[i];
    247			break;
    248		}
    249	}
    250
    251	if (i >= NFC_ECC_MAX_MODES)
    252		return -EINVAL;
    253
    254	writel(reg, nfc->regs + nfc->cfg->bchctl_off);
    255
    256	/* Save chip ECC setting */
    257	nfc->cur_ecc = strength;
    258
    259	return 0;
    260}
    261
    262static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
    263{
    264	struct rk_nfc *nfc = nand_get_controller_data(chip);
    265	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    266	struct nand_ecc_ctrl *ecc = &chip->ecc;
    267	u32 val;
    268
    269	if (cs < 0) {
    270		nfc->selected_bank = -1;
    271		/* Deselect the currently selected target. */
    272		val = readl_relaxed(nfc->regs + NFC_FMCTL);
    273		val &= ~FMCTL_CE_SEL_M;
    274		writel(val, nfc->regs + NFC_FMCTL);
    275		return;
    276	}
    277
    278	nfc->selected_bank = rknand->sels[cs];
    279	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
    280
    281	val = readl_relaxed(nfc->regs + NFC_FMCTL);
    282	val &= ~FMCTL_CE_SEL_M;
    283	val |= FMCTL_CE_SEL(nfc->selected_bank);
    284
    285	writel(val, nfc->regs + NFC_FMCTL);
    286
    287	/*
    288	 * Compare current chip timing with selected chip timing and
    289	 * change if needed.
    290	 */
    291	if (nfc->cur_timing != rknand->timing) {
    292		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
    293		nfc->cur_timing = rknand->timing;
    294	}
    295
    296	/*
    297	 * Compare current chip ECC setting with selected chip ECC setting and
    298	 * change if needed.
    299	 */
    300	if (nfc->cur_ecc != ecc->strength)
    301		rk_nfc_hw_ecc_setup(chip, ecc->strength);
    302}
    303
    304static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
    305{
    306	int rc;
    307	u32 val;
    308
    309	rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
    310					val & FMCTL_RDY, 10, NFC_TIMEOUT);
    311
    312	return rc;
    313}
    314
    315static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
    316{
    317	int i;
    318
    319	for (i = 0; i < len; i++)
    320		buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
    321				       BANK_DATA);
    322}
    323
    324static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
    325{
    326	int i;
    327
    328	for (i = 0; i < len; i++)
    329		writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
    330}
    331
    332static int rk_nfc_cmd(struct nand_chip *chip,
    333		      const struct nand_subop *subop)
    334{
    335	struct rk_nfc *nfc = nand_get_controller_data(chip);
    336	unsigned int i, j, remaining, start;
    337	int reg_offset = nfc->band_offset;
    338	u8 *inbuf = NULL;
    339	const u8 *outbuf;
    340	u32 cnt = 0;
    341	int ret = 0;
    342
    343	for (i = 0; i < subop->ninstrs; i++) {
    344		const struct nand_op_instr *instr = &subop->instrs[i];
    345
    346		switch (instr->type) {
    347		case NAND_OP_CMD_INSTR:
    348			writeb(instr->ctx.cmd.opcode,
    349			       nfc->regs + reg_offset + BANK_CMD);
    350			break;
    351
    352		case NAND_OP_ADDR_INSTR:
    353			remaining = nand_subop_get_num_addr_cyc(subop, i);
    354			start = nand_subop_get_addr_start_off(subop, i);
    355
    356			for (j = 0; j < 8 && j + start < remaining; j++)
    357				writeb(instr->ctx.addr.addrs[j + start],
    358				       nfc->regs + reg_offset + BANK_ADDR);
    359			break;
    360
    361		case NAND_OP_DATA_IN_INSTR:
    362		case NAND_OP_DATA_OUT_INSTR:
    363			start = nand_subop_get_data_start_off(subop, i);
    364			cnt = nand_subop_get_data_len(subop, i);
    365
    366			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
    367				outbuf = instr->ctx.data.buf.out + start;
    368				rk_nfc_write_buf(nfc, outbuf, cnt);
    369			} else {
    370				inbuf = instr->ctx.data.buf.in + start;
    371				rk_nfc_read_buf(nfc, inbuf, cnt);
    372			}
    373			break;
    374
    375		case NAND_OP_WAITRDY_INSTR:
    376			if (rk_nfc_wait_ioready(nfc) < 0) {
    377				ret = -ETIMEDOUT;
    378				dev_err(nfc->dev, "IO not ready\n");
    379			}
    380			break;
    381		}
    382	}
    383
    384	return ret;
    385}
    386
    387static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
    388	NAND_OP_PARSER_PATTERN(
    389		rk_nfc_cmd,
    390		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    391		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
    392		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    393		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
    394		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
    395	NAND_OP_PARSER_PATTERN(
    396		rk_nfc_cmd,
    397		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    398		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
    399		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
    400		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    401		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
    402);
    403
    404static int rk_nfc_exec_op(struct nand_chip *chip,
    405			  const struct nand_operation *op,
    406			  bool check_only)
    407{
    408	if (!check_only)
    409		rk_nfc_select_chip(chip, op->cs);
