cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sh_flctl.c (29882B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * SuperH FLCTL nand controller
      4 *
      5 * Copyright (c) 2008 Renesas Solutions Corp.
      6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
      7 *
      8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
      9 */
     10
     11#include <linux/module.h>
     12#include <linux/kernel.h>
     13#include <linux/completion.h>
     14#include <linux/delay.h>
     15#include <linux/dmaengine.h>
     16#include <linux/dma-mapping.h>
     17#include <linux/interrupt.h>
     18#include <linux/io.h>
     19#include <linux/of.h>
     20#include <linux/of_device.h>
     21#include <linux/platform_device.h>
     22#include <linux/pm_runtime.h>
     23#include <linux/sh_dma.h>
     24#include <linux/slab.h>
     25#include <linux/string.h>
     26
     27#include <linux/mtd/mtd.h>
     28#include <linux/mtd/rawnand.h>
     29#include <linux/mtd/partitions.h>
     30#include <linux/mtd/sh_flctl.h>
     31
     32static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
     33					struct mtd_oob_region *oobregion)
     34{
     35	struct nand_chip *chip = mtd_to_nand(mtd);
     36
     37	if (section)
     38		return -ERANGE;
     39
     40	oobregion->offset = 0;
     41	oobregion->length = chip->ecc.bytes;
     42
     43	return 0;
     44}
     45
     46static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
     47					 struct mtd_oob_region *oobregion)
     48{
     49	if (section)
     50		return -ERANGE;
     51
     52	oobregion->offset = 12;
     53	oobregion->length = 4;
     54
     55	return 0;
     56}
     57
     58static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
     59	.ecc = flctl_4secc_ooblayout_sp_ecc,
     60	.free = flctl_4secc_ooblayout_sp_free,
     61};
     62
     63static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
     64					struct mtd_oob_region *oobregion)
     65{
     66	struct nand_chip *chip = mtd_to_nand(mtd);
     67
     68	if (section >= chip->ecc.steps)
     69		return -ERANGE;
     70
     71	oobregion->offset = (section * 16) + 6;
     72	oobregion->length = chip->ecc.bytes;
     73
     74	return 0;
     75}
     76
     77static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
     78					 struct mtd_oob_region *oobregion)
     79{
     80	struct nand_chip *chip = mtd_to_nand(mtd);
     81
     82	if (section >= chip->ecc.steps)
     83		return -ERANGE;
     84
     85	oobregion->offset = section * 16;
     86	oobregion->length = 6;
     87
     88	if (!section) {
     89		oobregion->offset += 2;
     90		oobregion->length -= 2;
     91	}
     92
     93	return 0;
     94}
     95
     96static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
     97	.ecc = flctl_4secc_ooblayout_lp_ecc,
     98	.free = flctl_4secc_ooblayout_lp_free,
     99};
    100
    101static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
    102
    103static struct nand_bbt_descr flctl_4secc_smallpage = {
    104	.offs = 11,
    105	.len = 1,
    106	.pattern = scan_ff_pattern,
    107};
    108
    109static struct nand_bbt_descr flctl_4secc_largepage = {
    110	.offs = 0,
    111	.len = 2,
    112	.pattern = scan_ff_pattern,
    113};
    114
    115static void empty_fifo(struct sh_flctl *flctl)
    116{
    117	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
    118	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
    119}
    120
    121static void start_translation(struct sh_flctl *flctl)
    122{
    123	writeb(TRSTRT, FLTRCR(flctl));
    124}
    125
    126static void timeout_error(struct sh_flctl *flctl, const char *str)
    127{
    128	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
    129}
    130
    131static void wait_completion(struct sh_flctl *flctl)
    132{
    133	uint32_t timeout = LOOP_TIMEOUT_MAX;
    134
    135	while (timeout--) {
    136		if (readb(FLTRCR(flctl)) & TREND) {
    137			writeb(0x0, FLTRCR(flctl));
    138			return;
    139		}
    140		udelay(1);
    141	}
    142
    143	timeout_error(flctl, __func__);
    144	writeb(0x0, FLTRCR(flctl));
    145}
    146
    147static void flctl_dma_complete(void *param)
    148{
    149	struct sh_flctl *flctl = param;
    150
    151	complete(&flctl->dma_complete);
    152}
    153
    154static void flctl_release_dma(struct sh_flctl *flctl)
    155{
    156	if (flctl->chan_fifo0_rx) {
