s3c2410.c (33204B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright © 2004-2008 Simtec Electronics 4 * http://armlinux.simtec.co.uk/ 5 * Ben Dooks <ben@simtec.co.uk> 6 * 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver 8*/ 9 10#define pr_fmt(fmt) "nand-s3c2410: " fmt 11 12#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG 13#define DEBUG 14#endif 15 16#include <linux/module.h> 17#include <linux/types.h> 18#include <linux/kernel.h> 19#include <linux/string.h> 20#include <linux/io.h> 21#include <linux/ioport.h> 22#include <linux/platform_device.h> 23#include <linux/delay.h> 24#include <linux/err.h> 25#include <linux/slab.h> 26#include <linux/clk.h> 27#include <linux/cpufreq.h> 28#include <linux/of.h> 29#include <linux/of_device.h> 30 31#include <linux/mtd/mtd.h> 32#include <linux/mtd/rawnand.h> 33#include <linux/mtd/partitions.h> 34 35#include <linux/platform_data/mtd-nand-s3c2410.h> 36 37#define S3C2410_NFREG(x) (x) 38 39#define S3C2410_NFCONF S3C2410_NFREG(0x00) 40#define S3C2410_NFCMD S3C2410_NFREG(0x04) 41#define S3C2410_NFADDR S3C2410_NFREG(0x08) 42#define S3C2410_NFDATA S3C2410_NFREG(0x0C) 43#define S3C2410_NFSTAT S3C2410_NFREG(0x10) 44#define S3C2410_NFECC S3C2410_NFREG(0x14) 45#define S3C2440_NFCONT S3C2410_NFREG(0x04) 46#define S3C2440_NFCMD S3C2410_NFREG(0x08) 47#define S3C2440_NFADDR S3C2410_NFREG(0x0C) 48#define S3C2440_NFDATA S3C2410_NFREG(0x10) 49#define S3C2440_NFSTAT S3C2410_NFREG(0x20) 50#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) 51#define S3C2412_NFSTAT S3C2410_NFREG(0x28) 52#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) 53#define S3C2410_NFCONF_EN (1<<15) 54#define S3C2410_NFCONF_INITECC (1<<12) 55#define S3C2410_NFCONF_nFCE (1<<11) 56#define S3C2410_NFCONF_TACLS(x) ((x)<<8) 57#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) 58#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) 59#define S3C2410_NFSTAT_BUSY (1<<0) 60#define S3C2440_NFCONF_TACLS(x) ((x)<<12) 61#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) 62#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) 63#define S3C2440_NFCONT_INITECC (1<<4) 64#define S3C2440_NFCONT_nFCE (1<<1) 65#define S3C2440_NFCONT_ENABLE (1<<0) 66#define S3C2440_NFSTAT_READY (1<<0) 67#define S3C2412_NFCONF_NANDBOOT (1<<31) 68#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) 69#define S3C2412_NFCONT_nFCE0 (1<<1) 70#define S3C2412_NFSTAT_READY (1<<0) 71 72/* new oob placement block for use with hardware ecc generation 73 */ 74static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, 75 struct mtd_oob_region *oobregion) 76{ 77 if (section) 78 return -ERANGE; 79 80 oobregion->offset = 0; 81 oobregion->length = 3; 82 83 return 0; 84} 85 86static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, 87 struct mtd_oob_region *oobregion) 88{ 89 if (section) 90 return -ERANGE; 91 92 oobregion->offset = 8; 93 oobregion->length = 8; 94 95 return 0; 96} 97 98static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { 99 .ecc = s3c2410_ooblayout_ecc, 100 .free = s3c2410_ooblayout_free, 101}; 102 103/* controller and mtd information */ 104 105struct s3c2410_nand_info; 106 107/** 108 * struct s3c2410_nand_mtd - driver MTD structure 109 * @mtd: The MTD instance to pass to the MTD layer. 110 * @chip: The NAND chip information. 111 * @set: The platform information supplied for this set of NAND chips. 112 * @info: Link back to the hardware information. 113*/ 114struct s3c2410_nand_mtd { 115 struct nand_chip chip; 116 struct s3c2410_nand_set *set; 117 struct s3c2410_nand_info *info; 118}; 119 120enum s3c_cpu_type { 121 TYPE_S3C2410, 122 TYPE_S3C2412, 123 TYPE_S3C2440, 124}; 125 126enum s3c_nand_clk_state { 127 CLOCK_DISABLE = 0, 128 CLOCK_ENABLE, 129 CLOCK_SUSPEND, 130}; 131 132/* overview of the s3c2410 nand state */ 133 134/** 135 * struct s3c2410_nand_info - NAND controller state. 136 * @controller: Base controller structure. 137 * @mtds: An array of MTD instances on this controller. 138 * @platform: The platform data for this board. 139 * @device: The platform device we bound to. 140 * @clk: The clock resource for this controller. 141 * @regs: The area mapped for the hardware registers. 142 * @sel_reg: Pointer to the register controlling the NAND selection. 143 * @sel_bit: The bit in @sel_reg to select the NAND chip. 144 * @mtd_count: The number of MTDs created from this controller. 145 * @save_sel: The contents of @sel_reg to be saved over suspend. 146 * @clk_rate: The clock rate from @clk. 147 * @clk_state: The current clock state. 