build.c (43272B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10/* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19#include <linux/err.h> 20#include <linux/module.h> 21#include <linux/moduleparam.h> 22#include <linux/stringify.h> 23#include <linux/namei.h> 24#include <linux/stat.h> 25#include <linux/miscdevice.h> 26#include <linux/mtd/partitions.h> 27#include <linux/log2.h> 28#include <linux/kthread.h> 29#include <linux/kernel.h> 30#include <linux/slab.h> 31#include <linux/major.h> 32#include "ubi.h" 33 34/* Maximum length of the 'mtd=' parameter */ 35#define MTD_PARAM_LEN_MAX 64 36 37/* Maximum number of comma-separated items in the 'mtd=' parameter */ 38#define MTD_PARAM_MAX_COUNT 4 39 40/* Maximum value for the number of bad PEBs per 1024 PEBs */ 41#define MAX_MTD_UBI_BEB_LIMIT 768 42 43#ifdef CONFIG_MTD_UBI_MODULE 44#define ubi_is_module() 1 45#else 46#define ubi_is_module() 0 47#endif 48 49/** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 */ 57struct mtd_dev_param { 58 char name[MTD_PARAM_LEN_MAX]; 59 int ubi_num; 60 int vid_hdr_offs; 61 int max_beb_per1024; 62}; 63 64/* Numbers of elements set in the @mtd_dev_param array */ 65static int mtd_devs; 66 67/* MTD devices specification parameters */ 68static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 69#ifdef CONFIG_MTD_UBI_FASTMAP 70/* UBI module parameter to enable fastmap automatically on non-fastmap images */ 71static bool fm_autoconvert; 72static bool fm_debug; 73#endif 74 75/* Slab cache for wear-leveling entries */ 76struct kmem_cache *ubi_wl_entry_slab; 77 78/* UBI control character device */ 79static struct miscdevice ubi_ctrl_cdev = { 80 .minor = MISC_DYNAMIC_MINOR, 81 .name = "ubi_ctrl", 82 .fops = &ubi_ctrl_cdev_operations, 83}; 84 85/* All UBI devices in system */ 86static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 87 88/* Serializes UBI devices creations and removals */ 89DEFINE_MUTEX(ubi_devices_mutex); 90 91/* Protects @ubi_devices and @ubi->ref_count */ 92static DEFINE_SPINLOCK(ubi_devices_lock); 93 94/* "Show" method for files in '/<sysfs>/class/ubi/' */ 95/* UBI version attribute ('/<sysfs>/class/ubi/version') */ 96static ssize_t version_show(struct class *class, struct class_attribute *attr, 97 char *buf) 98{ 99 return sprintf(buf, "%d\n", UBI_VERSION); 100} 101static CLASS_ATTR_RO(version); 102 103static struct attribute *ubi_class_attrs[] = { 104 &class_attr_version.attr, 105 NULL, 106}; 107ATTRIBUTE_GROUPS(ubi_class); 108 109/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 110struct class ubi_class = { 111 .name = UBI_NAME_STR, 112 .owner = THIS_MODULE, 113 .class_groups = ubi_class_groups, 114}; 115 116static ssize_t dev_attribute_show(struct device *dev, 117 struct device_attribute *attr, char *buf); 118 119/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 120static struct device_attribute dev_eraseblock_size = 121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 122static struct device_attribute dev_avail_eraseblocks = 123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 124static struct device_attribute dev_total_eraseblocks = 125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126static struct device_attribute dev_volumes_count = 127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 128static struct device_attribute dev_max_ec = 129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 130static struct device_attribute dev_reserved_for_bad = 131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 132static struct device_attribute dev_bad_peb_count = 133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 134static struct device_attribute dev_max_vol_count = 135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 136static struct device_attribute dev_min_io_size = 137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 138static struct device_attribute dev_bgt_enabled = 139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 140static struct device_attribute dev_mtd_num = 141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 142static struct device_attribute dev_ro_mode = 143 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 144 145/** 146 * ubi_volume_notify - send a volume change notification. 147 * @ubi: UBI device description object 148 * @vol: volume description object of the changed volume 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 150 * 151 * This is a helper function which notifies all subscribers about a volume 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns 153 * zero in case of success and a negative error code in case of failure. 154 */ 155int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 156{ 157 int ret; 158 struct ubi_notification nt; 159 160 ubi_do_get_device_info(ubi, &nt.di); 161 ubi_do_get_volume_info(ubi, vol, &nt.vi); 162 163 switch (ntype) { 164 case UBI_VOLUME_ADDED: 165 case UBI_VOLUME_REMOVED: 166 case UBI_VOLUME_RESIZED: 167 case UBI_VOLUME_RENAMED: 168 ret = ubi_update_fastmap(ubi); 169 if (ret) 170 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 171 } 172 173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 174} 175 176/** 177 * ubi_notify_all - send a notification to all volumes. 178 * @ubi: UBI device description object 179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 180 * @nb: the notifier to call 181 * 182 * This function walks all volumes of UBI device @ubi and sends the @ntype 183 * notification for each volume. If @nb is %NULL, then all registered notifiers 184 * are called, otherwise only the @nb notifier is called. Returns the number of 185 * sent notifications. 