    157		dma_release_channel(flctl->chan_fifo0_rx);
    158		flctl->chan_fifo0_rx = NULL;
    159	}
    160	if (flctl->chan_fifo0_tx) {
    161		dma_release_channel(flctl->chan_fifo0_tx);
    162		flctl->chan_fifo0_tx = NULL;
    163	}
    164}
    165
    166static void flctl_setup_dma(struct sh_flctl *flctl)
    167{
    168	dma_cap_mask_t mask;
    169	struct dma_slave_config cfg;
    170	struct platform_device *pdev = flctl->pdev;
    171	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
    172	int ret;
    173
    174	if (!pdata)
    175		return;
    176
    177	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
    178		return;
    179
    180	/* We can only either use DMA for both Tx and Rx or not use it at all */
    181	dma_cap_zero(mask);
    182	dma_cap_set(DMA_SLAVE, mask);
    183
    184	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
    185				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
    186	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
    187		flctl->chan_fifo0_tx);
    188
    189	if (!flctl->chan_fifo0_tx)
    190		return;
    191
    192	memset(&cfg, 0, sizeof(cfg));
    193	cfg.direction = DMA_MEM_TO_DEV;
    194	cfg.dst_addr = flctl->fifo;
    195	cfg.src_addr = 0;
    196	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
    197	if (ret < 0)
    198		goto err;
    199
    200	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
    201				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
    202	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
    203		flctl->chan_fifo0_rx);
    204
    205	if (!flctl->chan_fifo0_rx)
    206		goto err;
    207
    208	cfg.direction = DMA_DEV_TO_MEM;
    209	cfg.dst_addr = 0;
    210	cfg.src_addr = flctl->fifo;
    211	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
    212	if (ret < 0)
    213		goto err;
    214
    215	init_completion(&flctl->dma_complete);
    216
    217	return;
    218
    219err:
    220	flctl_release_dma(flctl);
    221}
    222
    223static void set_addr(struct mtd_info *mtd, int column, int page_addr)
    224{
    225	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    226	uint32_t addr = 0;
    227
    228	if (column == -1) {
    229		addr = page_addr;	/* ERASE1 */
    230	} else if (page_addr != -1) {
    231		/* SEQIN, READ0, etc.. */
    232		if (flctl->chip.options & NAND_BUSWIDTH_16)
    233			column >>= 1;
    234		if (flctl->page_size) {
    235			addr = column & 0x0FFF;
    236			addr |= (page_addr & 0xff) << 16;
    237			addr |= ((page_addr >> 8) & 0xff) << 24;
    238			/* big than 128MB */
    239			if (flctl->rw_ADRCNT == ADRCNT2_E) {
    240				uint32_t 	addr2;
    241				addr2 = (page_addr >> 16) & 0xff;
    242				writel(addr2, FLADR2(flctl));
    243			}
    244		} else {
    245			addr = column;
    246			addr |= (page_addr & 0xff) << 8;
    247			addr |= ((page_addr >> 8) & 0xff) << 16;
    248			addr |= ((page_addr >> 16) & 0xff) << 24;
    249		}
    250	}
    251	writel(addr, FLADR(flctl));
    252}
    253
    254static void wait_rfifo_ready(struct sh_flctl *flctl)
    255{
    256	uint32_t timeout = LOOP_TIMEOUT_MAX;
    257
    258	while (timeout--) {
    259		uint32_t val;
    260		/* check FIFO */
    261		val = readl(FLDTCNTR(flctl)) >> 16;
    262		if (val & 0xFF)
    263			return;
    264		udelay(1);
    265	}
    266	timeout_error(flctl, __func__);
    267}
    268
    269static void wait_wfifo_ready(struct sh_flctl *flctl)
    270{
    271	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
    272
    273	while (timeout--) {
    274		/* check FIFO */
    275		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
    276		if (len >= 4)
    277			return;
    278		udelay(1);
    279	}
    280	timeout_error(flctl, __func__);
    281}
    282
    283static enum flctl_ecc_res_t wait_recfifo_ready
    284		(struct sh_flctl *flctl, int sector_number)
    285{
    286	uint32_t timeout = LOOP_TIMEOUT_MAX;
    287	void __iomem *ecc_reg[4];
    288	int i;
    289	int state = FL_SUCCESS;
    290	uint32_t data, size;
    291
    292	/*
    293	 * First this loops checks in FLDTCNTR if we are ready to read out the
    294	 * oob data. This is the case if either all went fine without errors or
    295	 * if the bottom part of the loop corrected the errors or marked them as
    296	 * uncorrectable and the controller is given time to push the data into
    297	 * the FIFO.