    410
    411	return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
    412				      check_only);
    413}
    414
    415static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
    416				  const struct nand_interface_config *conf)
    417{
    418	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    419	struct rk_nfc *nfc = nand_get_controller_data(chip);
    420	const struct nand_sdr_timings *timings;
    421	u32 rate, tc2rw, trwpw, trw2c;
    422	u32 temp;
    423
    424	if (target < 0)
    425		return 0;
    426
    427	timings = nand_get_sdr_timings(conf);
    428	if (IS_ERR(timings))
    429		return -EOPNOTSUPP;
    430
    431	if (IS_ERR(nfc->nfc_clk))
    432		rate = clk_get_rate(nfc->ahb_clk);
    433	else
    434		rate = clk_get_rate(nfc->nfc_clk);
    435
    436	/* Turn clock rate into kHz. */
    437	rate /= 1000;
    438
    439	tc2rw = 1;
    440	trw2c = 1;
    441
    442	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
    443	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
    444
    445	temp = timings->tREA_max / 1000;
    446	temp = DIV_ROUND_UP(temp * rate, 1000000);
    447
    448	if (trwpw < temp)
    449		trwpw = temp;
    450
    451	/*
    452	 * ACCON: access timing control register
    453	 * -------------------------------------
    454	 * 31:18: reserved
    455	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
    456	 *   falling edge of RDn or WRn
    457	 * 11:11: reserved
    458	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
    459	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
    460	 *   rising edge of CSn
    461	 */
    462
    463	/* Save chip timing */
    464	rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
    465
    466	return 0;
    467}
    468
    469static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
    470			      dma_addr_t dma_data, dma_addr_t dma_oob)
    471{
    472	u32 dma_reg, fl_reg, bch_reg;
    473
    474	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
    475	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
    476
    477	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
    478		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
    479
    480	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
    481		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
    482		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
    483			  (nfc->selected_bank << BCHCTL_BANK);
    484		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
    485	}
    486
    487	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
    488	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
    489	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
    490	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
    491	fl_reg |= FLCTL_XFER_ST;
    492	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
    493}
    494
    495static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
    496{
    497	void __iomem *ptr;
    498	u32 reg;
    499
    500	ptr = nfc->regs + nfc->cfg->flctl_off;
    501
    502	return readl_relaxed_poll_timeout(ptr, reg,
    503					 reg & FLCTL_XFER_READY,
    504					 10, NFC_TIMEOUT);
    505}
    506
    507static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
    508				 int oob_on, int page)
    509{
    510	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    511	struct rk_nfc *nfc = nand_get_controller_data(chip);
    512	struct mtd_info *mtd = nand_to_mtd(chip);
    513	struct nand_ecc_ctrl *ecc = &chip->ecc;
    514	int i, pages_per_blk;
    515
    516	pages_per_blk = mtd->erasesize / mtd->writesize;
    517	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
    518	    (page < (pages_per_blk * rknand->boot_blks)) &&
    519	    rknand->boot_ecc != ecc->strength) {
    520		/*
    521		 * There's currently no method to notify the MTD framework that
    522		 * a different ECC strength is in use for the boot blocks.
    523		 */
    524		return -EIO;
    525	}
    526
    527	if (!buf)
    528		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
    529
    530	for (i = 0; i < ecc->steps; i++) {
    531		/* Copy data to the NFC buffer. */
    532		if (buf)
    533			memcpy(rk_nfc_data_ptr(chip, i),
    534			       rk_nfc_buf_to_data_ptr(chip, buf, i),
    535			       ecc->size);
    536		/*
    537		 * The first four bytes of OOB are reserved for the
    538		 * boot ROM. In some debugging cases, such as with a
    539		 * read, erase and write back test these 4 bytes stored
    540		 * in OOB also need to be written back.
    541		 *
    542		 * The function nand_block_bad detects bad blocks like:
    543		 *
    544		 * bad = chip->oob_poi[chip->badblockpos];
    545		 *
    546		 * chip->badblockpos == 0 for a large page NAND Flash,
    547		 * so chip->oob_poi[0] is the bad block mask (BBM).
    548		 *
    549		 * The OOB data layout on the NFC is:
    550		 *
    551		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
    552		 *
    553		 * or
    554		 *
    555		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
    556		 *
    557		 * The code here just swaps the first 4 bytes with the last
    558		 * 4 bytes without losing any data.