148 * @cpu_type: The exact type of this controller. 149 * @freq_transition: CPUFreq notifier block 150 */ 151struct s3c2410_nand_info { 152 /* mtd info */ 153 struct nand_controller controller; 154 struct s3c2410_nand_mtd *mtds; 155 struct s3c2410_platform_nand *platform; 156 157 /* device info */ 158 struct device *device; 159 struct clk *clk; 160 void __iomem *regs; 161 void __iomem *sel_reg; 162 int sel_bit; 163 int mtd_count; 164 unsigned long save_sel; 165 unsigned long clk_rate; 166 enum s3c_nand_clk_state clk_state; 167 168 enum s3c_cpu_type cpu_type; 169 170#ifdef CONFIG_ARM_S3C24XX_CPUFREQ 171 struct notifier_block freq_transition; 172#endif 173}; 174 175struct s3c24XX_nand_devtype_data { 176 enum s3c_cpu_type type; 177}; 178 179static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { 180 .type = TYPE_S3C2410, 181}; 182 183static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { 184 .type = TYPE_S3C2412, 185}; 186 187static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { 188 .type = TYPE_S3C2440, 189}; 190 191/* conversion functions */ 192 193static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) 194{ 195 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, 196 chip); 197} 198 199static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) 200{ 201 return s3c2410_nand_mtd_toours(mtd)->info; 202} 203 204static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) 205{ 206 return platform_get_drvdata(dev); 207} 208 209static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) 210{ 211 return dev_get_platdata(&dev->dev); 212} 213 214static inline int allow_clk_suspend(struct s3c2410_nand_info *info) 215{ 216#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP 217 return 1; 218#else 219 return 0; 220#endif 221} 222 223/** 224 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. 225 * @info: The controller instance. 226 * @new_state: State to which clock should be set. 227 */ 228static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, 229 enum s3c_nand_clk_state new_state) 230{ 231 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) 232 return; 233 234 if (info->clk_state == CLOCK_ENABLE) { 235 if (new_state != CLOCK_ENABLE) 236 clk_disable_unprepare(info->clk); 237 } else { 238 if (new_state == CLOCK_ENABLE) 239 clk_prepare_enable(info->clk); 240 } 241 242 info->clk_state = new_state; 243} 244 245/* timing calculations */ 246 247#define NS_IN_KHZ 1000000 248 249/** 250 * s3c_nand_calc_rate - calculate timing data. 251 * @wanted: The cycle time in nanoseconds. 252 * @clk: The clock rate in kHz. 253 * @max: The maximum divider value. 254 * 255 * Calculate the timing value from the given parameters. 256 */ 257static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) 258{ 259 int result; 260 261 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); 262 263 pr_debug("result %d from %ld, %d\n", result, clk, wanted); 264 265 if (result > max) { 266 pr_err("%d ns is too big for current clock rate %ld\n", 267 wanted, clk); 268 return -1; 269 } 270 271 if (result < 1) 272 result = 1; 273 274 return result; 275} 276 277#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) 278 279/* controller setup */ 280 281/** 282 * s3c2410_nand_setrate - setup controller timing information. 283 * @info: The controller instance. 284 * 285 * Given the information supplied by the platform, calculate and set 286 * the necessary timing registers in the hardware to generate the 287 * necessary timing cycles to the hardware. 288 */ 289static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) 290{ 291 struct s3c2410_platform_nand *plat = info->platform; 292 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; 293 int tacls, twrph0, twrph1; 294 unsigned long clkrate = clk_get_rate(info->clk); 295 unsigned long set, cfg, mask; 296 unsigned long flags; 297 298 /* calculate the timing information for the controller */ 299 300 info->clk_rate = clkrate; 301 clkrate /= 1000; /* turn clock into kHz for ease of use */ 302 303 if (plat != NULL) { 304 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); 305 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); 306 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); 307 } else { 308 /* default timings */ 309 tacls = tacls_max; 310 twrph0 = 8; 311 twrph1 = 8; 312 } 313 314 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { 315 dev_err(info->device, "cannot get suitable timings\n"); 316 return -EINVAL; 317 } 318 319 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", 320 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), 