cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

upd.c (12246B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (c) International Business Machines Corp., 2006
      4 * Copyright (c) Nokia Corporation, 2006
      5 *
      6 * Author: Artem Bityutskiy (Битюцкий Артём)
      7 *
      8 * Jan 2007: Alexander Schmidt, hacked per-volume update.
      9 */
     10
     11/*
     12 * This file contains implementation of the volume update and atomic LEB change
     13 * functionality.
     14 *
     15 * The update operation is based on the per-volume update marker which is
     16 * stored in the volume table. The update marker is set before the update
     17 * starts, and removed after the update has been finished. So if the update was
     18 * interrupted by an unclean re-boot or due to some other reasons, the update
     19 * marker stays on the flash media and UBI finds it when it attaches the MTD
     20 * device next time. If the update marker is set for a volume, the volume is
     21 * treated as damaged and most I/O operations are prohibited. Only a new update
     22 * operation is allowed.
     23 *
     24 * Note, in general it is possible to implement the update operation as a
     25 * transaction with a roll-back capability.
     26 */
     27
     28#include <linux/err.h>
     29#include <linux/uaccess.h>
     30#include <linux/math64.h>
     31#include "ubi.h"
     32
     33/**
     34 * set_update_marker - set update marker.
     35 * @ubi: UBI device description object
     36 * @vol: volume description object
     37 *
     38 * This function sets the update marker flag for volume @vol. Returns zero
     39 * in case of success and a negative error code in case of failure.
     40 */
     41static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
     42{
     43	int err;
     44	struct ubi_vtbl_record vtbl_rec;
     45
     46	dbg_gen("set update marker for volume %d", vol->vol_id);
     47
     48	if (vol->upd_marker) {
     49		ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
     50		dbg_gen("already set");
     51		return 0;
     52	}
     53
     54	vtbl_rec = ubi->vtbl[vol->vol_id];
     55	vtbl_rec.upd_marker = 1;
     56
     57	mutex_lock(&ubi->device_mutex);
     58	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
     59	vol->upd_marker = 1;
     60	mutex_unlock(&ubi->device_mutex);
     61	return err;
     62}
     63
     64/**
     65 * clear_update_marker - clear update marker.
     66 * @ubi: UBI device description object
     67 * @vol: volume description object
     68 * @bytes: new data size in bytes
     69 *
     70 * This function clears the update marker for volume @vol, sets new volume
     71 * data size and clears the "corrupted" flag (static volumes only). Returns
     72 * zero in case of success and a negative error code in case of failure.
     73 */
     74static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
     75			       long long bytes)
     76{
     77	int err;
     78	struct ubi_vtbl_record vtbl_rec;
     79
     80	dbg_gen("clear update marker for volume %d", vol->vol_id);
     81
     82	vtbl_rec = ubi->vtbl[vol->vol_id];
     83	ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
     84	vtbl_rec.upd_marker = 0;
     85
     86	if (vol->vol_type == UBI_STATIC_VOLUME) {
     87		vol->corrupted = 0;
     88		vol->used_bytes = bytes;
     89		vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
     90					    &vol->last_eb_bytes);
     91		if (vol->last_eb_bytes)
     92			vol->used_ebs += 1;
     93		else
     94			vol->last_eb_bytes = vol->usable_leb_size;
     95	}
     96
     97	mutex_lock(&ubi->device_mutex);
     98	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
     99	vol->upd_marker = 0;
    100	mutex_unlock(&ubi->device_mutex);
    101	return err;
    102}
    103
    104/**
    105 * ubi_start_update - start volume update.
    106 * @ubi: UBI device description object
    107 * @vol: volume description object
    108 * @bytes: update bytes
    109 *
    110 * This function starts volume update operation. If @bytes is zero, the volume
    111 * is just wiped out. Returns zero in case of success and a negative error code
    112 * in case of failure.
    113 */
    114int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
    115		     long long bytes)
    116{
    117	int i, err;
    118
    119	dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
    120	ubi_assert(!vol->updating && !vol->changing_leb);
    121	vol->updating = 1;
    122
    123	vol->upd_buf = vmalloc(ubi->leb_size);
    124	if (!vol->upd_buf)
    125		return -ENOMEM;
    126
    127	err = set_update_marker(ubi, vol);
    128	if (err)
    129		return err;
    130
    131	/* Before updating - wipe out the volume */
    132	for (i = 0; i < vol->reserved_pebs; i++) {
    133		err = ubi_eba_unmap_leb(ubi, vol, i);
    134		if (err)
    135			return err;
    136	}
    137
    138	err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
    139	if (err)
    140		return err;
    141
    142	if (bytes == 0) {
    143		err = clear_update_marker(ubi, vol, 0);
    144		if (err)
    145			return err;
    146
    147		vfree(vol->upd_buf);
    148		vol->updating = 0;
    149		return 0;
    150	}
    151
    152	vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
    153			       vol->usable_leb_size);
    154	vol->upd_bytes = bytes;
    155	vol->upd_received = 0;
    156	return 0;
    157}
    158
    159/**
    160 * ubi_start_leb_change - start atomic LEB change.
