io.c (41636B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2006, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9/* 10 * UBI input/output sub-system. 11 * 12 * This sub-system provides a uniform way to work with all kinds of the 13 * underlying MTD devices. It also implements handy functions for reading and 14 * writing UBI headers. 15 * 16 * We are trying to have a paranoid mindset and not to trust to what we read 17 * from the flash media in order to be more secure and robust. So this 18 * sub-system validates every single header it reads from the flash media. 19 * 20 * Some words about how the eraseblock headers are stored. 21 * 22 * The erase counter header is always stored at offset zero. By default, the 23 * VID header is stored after the EC header at the closest aligned offset 24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 25 * header at the closest aligned offset. But this default layout may be 26 * changed. For example, for different reasons (e.g., optimization) UBI may be 27 * asked to put the VID header at further offset, and even at an unaligned 28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 29 * proper padding in front of it. Data offset may also be changed but it has to 30 * be aligned. 31 * 32 * About minimal I/O units. In general, UBI assumes flash device model where 33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another 36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 37 * to do different optimizations. 38 * 39 * This is extremely useful in case of NAND flashes which admit of several 40 * write operations to one NAND page. In this case UBI can fit EC and VID 41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 44 * users. 45 * 46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 48 * headers. 49 * 50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 51 * device, e.g., make @ubi->min_io_size = 512 in the example above? 52 * 53 * A: because when writing a sub-page, MTD still writes a full 2K page but the 54 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 56 * Thus, we prefer to use sub-pages only for EC and VID headers. 57 * 58 * As it was noted above, the VID header may start at a non-aligned offset. 59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 60 * the VID header may reside at offset 1984 which is the last 64 bytes of the 61 * last sub-page (EC header is always at offset zero). This causes some 62 * difficulties when reading and writing VID headers. 63 * 64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 65 * the data and want to write this VID header out. As we can only write in 66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 67 * to offset 448 of this buffer. 68 * 69 * The I/O sub-system does the following trick in order to avoid this extra 70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 72 * When the VID header is being written out, it shifts the VID header pointer 73 * back and writes the whole sub-page. 74 */ 75 76#include <linux/crc32.h> 77#include <linux/err.h> 78#include <linux/slab.h> 79#include "ubi.h" 80 81static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 82static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 83static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 84 const struct ubi_ec_hdr *ec_hdr); 85static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 86static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 87 const struct ubi_vid_hdr *vid_hdr); 88static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 89 int offset, int len); 90 91/** 92 * ubi_io_read - read data from a physical eraseblock. 93 * @ubi: UBI device description object 94 * @buf: buffer where to store the read data 95 * @pnum: physical eraseblock number to read from 96 * @offset: offset within the physical eraseblock from where to read 97 * @len: how many bytes to read 98 * 99 * This function reads data from offset @offset of physical eraseblock @pnum 100 * and stores the read data in the @buf buffer. The following return codes are 101 * possible: 102 * 103 * o %0 if all the requested data were successfully read; 104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 105 * correctable bit-flips were detected; this is harmless but may indicate 106 * that this eraseblock may become bad soon (but do not have to); 107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 108 * example it can be an ECC error in case of NAND; this most probably means 109 * that the data is corrupted; 110 * o %-EIO if some I/O error occurred; 111 * o other negative error codes in case of other errors. 112 */ 113int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 114 int len) 115{ 116 int err, retries = 0; 117 size_t read; 118 loff_t addr; 119 120 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 121 122 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 123 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 124 ubi_assert(len > 0); 125 126 err = self_check_not_bad(ubi, pnum); 127 if (err) 128 return err; 129 130 /* 131 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 132 * do not do this, the following may happen: 133 * 1. The buffer contains data from previous operation, e.g., read from 134 * another PEB previously. The data looks like expected, e.g., if we 135 * just do not read anything and return - the caller would not 136 * notice this. E.g., if we are reading a VID header, the buffer may 137 * contain a valid VID header from another PEB. 138 * 2. The driver is buggy and returns us success or -EBADMSG or 139 * -EUCLEAN, but it does not actually put any data to the buffer. 