321 twrph1, to_ns(twrph1, clkrate)); 322 323 switch (info->cpu_type) { 324 case TYPE_S3C2410: 325 mask = (S3C2410_NFCONF_TACLS(3) | 326 S3C2410_NFCONF_TWRPH0(7) | 327 S3C2410_NFCONF_TWRPH1(7)); 328 set = S3C2410_NFCONF_EN; 329 set |= S3C2410_NFCONF_TACLS(tacls - 1); 330 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); 331 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); 332 break; 333 334 case TYPE_S3C2440: 335 case TYPE_S3C2412: 336 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | 337 S3C2440_NFCONF_TWRPH0(7) | 338 S3C2440_NFCONF_TWRPH1(7)); 339 340 set = S3C2440_NFCONF_TACLS(tacls - 1); 341 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); 342 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); 343 break; 344 345 default: 346 BUG(); 347 } 348 349 local_irq_save(flags); 350 351 cfg = readl(info->regs + S3C2410_NFCONF); 352 cfg &= ~mask; 353 cfg |= set; 354 writel(cfg, info->regs + S3C2410_NFCONF); 355 356 local_irq_restore(flags); 357 358 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); 359 360 return 0; 361} 362 363/** 364 * s3c2410_nand_inithw - basic hardware initialisation 365 * @info: The hardware state. 366 * 367 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() 368 * to setup the hardware access speeds and set the controller to be enabled. 369*/ 370static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) 371{ 372 int ret; 373 374 ret = s3c2410_nand_setrate(info); 375 if (ret < 0) 376 return ret; 377 378 switch (info->cpu_type) { 379 case TYPE_S3C2410: 380 default: 381 break; 382 383 case TYPE_S3C2440: 384 case TYPE_S3C2412: 385 /* enable the controller and de-assert nFCE */ 386 387 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); 388 } 389 390 return 0; 391} 392 393/** 394 * s3c2410_nand_select_chip - select the given nand chip 395 * @this: NAND chip object. 396 * @chip: The chip number. 397 * 398 * This is called by the MTD layer to either select a given chip for the 399 * @mtd instance, or to indicate that the access has finished and the 400 * chip can be de-selected. 401 * 402 * The routine ensures that the nFCE line is correctly setup, and any 403 * platform specific selection code is called to route nFCE to the specific 404 * chip. 405 */ 406static void s3c2410_nand_select_chip(struct nand_chip *this, int chip) 407{ 408 struct s3c2410_nand_info *info; 409 struct s3c2410_nand_mtd *nmtd; 410 unsigned long cur; 411 412 nmtd = nand_get_controller_data(this); 413 info = nmtd->info; 414 415 if (chip != -1) 416 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 417 418 cur = readl(info->sel_reg); 419 420 if (chip == -1) { 421 cur |= info->sel_bit; 422 } else { 423 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { 424 dev_err(info->device, "invalid chip %d\n", chip); 425 return; 426 } 427 428 if (info->platform != NULL) { 429 if (info->platform->select_chip != NULL) 430 (info->platform->select_chip) (nmtd->set, chip); 431 } 432 433 cur &= ~info->sel_bit; 434 } 435 436 writel(cur, info->sel_reg); 437 438 if (chip == -1) 439 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 440} 441 442/* s3c2410_nand_hwcontrol 443 * 444 * Issue command and address cycles to the chip 445*/ 446 447static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd, 448 unsigned int ctrl) 449{ 450 struct mtd_info *mtd = nand_to_mtd(chip); 451 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 452 453 if (cmd == NAND_CMD_NONE) 454 return; 455 456 if (ctrl & NAND_CLE) 457 writeb(cmd, info->regs + S3C2410_NFCMD); 458 else 459 writeb(cmd, info->regs + S3C2410_NFADDR); 460} 461 462/* command and control functions */ 463 464static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd, 465 unsigned int ctrl) 466{ 467 struct mtd_info *mtd = nand_to_mtd(chip); 468 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 469 470 if (cmd == NAND_CMD_NONE) 471 return; 472 473 if (ctrl & NAND_CLE) 474 writeb(cmd, info->regs + S3C2440_NFCMD); 475 else 476 writeb(cmd, info->regs + S3C2440_NFADDR); 477} 478 479/* s3c2410_nand_devready() 480 * 481 * returns 0 if the nand is busy, 1 if it is ready 482*/ 483 484static int s3c2410_nand_devready(struct nand_chip *chip) 485{ 486 struct mtd_info *mtd = nand_to_mtd(chip); 487 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 488 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; 489} 490 491static int s3c2440_nand_devready(struct nand_chip *chip) 492{ 493 struct mtd_info *mtd = nand_to_mtd(chip); 494 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 