cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.c (41636B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (c) International Business Machines Corp., 2006
      4 * Copyright (c) Nokia Corporation, 2006, 2007
      5 *
      6 * Author: Artem Bityutskiy (Битюцкий Артём)
      7 */
      8
      9/*
     10 * UBI input/output sub-system.
     11 *
     12 * This sub-system provides a uniform way to work with all kinds of the
     13 * underlying MTD devices. It also implements handy functions for reading and
     14 * writing UBI headers.
     15 *
     16 * We are trying to have a paranoid mindset and not to trust to what we read
     17 * from the flash media in order to be more secure and robust. So this
     18 * sub-system validates every single header it reads from the flash media.
     19 *
     20 * Some words about how the eraseblock headers are stored.
     21 *
     22 * The erase counter header is always stored at offset zero. By default, the
     23 * VID header is stored after the EC header at the closest aligned offset
     24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
     25 * header at the closest aligned offset. But this default layout may be
     26 * changed. For example, for different reasons (e.g., optimization) UBI may be
     27 * asked to put the VID header at further offset, and even at an unaligned
     28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
     29 * proper padding in front of it. Data offset may also be changed but it has to
     30 * be aligned.
     31 *
     32 * About minimal I/O units. In general, UBI assumes flash device model where
     33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
     34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
     35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
     36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
     37 * to do different optimizations.
     38 *
     39 * This is extremely useful in case of NAND flashes which admit of several
     40 * write operations to one NAND page. In this case UBI can fit EC and VID
     41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
     42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
     43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
     44 * users.
     45 *
     46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
     47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
     48 * headers.
     49 *
     50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
     51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
     52 *
     53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
     54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
     55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
     56 * Thus, we prefer to use sub-pages only for EC and VID headers.
     57 *
     58 * As it was noted above, the VID header may start at a non-aligned offset.
     59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
     60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
     61 * last sub-page (EC header is always at offset zero). This causes some
     62 * difficulties when reading and writing VID headers.
     63 *
     64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
     65 * the data and want to write this VID header out. As we can only write in
     66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
     67 * to offset 448 of this buffer.
     68 *
     69 * The I/O sub-system does the following trick in order to avoid this extra
     70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
     71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
     72 * When the VID header is being written out, it shifts the VID header pointer
     73 * back and writes the whole sub-page.
     74 */
     75
     76#include <linux/crc32.h>
     77#include <linux/err.h>
     78#include <linux/slab.h>
     79#include "ubi.h"
     80
     81static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
     82static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
     83static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
     84			     const struct ubi_ec_hdr *ec_hdr);
     85static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
     86static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
     87			      const struct ubi_vid_hdr *vid_hdr);
     88static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
     89			    int offset, int len);
     90
     91/**
     92 * ubi_io_read - read data from a physical eraseblock.
     93 * @ubi: UBI device description object
     94 * @buf: buffer where to store the read data
     95 * @pnum: physical eraseblock number to read from
     96 * @offset: offset within the physical eraseblock from where to read
     97 * @len: how many bytes to read
     98 *
     99 * This function reads data from offset @offset of physical eraseblock @pnum
    100 * and stores the read data in the @buf buffer. The following return codes are
    101 * possible:
    102 *
    103 * o %0 if all the requested data were successfully read;
    104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
    105 *   correctable bit-flips were detected; this is harmless but may indicate
    106 *   that this eraseblock may become bad soon (but do not have to);
    107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
    108 *   example it can be an ECC error in case of NAND; this most probably means
    109 *   that the data is corrupted;
    110 * o %-EIO if some I/O error occurred;
    111 * o other negative error codes in case of other errors.
    112 */
    113int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
    114		int len)
    115{
    116	int err, retries = 0;
    117	size_t read;
    118	loff_t addr;
    119
    120	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
    121
    122	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    123	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
    124	ubi_assert(len > 0);
    125
    126	err = self_check_not_bad(ubi, pnum);
    127	if (err)
    128		return err;
    129
    130	/*
    131	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
    132	 * do not do this, the following may happen:
    133	 * 1. The buffer contains data from previous operation, e.g., read from
    134	 *    another PEB previously. The data looks like expected, e.g., if we
    135	 *    just do not read anything and return - the caller would not
    136	 *    notice this. E.g., if we are reading a VID header, the buffer may
    137	 *    contain a valid VID header from another PEB.
    138	 * 2. The driver is buggy and returns us success or -EBADMSG or
    139	 *    -EUCLEAN, but it does not actually put any data to the buffer.
    140	 *
    141	 * This may confuse UBI or upper layers - they may think the buffer
    142	 * contains valid data while in fact it is just old data. This is
    143	 * especially possible because UBI (and UBIFS) relies on CRC, and
    144	 * treats data as correct even in case of ECC errors if the CRC is
    145	 * correct.
    146	 *
    147	 * Try to prevent this situation by changing the first byte of the
    148	 * buffer.
    149	 */
    150	*((uint8_t *)buf) ^= 0xFF;
    151
    152	addr = (loff_t)pnum * ubi->peb_size + offset;
    153retry:
    154	err = mtd_read(ubi->mtd, addr, len, &read, buf);
    155	if (err) {
    156		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
    157
    158		if (mtd_is_bitflip(err)) {
    159			/*
    160			 * -EUCLEAN is reported if there was a bit-flip which
    161			 * was corrected, so this is harmless.
