cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mtd_nandecctest.c (8534B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
      3
      4#include <linux/kernel.h>
      5#include <linux/module.h>
      6#include <linux/list.h>
      7#include <linux/random.h>
      8#include <linux/string.h>
      9#include <linux/bitops.h>
     10#include <linux/slab.h>
     11#include <linux/mtd/nand-ecc-sw-hamming.h>
     12
     13#include "mtd_test.h"
     14
     15/*
     16 * Test the implementation for software ECC
     17 *
     18 * No actual MTD device is needed, So we don't need to warry about losing
     19 * important data by human error.
     20 *
     21 * This covers possible patterns of corruption which can be reliably corrected
     22 * or detected.
     23 */
     24
     25#if IS_ENABLED(CONFIG_MTD_RAW_NAND)
     26
     27struct nand_ecc_test {
     28	const char *name;
     29	void (*prepare)(void *, void *, void *, void *, const size_t);
     30	int (*verify)(void *, void *, void *, const size_t);
     31};
     32
     33/*
     34 * The reason for this __change_bit_le() instead of __change_bit() is to inject
     35 * bit error properly within the region which is not a multiple of
     36 * sizeof(unsigned long) on big-endian systems
     37 */
     38#ifdef __LITTLE_ENDIAN
     39#define __change_bit_le(nr, addr) __change_bit(nr, addr)
     40#elif defined(__BIG_ENDIAN)
     41#define __change_bit_le(nr, addr) \
     42		__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
     43#else
     44#error "Unknown byte order"
     45#endif
     46
     47static void single_bit_error_data(void *error_data, void *correct_data,
     48				size_t size)
     49{
     50	unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
     51
     52	memcpy(error_data, correct_data, size);
     53	__change_bit_le(offset, error_data);
     54}
     55
     56static void double_bit_error_data(void *error_data, void *correct_data,
     57				size_t size)
     58{
     59	unsigned int offset[2];
     60
     61	offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
     62	do {
     63		offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
     64	} while (offset[0] == offset[1]);
     65
     66	memcpy(error_data, correct_data, size);
     67
     68	__change_bit_le(offset[0], error_data);
     69	__change_bit_le(offset[1], error_data);
     70}
     71
     72static unsigned int random_ecc_bit(size_t size)
     73{
     74	unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
     75
     76	if (size == 256) {
     77		/*
     78		 * Don't inject a bit error into the insignificant bits (16th
     79		 * and 17th bit) in ECC code for 256 byte data block
     80		 */
     81		while (offset == 16 || offset == 17)
     82			offset = prandom_u32() % (3 * BITS_PER_BYTE);
     83	}
     84
     85	return offset;
     86}
     87
     88static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
     89				size_t size)
     90{
     91	unsigned int offset = random_ecc_bit(size);
     92
     93	memcpy(error_ecc, correct_ecc, 3);
     94	__change_bit_le(offset, error_ecc);
     95}
     96
     97static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
     98				size_t size)
     99{
    100	unsigned int offset[2];
    101
    102	offset[0] = random_ecc_bit(size);
    103	do {
    104		offset[1] = random_ecc_bit(size);
    105	} while (offset[0] == offset[1]);
    106
    107	memcpy(error_ecc, correct_ecc, 3);
    108	__change_bit_le(offset[0], error_ecc);
    109	__change_bit_le(offset[1], error_ecc);
    110}
    111
    112static void no_bit_error(void *error_data, void *error_ecc,
    113		void *correct_data, void *correct_ecc, const size_t size)
    114{
    115	memcpy(error_data, correct_data, size);
    116	memcpy(error_ecc, correct_ecc, 3);
    117}
    118
    119static int no_bit_error_verify(void *error_data, void *error_ecc,
    120				void *correct_data, const size_t size)
    121{
    122	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
    123	unsigned char calc_ecc[3];
    124	int ret;
    125
    126	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
    127	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
    128				     sm_order);
    129	if (ret == 0 && !memcmp(correct_data, error_data, size))
    130		return 0;
    131
    132	return -EINVAL;
    133}
    134
    135static void single_bit_error_in_data(void *error_data, void *error_ecc,
    136		void *correct_data, void *correct_ecc, const size_t size)
    137{
    138	single_bit_error_data(error_data, correct_data, size);
    139	memcpy(error_ecc, correct_ecc, 3);
    140}
    141
    142static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
    143		void *correct_data, void *correct_ecc, const size_t size)
    144{
    145	memcpy(error_data, correct_data, size);
    146	single_bit_error_ecc(error_ecc, correct_ecc, size);
    147}
    148
    149static int single_bit_error_correct(void *error_data, void *error_ecc,
    150				void *correct_data, const size_t size)
    151{
    152	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
    153	unsigned char calc_ecc[3];
    154	int ret;
    155
    156	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
    157	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
    158				     sm_order);