    298	 */
    299	while (timeout--) {
    300		/* check if all is ok and we can read out the OOB */
    301		size = readl(FLDTCNTR(flctl)) >> 24;
    302		if ((size & 0xFF) == 4)
    303			return state;
    304
    305		/* check if a correction code has been calculated */
    306		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
    307			/*
    308			 * either we wait for the fifo to be filled or a
    309			 * correction pattern is being generated
    310			 */
    311			udelay(1);
    312			continue;
    313		}
    314
    315		/* check for an uncorrectable error */
    316		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
    317			/* check if we face a non-empty page */
    318			for (i = 0; i < 512; i++) {
    319				if (flctl->done_buff[i] != 0xff) {
    320					state = FL_ERROR; /* can't correct */
    321					break;
    322				}
    323			}
    324
    325			if (state == FL_SUCCESS)
    326				dev_dbg(&flctl->pdev->dev,
    327				"reading empty sector %d, ecc error ignored\n",
    328				sector_number);
    329
    330			writel(0, FL4ECCCR(flctl));
    331			continue;
    332		}
    333
    334		/* start error correction */
    335		ecc_reg[0] = FL4ECCRESULT0(flctl);
    336		ecc_reg[1] = FL4ECCRESULT1(flctl);
    337		ecc_reg[2] = FL4ECCRESULT2(flctl);
    338		ecc_reg[3] = FL4ECCRESULT3(flctl);
    339
    340		for (i = 0; i < 3; i++) {
    341			uint8_t org;
    342			unsigned int index;
    343
    344			data = readl(ecc_reg[i]);
    345
    346			if (flctl->page_size)
    347				index = (512 * sector_number) +
    348					(data >> 16);
    349			else
    350				index = data >> 16;
    351
    352			org = flctl->done_buff[index];
    353			flctl->done_buff[index] = org ^ (data & 0xFF);
    354		}
    355		state = FL_REPAIRABLE;
    356		writel(0, FL4ECCCR(flctl));
    357	}
    358
    359	timeout_error(flctl, __func__);
    360	return FL_TIMEOUT;	/* timeout */
    361}
    362
    363static void wait_wecfifo_ready(struct sh_flctl *flctl)
    364{
    365	uint32_t timeout = LOOP_TIMEOUT_MAX;
    366	uint32_t len;
    367
    368	while (timeout--) {
    369		/* check FLECFIFO */
    370		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
    371		if (len >= 4)
    372			return;
    373		udelay(1);
    374	}
    375	timeout_error(flctl, __func__);
    376}
    377
    378static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
    379					int len, enum dma_data_direction dir)
    380{
    381	struct dma_async_tx_descriptor *desc = NULL;
    382	struct dma_chan *chan;
    383	enum dma_transfer_direction tr_dir;
    384	dma_addr_t dma_addr;
    385	dma_cookie_t cookie;
    386	uint32_t reg;
    387	int ret = 0;
    388	unsigned long time_left;
    389
    390	if (dir == DMA_FROM_DEVICE) {
    391		chan = flctl->chan_fifo0_rx;
    392		tr_dir = DMA_DEV_TO_MEM;
    393	} else {
    394		chan = flctl->chan_fifo0_tx;
    395		tr_dir = DMA_MEM_TO_DEV;
    396	}
    397
    398	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
    399
    400	if (!dma_mapping_error(chan->device->dev, dma_addr))
    401		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
    402			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    403
    404	if (desc) {
    405		reg = readl(FLINTDMACR(flctl));
    406		reg |= DREQ0EN;
    407		writel(reg, FLINTDMACR(flctl));
    408
    409		desc->callback = flctl_dma_complete;
    410		desc->callback_param = flctl;
    411		cookie = dmaengine_submit(desc);
    412		if (dma_submit_error(cookie)) {
    413			ret = dma_submit_error(cookie);
    414			dev_warn(&flctl->pdev->dev,
    415				 "DMA submit failed, falling back to PIO\n");
    416			goto out;
    417		}
    418
    419		dma_async_issue_pending(chan);
    420	} else {
    421		/* DMA failed, fall back to PIO */
    422		flctl_release_dma(flctl);
    423		dev_warn(&flctl->pdev->dev,
    424			 "DMA failed, falling back to PIO\n");
    425		ret = -EIO;
    426		goto out;
    427	}
    428
    429	time_left =
    430	wait_for_completion_timeout(&flctl->dma_complete,
    431				msecs_to_jiffies(3000));
    432
    433	if (time_left == 0) {
    434		dmaengine_terminate_all(chan);
    435		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
    436		ret = -ETIMEDOUT;
    437	}
    438
    439out:
    440	reg = readl(FLINTDMACR(flctl));
    441	reg &= ~DREQ0EN;
    442	writel(reg, FLINTDMACR(flctl));
    443
    444	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
    445
    446	/* ret == 0 is success */
    447	return ret;
    448}
    449
    450static void read_datareg(struct sh_flctl *flctl, int offset)
    451{
    452	unsigned long data;
    453	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
    454
    455	wait_completion(flctl);
    456
    457	data = readl(FLDATAR(flctl));
    458	*buf = le32_to_cpu(data);
    459}
    460
    461static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