    162			 *
    163			 * We do not report about it here unless debugging is
    164			 * enabled. A corresponding message will be printed
    165			 * later, when it is has been scrubbed.
    166			 */
    167			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
    168				pnum);
    169			ubi_assert(len == read);
    170			return UBI_IO_BITFLIPS;
    171		}
    172
    173		if (retries++ < UBI_IO_RETRIES) {
    174			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
    175				 err, errstr, len, pnum, offset, read);
    176			yield();
    177			goto retry;
    178		}
    179
    180		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
    181			err, errstr, len, pnum, offset, read);
    182		dump_stack();
    183
    184		/*
    185		 * The driver should never return -EBADMSG if it failed to read
    186		 * all the requested data. But some buggy drivers might do
    187		 * this, so we change it to -EIO.
    188		 */
    189		if (read != len && mtd_is_eccerr(err)) {
    190			ubi_assert(0);
    191			err = -EIO;
    192		}
    193	} else {
    194		ubi_assert(len == read);
    195
    196		if (ubi_dbg_is_bitflip(ubi)) {
    197			dbg_gen("bit-flip (emulated)");
    198			err = UBI_IO_BITFLIPS;
    199		}
    200	}
    201
    202	return err;
    203}
    204
    205/**
    206 * ubi_io_write - write data to a physical eraseblock.
    207 * @ubi: UBI device description object
    208 * @buf: buffer with the data to write
    209 * @pnum: physical eraseblock number to write to
    210 * @offset: offset within the physical eraseblock where to write
    211 * @len: how many bytes to write
    212 *
    213 * This function writes @len bytes of data from buffer @buf to offset @offset
    214 * of physical eraseblock @pnum. If all the data were successfully written,
    215 * zero is returned. If an error occurred, this function returns a negative
    216 * error code. If %-EIO is returned, the physical eraseblock most probably went
    217 * bad.
    218 *
    219 * Note, in case of an error, it is possible that something was still written
    220 * to the flash media, but may be some garbage.
    221 */
    222int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
    223		 int len)
    224{
    225	int err;
    226	size_t written;
    227	loff_t addr;
    228
    229	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
    230
    231	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    232	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
    233	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
    234	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
    235
    236	if (ubi->ro_mode) {
    237		ubi_err(ubi, "read-only mode");
    238		return -EROFS;
    239	}
    240
    241	err = self_check_not_bad(ubi, pnum);
    242	if (err)
    243		return err;
    244
    245	/* The area we are writing to has to contain all 0xFF bytes */
    246	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
    247	if (err)
    248		return err;
    249
    250	if (offset >= ubi->leb_start) {
    251		/*
    252		 * We write to the data area of the physical eraseblock. Make
    253		 * sure it has valid EC and VID headers.
    254		 */
    255		err = self_check_peb_ec_hdr(ubi, pnum);
    256		if (err)
    257			return err;
    258		err = self_check_peb_vid_hdr(ubi, pnum);
    259		if (err)
    260			return err;
    261	}
    262
    263	if (ubi_dbg_is_write_failure(ubi)) {
    264		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
    265			len, pnum, offset);
    266		dump_stack();
    267		return -EIO;
    268	}
    269
    270	addr = (loff_t)pnum * ubi->peb_size + offset;
    271	err = mtd_write(ubi->mtd, addr, len, &written, buf);
    272	if (err) {
    273		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
    274			err, len, pnum, offset, written);
    275		dump_stack();
    276		ubi_dump_flash(ubi, pnum, offset, len);
    277	} else
    278		ubi_assert(written == len);
    279
    280	if (!err) {
    281		err = self_check_write(ubi, buf, pnum, offset, len);
    282		if (err)
    283			return err;
    284
    285		/*
    286		 * Since we always write sequentially, the rest of the PEB has
    287		 * to contain only 0xFF bytes.
    288		 */
    289		offset += len;
    290		len = ubi->peb_size - offset;
    291		if (len)
    292			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
    293	}
    294
    295	return err;
    296}
    297
    298/**
    299 * do_sync_erase - synchronously erase a physical eraseblock.
    300 * @ubi: UBI device description object
    301 * @pnum: the physical eraseblock number to erase
    302 *
    303 * This function synchronously erases physical eraseblock @pnum and returns
    304 * zero in case of success and a negative error code in case of failure. If
    305 * %-EIO is returned, the physical eraseblock most probably went bad.
    306 */
    307static int do_sync_erase(struct ubi_device *ubi, int pnum)
    308{
    309	int err, retries = 0;
    310	struct erase_info ei;
    311
    312	dbg_io("erase PEB %d", pnum);
    313	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    314
    315	if (ubi->ro_mode) {
    316		ubi_err(ubi, "read-only mode");
    317		return -EROFS;
    318	}
    319
    320retry:
    321	memset(&ei, 0, sizeof(struct erase_info));
    322
    323	ei.addr     = (loff_t)pnum * ubi->peb_size;
    324	ei.len      = ubi->peb_size;
    325
    326	err = mtd_erase(ubi->mtd, &ei);
    327	if (err) {
    328		if (retries++ < UBI_IO_RETRIES) {
    329			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
    330				 err, pnum);
    331			yield();
    332			goto retry;
    333		}
    334		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
    335		dump_stack();
    336		return err;
    337	}
    338
    339	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
    340	if (err)
    341		return err;
    342
    343	if (ubi_dbg_is_erase_failure(ubi)) {
    344		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
    345		return -EIO;
    346	}
    347
    348	return 0;
    349}
    350
    351/* Patterns to write to a physical eraseblock when torturing it */
    352static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
    353
    354/**
    355 * torture_peb - test a supposedly bad physical eraseblock.