    559		 *
    560		 * The chip->oob_poi data layout:
    561		 *
    562		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
    563		 *
    564		 * The rk_nfc_ooblayout_free() function already has reserved
    565		 * these 4 bytes with:
    566		 *
    567		 * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
    568		 */
    569		if (!i)
    570			memcpy(rk_nfc_oob_ptr(chip, i),
    571			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
    572			       NFC_SYS_DATA_SIZE);
    573		else
    574			memcpy(rk_nfc_oob_ptr(chip, i),
    575			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
    576			       NFC_SYS_DATA_SIZE);
    577		/* Copy ECC data to the NFC buffer. */
    578		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
    579		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
    580		       ecc->bytes);
    581	}
    582
    583	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
    584	rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
    585	return nand_prog_page_end_op(chip);
    586}
    587
    588static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
    589				   int oob_on, int page)
    590{
    591	struct mtd_info *mtd = nand_to_mtd(chip);
    592	struct rk_nfc *nfc = nand_get_controller_data(chip);
    593	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    594	struct nand_ecc_ctrl *ecc = &chip->ecc;
    595	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
    596			NFC_MIN_OOB_PER_STEP;
    597	int pages_per_blk = mtd->erasesize / mtd->writesize;
    598	int ret = 0, i, boot_rom_mode = 0;
    599	dma_addr_t dma_data, dma_oob;
    600	u32 reg;
    601	u8 *oob;
    602
    603	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
    604
    605	if (buf)
    606		memcpy(nfc->page_buf, buf, mtd->writesize);
    607	else
    608		memset(nfc->page_buf, 0xFF, mtd->writesize);
    609
    610	/*
    611	 * The first blocks (4, 8 or 16 depending on the device) are used
    612	 * by the boot ROM and the first 32 bits of OOB need to link to
    613	 * the next page address in the same block. We can't directly copy
    614	 * OOB data from the MTD framework, because this page address
    615	 * conflicts for example with the bad block marker (BBM),
    616	 * so we shift all OOB data including the BBM with 4 byte positions.
    617	 * As a consequence the OOB size available to the MTD framework is
    618	 * also reduced with 4 bytes.
    619	 *
    620	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
    621	 *
    622	 * If a NAND is not a boot medium or the page is not a boot block,
    623	 * the first 4 bytes are left untouched by writing 0xFF to them.
    624	 *
    625	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
    626	 *
    627	 * Configure the ECC algorithm supported by the boot ROM.
    628	 */
    629	if ((page < (pages_per_blk * rknand->boot_blks)) &&
    630	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
    631		boot_rom_mode = 1;
    632		if (rknand->boot_ecc != ecc->strength)
    633			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
    634	}
    635
    636	for (i = 0; i < ecc->steps; i++) {
    637		if (!i) {
    638			reg = 0xFFFFFFFF;
    639		} else {
    640			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
    641			reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
    642			      oob[3] << 24;
    643		}
    644
    645		if (!i && boot_rom_mode)
    646			reg = (page & (pages_per_blk - 1)) * 4;
    647
    648		if (nfc->cfg->type == NFC_V9)
    649			nfc->oob_buf[i] = reg;
    650		else
    651			nfc->oob_buf[i * (oob_step / 4)] = reg;
    652	}
    653
    654	dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
    655				  mtd->writesize, DMA_TO_DEVICE);
    656	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
    657				 ecc->steps * oob_step,
    658				 DMA_TO_DEVICE);
    659
    660	reinit_completion(&nfc->done);
    661	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
    662
    663	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
    664			  dma_oob);
    665	ret = wait_for_completion_timeout(&nfc->done,
    666					  msecs_to_jiffies(100));
    667	if (!ret)
    668		dev_warn(nfc->dev, "write: wait dma done timeout.\n");
    669	/*
    670	 * Whether the DMA transfer is completed or not. The driver
    671	 * needs to check the NFC`s status register to see if the data
    672	 * transfer was completed.
    673	 */
    674	ret = rk_nfc_wait_for_xfer_done(nfc);
    675
    676	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
    677			 DMA_TO_DEVICE);
    678	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
    679			 DMA_TO_DEVICE);
    680
    681	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
    682		rk_nfc_hw_ecc_setup(chip, ecc->strength);
    683
    684	if (ret) {
    685		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
    686		return -ETIMEDOUT;
    687	}
    688
    689	return nand_prog_page_end_op(chip);
    690}
    691
    692static int rk_nfc_write_oob(struct nand_chip *chip, int page)
    693{
    694	return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
    695}
    696
    697static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
    698				int page)
    699{
    700	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    701	struct rk_nfc *nfc = nand_get_controller_data(chip);
    702	struct mtd_info *mtd = nand_to_mtd(chip);
    703	struct nand_ecc_ctrl *ecc = &chip->ecc;
    704	int i, pages_per_blk;
    705
    706	pages_per_blk = mtd->erasesize / mtd->writesize;
    707	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
    708	    (page < (pages_per_blk * rknand->boot_blks)) &&
    709	    rknand->boot_ecc != ecc->strength) {
    710		/*
    711		 * There's currently no method to notify the MTD framework that
    712		 * a different ECC strength is in use for the boot blocks.
    713		 */
    714		return -EIO;
    715	}
    716
    717	nand_read_page_op(chip, page, 0, NULL, 0);
    718	rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
    719	for (i = 0; i < ecc->steps; i++) {
    720		/*
    721		 * The first four bytes of OOB are reserved for the
    722		 * boot ROM. In some debugging cases, such as with a read,
    723		 * erase and write back test, these 4 bytes also must be
    724		 * saved somewhere, otherwise this information will be
    725		 * lost during a write back.