    462{
    463	int i, len_4align;
    464	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
    465
    466	len_4align = (rlen + 3) / 4;
    467
    468	/* initiate DMA transfer */
    469	if (flctl->chan_fifo0_rx && rlen >= 32 &&
    470		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
    471			goto convert;	/* DMA success */
    472
    473	/* do polling transfer */
    474	for (i = 0; i < len_4align; i++) {
    475		wait_rfifo_ready(flctl);
    476		buf[i] = readl(FLDTFIFO(flctl));
    477	}
    478
    479convert:
    480	for (i = 0; i < len_4align; i++)
    481		buf[i] = be32_to_cpu(buf[i]);
    482}
    483
    484static enum flctl_ecc_res_t read_ecfiforeg
    485		(struct sh_flctl *flctl, uint8_t *buff, int sector)
    486{
    487	int i;
    488	enum flctl_ecc_res_t res;
    489	unsigned long *ecc_buf = (unsigned long *)buff;
    490
    491	res = wait_recfifo_ready(flctl , sector);
    492
    493	if (res != FL_ERROR) {
    494		for (i = 0; i < 4; i++) {
    495			ecc_buf[i] = readl(FLECFIFO(flctl));
    496			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
    497		}
    498	}
    499
    500	return res;
    501}
    502
    503static void write_fiforeg(struct sh_flctl *flctl, int rlen,
    504						unsigned int offset)
    505{
    506	int i, len_4align;
    507	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
    508
    509	len_4align = (rlen + 3) / 4;
    510	for (i = 0; i < len_4align; i++) {
    511		wait_wfifo_ready(flctl);
    512		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
    513	}
    514}
    515
    516static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
    517						unsigned int offset)
    518{
    519	int i, len_4align;
    520	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
    521
    522	len_4align = (rlen + 3) / 4;
    523
    524	for (i = 0; i < len_4align; i++)
    525		buf[i] = cpu_to_be32(buf[i]);
    526
    527	/* initiate DMA transfer */
    528	if (flctl->chan_fifo0_tx && rlen >= 32 &&
    529		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
    530			return;	/* DMA success */
    531
    532	/* do polling transfer */
    533	for (i = 0; i < len_4align; i++) {
    534		wait_wecfifo_ready(flctl);
    535		writel(buf[i], FLECFIFO(flctl));
    536	}
    537}
    538
    539static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
    540{
    541	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    542	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
    543	uint32_t flcmdcr_val, addr_len_bytes = 0;
    544
    545	/* Set SNAND bit if page size is 2048byte */
    546	if (flctl->page_size)
    547		flcmncr_val |= SNAND_E;
    548	else
    549		flcmncr_val &= ~SNAND_E;
    550
    551	/* default FLCMDCR val */
    552	flcmdcr_val = DOCMD1_E | DOADR_E;
    553
    554	/* Set for FLCMDCR */
    555	switch (cmd) {
    556	case NAND_CMD_ERASE1:
    557		addr_len_bytes = flctl->erase_ADRCNT;
    558		flcmdcr_val |= DOCMD2_E;
    559		break;
    560	case NAND_CMD_READ0:
    561	case NAND_CMD_READOOB:
    562	case NAND_CMD_RNDOUT:
    563		addr_len_bytes = flctl->rw_ADRCNT;
    564		flcmdcr_val |= CDSRC_E;
    565		if (flctl->chip.options & NAND_BUSWIDTH_16)
    566			flcmncr_val |= SEL_16BIT;
    567		break;
    568	case NAND_CMD_SEQIN:
    569		/* This case is that cmd is READ0 or READ1 or READ00 */
    570		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
    571		break;
    572	case NAND_CMD_PAGEPROG:
    573		addr_len_bytes = flctl->rw_ADRCNT;
    574		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
    575		if (flctl->chip.options & NAND_BUSWIDTH_16)
    576			flcmncr_val |= SEL_16BIT;
    577		break;
    578	case NAND_CMD_READID:
    579		flcmncr_val &= ~SNAND_E;
    580		flcmdcr_val |= CDSRC_E;
    581		addr_len_bytes = ADRCNT_1;
    582		break;
    583	case NAND_CMD_STATUS:
    584	case NAND_CMD_RESET:
    585		flcmncr_val &= ~SNAND_E;
    586		flcmdcr_val &= ~(DOADR_E | DOSR_E);
    587		break;
    588	default:
    589		break;
    590	}
    591
    592	/* Set address bytes parameter */
    593	flcmdcr_val |= addr_len_bytes;
    594
    595	/* Now actually write */
    596	writel(flcmncr_val, FLCMNCR(flctl));
    597	writel(flcmdcr_val, FLCMDCR(flctl));
    598	writel(flcmcdr_val, FLCMCDR(flctl));
    599}
    600
    601static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
    602				 int oob_required, int page)
    603{
    604	struct mtd_info *mtd = nand_to_mtd(chip);
    605
    606	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
    607	if (oob_required)
    608		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
    609	return 0;
    610}
    611
    612static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
    613				  int oob_required, int page)
    614{
    615	struct mtd_info *mtd = nand_to_mtd(chip);
    616