    356 * @ubi: UBI device description object
    357 * @pnum: the physical eraseblock number to test
    358 *
    359 * This function returns %-EIO if the physical eraseblock did not pass the
    360 * test, a positive number of erase operations done if the test was
    361 * successfully passed, and other negative error codes in case of other errors.
    362 */
    363static int torture_peb(struct ubi_device *ubi, int pnum)
    364{
    365	int err, i, patt_count;
    366
    367	ubi_msg(ubi, "run torture test for PEB %d", pnum);
    368	patt_count = ARRAY_SIZE(patterns);
    369	ubi_assert(patt_count > 0);
    370
    371	mutex_lock(&ubi->buf_mutex);
    372	for (i = 0; i < patt_count; i++) {
    373		err = do_sync_erase(ubi, pnum);
    374		if (err)
    375			goto out;
    376
    377		/* Make sure the PEB contains only 0xFF bytes */
    378		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    379		if (err)
    380			goto out;
    381
    382		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
    383		if (err == 0) {
    384			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
    385				pnum);
    386			err = -EIO;
    387			goto out;
    388		}
    389
    390		/* Write a pattern and check it */
    391		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
    392		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    393		if (err)
    394			goto out;
    395
    396		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
    397		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    398		if (err)
    399			goto out;
    400
    401		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
    402					ubi->peb_size);
    403		if (err == 0) {
    404			ubi_err(ubi, "pattern %x checking failed for PEB %d",
    405				patterns[i], pnum);
    406			err = -EIO;
    407			goto out;
    408		}
    409	}
    410
    411	err = patt_count;
    412	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
    413
    414out:
    415	mutex_unlock(&ubi->buf_mutex);
    416	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
    417		/*
    418		 * If a bit-flip or data integrity error was detected, the test
    419		 * has not passed because it happened on a freshly erased
    420		 * physical eraseblock which means something is wrong with it.
    421		 */
    422		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
    423			pnum);
    424		err = -EIO;
    425	}
    426	return err;
    427}
    428
    429/**
    430 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
    431 * @ubi: UBI device description object
    432 * @pnum: physical eraseblock number to prepare
    433 *
    434 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
    435 * algorithm: the PEB is first filled with zeroes, then it is erased. And
    436 * filling with zeroes starts from the end of the PEB. This was observed with
    437 * Spansion S29GL512N NOR flash.
    438 *
    439 * This means that in case of a power cut we may end up with intact data at the
    440 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
    441 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
    442 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
    443 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
    444 *
    445 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
    446 * magic numbers in order to invalidate them and prevent the failures. Returns
    447 * zero in case of success and a negative error code in case of failure.
    448 */
    449static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
    450{
    451	int err;
    452	size_t written;
    453	loff_t addr;
    454	uint32_t data = 0;
    455	struct ubi_ec_hdr ec_hdr;
    456	struct ubi_vid_io_buf vidb;
    457
    458	/*
    459	 * Note, we cannot generally define VID header buffers on stack,
    460	 * because of the way we deal with these buffers (see the header
    461	 * comment in this file). But we know this is a NOR-specific piece of
    462	 * code, so we can do this. But yes, this is error-prone and we should
    463	 * (pre-)allocate VID header buffer instead.
    464	 */
    465	struct ubi_vid_hdr vid_hdr;
    466
    467	/*
    468	 * If VID or EC is valid, we have to corrupt them before erasing.
    469	 * It is important to first invalidate the EC header, and then the VID
    470	 * header. Otherwise a power cut may lead to valid EC header and
    471	 * invalid VID header, in which case UBI will treat this PEB as
    472	 * corrupted and will try to preserve it, and print scary warnings.
    473	 */
    474	addr = (loff_t)pnum * ubi->peb_size;
    475	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
    476	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
    477	    err != UBI_IO_FF){
    478		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
    479		if(err)
    480			goto error;
    481	}
    482
    483	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
    484	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
    485
    486	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
    487	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
    488	    err != UBI_IO_FF){
    489		addr += ubi->vid_hdr_aloffset;
    490		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
    491		if (err)
    492			goto error;
    493	}
    494	return 0;
    495
    496error:
    497	/*
    498	 * The PEB contains a valid VID or EC header, but we cannot invalidate
    499	 * it. Supposedly the flash media or the driver is screwed up, so
    500	 * return an error.
    501	 */
    502	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
    503	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
    504	return -EIO;
    505}
    506
    507/**
    508 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
    509 * @ubi: UBI device description object
    510 * @pnum: physical eraseblock number to erase
    511 * @torture: if this physical eraseblock has to be tortured
    512 *
    513 * This function synchronously erases physical eraseblock @pnum. If @torture
    514 * flag is not zero, the physical eraseblock is checked by means of writing
    515 * different patterns to it and reading them back. If the torturing is enabled,
    516 * the physical eraseblock is erased more than once.
    517 *
    518 * This function returns the number of erasures made in case of success, %-EIO
    519 * if the erasure failed or the torturing test failed, and other negative error
    520 * codes in case of other errors. Note, %-EIO means that the physical
    521 * eraseblock is bad.