    726		 */
    727		if (!i)
    728			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
    729			       rk_nfc_oob_ptr(chip, i),
    730			       NFC_SYS_DATA_SIZE);
    731		else
    732			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
    733			       rk_nfc_oob_ptr(chip, i),
    734			       NFC_SYS_DATA_SIZE);
    735
    736		/* Copy ECC data from the NFC buffer. */
    737		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
    738		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
    739		       ecc->bytes);
    740
    741		/* Copy data from the NFC buffer. */
    742		if (buf)
    743			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
    744			       rk_nfc_data_ptr(chip, i),
    745			       ecc->size);
    746	}
    747
    748	return 0;
    749}
    750
    751static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
    752				  int page)
    753{
    754	struct mtd_info *mtd = nand_to_mtd(chip);
    755	struct rk_nfc *nfc = nand_get_controller_data(chip);
    756	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    757	struct nand_ecc_ctrl *ecc = &chip->ecc;
    758	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
    759			NFC_MIN_OOB_PER_STEP;
    760	int pages_per_blk = mtd->erasesize / mtd->writesize;
    761	dma_addr_t dma_data, dma_oob;
    762	int ret = 0, i, cnt, boot_rom_mode = 0;
    763	int max_bitflips = 0, bch_st, ecc_fail = 0;
    764	u8 *oob;
    765	u32 tmp;
    766
    767	nand_read_page_op(chip, page, 0, NULL, 0);
    768
    769	dma_data = dma_map_single(nfc->dev, nfc->page_buf,
    770				  mtd->writesize,
    771				  DMA_FROM_DEVICE);
    772	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
    773				 ecc->steps * oob_step,
    774				 DMA_FROM_DEVICE);
    775
    776	/*
    777	 * The first blocks (4, 8 or 16 depending on the device)
    778	 * are used by the boot ROM.
    779	 * Configure the ECC algorithm supported by the boot ROM.
    780	 */
    781	if ((page < (pages_per_blk * rknand->boot_blks)) &&
    782	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
    783		boot_rom_mode = 1;
    784		if (rknand->boot_ecc != ecc->strength)
    785			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
    786	}
    787
    788	reinit_completion(&nfc->done);
    789	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
    790	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
    791			  dma_oob);
    792	ret = wait_for_completion_timeout(&nfc->done,
    793					  msecs_to_jiffies(100));
    794	if (!ret)
    795		dev_warn(nfc->dev, "read: wait dma done timeout.\n");
    796	/*
    797	 * Whether the DMA transfer is completed or not. The driver
    798	 * needs to check the NFC`s status register to see if the data
    799	 * transfer was completed.
    800	 */
    801	ret = rk_nfc_wait_for_xfer_done(nfc);
    802
    803	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
    804			 DMA_FROM_DEVICE);
    805	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
    806			 DMA_FROM_DEVICE);
    807
    808	if (ret) {
    809		ret = -ETIMEDOUT;
    810		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
    811		goto timeout_err;
    812	}
    813
    814	for (i = 1; i < ecc->steps; i++) {
    815		oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
    816		if (nfc->cfg->type == NFC_V9)
    817			tmp = nfc->oob_buf[i];
    818		else
    819			tmp = nfc->oob_buf[i * (oob_step / 4)];
    820		*oob++ = (u8)tmp;
    821		*oob++ = (u8)(tmp >> 8);
    822		*oob++ = (u8)(tmp >> 16);
    823		*oob++ = (u8)(tmp >> 24);
    824	}
    825
    826	for (i = 0; i < (ecc->steps / 2); i++) {
    827		bch_st = readl_relaxed(nfc->regs +
    828				       nfc->cfg->bch_st_off + i * 4);
    829		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
    830		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
    831			mtd->ecc_stats.failed++;
    832			ecc_fail = 1;
    833		} else {
    834			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
    835			mtd->ecc_stats.corrected += cnt;
    836			max_bitflips = max_t(u32, max_bitflips, cnt);
    837
    838			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
    839			mtd->ecc_stats.corrected += cnt;
    840			max_bitflips = max_t(u32, max_bitflips, cnt);
    841		}
    842	}
    843
    844	if (buf)
    845		memcpy(buf, nfc->page_buf, mtd->writesize);
    846
    847timeout_err:
    848	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
    849		rk_nfc_hw_ecc_setup(chip, ecc->strength);
    850
    851	if (ret)
    852		return ret;
    853
    854	if (ecc_fail) {
    855		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
    856		return 0;
    857	}
    858
