cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vf610_nfc.c (26185B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
      4 *
      5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
      6 * Jason ported to M54418TWR and MVFA5 (VF610).
      7 * Authors: Stefan Agner <stefan.agner@toradex.com>
      8 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
      9 *          Shaohui Xie <b21989@freescale.com>
     10 *          Jason Jin <Jason.jin@freescale.com>
     11 *
     12 * Based on original driver mpc5121_nfc.c.
     13 *
     14 * Limitations:
     15 * - Untested on MPC5125 and M54418.
     16 * - DMA and pipelining not used.
     17 * - 2K pages or less.
     18 * - HW ECC: Only 2K page with 64+ OOB.
     19 * - HW ECC: Only 24 and 32-bit error correction implemented.
     20 */
     21
     22#include <linux/module.h>
     23#include <linux/bitops.h>
     24#include <linux/clk.h>
     25#include <linux/delay.h>
     26#include <linux/init.h>
     27#include <linux/interrupt.h>
     28#include <linux/io.h>
     29#include <linux/mtd/mtd.h>
     30#include <linux/mtd/rawnand.h>
     31#include <linux/mtd/partitions.h>
     32#include <linux/of_device.h>
     33#include <linux/platform_device.h>
     34#include <linux/slab.h>
     35#include <linux/swab.h>
     36
     37#define	DRV_NAME		"vf610_nfc"
     38
     39/* Register Offsets */
     40#define NFC_FLASH_CMD1			0x3F00
     41#define NFC_FLASH_CMD2			0x3F04
     42#define NFC_COL_ADDR			0x3F08
     43#define NFC_ROW_ADDR			0x3F0c
     44#define NFC_ROW_ADDR_INC		0x3F14
     45#define NFC_FLASH_STATUS1		0x3F18
     46#define NFC_FLASH_STATUS2		0x3F1c
     47#define NFC_CACHE_SWAP			0x3F28
     48#define NFC_SECTOR_SIZE			0x3F2c
     49#define NFC_FLASH_CONFIG		0x3F30
     50#define NFC_IRQ_STATUS			0x3F38
     51
     52/* Addresses for NFC MAIN RAM BUFFER areas */
     53#define NFC_MAIN_AREA(n)		((n) *  0x1000)
     54
     55#define PAGE_2K				0x0800
     56#define OOB_64				0x0040
     57#define OOB_MAX				0x0100
     58
     59/* NFC_CMD2[CODE] controller cycle bit masks */
     60#define COMMAND_CMD_BYTE1		BIT(14)
     61#define COMMAND_CAR_BYTE1		BIT(13)
     62#define COMMAND_CAR_BYTE2		BIT(12)
     63#define COMMAND_RAR_BYTE1		BIT(11)
     64#define COMMAND_RAR_BYTE2		BIT(10)
     65#define COMMAND_RAR_BYTE3		BIT(9)
     66#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
     67#define COMMAND_WRITE_DATA		BIT(8)
     68#define COMMAND_CMD_BYTE2		BIT(7)
     69#define COMMAND_RB_HANDSHAKE		BIT(6)
     70#define COMMAND_READ_DATA		BIT(5)
     71#define COMMAND_CMD_BYTE3		BIT(4)
     72#define COMMAND_READ_STATUS		BIT(3)
     73#define COMMAND_READ_ID			BIT(2)
     74
     75/* NFC ECC mode define */
     76#define ECC_BYPASS			0
     77#define ECC_45_BYTE			6
     78#define ECC_60_BYTE			7
     79
     80/*** Register Mask and bit definitions */
     81
     82/* NFC_FLASH_CMD1 Field */
     83#define CMD_BYTE2_MASK				0xFF000000
     84#define CMD_BYTE2_SHIFT				24
     85
     86/* NFC_FLASH_CM2 Field */
     87#define CMD_BYTE1_MASK				0xFF000000
     88#define CMD_BYTE1_SHIFT				24
     89#define CMD_CODE_MASK				0x00FFFF00
     90#define CMD_CODE_SHIFT				8
     91#define BUFNO_MASK				0x00000006
     92#define BUFNO_SHIFT				1
     93#define START_BIT				BIT(0)
     94
     95/* NFC_COL_ADDR Field */
     96#define COL_ADDR_MASK				0x0000FFFF
     97#define COL_ADDR_SHIFT				0
     98#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
     99
    100/* NFC_ROW_ADDR Field */
    101#define ROW_ADDR_MASK				0x00FFFFFF
    102#define ROW_ADDR_SHIFT				0
    103#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
    104
    105#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
    106#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
    107#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
    108#define ROW_ADDR_CHIP_SEL_SHIFT			24
    109
    110/* NFC_FLASH_STATUS2 Field */
    111#define STATUS_BYTE1_MASK			0x000000FF
    112
    113/* NFC_FLASH_CONFIG Field */