495 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; 496} 497 498static int s3c2412_nand_devready(struct nand_chip *chip) 499{ 500 struct mtd_info *mtd = nand_to_mtd(chip); 501 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 502 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; 503} 504 505/* ECC handling functions */ 506 507static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat, 508 u_char *read_ecc, u_char *calc_ecc) 509{ 510 struct mtd_info *mtd = nand_to_mtd(chip); 511 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 512 unsigned int diff0, diff1, diff2; 513 unsigned int bit, byte; 514 515 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); 516 517 diff0 = read_ecc[0] ^ calc_ecc[0]; 518 diff1 = read_ecc[1] ^ calc_ecc[1]; 519 diff2 = read_ecc[2] ^ calc_ecc[2]; 520 521 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", 522 __func__, 3, read_ecc, 3, calc_ecc, 523 diff0, diff1, diff2); 524 525 if (diff0 == 0 && diff1 == 0 && diff2 == 0) 526 return 0; /* ECC is ok */ 527 528 /* sometimes people do not think about using the ECC, so check 529 * to see if we have an 0xff,0xff,0xff read ECC and then ignore 530 * the error, on the assumption that this is an un-eccd page. 531 */ 532 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff 533 && info->platform->ignore_unset_ecc) 534 return 0; 535 536 /* Can we correct this ECC (ie, one row and column change). 537 * Note, this is similar to the 256 error code on smartmedia */ 538 539 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && 540 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && 541 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { 542 /* calculate the bit position of the error */ 543 544 bit = ((diff2 >> 3) & 1) | 545 ((diff2 >> 4) & 2) | 546 ((diff2 >> 5) & 4); 547 548 /* calculate the byte position of the error */ 549 550 byte = ((diff2 << 7) & 0x100) | 551 ((diff1 << 0) & 0x80) | 552 ((diff1 << 1) & 0x40) | 553 ((diff1 << 2) & 0x20) | 554 ((diff1 << 3) & 0x10) | 555 ((diff0 >> 4) & 0x08) | 556 ((diff0 >> 3) & 0x04) | 557 ((diff0 >> 2) & 0x02) | 558 ((diff0 >> 1) & 0x01); 559 560 dev_dbg(info->device, "correcting error bit %d, byte %d\n", 561 bit, byte); 562 563 dat[byte] ^= (1 << bit); 564 return 1; 565 } 566 567 /* if there is only one bit difference in the ECC, then 568 * one of only a row or column parity has changed, which 569 * means the error is most probably in the ECC itself */ 570 571 diff0 |= (diff1 << 8); 572 diff0 |= (diff2 << 16); 573 574 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ 575 if ((diff0 & (diff0 - 1)) == 0) 576 return 1; 577 578 return -1; 579} 580 581/* ECC functions 582 * 583 * These allow the s3c2410 and s3c2440 to use the controller's ECC 584 * generator block to ECC the data as it passes through] 585*/ 586 587static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode) 588{ 589 struct s3c2410_nand_info *info; 590 unsigned long ctrl; 591 592 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 593 ctrl = readl(info->regs + S3C2410_NFCONF); 594 ctrl |= S3C2410_NFCONF_INITECC; 595 writel(ctrl, info->regs + S3C2410_NFCONF); 596} 597 598static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode) 599{ 600 struct s3c2410_nand_info *info; 601 unsigned long ctrl; 602 603 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 604 ctrl = readl(info->regs + S3C2440_NFCONT); 605 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, 606 info->regs + S3C2440_NFCONT); 607} 608 609static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode) 610{ 611 struct s3c2410_nand_info *info; 612 unsigned long ctrl; 613 614 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 615 ctrl = readl(info->regs + S3C2440_NFCONT); 616 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); 617} 618 619static int s3c2410_nand_calculate_ecc(struct nand_chip *chip, 620 const u_char *dat, u_char *ecc_code) 621{ 622 struct mtd_info *mtd = nand_to_mtd(chip); 623 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 624 625 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); 626 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); 627 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); 628 629 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); 630 631 return 0; 632} 633 634static int s3c2412_nand_calculate_ecc(struct nand_chip *chip, 635 const u_char *dat, u_char *ecc_code) 636{ 637 struct mtd_info *mtd = nand_to_mtd(chip); 638 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 639 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); 