    859	return max_bitflips;
    860}
    861
    862static int rk_nfc_read_oob(struct nand_chip *chip, int page)
    863{
    864	return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
    865}
    866
    867static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
    868{
    869	/* Disable flash wp. */
    870	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
    871	/* Config default timing 40ns at 150 Mhz NFC clock. */
    872	writel(0x1081, nfc->regs + NFC_FMWAIT);
    873	nfc->cur_timing = 0x1081;
    874	/* Disable randomizer and DMA. */
    875	writel(0, nfc->regs + nfc->cfg->randmz_off);
    876	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
    877	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
    878}
    879
    880static irqreturn_t rk_nfc_irq(int irq, void *id)
    881{
    882	struct rk_nfc *nfc = id;
    883	u32 sta, ien;
    884
    885	sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
    886	ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
    887
    888	if (!(sta & ien))
    889		return IRQ_NONE;
    890
    891	writel(sta, nfc->regs + nfc->cfg->int_clr_off);
    892	writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
    893
    894	complete(&nfc->done);
    895
    896	return IRQ_HANDLED;
    897}
    898
    899static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
    900{
    901	int ret;
    902
    903	if (!IS_ERR(nfc->nfc_clk)) {
    904		ret = clk_prepare_enable(nfc->nfc_clk);
    905		if (ret) {
    906			dev_err(dev, "failed to enable NFC clk\n");
    907			return ret;
    908		}
    909	}
    910
    911	ret = clk_prepare_enable(nfc->ahb_clk);
    912	if (ret) {
    913		dev_err(dev, "failed to enable ahb clk\n");
    914		clk_disable_unprepare(nfc->nfc_clk);
    915		return ret;
    916	}
    917
    918	return 0;
    919}
    920
    921static void rk_nfc_disable_clks(struct rk_nfc *nfc)
    922{
    923	clk_disable_unprepare(nfc->nfc_clk);
    924	clk_disable_unprepare(nfc->ahb_clk);
    925}
    926
    927static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
    928				 struct mtd_oob_region *oob_region)
    929{
    930	struct nand_chip *chip = mtd_to_nand(mtd);
    931	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    932
    933	if (section)
    934		return -ERANGE;
    935
    936	/*
    937	 * The beginning of the OOB area stores the reserved data for the NFC,
    938	 * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
    939	 */
    940	oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
    941	oob_region->offset = NFC_SYS_DATA_SIZE + 2;
    942
    943	return 0;
    944}
    945
    946static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
    947				struct mtd_oob_region *oob_region)
    948{
    949	struct nand_chip *chip = mtd_to_nand(mtd);
    950	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
    951
    952	if (section)
    953		return -ERANGE;
    954
    955	oob_region->length = mtd->oobsize - rknand->metadata_size;
    956	oob_region->offset = rknand->metadata_size;
    957
    958	return 0;
    959}
    960
    961static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
    962	.free = rk_nfc_ooblayout_free,
    963	.ecc = rk_nfc_ooblayout_ecc,
    964};
    965
    966static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
    967{
    968	struct nand_chip *chip = mtd_to_nand(mtd);
    969	struct rk_nfc *nfc = nand_get_controller_data(chip);
    970	struct nand_ecc_ctrl *ecc = &chip->ecc;
    971	const u8 *strengths = nfc->cfg->ecc_strengths;
    972	u8 max_strength, nfc_max_strength;
    973	int i;
    974
    975	nfc_max_strength = nfc->cfg->ecc_strengths[0];
    976	/* If optional dt settings not present. */
    977	if (!ecc->size || !ecc->strength ||
    978	    ecc->strength > nfc_max_strength) {
    979		chip->ecc.size = 1024;
    980		ecc->steps = mtd->writesize / ecc->size;
    981
    982		/*
    983		 * HW ECC always requests the number of ECC bytes per 1024 byte
    984		 * blocks. The first 4 OOB bytes are reserved for sys data.
    985		 */
    986		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
    987				 fls(8 * 1024);
    988		if (max_strength > nfc_max_strength)
    989			max_strength = nfc_max_strength;
    990
    991		for (i = 0; i < 4; i++) {
    992			if (max_strength >= strengths[i])
    993				break;
    994		}
    995
    996		if (i >= 4) {
    997			dev_err(nfc->dev, "unsupported ECC strength\n");
    998			return -EOPNOTSUPP;
    999		}
   1000
   1001		ecc->strength = strengths[i];
   1002	}
   1003	ecc->steps = mtd->writesize / ecc->size;
   1004	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
   1005
   1006	return 0;
   1007}