    161 * @ubi: UBI device description object
    162 * @vol: volume description object
    163 * @req: operation request
    164 *
    165 * This function starts atomic LEB change operation. Returns zero in case of
    166 * success and a negative error code in case of failure.
    167 */
    168int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
    169			 const struct ubi_leb_change_req *req)
    170{
    171	ubi_assert(!vol->updating && !vol->changing_leb);
    172
    173	dbg_gen("start changing LEB %d:%d, %u bytes",
    174		vol->vol_id, req->lnum, req->bytes);
    175	if (req->bytes == 0)
    176		return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0);
    177
    178	vol->upd_bytes = req->bytes;
    179	vol->upd_received = 0;
    180	vol->changing_leb = 1;
    181	vol->ch_lnum = req->lnum;
    182
    183	vol->upd_buf = vmalloc(ALIGN((int)req->bytes, ubi->min_io_size));
    184	if (!vol->upd_buf)
    185		return -ENOMEM;
    186
    187	return 0;
    188}
    189
    190/**
    191 * write_leb - write update data.
    192 * @ubi: UBI device description object
    193 * @vol: volume description object
    194 * @lnum: logical eraseblock number
    195 * @buf: data to write
    196 * @len: data size
    197 * @used_ebs: how many logical eraseblocks will this volume contain (static
    198 * volumes only)
    199 *
    200 * This function writes update data to corresponding logical eraseblock. In
    201 * case of dynamic volume, this function checks if the data contains 0xFF bytes
    202 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
    203 * buffer contains only 0xFF bytes, the LEB is left unmapped.
    204 *
    205 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
    206 * that we want to make sure that more data may be appended to the logical
    207 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
    208 * this PEB won't be writable anymore. So if one writes the file-system image
    209 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
    210 * space is writable after the update.
    211 *
    212 * We do not do this for static volumes because they are read-only. But this
    213 * also cannot be done because we have to store per-LEB CRC and the correct
    214 * data length.
    215 *
    216 * This function returns zero in case of success and a negative error code in
    217 * case of failure.
    218 */
    219static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
    220		     void *buf, int len, int used_ebs)
    221{
    222	int err;
    223
    224	if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
    225		int l = ALIGN(len, ubi->min_io_size);
    226
    227		memset(buf + len, 0xFF, l - len);
    228		len = ubi_calc_data_len(ubi, buf, l);
    229		if (len == 0) {
    230			dbg_gen("all %d bytes contain 0xFF - skip", len);
    231			return 0;
    232		}
    233
    234		err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len);
    235	} else {
    236		/*
    237		 * When writing static volume, and this is the last logical
    238		 * eraseblock, the length (@len) does not have to be aligned to
    239		 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
    240		 * function accepts exact (unaligned) length and stores it in
    241		 * the VID header. And it takes care of proper alignment by
    242		 * padding the buffer. Here we just make sure the padding will
    243		 * contain zeros, not random trash.
    244		 */
    245		memset(buf + len, 0, vol->usable_leb_size - len);
    246		err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs);
    247	}
    248
    249	return err;
    250}
    251
    252/**
    253 * ubi_more_update_data - write more update data.
    254 * @ubi: UBI device description object
    255 * @vol: volume description object
    256 * @buf: write data (user-space memory buffer)
    257 * @count: how much bytes to write
    258 *
    259 * This function writes more data to the volume which is being updated. It may
    260 * be called arbitrary number of times until all the update data arriveis. This
    261 * function returns %0 in case of success, number of bytes written during the
    262 * last call if the whole volume update has been successfully finished, and a
    263 * negative error code in case of failure.
    264 */
    265int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
    266			 const void __user *buf, int count)
    267{
    268	int lnum, offs, err = 0, len, to_write = count;
    269
    270	dbg_gen("write %d of %lld bytes, %lld already passed",
    271		count, vol->upd_bytes, vol->upd_received);
    272
    273	if (ubi->ro_mode)
    274		return -EROFS;
    275
    276	lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
    277	if (vol->upd_received + count > vol->upd_bytes)
    278		to_write = count = vol->upd_bytes - vol->upd_received;
    279
    280	/*
    281	 * When updating volumes, we accumulate whole logical eraseblock of
    282	 * data and write it at once.