    114#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
    115#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
    116#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
    117#define CONFIG_DMA_REQ_BIT			BIT(20)
    118#define CONFIG_ECC_MODE_MASK			0x000E0000
    119#define CONFIG_ECC_MODE_SHIFT			17
    120#define CONFIG_FAST_FLASH_BIT			BIT(16)
    121#define CONFIG_16BIT				BIT(7)
    122#define CONFIG_BOOT_MODE_BIT			BIT(6)
    123#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
    124#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
    125#define CONFIG_PAGE_CNT_MASK			0xF
    126#define CONFIG_PAGE_CNT_SHIFT			0
    127
    128/* NFC_IRQ_STATUS Field */
    129#define IDLE_IRQ_BIT				BIT(29)
    130#define IDLE_EN_BIT				BIT(20)
    131#define CMD_DONE_CLEAR_BIT			BIT(18)
    132#define IDLE_CLEAR_BIT				BIT(17)
    133
    134/*
    135 * ECC status - seems to consume 8 bytes (double word). The documented
    136 * status byte is located in the lowest byte of the second word (which is
    137 * the 4th or 7th byte depending on endianness).
    138 * Calculate an offset to store the ECC status at the end of the buffer.
    139 */
    140#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
    141
    142#define ECC_STATUS		0x4
    143#define ECC_STATUS_MASK		0x80
    144#define ECC_STATUS_ERR_COUNT	0x3F
    145
    146enum vf610_nfc_variant {
    147	NFC_VFC610 = 1,
    148};
    149
    150struct vf610_nfc {
    151	struct nand_controller base;
    152	struct nand_chip chip;
    153	struct device *dev;
    154	void __iomem *regs;
    155	struct completion cmd_done;
    156	/* Status and ID are in alternate locations. */
    157	enum vf610_nfc_variant variant;
    158	struct clk *clk;
    159	/*
    160	 * Indicate that user data is accessed (full page/oob). This is
    161	 * useful to indicate the driver whether to swap byte endianness.
    162	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
    163	 */
    164	bool data_access;
    165	u32 ecc_mode;
    166};
    167
    168static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
    169{
    170	return container_of(chip, struct vf610_nfc, chip);
    171}
    172
    173static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
    174{
    175	return readl(nfc->regs + reg);
    176}
    177
    178static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
    179{
    180	writel(val, nfc->regs + reg);
    181}
    182
    183static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
    184{
    185	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
    186}
    187
    188static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
    189{
    190	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
    191}
    192
    193static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
    194				       u32 mask, u32 shift, u32 val)
    195{
    196	vf610_nfc_write(nfc, reg,
    197			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
    198}
    199
    200static inline bool vf610_nfc_kernel_is_little_endian(void)
    201{
    202#ifdef __LITTLE_ENDIAN
    203	return true;
    204#else
    205	return false;
    206#endif
    207}
    208
    209/**
    210 * Read accessor for internal SRAM buffer
    211 * @dst: destination address in regular memory
    212 * @src: source address in SRAM buffer
    213 * @len: bytes to copy
    214 * @fix_endian: Fix endianness if required
    215 *
    216 * Use this accessor for the internal SRAM buffers. On the ARM
    217 * Freescale Vybrid SoC it's known that the driver can treat
    218 * the SRAM buffer as if it's memory. Other platform might need
    219 * to treat the buffers differently.
    220 *
    221 * The controller stores bytes from the NAND chip internally in big
    222 * endianness. On little endian platforms such as Vybrid this leads
    223 * to reversed byte order.
    224 * For performance reason (and earlier probably due to unawareness)
    225 * the driver avoids correcting endianness where it has control over
    226 * write and read side (e.g. page wise data access).