    617	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
    618	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
    619	return nand_prog_page_end_op(chip);
    620}
    621
    622static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
    623{
    624	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    625	int sector, page_sectors;
    626	enum flctl_ecc_res_t ecc_result;
    627
    628	page_sectors = flctl->page_size ? 4 : 1;
    629
    630	set_cmd_regs(mtd, NAND_CMD_READ0,
    631		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
    632
    633	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
    634		 FLCMNCR(flctl));
    635	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
    636	writel(page_addr << 2, FLADR(flctl));
    637
    638	empty_fifo(flctl);
    639	start_translation(flctl);
    640
    641	for (sector = 0; sector < page_sectors; sector++) {
    642		read_fiforeg(flctl, 512, 512 * sector);
    643
    644		ecc_result = read_ecfiforeg(flctl,
    645			&flctl->done_buff[mtd->writesize + 16 * sector],
    646			sector);
    647
    648		switch (ecc_result) {
    649		case FL_REPAIRABLE:
    650			dev_info(&flctl->pdev->dev,
    651				"applied ecc on page 0x%x", page_addr);
    652			mtd->ecc_stats.corrected++;
    653			break;
    654		case FL_ERROR:
    655			dev_warn(&flctl->pdev->dev,
    656				"page 0x%x contains corrupted data\n",
    657				page_addr);
    658			mtd->ecc_stats.failed++;
    659			break;
    660		default:
    661			;
    662		}
    663	}
    664
    665	wait_completion(flctl);
    666
    667	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
    668			FLCMNCR(flctl));
    669}
    670
    671static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
    672{
    673	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    674	int page_sectors = flctl->page_size ? 4 : 1;
    675	int i;
    676
    677	set_cmd_regs(mtd, NAND_CMD_READ0,
    678		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
    679
    680	empty_fifo(flctl);
    681
    682	for (i = 0; i < page_sectors; i++) {
    683		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
    684		writel(16, FLDTCNTR(flctl));
    685
    686		start_translation(flctl);
    687		read_fiforeg(flctl, 16, 16 * i);
    688		wait_completion(flctl);
    689	}
    690}
    691
    692static void execmd_write_page_sector(struct mtd_info *mtd)
    693{
    694	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    695	int page_addr = flctl->seqin_page_addr;
    696	int sector, page_sectors;
    697
    698	page_sectors = flctl->page_size ? 4 : 1;
    699
    700	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
    701			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
    702
    703	empty_fifo(flctl);
    704	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
    705	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
    706	writel(page_addr << 2, FLADR(flctl));
    707	start_translation(flctl);
    708
    709	for (sector = 0; sector < page_sectors; sector++) {
    710		write_fiforeg(flctl, 512, 512 * sector);
    711		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
    712	}
    713
    714	wait_completion(flctl);
    715	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
    716}
    717
    718static void execmd_write_oob(struct mtd_info *mtd)
    719{
    720	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    721	int page_addr = flctl->seqin_page_addr;
    722	int sector, page_sectors;
    723
    724	page_sectors = flctl->page_size ? 4 : 1;
    725
    726	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
    727			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
    728
    729	for (sector = 0; sector < page_sectors; sector++) {
    730		empty_fifo(flctl);
    731		set_addr(mtd, sector * 528 + 512, page_addr);
    732		writel(16, FLDTCNTR(flctl));	/* set read size */
    733
    734		start_translation(flctl);
    735		write_fiforeg(flctl, 16, 16 * sector);
    736		wait_completion(flctl);
    737	}
    738}
    739
    740static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
    741			int column, int page_addr)
    742{
    743	struct mtd_info *mtd = nand_to_mtd(chip);
    744	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    745	uint32_t read_cmd = 0;
    746
    747	pm_runtime_get_sync(&flctl->pdev->dev);
    748
    749	flctl->read_bytes = 0;
    750	if (command != NAND_CMD_PAGEPROG)
    751		flctl->index = 0;
    752
    753	switch (command) {
    754	case NAND_CMD_READ1:
    755	case NAND_CMD_READ0:
    756		if (flctl->hwecc) {
    757			/* read page with hwecc */
    758			execmd_read_page_sector(mtd, page_addr);
    759			break;
    760		}
    761		if (flctl->page_size)
    762			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
    763				| command);
    764		else
    765			set_cmd_regs(mtd, command, command);