186 */ 187int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 188{ 189 struct ubi_notification nt; 190 int i, count = 0; 191 192 ubi_do_get_device_info(ubi, &nt.di); 193 194 mutex_lock(&ubi->device_mutex); 195 for (i = 0; i < ubi->vtbl_slots; i++) { 196 /* 197 * Since the @ubi->device is locked, and we are not going to 198 * change @ubi->volumes, we do not have to lock 199 * @ubi->volumes_lock. 200 */ 201 if (!ubi->volumes[i]) 202 continue; 203 204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 205 if (nb) 206 nb->notifier_call(nb, ntype, &nt); 207 else 208 blocking_notifier_call_chain(&ubi_notifiers, ntype, 209 &nt); 210 count += 1; 211 } 212 mutex_unlock(&ubi->device_mutex); 213 214 return count; 215} 216 217/** 218 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 219 * @nb: the notifier to call 220 * 221 * This function walks all UBI devices and volumes and sends the 222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 223 * registered notifiers are called, otherwise only the @nb notifier is called. 224 * Returns the number of sent notifications. 225 */ 226int ubi_enumerate_volumes(struct notifier_block *nb) 227{ 228 int i, count = 0; 229 230 /* 231 * Since the @ubi_devices_mutex is locked, and we are not going to 232 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 233 */ 234 for (i = 0; i < UBI_MAX_DEVICES; i++) { 235 struct ubi_device *ubi = ubi_devices[i]; 236 237 if (!ubi) 238 continue; 239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 240 } 241 242 return count; 243} 244 245/** 246 * ubi_get_device - get UBI device. 247 * @ubi_num: UBI device number 248 * 249 * This function returns UBI device description object for UBI device number 250 * @ubi_num, or %NULL if the device does not exist. This function increases the 251 * device reference count to prevent removal of the device. In other words, the 252 * device cannot be removed if its reference count is not zero. 253 */ 254struct ubi_device *ubi_get_device(int ubi_num) 255{ 256 struct ubi_device *ubi; 257 258 spin_lock(&ubi_devices_lock); 259 ubi = ubi_devices[ubi_num]; 260 if (ubi) { 261 ubi_assert(ubi->ref_count >= 0); 262 ubi->ref_count += 1; 263 get_device(&ubi->dev); 264 } 265 spin_unlock(&ubi_devices_lock); 266 267 return ubi; 268} 269 270/** 271 * ubi_put_device - drop an UBI device reference. 272 * @ubi: UBI device description object 273 */ 274void ubi_put_device(struct ubi_device *ubi) 275{ 276 spin_lock(&ubi_devices_lock); 277 ubi->ref_count -= 1; 278 put_device(&ubi->dev); 279 spin_unlock(&ubi_devices_lock); 280} 281 282/** 283 * ubi_get_by_major - get UBI device by character device major number. 284 * @major: major number 285 * 286 * This function is similar to 'ubi_get_device()', but it searches the device 287 * by its major number. 288 */ 289struct ubi_device *ubi_get_by_major(int major) 290{ 291 int i; 292 struct ubi_device *ubi; 293 294 spin_lock(&ubi_devices_lock); 295 for (i = 0; i < UBI_MAX_DEVICES; i++) { 296 ubi = ubi_devices[i]; 297 if (ubi && MAJOR(ubi->cdev.dev) == major) { 298 ubi_assert(ubi->ref_count >= 0); 299 ubi->ref_count += 1; 300 get_device(&ubi->dev); 301 spin_unlock(&ubi_devices_lock); 302 return ubi; 303 } 304 } 305 spin_unlock(&ubi_devices_lock); 306 307 return NULL; 308} 309 310/** 311 * ubi_major2num - get UBI device number by character device major number. 312 * @major: major number 313 * 314 * This function searches UBI device number object by its major number. If UBI 315 * device was not found, this function returns -ENODEV, otherwise the UBI device 316 * number is returned. 317 */ 318int ubi_major2num(int major) 319{ 320 int i, ubi_num = -ENODEV; 321 322 spin_lock(&ubi_devices_lock); 323 for (i = 0; i < UBI_MAX_DEVICES; i++) { 324 struct ubi_device *ubi = ubi_devices[i]; 325 326 if (ubi && MAJOR(ubi->cdev.dev) == major) { 327 ubi_num = ubi->ubi_num; 328 break; 329 } 330 } 331 spin_unlock(&ubi_devices_lock); 332 333 return ubi_num; 334} 335 336/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 337static ssize_t dev_attribute_show(struct device *dev, 338 struct device_attribute *attr, char *buf) 339{ 340 ssize_t ret; 341 struct ubi_device *ubi; 342 343 /* 344 * The below code looks weird, but it actually makes sense. We get the 345 * UBI device reference from the contained 'struct ubi_device'. But it 346 * is unclear if the device was removed or not yet. Indeed, if the 347 * device was removed before we increased its reference count, 348 * 'ubi_get_device()' will return -ENODEV and we fail. 349 * 350 * Remember, 'struct ubi_device' is freed in the release function, so 351 * we still can use 'ubi->ubi_num'. 352 */ 353 ubi = container_of(dev, struct ubi_device, dev); 354 355 if (attr == &dev_eraseblock_size) 356 ret = sprintf(buf, "%d\n", ubi->leb_size); 357 else if (attr == &dev_avail_eraseblocks) 358 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 359 else if (attr == &dev_total_eraseblocks) 360 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 361 else if (attr == &dev_volumes_count) 362 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 363 else if (attr == &dev_max_ec) 364 ret = sprintf(buf, "%d\n", ubi->max_ec); 365 else if (attr == &dev_reserved_for_bad) 366 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 367 else if (attr == &dev_bad_peb_count) 368 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 369 else if (attr == &dev_max_vol_count) 370 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 371 else if (attr == &dev_min_io_size) 372 ret = sprintf(buf, "%d\n", ubi->min_io_size); 