   1008
   1009static int rk_nfc_attach_chip(struct nand_chip *chip)
   1010{
   1011	struct mtd_info *mtd = nand_to_mtd(chip);
   1012	struct device *dev = mtd->dev.parent;
   1013	struct rk_nfc *nfc = nand_get_controller_data(chip);
   1014	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
   1015	struct nand_ecc_ctrl *ecc = &chip->ecc;
   1016	int new_page_len, new_oob_len;
   1017	void *buf;
   1018	int ret;
   1019
   1020	if (chip->options & NAND_BUSWIDTH_16) {
   1021		dev_err(dev, "16 bits bus width not supported");
   1022		return -EINVAL;
   1023	}
   1024
   1025	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
   1026		return 0;
   1027
   1028	ret = rk_nfc_ecc_init(dev, mtd);
   1029	if (ret)
   1030		return ret;
   1031
   1032	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
   1033
   1034	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
   1035		dev_err(dev,
   1036			"driver needs at least %d bytes of meta data\n",
   1037			NFC_SYS_DATA_SIZE + 2);
   1038		return -EIO;
   1039	}
   1040
   1041	/* Check buffer first, avoid duplicate alloc buffer. */
   1042	new_page_len = mtd->writesize + mtd->oobsize;
   1043	if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
   1044		buf = krealloc(nfc->page_buf, new_page_len,
   1045			       GFP_KERNEL | GFP_DMA);
   1046		if (!buf)
   1047			return -ENOMEM;
   1048		nfc->page_buf = buf;
   1049		nfc->page_buf_size = new_page_len;
   1050	}
   1051
   1052	new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
   1053	if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
   1054		buf = krealloc(nfc->oob_buf, new_oob_len,
   1055			       GFP_KERNEL | GFP_DMA);
   1056		if (!buf) {
   1057			kfree(nfc->page_buf);
   1058			nfc->page_buf = NULL;
   1059			return -ENOMEM;
   1060		}
   1061		nfc->oob_buf = buf;
   1062		nfc->oob_buf_size = new_oob_len;
   1063	}
   1064
   1065	if (!nfc->page_buf) {
   1066		nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
   1067		if (!nfc->page_buf)
   1068			return -ENOMEM;
   1069		nfc->page_buf_size = new_page_len;
   1070	}
   1071
   1072	if (!nfc->oob_buf) {
   1073		nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
   1074		if (!nfc->oob_buf) {
   1075			kfree(nfc->page_buf);
   1076			nfc->page_buf = NULL;
   1077			return -ENOMEM;
   1078		}
   1079		nfc->oob_buf_size = new_oob_len;
   1080	}
   1081
   1082	chip->ecc.write_page_raw = rk_nfc_write_page_raw;
   1083	chip->ecc.write_page = rk_nfc_write_page_hwecc;
   1084	chip->ecc.write_oob = rk_nfc_write_oob;
   1085
   1086	chip->ecc.read_page_raw = rk_nfc_read_page_raw;
   1087	chip->ecc.read_page = rk_nfc_read_page_hwecc;
   1088	chip->ecc.read_oob = rk_nfc_read_oob;
   1089
   1090	return 0;
   1091}
   1092
   1093static const struct nand_controller_ops rk_nfc_controller_ops = {
   1094	.attach_chip = rk_nfc_attach_chip,
   1095	.exec_op = rk_nfc_exec_op,
   1096	.setup_interface = rk_nfc_setup_interface,
   1097};
   1098
   1099static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
   1100				 struct device_node *np)
   1101{
   1102	struct rk_nfc_nand_chip *rknand;
   1103	struct nand_chip *chip;
   1104	struct mtd_info *mtd;
   1105	int nsels;
   1106	u32 tmp;
   1107	int ret;
   1108	int i;
   1109
   1110	if (!of_get_property(np, "reg", &nsels))
   1111		return -ENODEV;
   1112	nsels /= sizeof(u32);
   1113	if (!nsels || nsels > NFC_MAX_NSELS) {
   1114		dev_err(dev, "invalid reg property size %d\n", nsels);
   1115		return -EINVAL;
   1116	}
   1117
   1118	rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
   1119			      GFP_KERNEL);
   1120	if (!rknand)
   1121		return -ENOMEM;
   1122
   1123	rknand->nsels = nsels;
   1124	for (i = 0; i < nsels; i++) {
   1125		ret = of_property_read_u32_index(np, "reg", i, &tmp);
   1126		if (ret) {
   1127			dev_err(dev, "reg property failure : %d\n", ret);
   1128			return ret;
   1129		}
   1130
   1131		if (tmp >= NFC_MAX_NSELS) {
   1132			dev_err(dev, "invalid CS: %u\n", tmp);
   1133			return -EINVAL;
   1134		}
   1135
   1136		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
   1137			dev_err(dev, "CS %u already assigned\n", tmp);
   1138			return -EINVAL;
   1139		}
   1140
   1141		rknand->sels[i] = tmp;
   1142	}
   1143
   1144	chip = &rknand->chip;
   1145	chip->controller = &nfc->controller;
   1146
   1147	nand_set_flash_node(chip, np);
   1148
   1149	nand_set_controller_data(chip, nfc);
   1150
   1151	chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
   1152	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
   1153
   1154	/* Set default mode in case dt entry is missing. */
   1155	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