    766
    767		set_addr(mtd, 0, page_addr);
    768
    769		flctl->read_bytes = mtd->writesize + mtd->oobsize;
    770		if (flctl->chip.options & NAND_BUSWIDTH_16)
    771			column >>= 1;
    772		flctl->index += column;
    773		goto read_normal_exit;
    774
    775	case NAND_CMD_READOOB:
    776		if (flctl->hwecc) {
    777			/* read page with hwecc */
    778			execmd_read_oob(mtd, page_addr);
    779			break;
    780		}
    781
    782		if (flctl->page_size) {
    783			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
    784				| NAND_CMD_READ0);
    785			set_addr(mtd, mtd->writesize, page_addr);
    786		} else {
    787			set_cmd_regs(mtd, command, command);
    788			set_addr(mtd, 0, page_addr);
    789		}
    790		flctl->read_bytes = mtd->oobsize;
    791		goto read_normal_exit;
    792
    793	case NAND_CMD_RNDOUT:
    794		if (flctl->hwecc)
    795			break;
    796
    797		if (flctl->page_size)
    798			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
    799				| command);
    800		else
    801			set_cmd_regs(mtd, command, command);
    802
    803		set_addr(mtd, column, 0);
    804
    805		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
    806		goto read_normal_exit;
    807
    808	case NAND_CMD_READID:
    809		set_cmd_regs(mtd, command, command);
    810
    811		/* READID is always performed using an 8-bit bus */
    812		if (flctl->chip.options & NAND_BUSWIDTH_16)
    813			column <<= 1;
    814		set_addr(mtd, column, 0);
    815
    816		flctl->read_bytes = 8;
    817		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
    818		empty_fifo(flctl);
    819		start_translation(flctl);
    820		read_fiforeg(flctl, flctl->read_bytes, 0);
    821		wait_completion(flctl);
    822		break;
    823
    824	case NAND_CMD_ERASE1:
    825		flctl->erase1_page_addr = page_addr;
    826		break;
    827
    828	case NAND_CMD_ERASE2:
    829		set_cmd_regs(mtd, NAND_CMD_ERASE1,
    830			(command << 8) | NAND_CMD_ERASE1);
    831		set_addr(mtd, -1, flctl->erase1_page_addr);
    832		start_translation(flctl);
    833		wait_completion(flctl);
    834		break;
    835
    836	case NAND_CMD_SEQIN:
    837		if (!flctl->page_size) {
    838			/* output read command */
    839			if (column >= mtd->writesize) {
    840				column -= mtd->writesize;
    841				read_cmd = NAND_CMD_READOOB;
    842			} else if (column < 256) {
    843				read_cmd = NAND_CMD_READ0;
    844			} else {
    845				column -= 256;
    846				read_cmd = NAND_CMD_READ1;
    847			}
    848		}
    849		flctl->seqin_column = column;
    850		flctl->seqin_page_addr = page_addr;
    851		flctl->seqin_read_cmd = read_cmd;
    852		break;
    853
    854	case NAND_CMD_PAGEPROG:
    855		empty_fifo(flctl);
    856		if (!flctl->page_size) {
    857			set_cmd_regs(mtd, NAND_CMD_SEQIN,
    858					flctl->seqin_read_cmd);
    859			set_addr(mtd, -1, -1);
    860			writel(0, FLDTCNTR(flctl));	/* set 0 size */
    861			start_translation(flctl);
    862			wait_completion(flctl);
    863		}
    864		if (flctl->hwecc) {
    865			/* write page with hwecc */
    866			if (flctl->seqin_column == mtd->writesize)
    867				execmd_write_oob(mtd);
    868			else if (!flctl->seqin_column)
    869				execmd_write_page_sector(mtd);
    870			else
    871				pr_err("Invalid address !?\n");
    872			break;
    873		}
    874		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
    875		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
    876		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
    877		start_translation(flctl);
    878		write_fiforeg(flctl, flctl->index, 0);
    879		wait_completion(flctl);
    880		break;
    881
    882	case NAND_CMD_STATUS:
    883		set_cmd_regs(mtd, command, command);
    884		set_addr(mtd, -1, -1);
    885
    886		flctl->read_bytes = 1;
    887		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
    888		start_translation(flctl);
    889		read_datareg(flctl, 0); /* read and end */
    890		break;
    891
    892	case NAND_CMD_RESET:
    893		set_cmd_regs(mtd, command, command);
    894		set_addr(mtd, -1, -1);
    895
    896		writel(0, FLDTCNTR(flctl));	/* set 0 size */
    897		start_translation(flctl);
    898		wait_completion(flctl);
    899		break;
    900
    901	default:
    902		break;
    903	}
    904	goto runtime_exit;
    905
    906read_normal_exit:
    907	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
    908	empty_fifo(flctl);
    909	start_translation(flctl);
    910	read_fiforeg(flctl, flctl->read_bytes, 0);
    911	wait_completion(flctl);
    912runtime_exit:
    913	pm_runtime_put_sync(&flctl->pdev->dev);
    914	return;
    915}
    916
    917static void flctl_select_chip(struct nand_chip *chip, int chipnr)
    918{
    919	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
    920	int ret;
    921
    922	switch (chipnr) {
    923	case -1:
    924		flctl->flcmncr_base &= ~CE0_ENABLE;
    925
    926		pm_runtime_get_sync(&flctl->pdev->dev);
    927		writel(flctl->flcmncr_base, FLCMNCR(flctl));
    928
    929		if (flctl->qos_request) {
    930			dev_pm_qos_remove_request(&flctl->pm_qos);
    931			flctl->qos_request = 0;
    932		}
    933
    934		pm_runtime_put_sync(&flctl->pdev->dev);
    935		break;
    936	case 0:
    937		flctl->flcmncr_base |= CE0_ENABLE;
    938
    939		if (!flctl->qos_request) {
    940			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
    941							&flctl->pm_qos,
    942							DEV_PM_QOS_RESUME_LATENCY,
    943							100);
    944			if (ret < 0)
    945				dev_err(&flctl->pdev->dev,
    946					"PM QoS request failed: %d\n", ret);
    947			flctl->qos_request = 1;
    948		}
    949
    950		if (flctl->holden) {
    951			pm_runtime_get_sync(&flctl->pdev->dev);
    952			writel(HOLDEN, FLHOLDCR(flctl));
    953			pm_runtime_put_sync(&flctl->pdev->dev);
    954		}
    955		break;
    956	default:
    957		BUG();
    958	}
    959}
    960
    961static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
    962{
    963	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
    964
    965	memcpy(&flctl->done_buff[flctl->index], buf, len);
    966	flctl->index += len;
    967}
    968
    969static uint8_t flctl_read_byte(struct nand_chip *chip)
    970{
    971	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
    972	uint8_t data;
    973
    974	data = flctl->done_buff[flctl->index];
    975	flctl->index++;
    976	return data;
    977}
    978
    979static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
    980{
    981	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
    982
    983	memcpy(buf, &flctl->done_buff[flctl->index], len);
    984	flctl->index += len;
    985}
    986
    987static int flctl_chip_attach_chip(struct nand_chip *chip)
    988{
    989	u64 targetsize = nanddev_target_size(&chip->base);
    990	struct mtd_info *mtd = nand_to_mtd(chip);
    991	struct sh_flctl *flctl = mtd_to_flctl(mtd);
    992
    993	/*
    994	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
    995	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
    996	 */
    997	if (chip->options & NAND_BUSWIDTH_16)
    998		flctl->flcmncr_base |= SEL_16BIT;
    999
   1000	if (mtd->writesize == 512) {
   1001		flctl->page_size = 0;
   1002		if (targetsize > (32 << 20)) {
   1003			/* big than 32MB */
   1004			flctl->rw_ADRCNT = ADRCNT_4;
   1005			flctl->erase_ADRCNT = ADRCNT_3;
   1006		} else if (targetsize > (2 << 16)) {
   1007			/* big than 128KB */
   1008			flctl->rw_ADRCNT = ADRCNT_3;
   1009			flctl->erase_ADRCNT = ADRCNT_2;
   1010		} else {
   1011			flctl->rw_ADRCNT = ADRCNT_2;
   1012			flctl->erase_ADRCNT = ADRCNT_1;
   1013		}
   1014	} else {
   1015		flctl->page_size = 1;
   1016		if (targetsize > (128 << 20)) {
   1017			/* big than 128MB */
   1018			flctl->rw_ADRCNT = ADRCNT2_E;
   1019			flctl->erase_ADRCNT = ADRCNT_3;
   1020		} else if (targetsize > (8 << 16)) {
   1021			/* big than 512KB */
   1022			flctl->rw_ADRCNT = ADRCNT_4;
   1023			flctl->erase_ADRCNT = ADRCNT_2;
   1024		} else {
   1025			flctl->rw_ADRCNT = ADRCNT_3;
   1026			flctl->erase_ADRCNT = ADRCNT_1;
   1027		}
   1028	}
   1029
   1030	if (flctl->hwecc) {
   1031		if (mtd->writesize == 512) {
   1032			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
   1033			chip->badblock_pattern = &flctl_4secc_smallpage;
   1034		} else {
   1035			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
   1036			chip->badblock_pattern = &flctl_4secc_largepage;
   1037		}
   1038
   1039		chip->ecc.size = 512;
   1040		chip->ecc.bytes = 10;
   1041		chip->ecc.strength = 4;
   1042		chip->ecc.read_page = flctl_read_page_hwecc;
   1043		chip->ecc.write_page = flctl_write_page_hwecc;
   1044		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
   1045
   1046		/* 4 symbols ECC enabled */
   1047		flctl->flcmncr_base |= _4ECCEN;
   1048	} else {
   1049		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
   1050		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
   1051	}
   1052
   1053	return 0;
   1054}
   1055
   1056static const struct nand_controller_ops flctl_nand_controller_ops = {
   1057	.attach_chip = flctl_chip_attach_chip,
   1058};
   1059
   1060static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
   1061{
   1062	struct sh_flctl *flctl = dev_id;
   1063
   1064	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
   1065	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
   1066
   1067	return IRQ_HANDLED;
   1068}
   1069
   1070struct flctl_soc_config {
   1071	unsigned long flcmncr_val;
   1072	unsigned has_hwecc:1;
   1073	unsigned use_holden:1;
   1074};
   1075
   1076static struct flctl_soc_config flctl_sh7372_config = {
   1077	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