373 else if (attr == &dev_bgt_enabled) 374 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 375 else if (attr == &dev_mtd_num) 376 ret = sprintf(buf, "%d\n", ubi->mtd->index); 377 else if (attr == &dev_ro_mode) 378 ret = sprintf(buf, "%d\n", ubi->ro_mode); 379 else 380 ret = -EINVAL; 381 382 return ret; 383} 384 385static struct attribute *ubi_dev_attrs[] = { 386 &dev_eraseblock_size.attr, 387 &dev_avail_eraseblocks.attr, 388 &dev_total_eraseblocks.attr, 389 &dev_volumes_count.attr, 390 &dev_max_ec.attr, 391 &dev_reserved_for_bad.attr, 392 &dev_bad_peb_count.attr, 393 &dev_max_vol_count.attr, 394 &dev_min_io_size.attr, 395 &dev_bgt_enabled.attr, 396 &dev_mtd_num.attr, 397 &dev_ro_mode.attr, 398 NULL 399}; 400ATTRIBUTE_GROUPS(ubi_dev); 401 402static void dev_release(struct device *dev) 403{ 404 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 405 406 kfree(ubi); 407} 408 409/** 410 * kill_volumes - destroy all user volumes. 411 * @ubi: UBI device description object 412 */ 413static void kill_volumes(struct ubi_device *ubi) 414{ 415 int i; 416 417 for (i = 0; i < ubi->vtbl_slots; i++) 418 if (ubi->volumes[i]) 419 ubi_free_volume(ubi, ubi->volumes[i]); 420} 421 422/** 423 * uif_init - initialize user interfaces for an UBI device. 424 * @ubi: UBI device description object 425 * 426 * This function initializes various user interfaces for an UBI device. If the 427 * initialization fails at an early stage, this function frees all the 428 * resources it allocated, returns an error. 429 * 430 * This function returns zero in case of success and a negative error code in 431 * case of failure. 432 */ 433static int uif_init(struct ubi_device *ubi) 434{ 435 int i, err; 436 dev_t dev; 437 438 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 439 440 /* 441 * Major numbers for the UBI character devices are allocated 442 * dynamically. Major numbers of volume character devices are 443 * equivalent to ones of the corresponding UBI character device. Minor 444 * numbers of UBI character devices are 0, while minor numbers of 445 * volume character devices start from 1. Thus, we allocate one major 446 * number and ubi->vtbl_slots + 1 minor numbers. 447 */ 448 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 449 if (err) { 450 ubi_err(ubi, "cannot register UBI character devices"); 451 return err; 452 } 453 454 ubi->dev.devt = dev; 455 456 ubi_assert(MINOR(dev) == 0); 457 cdev_init(&ubi->cdev, &ubi_cdev_operations); 458 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 459 ubi->cdev.owner = THIS_MODULE; 460 461 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 462 err = cdev_device_add(&ubi->cdev, &ubi->dev); 463 if (err) 464 goto out_unreg; 465 466 for (i = 0; i < ubi->vtbl_slots; i++) 467 if (ubi->volumes[i]) { 468 err = ubi_add_volume(ubi, ubi->volumes[i]); 469 if (err) { 470 ubi_err(ubi, "cannot add volume %d", i); 471 goto out_volumes; 472 } 473 } 474 475 return 0; 476 477out_volumes: 478 kill_volumes(ubi); 479 cdev_device_del(&ubi->cdev, &ubi->dev); 480out_unreg: 481 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 482 ubi_err(ubi, "cannot initialize UBI %s, error %d", 483 ubi->ubi_name, err); 484 return err; 485} 486 487/** 488 * uif_close - close user interfaces for an UBI device. 489 * @ubi: UBI device description object 490 * 491 * Note, since this function un-registers UBI volume device objects (@vol->dev), 492 * the memory allocated voe the volumes is freed as well (in the release 493 * function). 494 */ 495static void uif_close(struct ubi_device *ubi) 496{ 497 kill_volumes(ubi); 498 cdev_device_del(&ubi->cdev, &ubi->dev); 499 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 500} 501 502/** 503 * ubi_free_volumes_from - free volumes from specific index. 504 * @ubi: UBI device description object 505 * @from: the start index used for volume free. 506 */ 507static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 508{ 509 int i; 510 511 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 512 if (!ubi->volumes[i]) 513 continue; 514 ubi_eba_replace_table(ubi->volumes[i], NULL); 515 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 516 kfree(ubi->volumes[i]); 517 ubi->volumes[i] = NULL; 518 } 519} 520 521/** 522 * ubi_free_all_volumes - free all volumes. 523 * @ubi: UBI device description object 524 */ 525void ubi_free_all_volumes(struct ubi_device *ubi) 526{ 527 ubi_free_volumes_from(ubi, 0); 528} 529 530/** 531 * ubi_free_internal_volumes - free internal volumes. 532 * @ubi: UBI device description object 533 */ 534void ubi_free_internal_volumes(struct ubi_device *ubi) 535{ 536 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 537} 538 539static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 540{ 541 int limit, device_pebs; 542 uint64_t device_size; 543 544 if (!max_beb_per1024) { 545 /* 546 * Since max_beb_per1024 has not been set by the user in either 547 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 548 * limit if it is supported by the device. 549 */ 550 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 551 if (limit < 0) 552 return 0; 553 return limit; 554 } 555 556 /* 557 * Here we are using size of the entire flash chip and 558 * not just the MTD partition size because the maximum 559 * number of bad eraseblocks is a percentage of the 560 * whole device and bad eraseblocks are not fairly 561 * distributed over the flash chip. So the worst case 562 * is that all the bad eraseblocks of the chip are in 563 * the MTD partition we are attaching (ubi->mtd). 