    159	if (ret == 1 && !memcmp(correct_data, error_data, size))
    160		return 0;
    161
    162	return -EINVAL;
    163}
    164
    165static void double_bit_error_in_data(void *error_data, void *error_ecc,
    166		void *correct_data, void *correct_ecc, const size_t size)
    167{
    168	double_bit_error_data(error_data, correct_data, size);
    169	memcpy(error_ecc, correct_ecc, 3);
    170}
    171
    172static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
    173		void *correct_data, void *correct_ecc, const size_t size)
    174{
    175	single_bit_error_data(error_data, correct_data, size);
    176	single_bit_error_ecc(error_ecc, correct_ecc, size);
    177}
    178
    179static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
    180		void *correct_data, void *correct_ecc, const size_t size)
    181{
    182	memcpy(error_data, correct_data, size);
    183	double_bit_error_ecc(error_ecc, correct_ecc, size);
    184}
    185
    186static int double_bit_error_detect(void *error_data, void *error_ecc,
    187				void *correct_data, const size_t size)
    188{
    189	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
    190	unsigned char calc_ecc[3];
    191	int ret;
    192
    193	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
    194	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
    195				     sm_order);
    196
    197	return (ret == -EBADMSG) ? 0 : -EINVAL;
    198}
    199
    200static const struct nand_ecc_test nand_ecc_test[] = {
    201	{
    202		.name = "no-bit-error",
    203		.prepare = no_bit_error,
    204		.verify = no_bit_error_verify,
    205	},
    206	{
    207		.name = "single-bit-error-in-data-correct",
    208		.prepare = single_bit_error_in_data,
    209		.verify = single_bit_error_correct,
    210	},
    211	{
    212		.name = "single-bit-error-in-ecc-correct",
    213		.prepare = single_bit_error_in_ecc,
    214		.verify = single_bit_error_correct,
    215	},
    216	{
    217		.name = "double-bit-error-in-data-detect",
    218		.prepare = double_bit_error_in_data,
    219		.verify = double_bit_error_detect,
    220	},
    221	{
    222		.name = "single-bit-error-in-data-and-ecc-detect",
    223		.prepare = single_bit_error_in_data_and_ecc,
    224		.verify = double_bit_error_detect,
    225	},
    226	{
    227		.name = "double-bit-error-in-ecc-detect",
    228		.prepare = double_bit_error_in_ecc,
    229		.verify = double_bit_error_detect,
    230	},
    231};
    232
    233static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
    234			void *correct_ecc, const size_t size)
    235{
    236	pr_info("hexdump of error data:\n");
    237	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
    238			error_data, size, false);
    239	print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
    240			DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
    241
    242	pr_info("hexdump of correct data:\n");
    243	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
    244			correct_data, size, false);
    245	print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
    246			DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
    247}
    248
    249static int nand_ecc_test_run(const size_t size)
    250{
    251	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
    252	int i;
    253	int err = 0;
    254	void *error_data;
    255	void *error_ecc;
    256	void *correct_data;
    257	void *correct_ecc;
    258
    259	error_data = kmalloc(size, GFP_KERNEL);
    260	error_ecc = kmalloc(3, GFP_KERNEL);
    261	correct_data = kmalloc(size, GFP_KERNEL);
    262	correct_ecc = kmalloc(3, GFP_KERNEL);
    263
    264	if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
    265		err = -ENOMEM;
    266		goto error;
    267	}
    268
    269	prandom_bytes(correct_data, size);
    270	ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order);
    271	for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
    272		nand_ecc_test[i].prepare(error_data, error_ecc,
    273				correct_data, correct_ecc, size);
    274		err = nand_ecc_test[i].verify(error_data, error_ecc,
    275						correct_data, size);
    276
    277		if (err) {
    278			pr_err("not ok - %s-%zd\n",
    279				nand_ecc_test[i].name, size);
    280			dump_data_ecc(error_data, error_ecc,
    281				correct_data, correct_ecc, size);
    282			break;
    283		}
    284		pr_info("ok - %s-%zd\n",
    285			nand_ecc_test[i].name, size);
    286
    287		err = mtdtest_relax();
    288		if (err)
    289			break;
    290	}
    291error:
    292	kfree(error_data);
    293	kfree(error_ecc);
    294	kfree(correct_data);
    295	kfree(correct_ecc);
    296
    297	return err;
    298}
    299
    300#else
    301
    302static int nand_ecc_test_run(const size_t size)
    303{
    304	return 0;
    305}
    306
    307#endif
    308
    309static int __init ecc_test_init(void)
    310{
    311	int err;
    312
    313	err = nand_ecc_test_run(256);
    314	if (err)
    315		return err;
    316
    317	return nand_ecc_test_run(512);
    318}
    319
    320static void __exit ecc_test_exit(void)
    321{
    322}
    323
    324module_init(ecc_test_init);
    325module_exit(ecc_test_exit);
    326
    327MODULE_DESCRIPTION("NAND ECC function test module");
    328MODULE_AUTHOR("Akinobu Mita");
    329MODULE_LICENSE("GPL");