640 641 ecc_code[0] = ecc; 642 ecc_code[1] = ecc >> 8; 643 ecc_code[2] = ecc >> 16; 644 645 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); 646 647 return 0; 648} 649 650static int s3c2440_nand_calculate_ecc(struct nand_chip *chip, 651 const u_char *dat, u_char *ecc_code) 652{ 653 struct mtd_info *mtd = nand_to_mtd(chip); 654 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 655 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); 656 657 ecc_code[0] = ecc; 658 ecc_code[1] = ecc >> 8; 659 ecc_code[2] = ecc >> 16; 660 661 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); 662 663 return 0; 664} 665 666/* over-ride the standard functions for a little more speed. We can 667 * use read/write block to move the data buffers to/from the controller 668*/ 669 670static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len) 671{ 672 readsb(this->legacy.IO_ADDR_R, buf, len); 673} 674 675static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len) 676{ 677 struct mtd_info *mtd = nand_to_mtd(this); 678 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 679 680 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); 681 682 /* cleanup if we've got less than a word to do */ 683 if (len & 3) { 684 buf += len & ~3; 685 686 for (; len & 3; len--) 687 *buf++ = readb(info->regs + S3C2440_NFDATA); 688 } 689} 690 691static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf, 692 int len) 693{ 694 writesb(this->legacy.IO_ADDR_W, buf, len); 695} 696 697static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf, 698 int len) 699{ 700 struct mtd_info *mtd = nand_to_mtd(this); 701 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 702 703 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); 704 705 /* cleanup any fractional write */ 706 if (len & 3) { 707 buf += len & ~3; 708 709 for (; len & 3; len--, buf++) 710 writeb(*buf, info->regs + S3C2440_NFDATA); 711 } 712} 713 714/* cpufreq driver support */ 715 716#ifdef CONFIG_ARM_S3C24XX_CPUFREQ 717 718static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, 719 unsigned long val, void *data) 720{ 721 struct s3c2410_nand_info *info; 722 unsigned long newclk; 723 724 info = container_of(nb, struct s3c2410_nand_info, freq_transition); 725 newclk = clk_get_rate(info->clk); 726 727 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || 728 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { 729 s3c2410_nand_setrate(info); 730 } 731 732 return 0; 733} 734 735static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) 736{ 737 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; 738 739 return cpufreq_register_notifier(&info->freq_transition, 740 CPUFREQ_TRANSITION_NOTIFIER); 741} 742 743static inline void 744s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) 745{ 746 cpufreq_unregister_notifier(&info->freq_transition, 747 CPUFREQ_TRANSITION_NOTIFIER); 748} 749 750#else 751static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) 752{ 753 return 0; 754} 755 756static inline void 757s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) 758{ 759} 760#endif 761 762/* device management functions */ 763 764static int s3c24xx_nand_remove(struct platform_device *pdev) 765{ 766 struct s3c2410_nand_info *info = to_nand_info(pdev); 767 768 if (info == NULL) 769 return 0; 770 771 s3c2410_nand_cpufreq_deregister(info); 772 773 /* Release all our mtds and their partitions, then go through 774 * freeing the resources used 775 */ 776 777 if (info->mtds != NULL) { 778 struct s3c2410_nand_mtd *ptr = info->mtds; 779 int mtdno; 780 781 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { 782 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); 783 WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip))); 784 nand_cleanup(&ptr->chip); 785 } 786 } 787 788 /* free the common resources */ 789 790 if (!IS_ERR(info->clk)) 791 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); 792 793 return 0; 794} 795 796static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, 797 struct s3c2410_nand_mtd *mtd, 798 struct s3c2410_nand_set *set) 799{ 800 if (set) { 801 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); 802 803 mtdinfo->name = set->name; 804 805 return mtd_device_register(mtdinfo, set->partitions, 806 set->nr_partitions); 807 } 808 809 return -ENODEV; 810} 811 812static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline, 813 const struct nand_interface_config *conf) 814{ 815 struct mtd_info *mtd = nand_to_mtd(chip); 816 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 