564 */ 565 device_size = mtd_get_device_size(ubi->mtd); 566 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 567 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 568 569 /* Round it up */ 570 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 571 limit += 1; 572 573 return limit; 574} 575 576/** 577 * io_init - initialize I/O sub-system for a given UBI device. 578 * @ubi: UBI device description object 579 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 580 * 581 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 582 * assumed: 583 * o EC header is always at offset zero - this cannot be changed; 584 * o VID header starts just after the EC header at the closest address 585 * aligned to @io->hdrs_min_io_size; 586 * o data starts just after the VID header at the closest address aligned to 587 * @io->min_io_size 588 * 589 * This function returns zero in case of success and a negative error code in 590 * case of failure. 591 */ 592static int io_init(struct ubi_device *ubi, int max_beb_per1024) 593{ 594 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 595 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 596 597 if (ubi->mtd->numeraseregions != 0) { 598 /* 599 * Some flashes have several erase regions. Different regions 600 * may have different eraseblock size and other 601 * characteristics. It looks like mostly multi-region flashes 602 * have one "main" region and one or more small regions to 603 * store boot loader code or boot parameters or whatever. I 604 * guess we should just pick the largest region. But this is 605 * not implemented. 606 */ 607 ubi_err(ubi, "multiple regions, not implemented"); 608 return -EINVAL; 609 } 610 611 if (ubi->vid_hdr_offset < 0) 612 return -EINVAL; 613 614 /* 615 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 616 * physical eraseblocks maximum. 617 */ 618 619 ubi->peb_size = ubi->mtd->erasesize; 620 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 621 ubi->flash_size = ubi->mtd->size; 622 623 if (mtd_can_have_bb(ubi->mtd)) { 624 ubi->bad_allowed = 1; 625 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 626 } 627 628 if (ubi->mtd->type == MTD_NORFLASH) 629 ubi->nor_flash = 1; 630 631 ubi->min_io_size = ubi->mtd->writesize; 632 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 633 634 /* 635 * Make sure minimal I/O unit is power of 2. Note, there is no 636 * fundamental reason for this assumption. It is just an optimization 637 * which allows us to avoid costly division operations. 638 */ 639 if (!is_power_of_2(ubi->min_io_size)) { 640 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 641 ubi->min_io_size); 642 return -EINVAL; 643 } 644 645 ubi_assert(ubi->hdrs_min_io_size > 0); 646 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 647 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 648 649 ubi->max_write_size = ubi->mtd->writebufsize; 650 /* 651 * Maximum write size has to be greater or equivalent to min. I/O 652 * size, and be multiple of min. I/O size. 653 */ 654 if (ubi->max_write_size < ubi->min_io_size || 655 ubi->max_write_size % ubi->min_io_size || 656 !is_power_of_2(ubi->max_write_size)) { 657 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 658 ubi->max_write_size, ubi->min_io_size); 659 return -EINVAL; 660 } 661 662 /* Calculate default aligned sizes of EC and VID headers */ 663 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 664 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 665 666 dbg_gen("min_io_size %d", ubi->min_io_size); 667 dbg_gen("max_write_size %d", ubi->max_write_size); 668 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 669 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 670 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 671 672 if (ubi->vid_hdr_offset == 0) 673 /* Default offset */ 674 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 675 ubi->ec_hdr_alsize; 676 else { 677 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 678 ~(ubi->hdrs_min_io_size - 1); 679 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 680 ubi->vid_hdr_aloffset; 681 } 682 683 /* Similar for the data offset */ 684 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 685 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 686 687 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 688 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 689 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 690 dbg_gen("leb_start %d", ubi->leb_start); 691 692 /* The shift must be aligned to 32-bit boundary */ 693 if (ubi->vid_hdr_shift % 4) { 694 ubi_err(ubi, "unaligned VID header shift %d", 695 ubi->vid_hdr_shift); 696 return -EINVAL; 697 } 698 699 /* Check sanity */ 700 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 701 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 702 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 703 ubi->leb_start & (ubi->min_io_size - 1)) { 704 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 705 ubi->vid_hdr_offset, ubi->leb_start); 706 return -EINVAL; 707 } 708 709 /* 710 * Set maximum amount of physical erroneous eraseblocks to be 10%. 711 * Erroneous PEB are those which have read errors. 