    227 */
    228static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
    229					  size_t len, bool fix_endian)
    230{
    231	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
    232		unsigned int i;
    233
    234		for (i = 0; i < len; i += 4) {
    235			u32 val = swab32(__raw_readl(src + i));
    236
    237			memcpy(dst + i, &val, min(sizeof(val), len - i));
    238		}
    239	} else {
    240		memcpy_fromio(dst, src, len);
    241	}
    242}
    243
    244/**
    245 * Write accessor for internal SRAM buffer
    246 * @dst: destination address in SRAM buffer
    247 * @src: source address in regular memory
    248 * @len: bytes to copy
    249 * @fix_endian: Fix endianness if required
    250 *
    251 * Use this accessor for the internal SRAM buffers. On the ARM
    252 * Freescale Vybrid SoC it's known that the driver can treat
    253 * the SRAM buffer as if it's memory. Other platform might need
    254 * to treat the buffers differently.
    255 *
    256 * The controller stores bytes from the NAND chip internally in big
    257 * endianness. On little endian platforms such as Vybrid this leads
    258 * to reversed byte order.
    259 * For performance reason (and earlier probably due to unawareness)
    260 * the driver avoids correcting endianness where it has control over
    261 * write and read side (e.g. page wise data access).
    262 */
    263static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
    264					size_t len, bool fix_endian)
    265{
    266	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
    267		unsigned int i;
    268
    269		for (i = 0; i < len; i += 4) {
    270			u32 val;
    271
    272			memcpy(&val, src + i, min(sizeof(val), len - i));
    273			__raw_writel(swab32(val), dst + i);
    274		}
    275	} else {
    276		memcpy_toio(dst, src, len);
    277	}
    278}
    279
    280/* Clear flags for upcoming command */
    281static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
    282{
    283	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
    284
    285	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
    286	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
    287}
    288
    289static void vf610_nfc_done(struct vf610_nfc *nfc)
    290{
    291	unsigned long timeout = msecs_to_jiffies(100);
    292
    293	/*
    294	 * Barrier is needed after this write. This write need
    295	 * to be done before reading the next register the first
    296	 * time.
    297	 * vf610_nfc_set implicates such a barrier by using writel
    298	 * to write to the register.
    299	 */
    300	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
    301	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
    302
    303	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
    304		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
    305
    306	vf610_nfc_clear_status(nfc);
    307}
    308
    309static irqreturn_t vf610_nfc_irq(int irq, void *data)
    310{
    311	struct vf610_nfc *nfc = data;
    312
    313	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
    314	complete(&nfc->cmd_done);
    315
    316	return IRQ_HANDLED;
    317}
    318
    319static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
    320{
    321	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
    322			    CONFIG_ECC_MODE_MASK,
    323			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
    324}
    325
    326static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
    327				 u32 cmd1, u32 cmd2, u32 trfr_sz)
    328{
    329	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
    330			    COL_ADDR_SHIFT, col);
    331
    332	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
    333			    ROW_ADDR_SHIFT, row);
    334
    335	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
    336	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
    337	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
    338
    339	dev_dbg(nfc->dev,
    340		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
    341		col, row, cmd1, cmd2, trfr_sz);
    342
    343	vf610_nfc_done(nfc);
    344}
    345
    346static inline const struct nand_op_instr *
    347vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
    348{
    349	if (*op_id + 1 >= subop->ninstrs)
    350		return NULL;
    351
    352	(*op_id)++;
    353
    354	return &subop->instrs[*op_id];
    355}
    356
    357static int vf610_nfc_cmd(struct nand_chip *chip,
    358			 const struct nand_subop *subop)
    359{
    360	const struct nand_op_instr *instr;
    361	struct vf610_nfc *nfc = chip_to_nfc(chip);
    362	int op_id = -1, trfr_sz = 0, offset = 0;
    363	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
    364	bool force8bit = false;
    365
    366	/*
    367	 * Some ops are optional, but the hardware requires the operations
    368	 * to be in this exact order.
    369	 * The op parser enforces the order and makes sure that there isn't
    370	 * a read and write element in a single operation.