817 struct s3c2410_platform_nand *pdata = info->platform; 818 const struct nand_sdr_timings *timings; 819 int tacls; 820 821 timings = nand_get_sdr_timings(conf); 822 if (IS_ERR(timings)) 823 return -ENOTSUPP; 824 825 tacls = timings->tCLS_min - timings->tWP_min; 826 if (tacls < 0) 827 tacls = 0; 828 829 pdata->tacls = DIV_ROUND_UP(tacls, 1000); 830 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); 831 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); 832 833 return s3c2410_nand_setrate(info); 834} 835 836/** 837 * s3c2410_nand_init_chip - initialise a single instance of an chip 838 * @info: The base NAND controller the chip is on. 839 * @nmtd: The new controller MTD instance to fill in. 840 * @set: The information passed from the board specific platform data. 841 * 842 * Initialise the given @nmtd from the information in @info and @set. This 843 * readies the structure for use with the MTD layer functions by ensuring 844 * all pointers are setup and the necessary control routines selected. 845 */ 846static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, 847 struct s3c2410_nand_mtd *nmtd, 848 struct s3c2410_nand_set *set) 849{ 850 struct device_node *np = info->device->of_node; 851 struct nand_chip *chip = &nmtd->chip; 852 void __iomem *regs = info->regs; 853 854 nand_set_flash_node(chip, set->of_node); 855 856 chip->legacy.write_buf = s3c2410_nand_write_buf; 857 chip->legacy.read_buf = s3c2410_nand_read_buf; 858 chip->legacy.select_chip = s3c2410_nand_select_chip; 859 chip->legacy.chip_delay = 50; 860 nand_set_controller_data(chip, nmtd); 861 chip->options = set->options; 862 chip->controller = &info->controller; 863 864 /* 865 * let's keep behavior unchanged for legacy boards booting via pdata and 866 * auto-detect timings only when booting with a device tree. 867 */ 868 if (!np) 869 chip->options |= NAND_KEEP_TIMINGS; 870 871 switch (info->cpu_type) { 872 case TYPE_S3C2410: 873 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA; 874 info->sel_reg = regs + S3C2410_NFCONF; 875 info->sel_bit = S3C2410_NFCONF_nFCE; 876 chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol; 877 chip->legacy.dev_ready = s3c2410_nand_devready; 878 break; 879 880 case TYPE_S3C2440: 881 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; 882 info->sel_reg = regs + S3C2440_NFCONT; 883 info->sel_bit = S3C2440_NFCONT_nFCE; 884 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; 885 chip->legacy.dev_ready = s3c2440_nand_devready; 886 chip->legacy.read_buf = s3c2440_nand_read_buf; 887 chip->legacy.write_buf = s3c2440_nand_write_buf; 888 break; 889 890 case TYPE_S3C2412: 891 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; 892 info->sel_reg = regs + S3C2440_NFCONT; 893 info->sel_bit = S3C2412_NFCONT_nFCE0; 894 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; 895 chip->legacy.dev_ready = s3c2412_nand_devready; 896 897 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) 898 dev_info(info->device, "System booted from NAND\n"); 899 900 break; 901 } 902 903 chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W; 904 905 nmtd->info = info; 906 nmtd->set = set; 907 908 chip->ecc.engine_type = info->platform->engine_type; 909 910 /* 911 * If you use u-boot BBT creation code, specifying this flag will 912 * let the kernel fish out the BBT from the NAND. 913 */ 914 if (set->flash_bbt) 915 chip->bbt_options |= NAND_BBT_USE_FLASH; 916} 917 918/** 919 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan 920 * @chip: The NAND chip 921 * 922 * This hook is called by the core after the identification of the NAND chip, 923 * once the relevant per-chip information is up to date.. This call ensure that 924 * we update the internal state accordingly. 925 * 926 * The internal state is currently limited to the ECC state information. 927*/ 928static int s3c2410_nand_attach_chip(struct nand_chip *chip) 929{ 930 struct mtd_info *mtd = nand_to_mtd(chip); 931 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 932 933 switch (chip->ecc.engine_type) { 934 935 case NAND_ECC_ENGINE_TYPE_NONE: 936 dev_info(info->device, "ECC disabled\n"); 937 break; 938 939 case NAND_ECC_ENGINE_TYPE_SOFT: 940 /* 941 * This driver expects Hamming based ECC when engine_type is set 942 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to 943 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field 944 * to s3c2410_platform_nand. 945 */ 946 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 947 dev_info(info->device, "soft ECC\n"); 948 break; 949 950 case