   1156
   1157	mtd = nand_to_mtd(chip);
   1158	mtd->owner = THIS_MODULE;
   1159	mtd->dev.parent = dev;
   1160
   1161	if (!mtd->name) {
   1162		dev_err(nfc->dev, "NAND label property is mandatory\n");
   1163		return -EINVAL;
   1164	}
   1165
   1166	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
   1167	rk_nfc_hw_init(nfc);
   1168	ret = nand_scan(chip, nsels);
   1169	if (ret)
   1170		return ret;
   1171
   1172	if (chip->options & NAND_IS_BOOT_MEDIUM) {
   1173		ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
   1174		rknand->boot_blks = ret ? 0 : tmp;
   1175
   1176		ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
   1177					   &tmp);
   1178		rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
   1179	}
   1180
   1181	ret = mtd_device_register(mtd, NULL, 0);
   1182	if (ret) {
   1183		dev_err(dev, "MTD parse partition error\n");
   1184		nand_cleanup(chip);
   1185		return ret;
   1186	}
   1187
   1188	list_add_tail(&rknand->node, &nfc->chips);
   1189
   1190	return 0;
   1191}
   1192
   1193static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
   1194{
   1195	struct rk_nfc_nand_chip *rknand, *tmp;
   1196	struct nand_chip *chip;
   1197	int ret;
   1198
   1199	list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
   1200		chip = &rknand->chip;
   1201		ret = mtd_device_unregister(nand_to_mtd(chip));
   1202		WARN_ON(ret);
   1203		nand_cleanup(chip);
   1204		list_del(&rknand->node);
   1205	}
   1206}
   1207
   1208static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
   1209{
   1210	struct device_node *np = dev->of_node, *nand_np;
   1211	int nchips = of_get_child_count(np);
   1212	int ret;
   1213
   1214	if (!nchips || nchips > NFC_MAX_NSELS) {
   1215		dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
   1216			nchips);
   1217		return -EINVAL;
   1218	}
   1219
   1220	for_each_child_of_node(np, nand_np) {
   1221		ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
   1222		if (ret) {
   1223			of_node_put(nand_np);
   1224			rk_nfc_chips_cleanup(nfc);
   1225			return ret;
   1226		}
   1227	}
   1228
   1229	return 0;
   1230}
   1231
   1232static struct nfc_cfg nfc_v6_cfg = {
   1233		.type			= NFC_V6,
   1234		.ecc_strengths		= {60, 40, 24, 16},
   1235		.ecc_cfgs		= {
   1236			0x00040011, 0x00040001, 0x00000011, 0x00000001,
   1237		},
   1238		.flctl_off		= 0x08,
   1239		.bchctl_off		= 0x0C,
   1240		.dma_cfg_off		= 0x10,
   1241		.dma_data_buf_off	= 0x14,
   1242		.dma_oob_buf_off	= 0x18,
   1243		.dma_st_off		= 0x1C,
   1244		.bch_st_off		= 0x20,
   1245		.randmz_off		= 0x150,
   1246		.int_en_off		= 0x16C,
   1247		.int_clr_off		= 0x170,
   1248		.int_st_off		= 0x174,
   1249		.oob0_off		= 0x200,
   1250		.oob1_off		= 0x230,
   1251		.ecc0			= {
   1252			.err_flag_bit	= 2,
   1253			.low		= 3,
   1254			.low_mask	= 0x1F,
   1255			.low_bn		= 5,
   1256			.high		= 27,
   1257			.high_mask	= 0x1,
   1258		},
   1259		.ecc1			= {
   1260			.err_flag_bit	= 15,
   1261			.low		= 16,
   1262			.low_mask	= 0x1F,
   1263			.low_bn		= 5,
   1264			.high		= 29,
   1265			.high_mask	= 0x1,
   1266		},
   1267};
   1268
   1269static struct nfc_cfg nfc_v8_cfg = {
   1270		.type			= NFC_V8,
   1271		.ecc_strengths		= {16, 16, 16, 16},
   1272		.ecc_cfgs		= {
   1273			0x00000001, 0x00000001, 0x00000001, 0x00000001,
   1274		},
   1275		.flctl_off		= 0x08,
   1276		.bchctl_off		= 0x0C,
   1277		.dma_cfg_off		= 0x10,
   1278		.dma_data_buf_off	= 0x14,
   1279		.dma_oob_buf_off	= 0x18,
   1280		.dma_st_off		= 0x1C,
   1281		.bch_st_off		= 0x20,
   1282		.randmz_off		= 0x150,
   1283		.int_en_off		= 0x16C,
   1284		.int_clr_off		= 0x170,
   1285		.int_st_off		= 0x174,
   1286		.oob0_off		= 0x200,
   1287		.oob1_off		= 0x230,
   1288		.ecc0			= {
   1289			.err_flag_bit	= 2,
   1290			.low		= 3,
   1291			.low_mask	= 0x1F,
   1292			.low_bn		= 5,
   1293			.high		= 27,
   1294			.high_mask	= 0x1,
   1295		},
   1296		.ecc1			= {
   1297			.err_flag_bit	= 15,
   1298			.low		= 16,
   1299			.low_mask	= 0x1F,
   1300			.low_bn		= 5,
   1301			.high		= 29,
   1302			.high_mask	= 0x1,
   1303		},
   1304};
   1305
   1306static struct nfc_cfg nfc_v9_cfg = {
   1307		.type			= NFC_V9,
   1308		.ecc_strengths		= {70, 60, 40, 16},
   1309		.ecc_cfgs		= {
   1310			0x00000001, 0x06000001, 0x04000001, 0x02000001,
   1311		},
   1312		.flctl_off		= 0x10,
   1313		.bchctl_off		= 0x20,
   1314		.dma_cfg_off		= 0x30,
   1315		.dma_data_buf_off	= 0x34,
   1316		.dma_oob_buf_off	= 0x38,
   1317		.dma_st_off		= 0x3C,
   1318		.bch_st_off		= 0x150,
   1319		.randmz_off		= 0x208,
   1320		.int_en_off		= 0x120,
   1321		.int_clr_off		= 0x124,