140 * 141 * This may confuse UBI or upper layers - they may think the buffer 142 * contains valid data while in fact it is just old data. This is 143 * especially possible because UBI (and UBIFS) relies on CRC, and 144 * treats data as correct even in case of ECC errors if the CRC is 145 * correct. 146 * 147 * Try to prevent this situation by changing the first byte of the 148 * buffer. 149 */ 150 *((uint8_t *)buf) ^= 0xFF; 151 152 addr = (loff_t)pnum * ubi->peb_size + offset; 153retry: 154 err = mtd_read(ubi->mtd, addr, len, &read, buf); 155 if (err) { 156 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 157 158 if (mtd_is_bitflip(err)) { 159 /* 160 * -EUCLEAN is reported if there was a bit-flip which 161 * was corrected, so this is harmless. 162 * 163 * We do not report about it here unless debugging is 164 * enabled. A corresponding message will be printed 165 * later, when it is has been scrubbed. 166 */ 167 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 168 pnum); 169 ubi_assert(len == read); 170 return UBI_IO_BITFLIPS; 171 } 172 173 if (retries++ < UBI_IO_RETRIES) { 174 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 175 err, errstr, len, pnum, offset, read); 176 yield(); 177 goto retry; 178 } 179 180 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 181 err, errstr, len, pnum, offset, read); 182 dump_stack(); 183 184 /* 185 * The driver should never return -EBADMSG if it failed to read 186 * all the requested data. But some buggy drivers might do 187 * this, so we change it to -EIO. 188 */ 189 if (read != len && mtd_is_eccerr(err)) { 190 ubi_assert(0); 191 err = -EIO; 192 } 193 } else { 194 ubi_assert(len == read); 195 196 if (ubi_dbg_is_bitflip(ubi)) { 197 dbg_gen("bit-flip (emulated)"); 198 err = UBI_IO_BITFLIPS; 199 } 200 } 201 202 return err; 203} 204 205/** 206 * ubi_io_write - write data to a physical eraseblock. 207 * @ubi: UBI device description object 208 * @buf: buffer with the data to write 209 * @pnum: physical eraseblock number to write to 210 * @offset: offset within the physical eraseblock where to write 211 * @len: how many bytes to write 212 * 213 * This function writes @len bytes of data from buffer @buf to offset @offset 214 * of physical eraseblock @pnum. If all the data were successfully written, 215 * zero is returned. If an error occurred, this function returns a negative 216 * error code. If %-EIO is returned, the physical eraseblock most probably went 217 * bad. 218 * 219 * Note, in case of an error, it is possible that something was still written 220 * to the flash media, but may be some garbage. 221 */ 222int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 223 int len) 224{ 225 int err; 226 size_t written; 227 loff_t addr; 228 229 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 230 231 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 232 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 233 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 234 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 235 236 if (ubi->ro_mode) { 237 ubi_err(ubi, "read-only mode"); 238 return -EROFS; 239 } 240 241 err = self_check_not_bad(ubi, pnum); 242 if (err) 243 return err; 244 245 /* The area we are writing to has to contain all 0xFF bytes */ 246 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 247 if (err) 248 return err; 249 250 if (offset >= ubi->leb_start) { 251 /* 252 * We write to the data area of the physical eraseblock. Make 253 * sure it has valid EC and VID headers. 254 */ 255 err = self_check_peb_ec_hdr(ubi, pnum); 256 if (err) 257 return err; 258 err = self_check_peb_vid_hdr(ubi, pnum); 259 if (err) 260 return err; 261 } 262 263 if (ubi_dbg_is_write_failure(ubi)) { 264 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 265 len, pnum, offset); 266 dump_stack(); 267 return -EIO; 268 } 269 270 addr = (loff_t)pnum * ubi->peb_size + offset; 271 err = mtd_write(ubi->mtd, addr, len, &written, buf); 272 if (err) { 273 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 274 err, len, pnum, offset, written); 275 dump_stack(); 276 ubi_dump_flash(ubi, pnum, offset, len); 277 } else 278 ubi_assert(written == len); 279 280 if (!err) { 281 err = self_check_write(ubi, buf, pnum, offset, len); 282 if (err) 283 return err; 284 285 /* 286 * Since we always write sequentially, the rest of the PEB has 287 * to contain only 0xFF bytes. 288 */ 289 offset += len; 290 len = ubi->peb_size - offset; 291 if (len) 292 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 293 } 294 295 return err; 296} 297 298/** 299 * do_sync_erase - synchronously erase a physical eraseblock. 