   1078	.has_hwecc = 1,
   1079	.use_holden = 1,
   1080};
   1081
   1082static const struct of_device_id of_flctl_match[] = {
   1083	{ .compatible = "renesas,shmobile-flctl-sh7372",
   1084				.data = &flctl_sh7372_config },
   1085	{},
   1086};
   1087MODULE_DEVICE_TABLE(of, of_flctl_match);
   1088
   1089static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
   1090{
   1091	const struct flctl_soc_config *config;
   1092	struct sh_flctl_platform_data *pdata;
   1093
   1094	config = of_device_get_match_data(dev);
   1095	if (!config) {
   1096		dev_err(dev, "%s: no OF configuration attached\n", __func__);
   1097		return NULL;
   1098	}
   1099
   1100	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
   1101								GFP_KERNEL);
   1102	if (!pdata)
   1103		return NULL;
   1104
   1105	/* set SoC specific options */
   1106	pdata->flcmncr_val = config->flcmncr_val;
   1107	pdata->has_hwecc = config->has_hwecc;
   1108	pdata->use_holden = config->use_holden;
   1109
   1110	return pdata;
   1111}
   1112
   1113static int flctl_probe(struct platform_device *pdev)
   1114{
   1115	struct resource *res;
   1116	struct sh_flctl *flctl;
   1117	struct mtd_info *flctl_mtd;
   1118	struct nand_chip *nand;
   1119	struct sh_flctl_platform_data *pdata;
   1120	int ret;
   1121	int irq;
   1122
   1123	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
   1124	if (!flctl)
   1125		return -ENOMEM;
   1126
   1127	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1128	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
   1129	if (IS_ERR(flctl->reg))
   1130		return PTR_ERR(flctl->reg);
   1131	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
   1132
   1133	irq = platform_get_irq(pdev, 0);
   1134	if (irq < 0)
   1135		return irq;
   1136
   1137	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
   1138			       "flste", flctl);
   1139	if (ret) {
   1140		dev_err(&pdev->dev, "request interrupt failed.\n");
   1141		return ret;
   1142	}
   1143
   1144	if (pdev->dev.of_node)
   1145		pdata = flctl_parse_dt(&pdev->dev);
   1146	else
   1147		pdata = dev_get_platdata(&pdev->dev);
   1148
   1149	if (!pdata) {
   1150		dev_err(&pdev->dev, "no setup data defined\n");
   1151		return -EINVAL;
   1152	}
   1153
   1154	platform_set_drvdata(pdev, flctl);
   1155	nand = &flctl->chip;
   1156	flctl_mtd = nand_to_mtd(nand);
   1157	nand_set_flash_node(nand, pdev->dev.of_node);
   1158	flctl_mtd->dev.parent = &pdev->dev;
   1159	flctl->pdev = pdev;
   1160	flctl->hwecc = pdata->has_hwecc;
   1161	flctl->holden = pdata->use_holden;
   1162	flctl->flcmncr_base = pdata->flcmncr_val;
   1163	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
   1164
   1165	/* Set address of hardware control function */
   1166	/* 20 us command delay time */
   1167	nand->legacy.chip_delay = 20;
   1168
   1169	nand->legacy.read_byte = flctl_read_byte;
   1170	nand->legacy.write_buf = flctl_write_buf;
   1171	nand->legacy.read_buf = flctl_read_buf;
   1172	nand->legacy.select_chip = flctl_select_chip;
   1173	nand->legacy.cmdfunc = flctl_cmdfunc;
   1174	nand->legacy.set_features = nand_get_set_features_notsupp;
   1175	nand->legacy.get_features = nand_get_set_features_notsupp;
   1176
   1177	if (pdata->flcmncr_val & SEL_16BIT)
   1178		nand->options |= NAND_BUSWIDTH_16;
   1179
   1180	nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
   1181
   1182	pm_runtime_enable(&pdev->dev);
   1183	pm_runtime_resume(&pdev->dev);
   1184
   1185	flctl_setup_dma(flctl);
   1186
   1187	nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
   1188	ret = nand_scan(nand, 1);
   1189	if (ret)
   1190		goto err_chip;
   1191
   1192	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
   1193	if (ret)
   1194		goto cleanup_nand;
   1195
   1196	return 0;
   1197
   1198cleanup_nand:
   1199	nand_cleanup(nand);
   1200err_chip:
   1201	flctl_release_dma(flctl);
   1202	pm_runtime_disable(&pdev->dev);
   1203	return ret;
   1204}
   1205
   1206static int flctl_remove(struct platform_device *pdev)
   1207{
   1208	struct sh_flctl *flctl = platform_get_drvdata(pdev);
   1209	struct nand_chip *chip = &flctl->chip;
   1210	int ret;
   1211
   1212	flctl_release_dma(flctl);
   1213	ret = mtd_device_unregister(nand_to_mtd(chip));
   1214	WARN_ON(ret);
   1215	nand_cleanup(chip);
   1216	pm_runtime_disable(&pdev->dev);
   1217
   1218	return 0;
   1219}
   1220
   1221static struct platform_driver flctl_driver = {
   1222	.remove		= flctl_remove,
   1223	.driver = {
   1224		.name	= "sh_flctl",
   1225		.of_match_table = of_flctl_match,
   1226	},
   1227};
   1228
   1229module_platform_driver_probe(flctl_driver, flctl_probe);
   1230
   1231MODULE_LICENSE("GPL v2");
   1232MODULE_AUTHOR("Yoshihiro Shimoda");
   1233MODULE_DESCRIPTION("SuperH FLCTL driver");
   1234MODULE_ALIAS("platform:sh_flctl");