    522 */
    523int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
    524{
    525	int err, ret = 0;
    526
    527	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    528
    529	err = self_check_not_bad(ubi, pnum);
    530	if (err != 0)
    531		return err;
    532
    533	if (ubi->ro_mode) {
    534		ubi_err(ubi, "read-only mode");
    535		return -EROFS;
    536	}
    537
    538	/*
    539	 * If the flash is ECC-ed then we have to erase the ECC block before we
    540	 * can write to it. But the write is in preparation to an erase in the
    541	 * first place. This means we cannot zero out EC and VID before the
    542	 * erase and we just have to hope the flash starts erasing from the
    543	 * start of the page.
    544	 */
    545	if (ubi->nor_flash && ubi->mtd->writesize == 1) {
    546		err = nor_erase_prepare(ubi, pnum);
    547		if (err)
    548			return err;
    549	}
    550
    551	if (torture) {
    552		ret = torture_peb(ubi, pnum);
    553		if (ret < 0)
    554			return ret;
    555	}
    556
    557	err = do_sync_erase(ubi, pnum);
    558	if (err)
    559		return err;
    560
    561	return ret + 1;
    562}
    563
    564/**
    565 * ubi_io_is_bad - check if a physical eraseblock is bad.
    566 * @ubi: UBI device description object
    567 * @pnum: the physical eraseblock number to check
    568 *
    569 * This function returns a positive number if the physical eraseblock is bad,
    570 * zero if not, and a negative error code if an error occurred.
    571 */
    572int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
    573{
    574	struct mtd_info *mtd = ubi->mtd;
    575
    576	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    577
    578	if (ubi->bad_allowed) {
    579		int ret;
    580
    581		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
    582		if (ret < 0)
    583			ubi_err(ubi, "error %d while checking if PEB %d is bad",
    584				ret, pnum);
    585		else if (ret)
    586			dbg_io("PEB %d is bad", pnum);
    587		return ret;
    588	}
    589
    590	return 0;
    591}
    592
    593/**
    594 * ubi_io_mark_bad - mark a physical eraseblock as bad.
    595 * @ubi: UBI device description object
    596 * @pnum: the physical eraseblock number to mark
    597 *
    598 * This function returns zero in case of success and a negative error code in
    599 * case of failure.
    600 */
    601int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
    602{
    603	int err;
    604	struct mtd_info *mtd = ubi->mtd;
    605
    606	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    607
    608	if (ubi->ro_mode) {
    609		ubi_err(ubi, "read-only mode");
    610		return -EROFS;
    611	}
    612
    613	if (!ubi->bad_allowed)
    614		return 0;
    615
    616	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
    617	if (err)
    618		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
    619	return err;
    620}
    621
    622/**
    623 * validate_ec_hdr - validate an erase counter header.
    624 * @ubi: UBI device description object
    625 * @ec_hdr: the erase counter header to check
    626 *
    627 * This function returns zero if the erase counter header is OK, and %1 if
    628 * not.
    629 */
    630static int validate_ec_hdr(const struct ubi_device *ubi,
    631			   const struct ubi_ec_hdr *ec_hdr)
    632{
    633	long long ec;
    634	int vid_hdr_offset, leb_start;
    635
    636	ec = be64_to_cpu(ec_hdr->ec);
    637	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
    638	leb_start = be32_to_cpu(ec_hdr->data_offset);
    639
    640	if (ec_hdr->version != UBI_VERSION) {
    641		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
    642			UBI_VERSION, (int)ec_hdr->version);
    643		goto bad;
    644	}
    645
    646	if (vid_hdr_offset != ubi->vid_hdr_offset) {
    647		ubi_err(ubi, "bad VID header offset %d, expected %d",
    648			vid_hdr_offset, ubi->vid_hdr_offset);
    649		goto bad;
    650	}
    651
    652	if (leb_start != ubi->leb_start) {
    653		ubi_err(ubi, "bad data offset %d, expected %d",
    654			leb_start, ubi->leb_start);
    655		goto bad;
    656	}
    657
    658	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
    659		ubi_err(ubi, "bad erase counter %lld", ec);
    660		goto bad;
    661	}
    662
    663	return 0;
    664
    665bad:
    666	ubi_err(ubi, "bad EC header");
    667	ubi_dump_ec_hdr(ec_hdr);
    668	dump_stack();
    669	return 1;
    670}
    671
    672/**
    673 * ubi_io_read_ec_hdr - read and check an erase counter header.
    674 * @ubi: UBI device description object
    675 * @pnum: physical eraseblock to read from
    676 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
    677 * header
    678 * @verbose: be verbose if the header is corrupted or was not found
    679 *
    680 * This function reads erase counter header from physical eraseblock @pnum and
    681 * stores it in @ec_hdr. This function also checks CRC checksum of the read
    682 * erase counter header. The following codes may be returned:
    683 *
    684 * o %0 if the CRC checksum is correct and the header was successfully read;
    685 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
    686 *   and corrected by the flash driver; this is harmless but may indicate that
    687 *   this eraseblock may become bad soon (but may be not);
    688 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
    689 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
    690 *   a data integrity error (uncorrectable ECC error in case of NAND);
    691 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
    692 * o a negative error code in case of failure.