300 * @ubi: UBI device description object 301 * @pnum: the physical eraseblock number to erase 302 * 303 * This function synchronously erases physical eraseblock @pnum and returns 304 * zero in case of success and a negative error code in case of failure. If 305 * %-EIO is returned, the physical eraseblock most probably went bad. 306 */ 307static int do_sync_erase(struct ubi_device *ubi, int pnum) 308{ 309 int err, retries = 0; 310 struct erase_info ei; 311 312 dbg_io("erase PEB %d", pnum); 313 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 314 315 if (ubi->ro_mode) { 316 ubi_err(ubi, "read-only mode"); 317 return -EROFS; 318 } 319 320retry: 321 memset(&ei, 0, sizeof(struct erase_info)); 322 323 ei.addr = (loff_t)pnum * ubi->peb_size; 324 ei.len = ubi->peb_size; 325 326 err = mtd_erase(ubi->mtd, &ei); 327 if (err) { 328 if (retries++ < UBI_IO_RETRIES) { 329 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 330 err, pnum); 331 yield(); 332 goto retry; 333 } 334 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 335 dump_stack(); 336 return err; 337 } 338 339 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 340 if (err) 341 return err; 342 343 if (ubi_dbg_is_erase_failure(ubi)) { 344 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 345 return -EIO; 346 } 347 348 return 0; 349} 350 351/* Patterns to write to a physical eraseblock when torturing it */ 352static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 353 354/** 355 * torture_peb - test a supposedly bad physical eraseblock. 356 * @ubi: UBI device description object 357 * @pnum: the physical eraseblock number to test 358 * 359 * This function returns %-EIO if the physical eraseblock did not pass the 360 * test, a positive number of erase operations done if the test was 361 * successfully passed, and other negative error codes in case of other errors. 362 */ 363static int torture_peb(struct ubi_device *ubi, int pnum) 364{ 365 int err, i, patt_count; 366 367 ubi_msg(ubi, "run torture test for PEB %d", pnum); 368 patt_count = ARRAY_SIZE(patterns); 369 ubi_assert(patt_count > 0); 370 371 mutex_lock(&ubi->buf_mutex); 372 for (i = 0; i < patt_count; i++) { 373 err = do_sync_erase(ubi, pnum); 374 if (err) 375 goto out; 376 377 /* Make sure the PEB contains only 0xFF bytes */ 378 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 379 if (err) 380 goto out; 381 382 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 383 if (err == 0) { 384 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 385 pnum); 386 err = -EIO; 387 goto out; 388 } 389 390 /* Write a pattern and check it */ 391 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 392 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 393 if (err) 394 goto out; 395 396 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 397 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 398 if (err) 399 goto out; 400 401 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 402 ubi->peb_size); 403 if (err == 0) { 404 ubi_err(ubi, "pattern %x checking failed for PEB %d", 405 patterns[i], pnum); 406 err = -EIO; 407 goto out; 408 } 409 } 410 411 err = patt_count; 412 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 413 414out: 415 mutex_unlock(&ubi->buf_mutex); 416 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 417 /* 418 * If a bit-flip or data integrity error was detected, the test 419 * has not passed because it happened on a freshly erased 420 * physical eraseblock which means something is wrong with it. 421 */ 422 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 423 pnum); 424 err = -EIO; 425 } 426 return err; 427} 428 429/** 430 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 431 * @ubi: UBI device description object 432 * @pnum: physical eraseblock number to prepare 433 * 434 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 435 * algorithm: the PEB is first filled with zeroes, then it is erased. And 436 * filling with zeroes starts from the end of the PEB. This was observed with 437 * Spansion S29GL512N NOR flash. 438 * 439 * This means that in case of a power cut we may end up with intact data at the 440 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 441 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 442 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 443 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 444 * 445 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 446 * magic numbers in order to invalidate them and prevent the failures. Returns 447 * zero in case of success and a negative error code in case of failure. 448 */ 449static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 450{ 451 int err; 452 size_t written; 453 loff_t addr; 454 uint32_t data = 0; 455 struct ubi_ec_hdr ec_hdr; 456 struct ubi_vid_io_buf vidb; 457 458 /* 459 * Note, we cannot generally define VID header buffers on stack, 460 * because of the way we deal with these buffers (see the header 461 * comment in this file). But we know this is a NOR-specific piece of 462 * code, so we can do this. But yes, this is error-prone and we should 463 * (pre-)allocate VID header buffer instead. 464 */ 465 struct ubi_vid_hdr vid_hdr; 466 467 /* 468 * If VID or EC is valid, we have to corrupt them before erasing. 469 * It is important to first invalidate the EC header, and then the VID 470 * header. Otherwise a power cut may lead to valid EC header and 471 * invalid VID header, in which case UBI will treat this PEB as 472 * corrupted and will try to preserve it, and print scary warnings. 473 */ 474 addr = (loff_t)pnum * ubi->peb_size; 475 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 476 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 477 err != UBI_IO_FF){ 478 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 479 if(err) 480 goto error; 481 } 482 483 ubi_init_vid_buf(ubi, &vidb, &vid_hdr); 484 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb)); 485 486 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0); 487 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 488 err != UBI_IO_FF){ 489 addr += ubi->vid_hdr_aloffset; 490 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 491 if (err) 492 goto error; 493 } 494 return 0; 495 496error: 497 /* 498 * The PEB contains a valid VID or EC header, but we cannot invalidate 499 * it. Supposedly the flash media or the driver is screwed up, so 500 * return an error. 