712 */ 713 ubi->max_erroneous = ubi->peb_count / 10; 714 if (ubi->max_erroneous < 16) 715 ubi->max_erroneous = 16; 716 dbg_gen("max_erroneous %d", ubi->max_erroneous); 717 718 /* 719 * It may happen that EC and VID headers are situated in one minimal 720 * I/O unit. In this case we can only accept this UBI image in 721 * read-only mode. 722 */ 723 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 724 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 725 ubi->ro_mode = 1; 726 } 727 728 ubi->leb_size = ubi->peb_size - ubi->leb_start; 729 730 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 731 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 732 ubi->mtd->index); 733 ubi->ro_mode = 1; 734 } 735 736 /* 737 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 738 * unfortunately, MTD does not provide this information. We should loop 739 * over all physical eraseblocks and invoke mtd->block_is_bad() for 740 * each physical eraseblock. So, we leave @ubi->bad_peb_count 741 * uninitialized so far. 742 */ 743 744 return 0; 745} 746 747/** 748 * autoresize - re-size the volume which has the "auto-resize" flag set. 749 * @ubi: UBI device description object 750 * @vol_id: ID of the volume to re-size 751 * 752 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 753 * the volume table to the largest possible size. See comments in ubi-header.h 754 * for more description of the flag. Returns zero in case of success and a 755 * negative error code in case of failure. 756 */ 757static int autoresize(struct ubi_device *ubi, int vol_id) 758{ 759 struct ubi_volume_desc desc; 760 struct ubi_volume *vol = ubi->volumes[vol_id]; 761 int err, old_reserved_pebs = vol->reserved_pebs; 762 763 if (ubi->ro_mode) { 764 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 765 return 0; 766 } 767 768 /* 769 * Clear the auto-resize flag in the volume in-memory copy of the 770 * volume table, and 'ubi_resize_volume()' will propagate this change 771 * to the flash. 772 */ 773 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 774 775 if (ubi->avail_pebs == 0) { 776 struct ubi_vtbl_record vtbl_rec; 777 778 /* 779 * No available PEBs to re-size the volume, clear the flag on 780 * flash and exit. 781 */ 782 vtbl_rec = ubi->vtbl[vol_id]; 783 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 784 if (err) 785 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 786 vol_id); 787 } else { 788 desc.vol = vol; 789 err = ubi_resize_volume(&desc, 790 old_reserved_pebs + ubi->avail_pebs); 791 if (err) 792 ubi_err(ubi, "cannot auto-resize volume %d", 793 vol_id); 794 } 795 796 if (err) 797 return err; 798 799 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 800 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 801 return 0; 802} 803 804/** 805 * ubi_attach_mtd_dev - attach an MTD device. 806 * @mtd: MTD device description object 807 * @ubi_num: number to assign to the new UBI device 808 * @vid_hdr_offset: VID header offset 809 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 810 * 811 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 812 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 813 * which case this function finds a vacant device number and assigns it 814 * automatically. Returns the new UBI device number in case of success and a 815 * negative error code in case of failure. 816 * 817 * Note, the invocations of this function has to be serialized by the 818 * @ubi_devices_mutex. 819 */ 820int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 821 int vid_hdr_offset, int max_beb_per1024) 822{ 823 struct ubi_device *ubi; 824 int i, err; 825 826 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 827 return -EINVAL; 828 829 if (!max_beb_per1024) 830 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 831 832 /* 833 * Check if we already have the same MTD device attached. 834 * 835 * Note, this function assumes that UBI devices creations and deletions 836 * are serialized, so it does not take the &ubi_devices_lock. 837 */ 838 for (i = 0; i < UBI_MAX_DEVICES; i++) { 839 ubi = ubi_devices[i]; 840 if (ubi && mtd->index == ubi->mtd->index) { 841 pr_err("ubi: mtd%d is already attached to ubi%d\n", 842 mtd->index, i); 843 return -EEXIST; 844 } 845 } 846 847 /* 848 * Make sure this MTD device is not emulated on top of an UBI volume 849 * already. Well, generally this recursion works fine, but there are 850 * different problems like the UBI module takes a reference to itself 851 * by attaching (and thus, opening) the emulated MTD device. This 852 * results in inability to unload the module. And in general it makes 853 * no sense to attach emulated MTD devices, so we prohibit this. 854 */ 855 if (mtd->type == MTD_UBIVOLUME) { 856 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 857 mtd->index); 858 return -EINVAL; 859 } 860 861 /* 862 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 863 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 864 * will die soon and you will lose all your data. 865 * Relax this rule if the partition we're attaching to operates in SLC 866 * mode. 867 */ 868 if (mtd->type == MTD_MLCNANDFLASH && 869 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 870 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 871 mtd->index); 872 return -EINVAL; 873 } 874 875 if (ubi_num == UBI_DEV_NUM_AUTO) { 876 /* Search for an empty slot in the @ubi_devices array */ 877 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 878 if (!ubi_devices[ubi_num]) 879 break; 880 if (ubi_num == UBI_MAX_DEVICES) { 881 pr_err("ubi: only %d UBI devices may be created\n", 882 UBI_MAX_DEVICES); 883 return -ENFILE; 884 } 885 } else { 886 if (ubi_num >= UBI_MAX_DEVICES) 887 return -EINVAL; 888 889 /* Make sure ubi_num is not busy */ 890 if (ubi_devices[ubi_num]) { 891 pr_err("ubi: ubi%i already exists\n", ubi_num); 892 return -EEXIST; 893 } 894 } 895 896 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 897 if (!ubi) 898 return -ENOMEM; 899 900 device_initialize(&ubi->dev); 901 ubi->dev.release = dev_release; 902 ubi->dev.class = &ubi_class; 903 ubi->dev.groups = ubi_dev_groups; 904 905 ubi->mtd = mtd; 906 ubi->ubi_num = ubi_num; 907 ubi->vid_hdr_offset = vid_hdr_offset; 908 ubi->autoresize_vol_id = -1; 909 910#ifdef CONFIG_MTD_UBI_FASTMAP 911 ubi->fm_pool.used = ubi->fm_pool.size = 0; 912 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 913 914 /* 915 * fm_pool.max_size is 5% of the total number of PEBs but it's also 916 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 917 */ 918 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 919 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 920 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 921 UBI_FM_MIN_POOL_SIZE); 922 923 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 924 ubi->fm_disabled = !fm_autoconvert; 925 if (fm_debug) 926 ubi_enable_dbg_chk_fastmap(ubi); 927 928 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 929 <= UBI_FM_MAX_START) { 930 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 931 UBI_FM_MAX_START); 932 ubi->fm_disabled = 1; 933 } 934 935 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 936 ubi_msg(ubi, "default fastmap WL pool size: %d", 937 ubi->fm_wl_pool.max_size); 938#else 939 ubi->fm_disabled = 1; 940#endif 941 mutex_init(&ubi->buf_mutex); 942 mutex_init(&ubi->ckvol_mutex); 943 mutex_init(&ubi->device_mutex); 944 spin_lock_init(&ubi->volumes_lock); 945 init_rwsem(&ubi->fm_protect); 946 init_rwsem(&ubi->fm_eba_sem); 947 948 ubi_msg(ubi, "attaching mtd%d", mtd->index); 949 950 err = io_init(ubi, max_beb_per1024); 951 if (err) 952 goto out_free; 953 954 err = -ENOMEM; 955 ubi->peb_buf = vmalloc(ubi->peb_size); 956 if (!ubi->peb_buf) 957 goto out_free; 958 959#ifdef CONFIG_MTD_UBI_FASTMAP 960 ubi->fm_size = ubi_calc_fm_size(ubi); 961 ubi->fm_buf = vzalloc(ubi->fm_size); 962 if (!ubi->fm_buf) 963 goto out_free; 964#endif 965 err = ubi_attach(ubi, 0); 966 if (err) { 967 ubi_err(ubi, "failed to attach mtd%d, error %d", 968 mtd->index, err); 969 goto out_free; 970 } 971 972 if (ubi->autoresize_vol_id != -1) { 973 err = autoresize(ubi, ubi->autoresize_vol_id); 974 if (err) 975 goto out_detach; 976 } 977 978 err = uif_init(ubi); 979 if (err) 980 goto out_detach; 981 982 err = ubi_debugfs_init_dev(ubi); 983 if (err) 984 goto out_uif; 985 986 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 987 if (IS_ERR(ubi->bgt_thread)) { 988 err = PTR_ERR(ubi->bgt_thread); 989 ubi_err(ubi, "cannot spawn \"%s\", error %d", 990 ubi->bgt_name, err); 991 goto out_debugfs; 992 } 993 994 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 995 mtd->index, mtd->name, ubi->flash_size >> 20); 996 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 997 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 998 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 999 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1000 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1001 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1002 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1003 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1004 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1005 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1006 ubi->vtbl_slots); 1007 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1008 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1009 ubi->image_seq); 1010 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1011 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1012 1013 /* 1014 * The below lock makes sure we do not race with 'ubi_thread()' which 1015 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1016 */ 1017 spin_lock(&ubi->wl_lock); 1018 ubi->thread_enabled = 1; 1019 wake_up_process(ubi->bgt_thread); 1020 spin_unlock(&ubi->wl_lock); 1021 1022 ubi_devices[ubi_num] = ubi; 1023 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1024 return ubi_num; 1025 1026out_debugfs: 1027 ubi_debugfs_exit_dev(ubi); 1028out_uif: 1029 uif_close(ubi); 1030out_detach: 1031 ubi_wl_close(ubi); 1032 ubi_free_all_volumes(ubi); 1033 vfree(ubi->vtbl); 1034out_free: 1035 vfree(ubi->peb_buf); 1036 vfree(ubi->fm_buf); 1037 put_device(&ubi->dev); 1038 return err; 1039} 1040 1041/** 1042 * ubi_detach_mtd_dev - detach an MTD device. 1043 * @ubi_num: UBI device number to detach from 1044 * @anyway: detach MTD even if device reference count is not zero 1045 * 1046 * This function destroys an UBI device number @ubi_num and detaches the 1047 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1048 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1049 * exist. 1050 * 1051 * Note, the invocations of this function has to be serialized by the 1052 * @ubi_devices_mutex. 1053 */ 1054int ubi_detach_mtd_dev(int ubi_num, int anyway) 1055{ 1056 struct ubi_device *ubi; 1057 1058 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1059 return -EINVAL; 1060 1061 ubi = ubi_get_device(ubi_num); 1062 if (!ubi) 1063 return -EINVAL; 1064 1065 spin_lock(&ubi_devices_lock); 1066 put_device(&ubi->dev); 1067 ubi->ref_count -= 1; 1068 if (ubi->ref_count) { 1069 if (!anyway) { 1070 spin_unlock(&ubi_devices_lock); 1071 return -EBUSY; 1072 } 1073 /* This may only happen if there is a bug */ 1074 ubi_err(ubi, "%s reference count %d, destroy anyway", 1075 ubi->ubi_name, ubi->ref_count); 1076 } 1077 ubi_devices[ubi_num] = NULL; 1078 spin_unlock(&ubi_devices_lock); 1079 1080 ubi_assert(ubi_num == ubi->ubi_num); 1081 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1082 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1083#ifdef CONFIG_MTD_UBI_FASTMAP 1084 /* If we don't write a new fastmap at detach time we lose all 1085 * EC updates that have been made since the last written fastmap. 