    693 */
    694int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
    695		       struct ubi_ec_hdr *ec_hdr, int verbose)
    696{
    697	int err, read_err;
    698	uint32_t crc, magic, hdr_crc;
    699
    700	dbg_io("read EC header from PEB %d", pnum);
    701	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    702
    703	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
    704	if (read_err) {
    705		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
    706			return read_err;
    707
    708		/*
    709		 * We read all the data, but either a correctable bit-flip
    710		 * occurred, or MTD reported a data integrity error
    711		 * (uncorrectable ECC error in case of NAND). The former is
    712		 * harmless, the later may mean that the read data is
    713		 * corrupted. But we have a CRC check-sum and we will detect
    714		 * this. If the EC header is still OK, we just report this as
    715		 * there was a bit-flip, to force scrubbing.
    716		 */
    717	}
    718
    719	magic = be32_to_cpu(ec_hdr->magic);
    720	if (magic != UBI_EC_HDR_MAGIC) {
    721		if (mtd_is_eccerr(read_err))
    722			return UBI_IO_BAD_HDR_EBADMSG;
    723
    724		/*
    725		 * The magic field is wrong. Let's check if we have read all
    726		 * 0xFF. If yes, this physical eraseblock is assumed to be
    727		 * empty.
    728		 */
    729		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
    730			/* The physical eraseblock is supposedly empty */
    731			if (verbose)
    732				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
    733					 pnum);
    734			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
    735				pnum);
    736			if (!read_err)
    737				return UBI_IO_FF;
    738			else
    739				return UBI_IO_FF_BITFLIPS;
    740		}
    741
    742		/*
    743		 * This is not a valid erase counter header, and these are not
    744		 * 0xFF bytes. Report that the header is corrupted.
    745		 */
    746		if (verbose) {
    747			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
    748				 pnum, magic, UBI_EC_HDR_MAGIC);
    749			ubi_dump_ec_hdr(ec_hdr);
    750		}
    751		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
    752			pnum, magic, UBI_EC_HDR_MAGIC);
    753		return UBI_IO_BAD_HDR;
    754	}
    755
    756	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
    757	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
    758
    759	if (hdr_crc != crc) {
    760		if (verbose) {
    761			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
    762				 pnum, crc, hdr_crc);
    763			ubi_dump_ec_hdr(ec_hdr);
    764		}
    765		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
    766			pnum, crc, hdr_crc);
    767
    768		if (!read_err)
    769			return UBI_IO_BAD_HDR;
    770		else
    771			return UBI_IO_BAD_HDR_EBADMSG;
    772	}
    773
    774	/* And of course validate what has just been read from the media */
    775	err = validate_ec_hdr(ubi, ec_hdr);
    776	if (err) {
    777		ubi_err(ubi, "validation failed for PEB %d", pnum);
    778		return -EINVAL;
    779	}
    780
    781	/*
    782	 * If there was %-EBADMSG, but the header CRC is still OK, report about
    783	 * a bit-flip to force scrubbing on this PEB.
    784	 */
    785	return read_err ? UBI_IO_BITFLIPS : 0;
    786}
    787
    788/**
    789 * ubi_io_write_ec_hdr - write an erase counter header.
    790 * @ubi: UBI device description object
    791 * @pnum: physical eraseblock to write to
    792 * @ec_hdr: the erase counter header to write
    793 *
    794 * This function writes erase counter header described by @ec_hdr to physical
    795 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
    796 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
    797 * field.
    798 *
    799 * This function returns zero in case of success and a negative error code in
    800 * case of failure. If %-EIO is returned, the physical eraseblock most probably
    801 * went bad.
    802 */
    803int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
    804			struct ubi_ec_hdr *ec_hdr)
    805{
    806	int err;
    807	uint32_t crc;
    808
    809	dbg_io("write EC header to PEB %d", pnum);
    810	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
    811
    812	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
    813	ec_hdr->version = UBI_VERSION;
    814	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
    815	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
    816	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
    817	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
    818	ec_hdr->hdr_crc = cpu_to_be32(crc);
    819
    820	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
    821	if (err)
    822		return err;
    823
    824	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
    825		return -EROFS;
    826
    827	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
    828	return err;
    829}
    830
    831/**
    832 * validate_vid_hdr - validate a volume identifier header.
    833 * @ubi: UBI device description object
    834 * @vid_hdr: the volume identifier header to check
    835 *
    836 * This function checks that data stored in the volume identifier header
    837 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
    838 */
    839static int validate_vid_hdr(const struct ubi_device *ubi,
    840			    const struct ubi_vid_hdr *vid_hdr)
    841{
    842	int vol_type = vid_hdr->vol_type;
    843	int copy_flag = vid_hdr->copy_flag;
    844	int vol_id = be32_to_cpu(vid_hdr->vol_id);
    845	int lnum = be32_to_cpu(vid_hdr->lnum);
    846	int compat = vid_hdr->compat;
    847	int data_size = be32_to_cpu(vid_hdr->data_size);
    848	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
    849	int data_pad = be32_to_cpu(vid_hdr->data_pad);
    850	int data_crc = be32_to_cpu(vid_hdr->data_crc);
    851	int usable_leb_size = ubi->leb_size - data_pad;
    852
    853	if (copy_flag != 0 && copy_flag != 1) {
    854		ubi_err(ubi, "bad copy_flag");
    855		goto bad;
    856	}
    857
    858	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
    859	    data_pad < 0) {
    860		ubi_err(ubi, "negative values");
    861		goto bad;
    862	}
    863
    864	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
    865		ubi_err(ubi, "bad vol_id");
    866		goto bad;
    867	}
    868
    869	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
    870		ubi_err(ubi, "bad compat");
    871		goto bad;
    872	}
    873
    874	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
    875	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
    876	    compat != UBI_COMPAT_REJECT) {
    877		ubi_err(ubi, "bad compat");
    878		goto bad;
    879	}
    880
    881	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
    882		ubi_err(ubi, "bad vol_type");
    883		goto bad;
    884	}
    885
    886	if (data_pad >= ubi->leb_size / 2) {
    887		ubi_err(ubi, "bad data_pad");
    888		goto bad;
    889	}
    890
    891	if (data_size > ubi->leb_size) {
    892		ubi_err(ubi, "bad data_size");
    893		goto bad;
    894	}
    895
    896	if (vol_type == UBI_VID_STATIC) {
    897		/*
    898		 * Although from high-level point of view static volumes may
    899		 * contain zero bytes of data, but no VID headers can contain
    900		 * zero at these fields, because they empty volumes do not have
    901		 * mapped logical eraseblocks.