501 */ 502 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 503 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 504 return -EIO; 505} 506 507/** 508 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 509 * @ubi: UBI device description object 510 * @pnum: physical eraseblock number to erase 511 * @torture: if this physical eraseblock has to be tortured 512 * 513 * This function synchronously erases physical eraseblock @pnum. If @torture 514 * flag is not zero, the physical eraseblock is checked by means of writing 515 * different patterns to it and reading them back. If the torturing is enabled, 516 * the physical eraseblock is erased more than once. 517 * 518 * This function returns the number of erasures made in case of success, %-EIO 519 * if the erasure failed or the torturing test failed, and other negative error 520 * codes in case of other errors. Note, %-EIO means that the physical 521 * eraseblock is bad. 522 */ 523int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 524{ 525 int err, ret = 0; 526 527 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 528 529 err = self_check_not_bad(ubi, pnum); 530 if (err != 0) 531 return err; 532 533 if (ubi->ro_mode) { 534 ubi_err(ubi, "read-only mode"); 535 return -EROFS; 536 } 537 538 /* 539 * If the flash is ECC-ed then we have to erase the ECC block before we 540 * can write to it. But the write is in preparation to an erase in the 541 * first place. This means we cannot zero out EC and VID before the 542 * erase and we just have to hope the flash starts erasing from the 543 * start of the page. 544 */ 545 if (ubi->nor_flash && ubi->mtd->writesize == 1) { 546 err = nor_erase_prepare(ubi, pnum); 547 if (err) 548 return err; 549 } 550 551 if (torture) { 552 ret = torture_peb(ubi, pnum); 553 if (ret < 0) 554 return ret; 555 } 556 557 err = do_sync_erase(ubi, pnum); 558 if (err) 559 return err; 560 561 return ret + 1; 562} 563 564/** 565 * ubi_io_is_bad - check if a physical eraseblock is bad. 566 * @ubi: UBI device description object 567 * @pnum: the physical eraseblock number to check 568 * 569 * This function returns a positive number if the physical eraseblock is bad, 570 * zero if not, and a negative error code if an error occurred. 571 */ 572int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 573{ 574 struct mtd_info *mtd = ubi->mtd; 575 576 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 577 578 if (ubi->bad_allowed) { 579 int ret; 580 581 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 582 if (ret < 0) 583 ubi_err(ubi, "error %d while checking if PEB %d is bad", 584 ret, pnum); 585 else if (ret) 586 dbg_io("PEB %d is bad", pnum); 587 return ret; 588 } 589 590 return 0; 591} 592 593/** 594 * ubi_io_mark_bad - mark a physical eraseblock as bad. 595 * @ubi: UBI device description object 596 * @pnum: the physical eraseblock number to mark 597 * 598 * This function returns zero in case of success and a negative error code in 599 * case of failure. 600 */ 601int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 602{ 603 int err; 604 struct mtd_info *mtd = ubi->mtd; 605 606 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 607 608 if (ubi->ro_mode) { 609 ubi_err(ubi, "read-only mode"); 610 return -EROFS; 611 } 612 613 if (!ubi->bad_allowed) 614 return 0; 615 616 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 617 if (err) 618 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 619 return err; 620} 621 622/** 623 * validate_ec_hdr - validate an erase counter header. 624 * @ubi: UBI device description object 625 * @ec_hdr: the erase counter header to check 626 * 627 * This function returns zero if the erase counter header is OK, and %1 if 628 * not. 629 */ 630static int validate_ec_hdr(const struct ubi_device *ubi, 631 const struct ubi_ec_hdr *ec_hdr) 632{ 633 long long ec; 634 int vid_hdr_offset, leb_start; 635 636 ec = be64_to_cpu(ec_hdr->ec); 637 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 638 leb_start = be32_to_cpu(ec_hdr->data_offset); 639 640 if (ec_hdr->version != UBI_VERSION) { 641 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 642 UBI_VERSION, (int)ec_hdr->version); 643 goto bad; 644 } 645 646 if (vid_hdr_offset != ubi->vid_hdr_offset) { 647 ubi_err(ubi, "bad VID header offset %d, expected %d", 648 vid_hdr_offset, ubi->vid_hdr_offset); 649 goto bad; 650 } 651 652 if (leb_start != ubi->leb_start) { 653 ubi_err(ubi, "bad data offset %d, expected %d", 654 leb_start, ubi->leb_start); 655 goto bad; 656 } 657 658 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 659 ubi_err(ubi, "bad erase counter %lld", ec); 660 goto bad; 661 } 662 663 return 0; 664 665bad: 666 ubi_err(ubi, "bad EC header"); 667 ubi_dump_ec_hdr(ec_hdr); 668 dump_stack(); 669 return 1; 670} 671 672/** 673 * ubi_io_read_ec_hdr - read and check an erase counter header. 