   1322		.int_st_off		= 0x128,
   1323		.oob0_off		= 0x200,
   1324		.oob1_off		= 0x204,
   1325		.ecc0			= {
   1326			.err_flag_bit	= 2,
   1327			.low		= 3,
   1328			.low_mask	= 0x7F,
   1329			.low_bn		= 7,
   1330			.high		= 0,
   1331			.high_mask	= 0x0,
   1332		},
   1333		.ecc1			= {
   1334			.err_flag_bit	= 18,
   1335			.low		= 19,
   1336			.low_mask	= 0x7F,
   1337			.low_bn		= 7,
   1338			.high		= 0,
   1339			.high_mask	= 0x0,
   1340		},
   1341};
   1342
   1343static const struct of_device_id rk_nfc_id_table[] = {
   1344	{
   1345		.compatible = "rockchip,px30-nfc",
   1346		.data = &nfc_v9_cfg
   1347	},
   1348	{
   1349		.compatible = "rockchip,rk2928-nfc",
   1350		.data = &nfc_v6_cfg
   1351	},
   1352	{
   1353		.compatible = "rockchip,rv1108-nfc",
   1354		.data = &nfc_v8_cfg
   1355	},
   1356	{ /* sentinel */ }
   1357};
   1358MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
   1359
   1360static int rk_nfc_probe(struct platform_device *pdev)
   1361{
   1362	struct device *dev = &pdev->dev;
   1363	struct rk_nfc *nfc;
   1364	int ret, irq;
   1365
   1366	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
   1367	if (!nfc)
   1368		return -ENOMEM;
   1369
   1370	nand_controller_init(&nfc->controller);
   1371	INIT_LIST_HEAD(&nfc->chips);
   1372	nfc->controller.ops = &rk_nfc_controller_ops;
   1373
   1374	nfc->cfg = of_device_get_match_data(dev);
   1375	nfc->dev = dev;
   1376
   1377	init_completion(&nfc->done);
   1378
   1379	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
   1380	if (IS_ERR(nfc->regs)) {
   1381		ret = PTR_ERR(nfc->regs);
   1382		goto release_nfc;
   1383	}
   1384
   1385	nfc->nfc_clk = devm_clk_get(dev, "nfc");
   1386	if (IS_ERR(nfc->nfc_clk)) {
   1387		dev_dbg(dev, "no NFC clk\n");
   1388		/* Some earlier models, such as rk3066, have no NFC clk. */
   1389	}
   1390
   1391	nfc->ahb_clk = devm_clk_get(dev, "ahb");
   1392	if (IS_ERR(nfc->ahb_clk)) {
   1393		dev_err(dev, "no ahb clk\n");
   1394		ret = PTR_ERR(nfc->ahb_clk);
   1395		goto release_nfc;
   1396	}
   1397
   1398	ret = rk_nfc_enable_clks(dev, nfc);
   1399	if (ret)
   1400		goto release_nfc;
   1401
   1402	irq = platform_get_irq(pdev, 0);
   1403	if (irq < 0) {
   1404		ret = -EINVAL;
   1405		goto clk_disable;
   1406	}
   1407
   1408	writel(0, nfc->regs + nfc->cfg->int_en_off);
   1409	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
   1410	if (ret) {
   1411		dev_err(dev, "failed to request NFC irq\n");
   1412		goto clk_disable;
   1413	}
   1414
   1415	platform_set_drvdata(pdev, nfc);
   1416
   1417	ret = rk_nfc_nand_chips_init(dev, nfc);
   1418	if (ret) {
   1419		dev_err(dev, "failed to init NAND chips\n");
   1420		goto clk_disable;
   1421	}
   1422	return 0;
   1423
   1424clk_disable:
   1425	rk_nfc_disable_clks(nfc);
   1426release_nfc:
   1427	return ret;
   1428}
   1429
   1430static int rk_nfc_remove(struct platform_device *pdev)
   1431{
   1432	struct rk_nfc *nfc = platform_get_drvdata(pdev);
   1433
   1434	kfree(nfc->page_buf);
   1435	kfree(nfc->oob_buf);
   1436	rk_nfc_chips_cleanup(nfc);
   1437	rk_nfc_disable_clks(nfc);
   1438
   1439	return 0;
   1440}
   1441
   1442static int __maybe_unused rk_nfc_suspend(struct device *dev)
   1443{
   1444	struct rk_nfc *nfc = dev_get_drvdata(dev);
   1445
   1446	rk_nfc_disable_clks(nfc);
   1447
   1448	return 0;
   1449}
   1450
   1451static int __maybe_unused rk_nfc_resume(struct device *dev)
   1452{
   1453	struct rk_nfc *nfc = dev_get_drvdata(dev);
   1454	struct rk_nfc_nand_chip *rknand;
   1455	struct nand_chip *chip;
   1456	int ret;
   1457	u32 i;
   1458
   1459	ret = rk_nfc_enable_clks(dev, nfc);
   1460	if (ret)
   1461		return ret;
   1462
   1463	/* Reset NAND chip if VCC was powered off. */
   1464	list_for_each_entry(rknand, &nfc->chips, node) {
   1465		chip = &rknand->chip;
   1466		for (i = 0; i < rknand->nsels; i++)
   1467			nand_reset(chip, i);
   1468	}
   1469
   1470	return 0;
   1471}
   1472
   1473static const struct dev_pm_ops rk_nfc_pm_ops = {
   1474	SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
   1475};
   1476
   1477static struct platform_driver rk_nfc_driver = {
   1478	.probe = rk_nfc_probe,
   1479	.remove = rk_nfc_remove,
   1480	.driver = {
   1481		.name = "rockchip-nfc",
   1482		.of_match_table = rk_nfc_id_table,
   1483		.pm = &rk_nfc_pm_ops,
   1484	},
   1485};
   1486
   1487module_platform_driver(rk_nfc_driver);
   1488
   1489MODULE_LICENSE("Dual MIT/GPL");
   1490MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
   1491MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
   1492MODULE_ALIAS("platform:rockchip-nand-controller");