spansion.c (12951B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7#include <linux/mtd/spi-nor.h> 8 9#include "core.h" 10 11/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ 12#define USE_CLSR BIT(0) 13 14#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ 15#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ 16#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ 17#define SPINOR_REG_CYPRESS_CFR2V 0x00800003 18#define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb 19#define SPINOR_REG_CYPRESS_CFR3V 0x00800004 20#define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */ 21#define SPINOR_REG_CYPRESS_CFR5V 0x00800006 22#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3 23#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0 24#define SPINOR_OP_CYPRESS_RD_FAST 0xee 25 26/* Cypress SPI NOR flash operations. */ 27#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ 28 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ 29 SPI_MEM_OP_ADDR(naddr, addr, 0), \ 30 SPI_MEM_OP_NO_DUMMY, \ 31 SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) 32 33#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, buf) \ 34 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ 35 SPI_MEM_OP_ADDR(naddr, addr, 0), \ 36 SPI_MEM_OP_NO_DUMMY, \ 37 SPI_MEM_OP_DATA_IN(1, buf, 0)) 38 39#define SPANSION_CLSR_OP \ 40 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0), \ 41 SPI_MEM_OP_NO_ADDR, \ 42 SPI_MEM_OP_NO_DUMMY, \ 43 SPI_MEM_OP_NO_DATA) 44 45static int cypress_nor_octal_dtr_en(struct spi_nor *nor) 46{ 47 struct spi_mem_op op; 48 u8 *buf = nor->bouncebuf; 49 int ret; 50 51 /* Use 24 dummy cycles for memory array reads. */ 52 *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24; 53 op = (struct spi_mem_op) 54 CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR2V, 1, buf); 55 56 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 57 if (ret) 58 return ret; 59 60 nor->read_dummy = 24; 61 62 /* Set the octal and DTR enable bits. */ 63 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN; 64 op = (struct spi_mem_op) 65 CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR5V, 1, buf); 66 67 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); 68 if (ret) 69 return ret; 70 71 /* Read flash ID to make sure the switch was successful. */ 72 ret = spi_nor_read_id(nor, 4, 3, buf, SNOR_PROTO_8_8_8_DTR); 73 if (ret) { 74 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); 75 return ret; 76 } 77 78 if (memcmp(buf, nor->info->id, nor->info->id_len)) 79 return -EINVAL; 80 81 return 0; 82} 83 84static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) 85{ 86 struct spi_mem_op op; 87 u8 *buf = nor->bouncebuf; 88 int ret; 89 90 /* 91 * The register is 1-byte wide, but 1-byte transactions are not allowed 92 * in 8D-8D-8D mode. Since there is no register at the next location, 93 * just initialize the value to 0 and let the transaction go on. 94 */ 95 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS; 96 buf[1] = 0; 97 op = (struct spi_mem_op) 98 CYPRESS_NOR_WR_ANY_REG_OP(4, SPINOR_REG_CYPRESS_CFR5V, 2, buf); 99 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); 100 if (ret) 101 return ret; 102 103 /* Read flash ID to make sure the switch was successful. */ 104 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); 105 if (ret) { 106 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); 107 return ret; 108 } 109 110 if (memcmp(buf, nor->info->id, nor->info->id_len)) 111 return -EINVAL; 112 113 return 0; 114} 115 116/** 117 * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes. 118 * @nor: pointer to a 'struct spi_nor' 119 * @enable: whether to enable or disable Octal DTR 120 * 121 * This also sets the memory access latency cycles to 24 to allow the flash to 122 * run at up to 200MHz. 123 * 124 * Return: 0 on success, -errno otherwise. 125 */ 126static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable) 127{ 128 return enable ? cypress_nor_octal_dtr_en(nor) : 129 cypress_nor_octal_dtr_dis(nor); 130} 131 132static void s28hs512t_default_init(struct spi_nor *nor) 133{ 134 nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable; 135 nor->params->writesize = 16; 136} 137 138static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor) 139{ 140 /* 141 * On older versions of the flash the xSPI Profile 1.0 table has the 142 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. 143 */ 144 if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) 145 nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = 146 SPINOR_OP_CYPRESS_RD_FAST; 147 148 /* This flash is also missing the 4-byte Page Program opcode bit. */ 149 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP], 150 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 151 /* 152 * Since xSPI Page Program opcode is backward compatible with 153 * Legacy SPI, use Legacy SPI opcode there as well. 154 */ 155 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR], 156 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 157 158 /* 159 * The xSPI Profile 1.0 table advertises the number of additional 160 * address bytes needed for Read Status Register command as 0 but the 161 * actual value for that is 4. 162 */ 163 nor->params->rdsr_addr_nbytes = 4; 164} 165 166static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor, 167 const struct sfdp_parameter_header *bfpt_header, 168 const struct sfdp_bfpt *bfpt) 169{ 170 /* 171 * The BFPT table advertises a 512B page size but the page size is 172 * actually configurable (with the default being 256B). Read from 173 * CFR3V[4] and set the correct size. 174 */ 175 struct spi_mem_op op = 176 CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR3V, 177 nor->bouncebuf); 178 int ret; 179 180 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 181 182 ret = spi_mem_exec_op(nor->spimem, &op); 183 if (ret) 184 return ret; 185 186 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ) 187 nor->params->page_size = 512; 188 else 189 nor->params->page_size = 256; 190 191 return 0; 192} 193 194static const struct spi_nor_fixups s28hs512t_fixups = { 195 .default_init = s28hs512t_default_init, 196 .post_sfdp = s28hs512t_post_sfdp_fixup, 197 .post_bfpt = s28hs512t_post_bfpt_fixup, 198}; 199 200static int 201s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, 202 const struct sfdp_parameter_header *bfpt_header, 203 const struct sfdp_bfpt *bfpt) 204{ 205 /* 206 * The S25FS-S chip family reports 512-byte pages in BFPT but 207 * in reality the write buffer still wraps at the safe default 208 * of 256 bytes. Overwrite the page size advertised by BFPT 209 * to get the writes working. 210 */ 211 nor->params->page_size = 256; 212 213 return 0; 214} 215 216static const struct spi_nor_fixups s25fs_s_nor_fixups = { 217 .post_bfpt = s25fs_s_nor_post_bfpt_fixups, 218}; 219 220static const struct flash_info spansion_nor_parts[] = { 221 /* Spansion/Cypress -- single (large) sector size only, at least 222 * for the chips listed here (without boot sectors). 