1086 * In case of fastmap debugging we omit the update to simulate an 1087 * unclean shutdown. */ 1088 if (!ubi_dbg_chk_fastmap(ubi)) 1089 ubi_update_fastmap(ubi); 1090#endif 1091 /* 1092 * Before freeing anything, we have to stop the background thread to 1093 * prevent it from doing anything on this device while we are freeing. 1094 */ 1095 if (ubi->bgt_thread) 1096 kthread_stop(ubi->bgt_thread); 1097 1098#ifdef CONFIG_MTD_UBI_FASTMAP 1099 cancel_work_sync(&ubi->fm_work); 1100#endif 1101 ubi_debugfs_exit_dev(ubi); 1102 uif_close(ubi); 1103 1104 ubi_wl_close(ubi); 1105 ubi_free_internal_volumes(ubi); 1106 vfree(ubi->vtbl); 1107 vfree(ubi->peb_buf); 1108 vfree(ubi->fm_buf); 1109 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1110 put_mtd_device(ubi->mtd); 1111 put_device(&ubi->dev); 1112 return 0; 1113} 1114 1115/** 1116 * open_mtd_by_chdev - open an MTD device by its character device node path. 1117 * @mtd_dev: MTD character device node path 1118 * 1119 * This helper function opens an MTD device by its character node device path. 1120 * Returns MTD device description object in case of success and a negative 1121 * error code in case of failure. 1122 */ 1123static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1124{ 1125 int err, minor; 1126 struct path path; 1127 struct kstat stat; 1128 1129 /* Probably this is an MTD character device node path */ 1130 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1131 if (err) 1132 return ERR_PTR(err); 1133 1134 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1135 path_put(&path); 1136 if (err) 1137 return ERR_PTR(err); 1138 1139 /* MTD device number is defined by the major / minor numbers */ 1140 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1141 return ERR_PTR(-EINVAL); 1142 1143 minor = MINOR(stat.rdev); 1144 1145 if (minor & 1) 1146 /* 1147 * Just do not think the "/dev/mtdrX" devices support is need, 1148 * so do not support them to avoid doing extra work. 1149 */ 1150 return ERR_PTR(-EINVAL); 1151 1152 return get_mtd_device(NULL, minor / 2); 1153} 1154 1155/** 1156 * open_mtd_device - open MTD device by name, character device path, or number. 1157 * @mtd_dev: name, character device node path, or MTD device device number 1158 * 1159 * This function tries to open and MTD device described by @mtd_dev string, 1160 * which is first treated as ASCII MTD device number, and if it is not true, it 1161 * is treated as MTD device name, and if that is also not true, it is treated 1162 * as MTD character device node path. Returns MTD device description object in 1163 * case of success and a negative error code in case of failure. 1164 */ 1165static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1166{ 1167 struct mtd_info *mtd; 1168 int mtd_num; 1169 char *endp; 1170 1171 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1172 if (*endp != '\0' || mtd_dev == endp) { 1173 /* 1174 * This does not look like an ASCII integer, probably this is 1175 * MTD device name. 1176 */ 1177 mtd = get_mtd_device_nm(mtd_dev); 1178 if (PTR_ERR(mtd) == -ENODEV) 1179 /* Probably this is an MTD character device node path */ 1180 mtd = open_mtd_by_chdev(mtd_dev); 1181 } else 1182 mtd = get_mtd_device(NULL, mtd_num); 1183 1184 return mtd; 1185} 1186 1187static int __init ubi_init(void) 1188{ 1189 int err, i, k; 1190 1191 /* Ensure that EC and VID headers have correct size */ 1192 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1193 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1194 1195 if (mtd_devs > UBI_MAX_DEVICES) { 1196 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1197 UBI_MAX_DEVICES); 1198 return -EINVAL; 1199 } 1200 1201 /* Create base sysfs directory and sysfs files */ 1202 err = class_register(&ubi_class); 1203 if (err < 0) 1204 return err; 1205 1206 err = misc_register(&ubi_ctrl_cdev); 1207 if (err) { 1208 pr_err("UBI error: cannot register device\n"); 1209 goto out; 1210 } 1211 1212 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1213 sizeof(struct ubi_wl_entry), 1214 0, 0, NULL); 1215 if (!ubi_wl_entry_slab) { 1216 err = -ENOMEM; 1217 goto out_dev_unreg; 1218 } 1219 1220 err = ubi_debugfs_init(); 1221 if (err) 1222 goto out_slab; 1223 1224 1225 /* Attach MTD devices */ 1226 for (i = 0; i < mtd_devs; i++) { 1227 struct mtd_dev_param *p = &mtd_dev_param[i]; 1228 struct mtd_info *mtd; 1229 1230 cond_resched(); 1231 1232 mtd = open_mtd_device(p->name); 1233 if (IS_ERR(mtd)) { 1234 err = PTR_ERR(mtd); 1235 pr_err("UBI error: cannot open mtd %s, error %d\n", 1236 p->name, err); 1237 /* See comment below re-ubi_is_module(). */ 1238 if (ubi_is_module()) 1239 goto out_detach; 1240 continue; 1241 } 1242 1243 mutex_lock(&ubi_devices_mutex); 1244 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1245 p->vid_hdr_offs, p->max_beb_per1024); 1246 mutex_unlock(&ubi_devices_mutex); 1247 if (err < 0) { 1248 pr_err("UBI error: cannot attach mtd%d\n", 1249 mtd->index); 1250 put_mtd_device(mtd); 1251 1252 /* 1253 * Originally UBI stopped initializing on any error. 1254 * However, later on it was found out that this 1255 * behavior is not very good when UBI is compiled into 1256 * the kernel and the MTD devices to attach are passed 1257 * through the command line. Indeed, UBI failure 1258 * stopped whole boot sequence. 1259 * 1260 * To fix this, we changed the behavior for the 1261 * non-module case, but preserved the old behavior for 1262 * the module case, just for compatibility. This is a 1263 * little inconsistent, though. 