NAND_ECC_ENGINE_TYPE_ON_HOST: 951 chip->ecc.calculate = s3c2410_nand_calculate_ecc; 952 chip->ecc.correct = s3c2410_nand_correct_data; 953 chip->ecc.strength = 1; 954 955 switch (info->cpu_type) { 956 case TYPE_S3C2410: 957 chip->ecc.hwctl = s3c2410_nand_enable_hwecc; 958 chip->ecc.calculate = s3c2410_nand_calculate_ecc; 959 break; 960 961 case TYPE_S3C2412: 962 chip->ecc.hwctl = s3c2412_nand_enable_hwecc; 963 chip->ecc.calculate = s3c2412_nand_calculate_ecc; 964 break; 965 966 case TYPE_S3C2440: 967 chip->ecc.hwctl = s3c2440_nand_enable_hwecc; 968 chip->ecc.calculate = s3c2440_nand_calculate_ecc; 969 break; 970 } 971 972 dev_dbg(info->device, "chip %p => page shift %d\n", 973 chip, chip->page_shift); 974 975 /* change the behaviour depending on whether we are using 976 * the large or small page nand device */ 977 if (chip->page_shift > 10) { 978 chip->ecc.size = 256; 979 chip->ecc.bytes = 3; 980 } else { 981 chip->ecc.size = 512; 982 chip->ecc.bytes = 3; 983 mtd_set_ooblayout(nand_to_mtd(chip), 984 &s3c2410_ooblayout_ops); 985 } 986 987 dev_info(info->device, "hardware ECC\n"); 988 break; 989 990 default: 991 dev_err(info->device, "invalid ECC mode!\n"); 992 return -EINVAL; 993 } 994 995 if (chip->bbt_options & NAND_BBT_USE_FLASH) 996 chip->options |= NAND_SKIP_BBTSCAN; 997 998 return 0; 999} 1000 1001static const struct nand_controller_ops s3c24xx_nand_controller_ops = { 1002 .attach_chip = s3c2410_nand_attach_chip, 1003 .setup_interface = s3c2410_nand_setup_interface, 1004}; 1005 1006static const struct of_device_id s3c24xx_nand_dt_ids[] = { 1007 { 1008 .compatible = "samsung,s3c2410-nand", 1009 .data = &s3c2410_nand_devtype_data, 1010 }, { 1011 /* also compatible with s3c6400 */ 1012 .compatible = "samsung,s3c2412-nand", 1013 .data = &s3c2412_nand_devtype_data, 1014 }, { 1015 .compatible = "samsung,s3c2440-nand", 1016 .data = &s3c2440_nand_devtype_data, 1017 }, 1018 { /* sentinel */ } 1019}; 1020MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); 1021 1022static int s3c24xx_nand_probe_dt(struct platform_device *pdev) 1023{ 1024 const struct s3c24XX_nand_devtype_data *devtype_data; 1025 struct s3c2410_platform_nand *pdata; 1026 struct s3c2410_nand_info *info = platform_get_drvdata(pdev); 1027 struct device_node *np = pdev->dev.of_node, *child; 1028 struct s3c2410_nand_set *sets; 1029 1030 devtype_data = of_device_get_match_data(&pdev->dev); 1031 if (!devtype_data) 1032 return -ENODEV; 1033 1034 info->cpu_type = devtype_data->type; 1035 1036 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1037 if (!pdata) 1038 return -ENOMEM; 1039 1040 pdev->dev.platform_data = pdata; 1041 1042 pdata->nr_sets = of_get_child_count(np); 1043 if (!pdata->nr_sets) 1044 return 0; 1045 1046 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets), 1047 GFP_KERNEL); 1048 if (!sets) 1049 return -ENOMEM; 1050 1051 pdata->sets = sets; 1052 1053 for_each_available_child_of_node(np, child) { 1054 sets->name = (char *)child->name; 1055 sets->of_node = child; 1056 sets->nr_chips = 1; 1057 1058 of_node_get(child); 1059 1060 sets++; 1061 } 1062 1063 return 0; 1064} 1065 1066static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) 1067{ 1068 struct s3c2410_nand_info *info = platform_get_drvdata(pdev); 1069 1070 info->cpu_type = platform_get_device_id(pdev)->driver_data; 1071 1072 return 0; 1073} 1074 1075/* s3c24xx_nand_probe 1076 * 1077 * called by device layer when it finds a device matching 1078 * one our driver can handled. This code checks to see if 1079 * it can allocate all necessary resources then calls the 1080 * nand layer to look for devices 1081*/ 1082static int s3c24xx_nand_probe(struct platform_device *pdev) 1083{ 1084 struct s3c2410_platform_nand *plat; 1085 struct s3c2410_nand_info *info; 1086 struct s3c2410_nand_mtd *nmtd; 1087 struct s3c2410_nand_set *sets; 1088 struct resource *res; 1089 int err = 0; 1090 int size; 1091 int nr_sets; 1092 int setno; 1093 1094 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 1095 if (info == NULL) { 1096 err = -ENOMEM; 1097 goto exit_error; 1098 } 1099 1100 platform_set_drvdata(pdev, info); 1101 1102 nand_controller_init(&info->controller); 1103 info->controller.ops = &s3c24xx_nand_controller_ops; 1104 1105 /* get the clock source and enable it */ 1106 1107 info->clk = devm_clk_get(&pdev->dev, "nand"); 1108 if (IS_ERR(info->clk)) { 1109 dev_err(&pdev->dev, "failed to get clock\n"); 1110 err = -ENOENT; 1111 goto exit_error; 1112 } 1113 1114 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 1115 1116 if (pdev->dev.of_node) 1117 