674 * @ubi: UBI device description object 675 * @pnum: physical eraseblock to read from 676 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 677 * header 678 * @verbose: be verbose if the header is corrupted or was not found 679 * 680 * This function reads erase counter header from physical eraseblock @pnum and 681 * stores it in @ec_hdr. This function also checks CRC checksum of the read 682 * erase counter header. The following codes may be returned: 683 * 684 * o %0 if the CRC checksum is correct and the header was successfully read; 685 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 686 * and corrected by the flash driver; this is harmless but may indicate that 687 * this eraseblock may become bad soon (but may be not); 688 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 689 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 690 * a data integrity error (uncorrectable ECC error in case of NAND); 691 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 692 * o a negative error code in case of failure. 693 */ 694int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 695 struct ubi_ec_hdr *ec_hdr, int verbose) 696{ 697 int err, read_err; 698 uint32_t crc, magic, hdr_crc; 699 700 dbg_io("read EC header from PEB %d", pnum); 701 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 702 703 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 704 if (read_err) { 705 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 706 return read_err; 707 708 /* 709 * We read all the data, but either a correctable bit-flip 710 * occurred, or MTD reported a data integrity error 711 * (uncorrectable ECC error in case of NAND). The former is 712 * harmless, the later may mean that the read data is 713 * corrupted. But we have a CRC check-sum and we will detect 714 * this. If the EC header is still OK, we just report this as 715 * there was a bit-flip, to force scrubbing. 716 */ 717 } 718 719 magic = be32_to_cpu(ec_hdr->magic); 720 if (magic != UBI_EC_HDR_MAGIC) { 721 if (mtd_is_eccerr(read_err)) 722 return UBI_IO_BAD_HDR_EBADMSG; 723 724 /* 725 * The magic field is wrong. Let's check if we have read all 726 * 0xFF. If yes, this physical eraseblock is assumed to be 727 * empty. 728 */ 729 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 730 /* The physical eraseblock is supposedly empty */ 731 if (verbose) 732 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 733 pnum); 734 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 735 pnum); 736 if (!read_err) 737 return UBI_IO_FF; 738 else 739 return UBI_IO_FF_BITFLIPS; 740 } 741 742 /* 743 * This is not a valid erase counter header, and these are not 744 * 0xFF bytes. Report that the header is corrupted. 745 */ 746 if (verbose) { 747 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 748 pnum, magic, UBI_EC_HDR_MAGIC); 749 ubi_dump_ec_hdr(ec_hdr); 750 } 751 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 752 pnum, magic, UBI_EC_HDR_MAGIC); 753 return UBI_IO_BAD_HDR; 754 } 755 756 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 757 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 758 759 if (hdr_crc != crc) { 760 if (verbose) { 761 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 762 pnum, crc, hdr_crc); 763 ubi_dump_ec_hdr(ec_hdr); 764 } 765 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 766 pnum, crc, hdr_crc); 767 768 if (!read_err) 769 return UBI_IO_BAD_HDR; 770 else 771 return UBI_IO_BAD_HDR_EBADMSG; 772 } 773 774 /* And of course validate what has just been read from the media */ 775 err = validate_ec_hdr(ubi, ec_hdr); 776 if (err) { 777 ubi_err(ubi, "validation failed for PEB %d", pnum); 778 return -EINVAL; 779 } 780 781 /* 782 * If there was %-EBADMSG, but the header CRC is still OK, report about 783 * a bit-flip to force scrubbing on this PEB. 784 */ 785 return read_err ? UBI_IO_BITFLIPS : 0; 786} 787 788/** 789 * ubi_io_write_ec_hdr - write an erase counter header. 790 * @ubi: UBI device description object 791 * @pnum: physical eraseblock to write to 792 * @ec_hdr: the erase counter header to write 793 * 794 * This function writes erase counter header described by @ec_hdr to physical 795 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 796 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 797 * field. 798 * 799 * This function returns zero in case of success and a negative error code in 800 * case of failure. If %-EIO is returned, the physical eraseblock most probably 801 * went bad. 802 */ 803int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 804 struct ubi_ec_hdr *ec_hdr) 805{ 806 int err; 807 uint32_t crc; 808 809 dbg_io("write EC header to PEB %d", pnum); 810 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 811 812 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 813 ec_hdr->version = UBI_VERSION; 814 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 815 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 816 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 817 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 818 ec_hdr->hdr_crc = cpu_to_be32(crc); 819 820 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 821 if (err) 822 return err; 823 824 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 825 return -EROFS; 826 827 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 828 return err; 829} 830 831/** 832 * validate_vid_hdr - validate a volume identifier header. 