    371	 */
    372	instr = vf610_get_next_instr(subop, &op_id);
    373	if (!instr)
    374		return -EINVAL;
    375
    376	if (instr && instr->type == NAND_OP_CMD_INSTR) {
    377		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
    378		code |= COMMAND_CMD_BYTE1;
    379
    380		instr = vf610_get_next_instr(subop, &op_id);
    381	}
    382
    383	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
    384		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
    385		int i = nand_subop_get_addr_start_off(subop, op_id);
    386
    387		for (; i < naddrs; i++) {
    388			u8 val = instr->ctx.addr.addrs[i];
    389
    390			if (i < 2)
    391				col |= COL_ADDR(i, val);
    392			else
    393				row |= ROW_ADDR(i - 2, val);
    394		}
    395		code |= COMMAND_NADDR_BYTES(naddrs);
    396
    397		instr = vf610_get_next_instr(subop, &op_id);
    398	}
    399
    400	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
    401		trfr_sz = nand_subop_get_data_len(subop, op_id);
    402		offset = nand_subop_get_data_start_off(subop, op_id);
    403		force8bit = instr->ctx.data.force_8bit;
    404
    405		/*
    406		 * Don't fix endianness on page access for historical reasons.
    407		 * See comment in vf610_nfc_wr_to_sram
    408		 */
    409		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
    410				     instr->ctx.data.buf.out + offset,
    411				     trfr_sz, !nfc->data_access);
    412		code |= COMMAND_WRITE_DATA;
    413
    414		instr = vf610_get_next_instr(subop, &op_id);
    415	}
    416
    417	if (instr && instr->type == NAND_OP_CMD_INSTR) {
    418		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
    419		code |= COMMAND_CMD_BYTE2;
    420
    421		instr = vf610_get_next_instr(subop, &op_id);
    422	}
    423
    424	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
    425		code |= COMMAND_RB_HANDSHAKE;
    426
    427		instr = vf610_get_next_instr(subop, &op_id);
    428	}
    429
    430	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
    431		trfr_sz = nand_subop_get_data_len(subop, op_id);
    432		offset = nand_subop_get_data_start_off(subop, op_id);
    433		force8bit = instr->ctx.data.force_8bit;
    434
    435		code |= COMMAND_READ_DATA;
    436	}
    437
    438	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
    439		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
    440
    441	cmd2 |= code << CMD_CODE_SHIFT;
    442
    443	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
    444
    445	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
    446		/*
    447		 * Don't fix endianness on page access for historical reasons.
    448		 * See comment in vf610_nfc_rd_from_sram
    449		 */
    450		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
    451				       nfc->regs + NFC_MAIN_AREA(0) + offset,
    452				       trfr_sz, !nfc->data_access);
    453	}
    454
    455	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
    456		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
    457
    458	return 0;
    459}
    460
    461static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
    462	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
    463		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    464		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
    465		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
    466		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    467		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
    468	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
    469		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    470		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
    471		NAND_OP_PARSER_PAT_CMD_ELEM(true),
    472		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
    473		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
    474	);
    475
    476/*
    477 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
    478 */
    479static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
    480{
    481	struct vf610_nfc *nfc = chip_to_nfc(chip);
    482	u32 tmp;
    483
    484	/* Vybrid only (MPC5125 would have full RB and four CS) */
    485	if (nfc->variant != NFC_VFC610)
    486		return;
    487
    488	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
    489	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
    490	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
    491	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
    492
    493	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
    494}
    495
    496static int vf610_nfc_exec_op(struct nand_chip *chip,
    497			     const struct nand_operation *op,
    498			     bool check_only)
    499{
    500	if (!check_only)
    501		vf610_nfc_select_target(chip, op->cs);
    502
    503	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
    504				      check_only);
    505}
    506
    507static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
    508					 uint8_t *oob, int page)
    509{
    510	struct vf610_nfc *nfc = chip_to_nfc(chip);
    511	struct mtd_info *mtd = nand_to_mtd(chip);
    512	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
    513	u8 ecc_status;
    514	u8 ecc_count;
    515	int flips_threshold = nfc->chip.ecc.strength / 2;
    516
    517	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
    518	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
    519
    520	if (!(ecc_status & ECC_STATUS_MASK))
    521		return ecc_count;
    522
    523	nfc->data_access = true;
    524	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
    525	nfc->data_access = false;
    526
    527	/*
    528	 * On an erased page, bit count (including OOB) should be zero or
    529	 * at least less then half of the ECC strength.