    283	 */
    284	if (offs != 0) {
    285		/*
    286		 * This is a write to the middle of the logical eraseblock. We
    287		 * copy the data to our update buffer and wait for more data or
    288		 * flush it if the whole eraseblock is written or the update
    289		 * is finished.
    290		 */
    291
    292		len = vol->usable_leb_size - offs;
    293		if (len > count)
    294			len = count;
    295
    296		err = copy_from_user(vol->upd_buf + offs, buf, len);
    297		if (err)
    298			return -EFAULT;
    299
    300		if (offs + len == vol->usable_leb_size ||
    301		    vol->upd_received + len == vol->upd_bytes) {
    302			int flush_len = offs + len;
    303
    304			/*
    305			 * OK, we gathered either the whole eraseblock or this
    306			 * is the last chunk, it's time to flush the buffer.
    307			 */
    308			ubi_assert(flush_len <= vol->usable_leb_size);
    309			err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
    310					vol->upd_ebs);
    311			if (err)
    312				return err;
    313		}
    314
    315		vol->upd_received += len;
    316		count -= len;
    317		buf += len;
    318		lnum += 1;
    319	}
    320
    321	/*
    322	 * If we've got more to write, let's continue. At this point we know we
    323	 * are starting from the beginning of an eraseblock.
    324	 */
    325	while (count) {
    326		if (count > vol->usable_leb_size)
    327			len = vol->usable_leb_size;
    328		else
    329			len = count;
    330
    331		err = copy_from_user(vol->upd_buf, buf, len);
    332		if (err)
    333			return -EFAULT;
    334
    335		if (len == vol->usable_leb_size ||
    336		    vol->upd_received + len == vol->upd_bytes) {
    337			err = write_leb(ubi, vol, lnum, vol->upd_buf,
    338					len, vol->upd_ebs);
    339			if (err)
    340				break;
    341		}
    342
    343		vol->upd_received += len;
    344		count -= len;
    345		lnum += 1;
    346		buf += len;
    347	}
    348
    349	ubi_assert(vol->upd_received <= vol->upd_bytes);
    350	if (vol->upd_received == vol->upd_bytes) {
    351		err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
    352		if (err)
    353			return err;
    354		/* The update is finished, clear the update marker */
    355		err = clear_update_marker(ubi, vol, vol->upd_bytes);
    356		if (err)
    357			return err;
    358		vol->updating = 0;
    359		err = to_write;
    360		vfree(vol->upd_buf);
    361	}
    362
    363	return err;
    364}
    365
    366/**
    367 * ubi_more_leb_change_data - accept more data for atomic LEB change.
    368 * @ubi: UBI device description object
    369 * @vol: volume description object
    370 * @buf: write data (user-space memory buffer)
    371 * @count: how much bytes to write
    372 *
    373 * This function accepts more data to the volume which is being under the
    374 * "atomic LEB change" operation. It may be called arbitrary number of times
    375 * until all data arrives. This function returns %0 in case of success, number
    376 * of bytes written during the last call if the whole "atomic LEB change"
    377 * operation has been successfully finished, and a negative error code in case
    378 * of failure.
    379 */
    380int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
    381			     const void __user *buf, int count)
    382{
    383	int err;
    384
    385	dbg_gen("write %d of %lld bytes, %lld already passed",
    386		count, vol->upd_bytes, vol->upd_received);
    387
    388	if (ubi->ro_mode)
    389		return -EROFS;
    390
    391	if (vol->upd_received + count > vol->upd_bytes)
    392		count = vol->upd_bytes - vol->upd_received;
    393
    394	err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
    395	if (err)
    396		return -EFAULT;
    397
    398	vol->upd_received += count;
    399
    400	if (vol->upd_received == vol->upd_bytes) {
    401		int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
    402
    403		memset(vol->upd_buf + vol->upd_bytes, 0xFF,
    404		       len - vol->upd_bytes);
    405		len = ubi_calc_data_len(ubi, vol->upd_buf, len);
    406		err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
    407						vol->upd_buf, len);
    408		if (err)
    409			return err;
    410	}
    411
    412	ubi_assert(vol->upd_received <= vol->upd_bytes);
    413	if (vol->upd_received == vol->upd_bytes) {
    414		vol->changing_leb = 0;
    415		err = count;
    416		vfree(vol->upd_buf);
    417	}
    418
    419	return err;
    420}