833 * @ubi: UBI device description object 834 * @vid_hdr: the volume identifier header to check 835 * 836 * This function checks that data stored in the volume identifier header 837 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 838 */ 839static int validate_vid_hdr(const struct ubi_device *ubi, 840 const struct ubi_vid_hdr *vid_hdr) 841{ 842 int vol_type = vid_hdr->vol_type; 843 int copy_flag = vid_hdr->copy_flag; 844 int vol_id = be32_to_cpu(vid_hdr->vol_id); 845 int lnum = be32_to_cpu(vid_hdr->lnum); 846 int compat = vid_hdr->compat; 847 int data_size = be32_to_cpu(vid_hdr->data_size); 848 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 849 int data_pad = be32_to_cpu(vid_hdr->data_pad); 850 int data_crc = be32_to_cpu(vid_hdr->data_crc); 851 int usable_leb_size = ubi->leb_size - data_pad; 852 853 if (copy_flag != 0 && copy_flag != 1) { 854 ubi_err(ubi, "bad copy_flag"); 855 goto bad; 856 } 857 858 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 859 data_pad < 0) { 860 ubi_err(ubi, "negative values"); 861 goto bad; 862 } 863 864 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 865 ubi_err(ubi, "bad vol_id"); 866 goto bad; 867 } 868 869 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 870 ubi_err(ubi, "bad compat"); 871 goto bad; 872 } 873 874 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 875 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 876 compat != UBI_COMPAT_REJECT) { 877 ubi_err(ubi, "bad compat"); 878 goto bad; 879 } 880 881 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 882 ubi_err(ubi, "bad vol_type"); 883 goto bad; 884 } 885 886 if (data_pad >= ubi->leb_size / 2) { 887 ubi_err(ubi, "bad data_pad"); 888 goto bad; 889 } 890 891 if (data_size > ubi->leb_size) { 892 ubi_err(ubi, "bad data_size"); 893 goto bad; 894 } 895 896 if (vol_type == UBI_VID_STATIC) { 897 /* 898 * Although from high-level point of view static volumes may 899 * contain zero bytes of data, but no VID headers can contain 900 * zero at these fields, because they empty volumes do not have 901 * mapped logical eraseblocks. 902 */ 903 if (used_ebs == 0) { 904 ubi_err(ubi, "zero used_ebs"); 905 goto bad; 906 } 907 if (data_size == 0) { 908 ubi_err(ubi, "zero data_size"); 909 goto bad; 910 } 911 if (lnum < used_ebs - 1) { 912 if (data_size != usable_leb_size) { 913 ubi_err(ubi, "bad data_size"); 914 goto bad; 915 } 916 } else if (lnum > used_ebs - 1) { 917 ubi_err(ubi, "too high lnum"); 918 goto bad; 919 } 920 } else { 921 if (copy_flag == 0) { 922 if (data_crc != 0) { 923 ubi_err(ubi, "non-zero data CRC"); 924 goto bad; 925 } 926 if (data_size != 0) { 927 ubi_err(ubi, "non-zero data_size"); 928 goto bad; 929 } 930 } else { 931 if (data_size == 0) { 932 ubi_err(ubi, "zero data_size of copy"); 933 goto bad; 934 } 935 } 936 if (used_ebs != 0) { 937 ubi_err(ubi, "bad used_ebs"); 938 goto bad; 939 } 940 } 941 942 return 0; 943 944bad: 945 ubi_err(ubi, "bad VID header"); 946 ubi_dump_vid_hdr(vid_hdr); 947 dump_stack(); 948 return 1; 949} 950 951/** 952 * ubi_io_read_vid_hdr - read and check a volume identifier header. 953 * @ubi: UBI device description object 954 * @pnum: physical eraseblock number to read from 955 * @vidb: the volume identifier buffer to store data in 956 * @verbose: be verbose if the header is corrupted or wasn't found 957 * 958 * This function reads the volume identifier header from physical eraseblock 959 * @pnum and stores it in @vidb. It also checks CRC checksum of the read 960 * volume identifier header. The error codes are the same as in 961 * 'ubi_io_read_ec_hdr()'. 962 * 963 * Note, the implementation of this function is also very similar to 964 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 965 */ 966int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 967 struct ubi_vid_io_buf *vidb, int verbose) 968{ 969 int err, read_err; 970 uint32_t crc, magic, hdr_crc; 971 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 972 void *p = vidb->buffer; 973 974 dbg_io("read VID header from PEB %d", pnum); 975 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 976 977 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 978 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE); 979 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 980 return read_err; 981 982 magic = be32_to_cpu(vid_hdr->magic); 983 if (magic != UBI_VID_HDR_MAGIC) { 984 if (mtd_is_eccerr(read_err)) 985 return UBI_IO_BAD_HDR_EBADMSG; 986 987 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 988 if (verbose) 989 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 990 pnum); 991 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 992 pnum); 993 if (!read_err) 994 return UBI_IO_FF; 995 else 996 return UBI_IO_FF_BITFLIPS; 997 } 998 999 if (verbose) { 1000 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1001 pnum, magic, UBI_VID_HDR_MAGIC); 1002 ubi_dump_vid_hdr(vid_hdr); 1003 } 1004 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1005 pnum, magic, UBI_VID_HDR_MAGIC); 1006 return UBI_IO_BAD_HDR; 1007 } 1008 1009 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1010 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1011 1012 if (hdr_crc != crc) { 1013 if (verbose) { 1014 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1015 pnum, crc, hdr_crc); 1016 ubi_dump_vid_hdr(vid_hdr); 1017 } 1018 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1019 pnum, crc, hdr_crc); 1020 if (!read_err) 1021 return UBI_IO_BAD_HDR; 1022 else 1023 return UBI_IO_BAD_HDR_EBADMSG; 1024 } 1025 1026 err = validate_vid_hdr(ubi, vid_hdr); 1027 if (err) { 1028 ubi_err(ubi, "validation failed for PEB %d", pnum); 1029 return -EINVAL; 1030 } 1031 1032 return read_err ? UBI_IO_BITFLIPS : 0; 1033} 1034 1035/** 1036 * ubi_io_write_vid_hdr - write a volume identifier header. 