    530	 */
    531	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
    532					   mtd->oobsize, NULL, 0,
    533					   flips_threshold);
    534}
    535
    536static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
    537			       u32 *row)
    538{
    539	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
    540	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
    541
    542	if (chip->options & NAND_ROW_ADDR_3) {
    543		*row |= ROW_ADDR(2, page >> 16);
    544		*code |= COMMAND_RAR_BYTE3;
    545	}
    546}
    547
    548static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
    549			       int oob_required, int page)
    550{
    551	struct vf610_nfc *nfc = chip_to_nfc(chip);
    552	struct mtd_info *mtd = nand_to_mtd(chip);
    553	int trfr_sz = mtd->writesize + mtd->oobsize;
    554	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
    555	int stat;
    556
    557	vf610_nfc_select_target(chip, chip->cur_cs);
    558
    559	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
    560	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
    561
    562	vf610_nfc_fill_row(chip, page, &code, &row);
    563
    564	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
    565	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
    566
    567	cmd2 |= code << CMD_CODE_SHIFT;
    568
    569	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
    570	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
    571	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
    572
    573	/*
    574	 * Don't fix endianness on page access for historical reasons.
    575	 * See comment in vf610_nfc_rd_from_sram
    576	 */
    577	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
    578			       mtd->writesize, false);
    579	if (oob_required)
    580		vf610_nfc_rd_from_sram(chip->oob_poi,
    581				       nfc->regs + NFC_MAIN_AREA(0) +
    582						   mtd->writesize,
    583				       mtd->oobsize, false);
    584
    585	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
    586
    587	if (stat < 0) {
    588		mtd->ecc_stats.failed++;
    589		return 0;
    590	} else {
    591		mtd->ecc_stats.corrected += stat;
    592		return stat;
    593	}
    594}
    595
    596static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
    597				int oob_required, int page)
    598{
    599	struct vf610_nfc *nfc = chip_to_nfc(chip);
    600	struct mtd_info *mtd = nand_to_mtd(chip);
    601	int trfr_sz = mtd->writesize + mtd->oobsize;
    602	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
    603	u8 status;
    604	int ret;
    605
    606	vf610_nfc_select_target(chip, chip->cur_cs);
    607
    608	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
    609	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
    610
    611	vf610_nfc_fill_row(chip, page, &code, &row);
    612
    613	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
    614	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
    615
    616	/*
    617	 * Don't fix endianness on page access for historical reasons.
    618	 * See comment in vf610_nfc_wr_to_sram
    619	 */
    620	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
    621			     mtd->writesize, false);
    622
    623	code |= COMMAND_RB_HANDSHAKE;
    624	cmd2 |= code << CMD_CODE_SHIFT;
    625
    626	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
    627	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
    628	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
    629
    630	ret = nand_status_op(chip, &status);
    631	if (ret)
    632		return ret;
    633
    634	if (status & NAND_STATUS_FAIL)
    635		return -EIO;
    636
    637	return 0;
    638}
    639
    640static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
    641				   int oob_required, int page)
    642{
    643	struct vf610_nfc *nfc = chip_to_nfc(chip);
    644	int ret;
    645
    646	nfc->data_access = true;
    647	ret = nand_read_page_raw(chip, buf, oob_required, page);
    648	nfc->data_access = false;
    649
    650	return ret;
    651}
    652
    653static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
    654				    int oob_required, int page)
    655{
    656	struct vf610_nfc *nfc = chip_to_nfc(chip);
    657	struct mtd_info *mtd = nand_to_mtd(chip);
    658	int ret;
    659
    660	nfc->data_access = true;
    661	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
    662	if (!ret && oob_required)
    663		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
    664					 false);
    665	nfc->data_access = false;
    666
    667	if (ret)