    902		 */
    903		if (used_ebs == 0) {
    904			ubi_err(ubi, "zero used_ebs");
    905			goto bad;
    906		}
    907		if (data_size == 0) {
    908			ubi_err(ubi, "zero data_size");
    909			goto bad;
    910		}
    911		if (lnum < used_ebs - 1) {
    912			if (data_size != usable_leb_size) {
    913				ubi_err(ubi, "bad data_size");
    914				goto bad;
    915			}
    916		} else if (lnum > used_ebs - 1) {
    917			ubi_err(ubi, "too high lnum");
    918			goto bad;
    919		}
    920	} else {
    921		if (copy_flag == 0) {
    922			if (data_crc != 0) {
    923				ubi_err(ubi, "non-zero data CRC");
    924				goto bad;
    925			}
    926			if (data_size != 0) {
    927				ubi_err(ubi, "non-zero data_size");
    928				goto bad;
    929			}
    930		} else {
    931			if (data_size == 0) {
    932				ubi_err(ubi, "zero data_size of copy");
    933				goto bad;
    934			}
    935		}
    936		if (used_ebs != 0) {
    937			ubi_err(ubi, "bad used_ebs");
    938			goto bad;
    939		}
    940	}
    941
    942	return 0;
    943
    944bad:
    945	ubi_err(ubi, "bad VID header");
    946	ubi_dump_vid_hdr(vid_hdr);
    947	dump_stack();
    948	return 1;
    949}
    950
    951/**
    952 * ubi_io_read_vid_hdr - read and check a volume identifier header.
    953 * @ubi: UBI device description object
    954 * @pnum: physical eraseblock number to read from
    955 * @vidb: the volume identifier buffer to store data in
    956 * @verbose: be verbose if the header is corrupted or wasn't found
    957 *
    958 * This function reads the volume identifier header from physical eraseblock
    959 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
    960 * volume identifier header. The error codes are the same as in
    961 * 'ubi_io_read_ec_hdr()'.
    962 *
    963 * Note, the implementation of this function is also very similar to
    964 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
    965 */
    966int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
    967			struct ubi_vid_io_buf *vidb, int verbose)
    968{
    969	int err, read_err;
    970	uint32_t crc, magic, hdr_crc;
    971	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
    972	void *p = vidb->buffer;
    973
    974	dbg_io("read VID header from PEB %d", pnum);
    975	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
    976
    977	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
    978			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
    979	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
    980		return read_err;
    981
    982	magic = be32_to_cpu(vid_hdr->magic);
    983	if (magic != UBI_VID_HDR_MAGIC) {
    984		if (mtd_is_eccerr(read_err))
    985			return UBI_IO_BAD_HDR_EBADMSG;
    986
    987		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
    988			if (verbose)
    989				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
    990					 pnum);
    991			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
    992				pnum);
    993			if (!read_err)
    994				return UBI_IO_FF;
    995			else
    996				return UBI_IO_FF_BITFLIPS;
    997		}
    998
    999		if (verbose) {
   1000			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
   1001				 pnum, magic, UBI_VID_HDR_MAGIC);
   1002			ubi_dump_vid_hdr(vid_hdr);
   1003		}
   1004		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
   1005			pnum, magic, UBI_VID_HDR_MAGIC);
   1006		return UBI_IO_BAD_HDR;
   1007	}
   1008
   1009	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
   1010	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
   1011
   1012	if (hdr_crc != crc) {
   1013		if (verbose) {
   1014			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
   1015				 pnum, crc, hdr_crc);
   1016			ubi_dump_vid_hdr(vid_hdr);
   1017		}
   1018		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
   1019			pnum, crc, hdr_crc);
   1020		if (!read_err)
   1021			return UBI_IO_BAD_HDR;
   1022		else
   1023			return UBI_IO_BAD_HDR_EBADMSG;
   1024	}
   1025
   1026	err = validate_vid_hdr(ubi, vid_hdr);
   1027	if (err) {
   1028		ubi_err(ubi, "validation failed for PEB %d", pnum);
   1029		return -EINVAL;
   1030	}
   1031
   1032	return read_err ? UBI_IO_BITFLIPS : 0;
   1033}
   1034
   1035/**
   1036 * ubi_io_write_vid_hdr - write a volume identifier header.