1037 * @ubi: UBI device description object 1038 * @pnum: the physical eraseblock number to write to 1039 * @vidb: the volume identifier buffer to write 1040 * 1041 * This function writes the volume identifier header described by @vid_hdr to 1042 * physical eraseblock @pnum. This function automatically fills the 1043 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates 1044 * header CRC checksum and stores it at vidb->hdr->hdr_crc. 1045 * 1046 * This function returns zero in case of success and a negative error code in 1047 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1048 * bad. 1049 */ 1050int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1051 struct ubi_vid_io_buf *vidb) 1052{ 1053 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1054 int err; 1055 uint32_t crc; 1056 void *p = vidb->buffer; 1057 1058 dbg_io("write VID header to PEB %d", pnum); 1059 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1060 1061 err = self_check_peb_ec_hdr(ubi, pnum); 1062 if (err) 1063 return err; 1064 1065 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1066 vid_hdr->version = UBI_VERSION; 1067 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1068 vid_hdr->hdr_crc = cpu_to_be32(crc); 1069 1070 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1071 if (err) 1072 return err; 1073 1074 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1075 return -EROFS; 1076 1077 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1078 ubi->vid_hdr_alsize); 1079 return err; 1080} 1081 1082/** 1083 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1084 * @ubi: UBI device description object 1085 * @pnum: physical eraseblock number to check 1086 * 1087 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1088 * it is bad and a negative error code if an error occurred. 1089 */ 1090static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1091{ 1092 int err; 1093 1094 if (!ubi_dbg_chk_io(ubi)) 1095 return 0; 1096 1097 err = ubi_io_is_bad(ubi, pnum); 1098 if (!err) 1099 return err; 1100 1101 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1102 dump_stack(); 1103 return err > 0 ? -EINVAL : err; 1104} 1105 1106/** 1107 * self_check_ec_hdr - check if an erase counter header is all right. 1108 * @ubi: UBI device description object 1109 * @pnum: physical eraseblock number the erase counter header belongs to 1110 * @ec_hdr: the erase counter header to check 1111 * 1112 * This function returns zero if the erase counter header contains valid 1113 * values, and %-EINVAL if not. 1114 */ 1115static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1116 const struct ubi_ec_hdr *ec_hdr) 1117{ 1118 int err; 1119 uint32_t magic; 1120 1121 if (!ubi_dbg_chk_io(ubi)) 1122 return 0; 1123 1124 magic = be32_to_cpu(ec_hdr->magic); 1125 if (magic != UBI_EC_HDR_MAGIC) { 1126 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1127 magic, UBI_EC_HDR_MAGIC); 1128 goto fail; 1129 } 1130 1131 err = validate_ec_hdr(ubi, ec_hdr); 1132 if (err) { 1133 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1134 goto fail; 1135 } 1136 1137 return 0; 1138 1139fail: 1140 ubi_dump_ec_hdr(ec_hdr); 1141 dump_stack(); 1142 return -EINVAL; 1143} 1144 1145/** 1146 * self_check_peb_ec_hdr - check erase counter header. 1147 * @ubi: UBI device description object 1148 * @pnum: the physical eraseblock number to check 1149 * 1150 * This function returns zero if the erase counter header is all right and and 1151 * a negative error code if not or if an error occurred. 1152 */ 1153static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1154{ 1155 int err; 1156 uint32_t crc, hdr_crc; 1157 struct ubi_ec_hdr *ec_hdr; 1158 1159 if (!ubi_dbg_chk_io(ubi)) 1160 return 0; 1161 1162 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1163 if (!ec_hdr) 1164 return -ENOMEM; 1165 1166 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1167 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1168 goto exit; 1169 1170 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1171 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1172 if (hdr_crc != crc) { 1173 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1174 crc, hdr_crc); 1175 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1176 ubi_dump_ec_hdr(ec_hdr); 1177 dump_stack(); 1178 err = -EINVAL; 1179 goto exit; 1180 } 1181 1182 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1183 1184exit: 1185 kfree(ec_hdr); 1186 return err; 1187} 1188 1189/** 1190 * self_check_vid_hdr - check that a volume identifier header is all right. 1191 * @ubi: UBI device description object 1192 * @pnum: physical eraseblock number the volume identifier header belongs to 1193 * @vid_hdr: the volume identifier header to check 1194 * 1195 * This function returns zero if the volume identifier header is all right, and 1196 * %-EINVAL if not. 1197 */ 1198static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1199 const struct ubi_vid_hdr *vid_hdr) 1200{ 1201 int err; 1202 uint32_t magic; 1203 1204 if (!ubi_dbg_chk_io(ubi)) 1205 return 0; 1206 1207 magic = be32_to_cpu(vid_hdr->magic); 1208 if (magic != UBI_VID_HDR_MAGIC) { 1209 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1210 magic, pnum, UBI_VID_HDR_MAGIC); 1211 goto fail; 1212 } 1213 1214 err = validate_vid_hdr(ubi, vid_hdr); 1215 if (err) { 1216 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1217 goto fail; 1218 } 1219 1220 return err; 1221 1222fail: 1223 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1224 ubi_dump_vid_hdr(vid_hdr); 1225 dump_stack(); 1226 return -EINVAL; 1227 1228} 1229 1230/** 1231 * self_check_peb_vid_hdr - check volume identifier header. 