    668		return ret;
    669
    670	return nand_prog_page_end_op(chip);
    671}
    672
    673static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
    674{
    675	struct vf610_nfc *nfc = chip_to_nfc(chip);
    676	int ret;
    677
    678	nfc->data_access = true;
    679	ret = nand_read_oob_std(chip, page);
    680	nfc->data_access = false;
    681
    682	return ret;
    683}
    684
    685static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
    686{
    687	struct mtd_info *mtd = nand_to_mtd(chip);
    688	struct vf610_nfc *nfc = chip_to_nfc(chip);
    689	int ret;
    690
    691	nfc->data_access = true;
    692	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
    693				      chip->oob_poi, mtd->oobsize);
    694	nfc->data_access = false;
    695
    696	if (ret)
    697		return ret;
    698
    699	return nand_prog_page_end_op(chip);
    700}
    701
    702static const struct of_device_id vf610_nfc_dt_ids[] = {
    703	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
    704	{ /* sentinel */ }
    705};
    706MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
    707
    708static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
    709{
    710	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
    711	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
    712	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
    713	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
    714	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
    715	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
    716	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
    717
    718	/* Disable virtual pages, only one elementary transfer unit */
    719	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
    720			    CONFIG_PAGE_CNT_SHIFT, 1);
    721}
    722
    723static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
    724{
    725	if (nfc->chip.options & NAND_BUSWIDTH_16)
    726		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
    727	else
    728		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
    729
    730	if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
    731		/* Set ECC status offset in SRAM */
    732		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
    733				    CONFIG_ECC_SRAM_ADDR_MASK,
    734				    CONFIG_ECC_SRAM_ADDR_SHIFT,
    735				    ECC_SRAM_ADDR >> 3);
    736
    737		/* Enable ECC status in SRAM */
    738		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
    739	}
    740}
    741
    742static int vf610_nfc_attach_chip(struct nand_chip *chip)
    743{
    744	struct mtd_info *mtd = nand_to_mtd(chip);
    745	struct vf610_nfc *nfc = chip_to_nfc(chip);
    746
    747	vf610_nfc_init_controller(nfc);
    748
    749	/* Bad block options. */
    750	if (chip->bbt_options & NAND_BBT_USE_FLASH)
    751		chip->bbt_options |= NAND_BBT_NO_OOB;
    752
    753	/* Single buffer only, max 256 OOB minus ECC status */
    754	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
    755		dev_err(nfc->dev, "Unsupported flash page size\n");
    756		return -ENXIO;
    757	}
    758
    759	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
    760		return 0;
    761
    762	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
    763		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
    764		return -ENXIO;
    765	}
    766
    767	if (chip->ecc.size != mtd->writesize) {
    768		dev_err(nfc->dev, "Step size needs to be page size\n");
    769		return -ENXIO;
    770	}
    771
    772	/* Only 64 byte ECC layouts known */
    773	if (mtd->oobsize > 64)
    774		mtd->oobsize = 64;
    775
    776	/* Use default large page ECC layout defined in NAND core */
    777	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
    778	if (chip->ecc.strength == 32) {
    779		nfc->ecc_mode = ECC_60_BYTE;
    780		chip->ecc.bytes = 60;
    781	} else if (chip->ecc.strength == 24) {
    782		nfc->ecc_mode = ECC_45_BYTE;
    783		chip->ecc.bytes = 45;
    784	} else {
    785		dev_err(nfc->dev, "Unsupported ECC strength\n");
    786		return -ENXIO;
    787	}
    788
    789	chip->ecc.read_page = vf610_nfc_read_page;
    790	chip->ecc.write_page = vf610_nfc_write_page;
    791	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
    792	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
    793	chip->ecc.read_oob = vf610_nfc_read_oob;
    794	chip->ecc.write_oob = vf610_nfc_write_oob;
    795
    796	chip->ecc.size = PAGE_2K;
    797
    798	return 0;
    799}
    800
    801static const struct nand_controller_ops vf610_nfc_controller_ops = {