1264 */ 1265 if (ubi_is_module()) 1266 goto out_detach; 1267 } 1268 } 1269 1270 err = ubiblock_init(); 1271 if (err) { 1272 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1273 1274 /* See comment above re-ubi_is_module(). */ 1275 if (ubi_is_module()) 1276 goto out_detach; 1277 } 1278 1279 return 0; 1280 1281out_detach: 1282 for (k = 0; k < i; k++) 1283 if (ubi_devices[k]) { 1284 mutex_lock(&ubi_devices_mutex); 1285 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1286 mutex_unlock(&ubi_devices_mutex); 1287 } 1288 ubi_debugfs_exit(); 1289out_slab: 1290 kmem_cache_destroy(ubi_wl_entry_slab); 1291out_dev_unreg: 1292 misc_deregister(&ubi_ctrl_cdev); 1293out: 1294 class_unregister(&ubi_class); 1295 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1296 return err; 1297} 1298late_initcall(ubi_init); 1299 1300static void __exit ubi_exit(void) 1301{ 1302 int i; 1303 1304 ubiblock_exit(); 1305 1306 for (i = 0; i < UBI_MAX_DEVICES; i++) 1307 if (ubi_devices[i]) { 1308 mutex_lock(&ubi_devices_mutex); 1309 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1310 mutex_unlock(&ubi_devices_mutex); 1311 } 1312 ubi_debugfs_exit(); 1313 kmem_cache_destroy(ubi_wl_entry_slab); 1314 misc_deregister(&ubi_ctrl_cdev); 1315 class_unregister(&ubi_class); 1316} 1317module_exit(ubi_exit); 1318 1319/** 1320 * bytes_str_to_int - convert a number of bytes string into an integer. 1321 * @str: the string to convert 1322 * 1323 * This function returns positive resulting integer in case of success and a 1324 * negative error code in case of failure. 1325 */ 1326static int bytes_str_to_int(const char *str) 1327{ 1328 char *endp; 1329 unsigned long result; 1330 1331 result = simple_strtoul(str, &endp, 0); 1332 if (str == endp || result >= INT_MAX) { 1333 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1334 return -EINVAL; 1335 } 1336 1337 switch (*endp) { 1338 case 'G': 1339 result *= 1024; 1340 fallthrough; 1341 case 'M': 1342 result *= 1024; 1343 fallthrough; 1344 case 'K': 1345 result *= 1024; 1346 break; 1347 case '\0': 1348 break; 1349 default: 1350 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1351 return -EINVAL; 1352 } 1353 1354 return result; 1355} 1356 1357/** 1358 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1359 * @val: the parameter value to parse 1360 * @kp: not used 1361 * 1362 * This function returns zero in case of success and a negative error code in 1363 * case of error. 1364 */ 1365static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1366{ 1367 int i, len; 1368 struct mtd_dev_param *p; 1369 char buf[MTD_PARAM_LEN_MAX]; 1370 char *pbuf = &buf[0]; 1371 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1372 1373 if (!val) 1374 return -EINVAL; 1375 1376 if (mtd_devs == UBI_MAX_DEVICES) { 1377 pr_err("UBI error: too many parameters, max. is %d\n", 1378 UBI_MAX_DEVICES); 1379 return -EINVAL; 1380 } 1381 1382 len = strnlen(val, MTD_PARAM_LEN_MAX); 1383 if (len == MTD_PARAM_LEN_MAX) { 1384 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1385 val, MTD_PARAM_LEN_MAX); 1386 return -EINVAL; 1387 } 1388 1389 if (len == 0) { 1390 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1391 return 0; 1392 } 1393 1394 strcpy(buf, val); 1395 1396 /* Get rid of the final newline */ 1397 if (buf[len - 1] == '\n') 1398 buf[len - 1] = '\0'; 1399 1400 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1401 tokens[i] = strsep(&pbuf, ","); 1402 1403 if (pbuf) { 1404 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1405 return -EINVAL; 1406 } 1407 1408 p = &mtd_dev_param[mtd_devs]; 1409 strcpy(&p->name[0], tokens[0]); 1410 1411 token = tokens[1]; 1412 if (token) { 1413 p->vid_hdr_offs = bytes_str_to_int(token); 1414 1415 if (p->vid_hdr_offs < 0) 1416 return p->vid_hdr_offs; 1417 } 1418 1419 token = tokens[2]; 1420 if (token) { 1421 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1422 1423 if (err) { 1424 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1425 token); 1426 return -EINVAL; 1427 } 1428 } 1429 1430 token = tokens[3]; 1431 if (token) { 1432 int err = kstrtoint(token, 10, &p->ubi_num); 1433 1434 if (err) { 1435 pr_err("UBI error: bad value for ubi_num parameter: %s", 1436 token); 1437 return -EINVAL; 1438 } 1439 } else 1440 p->ubi_num = UBI_DEV_NUM_AUTO; 1441 1442 mtd_devs += 1; 1443 return 0; 1444} 1445 1446module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1447MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1448 "Multiple \"mtd\" parameters may be specified.\n" 1449 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1450 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1451 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1452 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1453 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1454 "\n" 1455 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1456 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1457 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1458 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1459 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1460#ifdef CONFIG_MTD_UBI_FASTMAP 1461module_param(fm_autoconvert, bool, 0644); 1462MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1463module_param(fm_debug, bool, 0); 1464MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1465#endif 1466MODULE_VERSION(__stringify(UBI_VERSION)); 1467MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1468MODULE_AUTHOR("Artem Bityutskiy"); 1469MODULE_LICENSE("GPL");