1232 * @ubi: UBI device description object 1233 * @pnum: the physical eraseblock number to check 1234 * 1235 * This function returns zero if the volume identifier header is all right, 1236 * and a negative error code if not or if an error occurred. 1237 */ 1238static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1239{ 1240 int err; 1241 uint32_t crc, hdr_crc; 1242 struct ubi_vid_io_buf *vidb; 1243 struct ubi_vid_hdr *vid_hdr; 1244 void *p; 1245 1246 if (!ubi_dbg_chk_io(ubi)) 1247 return 0; 1248 1249 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 1250 if (!vidb) 1251 return -ENOMEM; 1252 1253 vid_hdr = ubi_get_vid_hdr(vidb); 1254 p = vidb->buffer; 1255 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1256 ubi->vid_hdr_alsize); 1257 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1258 goto exit; 1259 1260 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1261 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1262 if (hdr_crc != crc) { 1263 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1264 pnum, crc, hdr_crc); 1265 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1266 ubi_dump_vid_hdr(vid_hdr); 1267 dump_stack(); 1268 err = -EINVAL; 1269 goto exit; 1270 } 1271 1272 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1273 1274exit: 1275 ubi_free_vid_buf(vidb); 1276 return err; 1277} 1278 1279/** 1280 * self_check_write - make sure write succeeded. 1281 * @ubi: UBI device description object 1282 * @buf: buffer with data which were written 1283 * @pnum: physical eraseblock number the data were written to 1284 * @offset: offset within the physical eraseblock the data were written to 1285 * @len: how many bytes were written 1286 * 1287 * This functions reads data which were recently written and compares it with 1288 * the original data buffer - the data have to match. Returns zero if the data 1289 * match and a negative error code if not or in case of failure. 1290 */ 1291static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1292 int offset, int len) 1293{ 1294 int err, i; 1295 size_t read; 1296 void *buf1; 1297 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1298 1299 if (!ubi_dbg_chk_io(ubi)) 1300 return 0; 1301 1302 buf1 = __vmalloc(len, GFP_NOFS); 1303 if (!buf1) { 1304 ubi_err(ubi, "cannot allocate memory to check writes"); 1305 return 0; 1306 } 1307 1308 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1309 if (err && !mtd_is_bitflip(err)) 1310 goto out_free; 1311 1312 for (i = 0; i < len; i++) { 1313 uint8_t c = ((uint8_t *)buf)[i]; 1314 uint8_t c1 = ((uint8_t *)buf1)[i]; 1315 int dump_len; 1316 1317 if (c == c1) 1318 continue; 1319 1320 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1321 pnum, offset, len); 1322 ubi_msg(ubi, "data differ at position %d", i); 1323 dump_len = max_t(int, 128, len - i); 1324 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1325 i, i + dump_len); 1326 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1327 buf + i, dump_len, 1); 1328 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1329 i, i + dump_len); 1330 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1331 buf1 + i, dump_len, 1); 1332 dump_stack(); 1333 err = -EINVAL; 1334 goto out_free; 1335 } 1336 1337 vfree(buf1); 1338 return 0; 1339 1340out_free: 1341 vfree(buf1); 1342 return err; 1343} 1344 1345/** 1346 * ubi_self_check_all_ff - check that a region of flash is empty. 1347 * @ubi: UBI device description object 1348 * @pnum: the physical eraseblock number to check 1349 * @offset: the starting offset within the physical eraseblock to check 1350 * @len: the length of the region to check 1351 * 1352 * This function returns zero if only 0xFF bytes are present at offset 1353 * @offset of the physical eraseblock @pnum, and a negative error code if not 1354 * or if an error occurred. 1355 */ 1356int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1357{ 1358 size_t read; 1359 int err; 1360 void *buf; 1361 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1362 1363 if (!ubi_dbg_chk_io(ubi)) 1364 return 0; 1365 1366 buf = __vmalloc(len, GFP_NOFS); 1367 if (!buf) { 1368 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1369 return 0; 1370 } 1371 1372 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1373 if (err && !mtd_is_bitflip(err)) { 1374 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1375 err, len, pnum, offset, read); 1376 goto error; 1377 } 1378 1379 err = ubi_check_pattern(buf, 0xFF, len); 1380 if (err == 0) { 1381 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1382 pnum, offset, len); 1383 goto fail; 1384 } 1385 1386 vfree(buf); 1387 return 0; 1388 1389fail: 1390 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1391 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1392 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1393 err = -EINVAL; 1394error: 1395 dump_stack(); 1396 vfree(buf); 1397 return err; 1398}