    802	.attach_chip = vf610_nfc_attach_chip,
    803	.exec_op = vf610_nfc_exec_op,
    804
    805};
    806
    807static int vf610_nfc_probe(struct platform_device *pdev)
    808{
    809	struct vf610_nfc *nfc;
    810	struct mtd_info *mtd;
    811	struct nand_chip *chip;
    812	struct device_node *child;
    813	const struct of_device_id *of_id;
    814	int err;
    815	int irq;
    816
    817	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
    818	if (!nfc)
    819		return -ENOMEM;
    820
    821	nfc->dev = &pdev->dev;
    822	chip = &nfc->chip;
    823	mtd = nand_to_mtd(chip);
    824
    825	mtd->owner = THIS_MODULE;
    826	mtd->dev.parent = nfc->dev;
    827	mtd->name = DRV_NAME;
    828
    829	irq = platform_get_irq(pdev, 0);
    830	if (irq <= 0)
    831		return -EINVAL;
    832
    833	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
    834	if (IS_ERR(nfc->regs))
    835		return PTR_ERR(nfc->regs);
    836
    837	nfc->clk = devm_clk_get(&pdev->dev, NULL);
    838	if (IS_ERR(nfc->clk))
    839		return PTR_ERR(nfc->clk);
    840
    841	err = clk_prepare_enable(nfc->clk);
    842	if (err) {
    843		dev_err(nfc->dev, "Unable to enable clock!\n");
    844		return err;
    845	}
    846
    847	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
    848	if (!of_id) {
    849		err = -ENODEV;
    850		goto err_disable_clk;
    851	}
    852
    853	nfc->variant = (enum vf610_nfc_variant)of_id->data;
    854
    855	for_each_available_child_of_node(nfc->dev->of_node, child) {
    856		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
    857
    858			if (nand_get_flash_node(chip)) {
    859				dev_err(nfc->dev,
    860					"Only one NAND chip supported!\n");
    861				err = -EINVAL;
    862				of_node_put(child);
    863				goto err_disable_clk;
    864			}
    865
    866			nand_set_flash_node(chip, child);
    867		}
    868	}
    869
    870	if (!nand_get_flash_node(chip)) {
    871		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
    872		err = -ENODEV;
    873		goto err_disable_clk;
    874	}
    875
    876	chip->options |= NAND_NO_SUBPAGE_WRITE;
    877
    878	init_completion(&nfc->cmd_done);
    879
    880	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
    881	if (err) {
    882		dev_err(nfc->dev, "Error requesting IRQ!\n");
    883		goto err_disable_clk;
    884	}
    885
    886	vf610_nfc_preinit_controller(nfc);
    887
    888	nand_controller_init(&nfc->base);
    889	nfc->base.ops = &vf610_nfc_controller_ops;
    890	chip->controller = &nfc->base;
    891
    892	/* Scan the NAND chip */
    893	err = nand_scan(chip, 1);
    894	if (err)
    895		goto err_disable_clk;
    896
    897	platform_set_drvdata(pdev, nfc);
    898
    899	/* Register device in MTD */
    900	err = mtd_device_register(mtd, NULL, 0);
    901	if (err)
    902		goto err_cleanup_nand;
    903	return 0;
    904
    905err_cleanup_nand:
    906	nand_cleanup(chip);
    907err_disable_clk:
    908	clk_disable_unprepare(nfc->clk);
    909	return err;
    910}
    911
    912static int vf610_nfc_remove(struct platform_device *pdev)
    913{
    914	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
    915	struct nand_chip *chip = &nfc->chip;
    916	int ret;
    917
    918	ret = mtd_device_unregister(nand_to_mtd(chip));
    919	WARN_ON(ret);
    920	nand_cleanup(chip);
    921	clk_disable_unprepare(nfc->clk);
    922	return 0;
    923}
    924
    925#ifdef CONFIG_PM_SLEEP
    926static int vf610_nfc_suspend(struct device *dev)
    927{
    928	struct vf610_nfc *nfc = dev_get_drvdata(dev);
    929
    930	clk_disable_unprepare(nfc->clk);
    931	return 0;
    932}
    933
    934static int vf610_nfc_resume(struct device *dev)
    935{
    936	struct vf610_nfc *nfc = dev_get_drvdata(dev);
    937	int err;
    938
    939	err = clk_prepare_enable(nfc->clk);
    940	if (err)
    941		return err;
    942
    943	vf610_nfc_preinit_controller(nfc);
    944	vf610_nfc_init_controller(nfc);
    945	return 0;
    946}
    947#endif
    948
    949static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
    950
    951static struct platform_driver vf610_nfc_driver = {
    952	.driver		= {
    953		.name	= DRV_NAME,
    954		.of_match_table = vf610_nfc_dt_ids,
    955		.pm	= &vf610_nfc_pm_ops,
    956	},
    957	.probe		= vf610_nfc_probe,
    958	.remove		= vf610_nfc_remove,
    959};
    960
    961module_platform_driver(vf610_nfc_driver);
    962
    963MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
    964MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
    965MODULE_LICENSE("GPL");