223 */ 224 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64) 225 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, 226 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128) 227 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, 228 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64) 229 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 230 MFR_FLAGS(USE_CLSR) 231 }, 232 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256) 233 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 234 MFR_FLAGS(USE_CLSR) 235 }, 236 { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128) 237 NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | 238 SPI_NOR_QUAD_READ) 239 MFR_FLAGS(USE_CLSR) 240 }, 241 { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512) 242 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 243 MFR_FLAGS(USE_CLSR) 244 }, 245 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256) 246 FLAGS(SPI_NOR_HAS_LOCK) 247 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 248 MFR_FLAGS(USE_CLSR) 249 }, 250 { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256) 251 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 252 MFR_FLAGS(USE_CLSR) 253 .fixups = &s25fs_s_nor_fixups, }, 254 { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128) 255 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 256 MFR_FLAGS(USE_CLSR) 257 }, 258 { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512) 259 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 260 MFR_FLAGS(USE_CLSR) 261 }, 262 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256) 263 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 264 MFR_FLAGS(USE_CLSR) 265 .fixups = &s25fs_s_nor_fixups, }, 266 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) }, 267 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) }, 268 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64) 269 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 270 MFR_FLAGS(USE_CLSR) 271 }, 272 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256) 273 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 274 MFR_FLAGS(USE_CLSR) 275 }, 276 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) }, 277 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) }, 278 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) }, 279 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) }, 280 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) }, 281 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8) 282 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | 283 SPI_NOR_QUAD_READ) }, 284 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16) 285 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | 286 SPI_NOR_QUAD_READ) }, 287 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32) 288 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | 289 SPI_NOR_QUAD_READ) }, 290 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128) 291 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | 292 SPI_NOR_QUAD_READ) }, 293 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32) 294 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | 295 SPI_NOR_QUAD_READ) }, 296 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64) 297 NO_SFDP_FLAGS(SECT_4K) }, 298 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128) 299 NO_SFDP_FLAGS(SECT_4K) }, 300 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8) 301 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, 302 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16) 303 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, 304 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128) 305 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 306 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, 307 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256) 308 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 309 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, 310 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512) 311 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) 312 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, 313 { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1) 314 FLAGS(SPI_NOR_NO_ERASE) }, 315 { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256) 316 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ | 317 SPI_NOR_OCTAL_DTR_PP) 318 .fixups = &s28hs512t_fixups, 319 }, 320}; 321 322/** 323 * spansion_nor_clear_sr() - Clear the Status Register. 324 * @nor: pointer to 'struct spi_nor'. 325 */ 326static void spansion_nor_clear_sr(struct spi_nor *nor) 327{ 328 int ret; 329 330 if (nor->spimem) { 331 struct spi_mem_op op = SPANSION_CLSR_OP; 332 333 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 334 335 ret = spi_mem_exec_op(nor->spimem, &op); 336 } else { 337 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, 338 NULL, 0); 339 } 340 341 if (ret) 342 dev_dbg(nor->dev, "error %d clearing SR\n", ret); 343} 344 345/** 346 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the 347 * flash is ready for new commands and clear it if there are any errors. 348 * @nor: pointer to 'struct spi_nor'. 349 * 350 * Return: 1 if ready, 0 if not ready, -errno on errors. 351 */ 352static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) 353{ 354 int ret; 355 356 ret = spi_nor_read_sr(nor, nor->bouncebuf); 357 if (ret) 358 return ret; 359 360 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { 361 if (nor->bouncebuf[0] & SR_E_ERR) 362 dev_err(nor->dev, "Erase Error occurred\n"); 363 else 364 dev_err(nor->dev, "Programming Error occurred\n"); 365 366 spansion_nor_clear_sr(nor); 367 368 /* 369 * WEL bit remains set to one when an erase or page program 370 * error occurs. Issue a Write Disable command to protect 371 * against inadvertent writes that can possibly corrupt the 372 * contents of the memory. 373 */ 374 ret = spi_nor_write_disable(nor); 375 if (ret) 376 return ret; 377 378 return -EIO; 379 } 380 381 return !(nor->bouncebuf[0] & SR_WIP); 382} 383 384static void spansion_nor_late_init(struct spi_nor *nor) 385{ 386 if (nor->params->size > SZ_16M) { 387 nor->flags |= SNOR_F_4B_OPCODES; 388 /* No small sector erase for 4-byte command set */ 389 nor->erase_opcode = SPINOR_OP_SE; 390 nor->mtd.erasesize = nor->info->sector_size; 391 } 392 393 if (nor->info->mfr_flags & USE_CLSR) 394 nor->params->ready = spansion_nor_sr_ready_and_clear; 395} 396 397static const struct spi_nor_fixups spansion_nor_fixups = { 398 .late_init = spansion_nor_late_init, 399}; 400 401const struct spi_nor_manufacturer spi_nor_spansion = { 402 .name = "spansion", 403 .parts = spansion_nor_parts, 404 .nparts = ARRAY_SIZE(spansion_nor_parts), 405 .fixups = &spansion_nor_fixups, 406};