   1037 * @ubi: UBI device description object
   1038 * @pnum: the physical eraseblock number to write to
   1039 * @vidb: the volume identifier buffer to write
   1040 *
   1041 * This function writes the volume identifier header described by @vid_hdr to
   1042 * physical eraseblock @pnum. This function automatically fills the
   1043 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
   1044 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
   1045 *
   1046 * This function returns zero in case of success and a negative error code in
   1047 * case of failure. If %-EIO is returned, the physical eraseblock probably went
   1048 * bad.
   1049 */
   1050int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
   1051			 struct ubi_vid_io_buf *vidb)
   1052{
   1053	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
   1054	int err;
   1055	uint32_t crc;
   1056	void *p = vidb->buffer;
   1057
   1058	dbg_io("write VID header to PEB %d", pnum);
   1059	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
   1060
   1061	err = self_check_peb_ec_hdr(ubi, pnum);
   1062	if (err)
   1063		return err;
   1064
   1065	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
   1066	vid_hdr->version = UBI_VERSION;
   1067	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
   1068	vid_hdr->hdr_crc = cpu_to_be32(crc);
   1069
   1070	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
   1071	if (err)
   1072		return err;
   1073
   1074	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
   1075		return -EROFS;
   1076
   1077	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
   1078			   ubi->vid_hdr_alsize);
   1079	return err;
   1080}
   1081
   1082/**
   1083 * self_check_not_bad - ensure that a physical eraseblock is not bad.
   1084 * @ubi: UBI device description object
   1085 * @pnum: physical eraseblock number to check
   1086 *
   1087 * This function returns zero if the physical eraseblock is good, %-EINVAL if
   1088 * it is bad and a negative error code if an error occurred.
   1089 */
   1090static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
   1091{
   1092	int err;
   1093
   1094	if (!ubi_dbg_chk_io(ubi))
   1095		return 0;
   1096
   1097	err = ubi_io_is_bad(ubi, pnum);
   1098	if (!err)
   1099		return err;
   1100
   1101	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1102	dump_stack();
   1103	return err > 0 ? -EINVAL : err;
   1104}
   1105
   1106/**
   1107 * self_check_ec_hdr - check if an erase counter header is all right.
   1108 * @ubi: UBI device description object
   1109 * @pnum: physical eraseblock number the erase counter header belongs to
   1110 * @ec_hdr: the erase counter header to check
   1111 *
   1112 * This function returns zero if the erase counter header contains valid
   1113 * values, and %-EINVAL if not.
   1114 */
   1115static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
   1116			     const struct ubi_ec_hdr *ec_hdr)
   1117{
   1118	int err;
   1119	uint32_t magic;
   1120
   1121	if (!ubi_dbg_chk_io(ubi))
   1122		return 0;
   1123
   1124	magic = be32_to_cpu(ec_hdr->magic);
   1125	if (magic != UBI_EC_HDR_MAGIC) {
   1126		ubi_err(ubi, "bad magic %#08x, must be %#08x",
   1127			magic, UBI_EC_HDR_MAGIC);
   1128		goto fail;
   1129	}
   1130
   1131	err = validate_ec_hdr(ubi, ec_hdr);
   1132	if (err) {
   1133		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1134		goto fail;
   1135	}
   1136
   1137	return 0;
   1138
   1139fail:
   1140	ubi_dump_ec_hdr(ec_hdr);
   1141	dump_stack();
   1142	return -EINVAL;
   1143}
   1144
   1145/**
   1146 * self_check_peb_ec_hdr - check erase counter header.
   1147 * @ubi: UBI device description object
   1148 * @pnum: the physical eraseblock number to check
   1149 *
   1150 * This function returns zero if the erase counter header is all right and and
   1151 * a negative error code if not or if an error occurred.
   1152 */
   1153static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
   1154{
   1155	int err;
   1156	uint32_t crc, hdr_crc;
   1157	struct ubi_ec_hdr *ec_hdr;
   1158
   1159	if (!ubi_dbg_chk_io(ubi))
   1160		return 0;
   1161
   1162	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
   1163	if (!ec_hdr)
   1164		return -ENOMEM;
   1165
   1166	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
   1167	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
   1168		goto exit;
   1169
   1170	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
   1171	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
   1172	if (hdr_crc != crc) {
   1173		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
   1174			crc, hdr_crc);
   1175		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1176		ubi_dump_ec_hdr(ec_hdr);
   1177		dump_stack();
   1178		err = -EINVAL;
   1179		goto exit;
   1180	}
   1181
   1182	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
   1183
   1184exit:
   1185	kfree(ec_hdr);
   1186	return err;
   1187}
   1188
   1189/**
   1190 * self_check_vid_hdr - check that a volume identifier header is all right.
   1191 * @ubi: UBI device description object
   1192 * @pnum: physical eraseblock number the volume identifier header belongs to
   1193 * @vid_hdr: the volume identifier header to check
   1194 *
   1195 * This function returns zero if the volume identifier header is all right, and
   1196 * %-EINVAL if not.
   1197 */
   1198static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
   1199			      const struct ubi_vid_hdr *vid_hdr)
   1200{
   1201	int err;
   1202	uint32_t magic;
   1203
   1204	if (!ubi_dbg_chk_io(ubi))
   1205		return 0;
   1206
   1207	magic = be32_to_cpu(vid_hdr->magic);
   1208	if (magic != UBI_VID_HDR_MAGIC) {
   1209		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
   1210			magic, pnum, UBI_VID_HDR_MAGIC);
   1211		goto fail;
   1212	}
   1213
   1214	err = validate_vid_hdr(ubi, vid_hdr);
   1215	if (err) {
   1216		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1217		goto fail;
   1218	}
   1219
   1220	return err;
   1221
   1222fail:
   1223	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1224	ubi_dump_vid_hdr(vid_hdr);
   1225	dump_stack();
   1226	return -EINVAL;
   1227
   1228}
   1229
   1230/**
   1231 * self_check_peb_vid_hdr - check volume identifier header.