err = s3c24xx_nand_probe_dt(pdev); 1118 else 1119 err = s3c24xx_nand_probe_pdata(pdev); 1120 1121 if (err) 1122 goto exit_error; 1123 1124 plat = to_nand_plat(pdev); 1125 1126 /* allocate and map the resource */ 1127 1128 /* currently we assume we have the one resource */ 1129 res = pdev->resource; 1130 size = resource_size(res); 1131 1132 info->device = &pdev->dev; 1133 info->platform = plat; 1134 1135 info->regs = devm_ioremap_resource(&pdev->dev, res); 1136 if (IS_ERR(info->regs)) { 1137 err = PTR_ERR(info->regs); 1138 goto exit_error; 1139 } 1140 1141 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); 1142 1143 if (!plat->sets || plat->nr_sets < 1) { 1144 err = -EINVAL; 1145 goto exit_error; 1146 } 1147 1148 sets = plat->sets; 1149 nr_sets = plat->nr_sets; 1150 1151 info->mtd_count = nr_sets; 1152 1153 /* allocate our information */ 1154 1155 size = nr_sets * sizeof(*info->mtds); 1156 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1157 if (info->mtds == NULL) { 1158 err = -ENOMEM; 1159 goto exit_error; 1160 } 1161 1162 /* initialise all possible chips */ 1163 1164 nmtd = info->mtds; 1165 1166 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) { 1167 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); 1168 1169 pr_debug("initialising set %d (%p, info %p)\n", 1170 setno, nmtd, info); 1171 1172 mtd->dev.parent = &pdev->dev; 1173 s3c2410_nand_init_chip(info, nmtd, sets); 1174 1175 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1); 1176 if (err) 1177 goto exit_error; 1178 1179 s3c2410_nand_add_partition(info, nmtd, sets); 1180 } 1181 1182 /* initialise the hardware */ 1183 err = s3c2410_nand_inithw(info); 1184 if (err != 0) 1185 goto exit_error; 1186 1187 err = s3c2410_nand_cpufreq_register(info); 1188 if (err < 0) { 1189 dev_err(&pdev->dev, "failed to init cpufreq support\n"); 1190 goto exit_error; 1191 } 1192 1193 if (allow_clk_suspend(info)) { 1194 dev_info(&pdev->dev, "clock idle support enabled\n"); 1195 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 1196 } 1197 1198 return 0; 1199 1200 exit_error: 1201 s3c24xx_nand_remove(pdev); 1202 1203 if (err == 0) 1204 err = -EINVAL; 1205 return err; 1206} 1207 1208/* PM Support */ 1209#ifdef CONFIG_PM 1210 1211static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) 1212{ 1213 struct s3c2410_nand_info *info = platform_get_drvdata(dev); 1214 1215 if (info) { 1216 info->save_sel = readl(info->sel_reg); 1217 1218 /* For the moment, we must ensure nFCE is high during 1219 * the time we are suspended. This really should be 1220 * handled by suspending the MTDs we are using, but 1221 * that is currently not the case. */ 1222 1223 writel(info->save_sel | info->sel_bit, info->sel_reg); 1224 1225 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); 1226 } 1227 1228 return 0; 1229} 1230 1231static int s3c24xx_nand_resume(struct platform_device *dev) 1232{ 1233 struct s3c2410_nand_info *info = platform_get_drvdata(dev); 1234 unsigned long sel; 1235 1236 if (info) { 1237 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 1238 s3c2410_nand_inithw(info); 1239 1240 /* Restore the state of the nFCE line. */ 1241 1242 sel = readl(info->sel_reg); 1243 sel &= ~info->sel_bit; 1244 sel |= info->save_sel & info->sel_bit; 1245 writel(sel, info->sel_reg); 1246 1247 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 1248 } 1249 1250 return 0; 1251} 1252 1253#else 1254#define s3c24xx_nand_suspend NULL 1255#define s3c24xx_nand_resume NULL 1256#endif 1257 1258/* driver device registration */ 1259 1260static const struct platform_device_id s3c24xx_driver_ids[] = { 1261 { 1262 .name = "s3c2410-nand", 1263 .driver_data = TYPE_S3C2410, 1264 }, { 1265 .name = "s3c2440-nand", 1266 .driver_data = TYPE_S3C2440, 1267 }, { 1268 .name = "s3c2412-nand", 1269 .driver_data = TYPE_S3C2412, 1270 }, { 1271 .name = "s3c6400-nand", 1272 .driver_data = TYPE_S3C2412, /* compatible with 2412 */ 1273 }, 1274 { } 1275}; 1276 1277MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); 1278 1279static struct platform_driver s3c24xx_nand_driver = { 1280 .probe = s3c24xx_nand_probe, 1281 .remove = s3c24xx_nand_remove, 1282 .suspend = s3c24xx_nand_suspend, 1283 .resume = s3c24xx_nand_resume, 1284 .id_table = s3c24xx_driver_ids, 1285 .driver = { 1286 .name = "s3c24xx-nand", 1287 .of_match_table = s3c24xx_nand_dt_ids, 1288 }, 1289}; 1290 1291module_platform_driver(s3c24xx_nand_driver); 1292 1293MODULE_LICENSE("GPL"); 1294MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 1295MODULE_DESCRIPTION("S3C24XX MTD NAND driver");