   1232 * @ubi: UBI device description object
   1233 * @pnum: the physical eraseblock number to check
   1234 *
   1235 * This function returns zero if the volume identifier header is all right,
   1236 * and a negative error code if not or if an error occurred.
   1237 */
   1238static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
   1239{
   1240	int err;
   1241	uint32_t crc, hdr_crc;
   1242	struct ubi_vid_io_buf *vidb;
   1243	struct ubi_vid_hdr *vid_hdr;
   1244	void *p;
   1245
   1246	if (!ubi_dbg_chk_io(ubi))
   1247		return 0;
   1248
   1249	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
   1250	if (!vidb)
   1251		return -ENOMEM;
   1252
   1253	vid_hdr = ubi_get_vid_hdr(vidb);
   1254	p = vidb->buffer;
   1255	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
   1256			  ubi->vid_hdr_alsize);
   1257	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
   1258		goto exit;
   1259
   1260	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
   1261	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
   1262	if (hdr_crc != crc) {
   1263		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
   1264			pnum, crc, hdr_crc);
   1265		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1266		ubi_dump_vid_hdr(vid_hdr);
   1267		dump_stack();
   1268		err = -EINVAL;
   1269		goto exit;
   1270	}
   1271
   1272	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
   1273
   1274exit:
   1275	ubi_free_vid_buf(vidb);
   1276	return err;
   1277}
   1278
   1279/**
   1280 * self_check_write - make sure write succeeded.
   1281 * @ubi: UBI device description object
   1282 * @buf: buffer with data which were written
   1283 * @pnum: physical eraseblock number the data were written to
   1284 * @offset: offset within the physical eraseblock the data were written to
   1285 * @len: how many bytes were written
   1286 *
   1287 * This functions reads data which were recently written and compares it with
   1288 * the original data buffer - the data have to match. Returns zero if the data
   1289 * match and a negative error code if not or in case of failure.
   1290 */
   1291static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
   1292			    int offset, int len)
   1293{
   1294	int err, i;
   1295	size_t read;
   1296	void *buf1;
   1297	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
   1298
   1299	if (!ubi_dbg_chk_io(ubi))
   1300		return 0;
   1301
   1302	buf1 = __vmalloc(len, GFP_NOFS);
   1303	if (!buf1) {
   1304		ubi_err(ubi, "cannot allocate memory to check writes");
   1305		return 0;
   1306	}
   1307
   1308	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
   1309	if (err && !mtd_is_bitflip(err))
   1310		goto out_free;
   1311
   1312	for (i = 0; i < len; i++) {
   1313		uint8_t c = ((uint8_t *)buf)[i];
   1314		uint8_t c1 = ((uint8_t *)buf1)[i];
   1315		int dump_len;
   1316
   1317		if (c == c1)
   1318			continue;
   1319
   1320		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
   1321			pnum, offset, len);
   1322		ubi_msg(ubi, "data differ at position %d", i);
   1323		dump_len = max_t(int, 128, len - i);
   1324		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
   1325			i, i + dump_len);
   1326		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
   1327			       buf + i, dump_len, 1);
   1328		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
   1329			i, i + dump_len);
   1330		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
   1331			       buf1 + i, dump_len, 1);
   1332		dump_stack();
   1333		err = -EINVAL;
   1334		goto out_free;
   1335	}
   1336
   1337	vfree(buf1);
   1338	return 0;
   1339
   1340out_free:
   1341	vfree(buf1);
   1342	return err;
   1343}
   1344
   1345/**
   1346 * ubi_self_check_all_ff - check that a region of flash is empty.
   1347 * @ubi: UBI device description object
   1348 * @pnum: the physical eraseblock number to check
   1349 * @offset: the starting offset within the physical eraseblock to check
   1350 * @len: the length of the region to check
   1351 *
   1352 * This function returns zero if only 0xFF bytes are present at offset
   1353 * @offset of the physical eraseblock @pnum, and a negative error code if not
   1354 * or if an error occurred.
   1355 */
   1356int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
   1357{
   1358	size_t read;
   1359	int err;
   1360	void *buf;
   1361	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
   1362
   1363	if (!ubi_dbg_chk_io(ubi))
   1364		return 0;
   1365
   1366	buf = __vmalloc(len, GFP_NOFS);
   1367	if (!buf) {
   1368		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
   1369		return 0;
   1370	}
   1371
   1372	err = mtd_read(ubi->mtd, addr, len, &read, buf);
   1373	if (err && !mtd_is_bitflip(err)) {
   1374		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
   1375			err, len, pnum, offset, read);
   1376		goto error;
   1377	}
   1378
   1379	err = ubi_check_pattern(buf, 0xFF, len);
   1380	if (err == 0) {
   1381		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
   1382			pnum, offset, len);
   1383		goto fail;
   1384	}
   1385
   1386	vfree(buf);
   1387	return 0;
   1388
   1389fail:
   1390	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1391	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
   1392	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
   1393	err = -EINVAL;
   1394error:
   1395	dump_stack();
   1396	vfree(buf);
   1397	return err;
   1398}