cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vtbl.c (24276B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (c) International Business Machines Corp., 2006
      4 * Copyright (c) Nokia Corporation, 2006, 2007
      5 *
      6 * Author: Artem Bityutskiy (Битюцкий Артём)
      7 */
      8
      9/*
     10 * This file includes volume table manipulation code. The volume table is an
     11 * on-flash table containing volume meta-data like name, number of reserved
     12 * physical eraseblocks, type, etc. The volume table is stored in the so-called
     13 * "layout volume".
     14 *
     15 * The layout volume is an internal volume which is organized as follows. It
     16 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
     17 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
     18 * other. This redundancy guarantees robustness to unclean reboots. The volume
     19 * table is basically an array of volume table records. Each record contains
     20 * full information about the volume and protected by a CRC checksum. Note,
     21 * nowadays we use the atomic LEB change operation when updating the volume
     22 * table, so we do not really need 2 LEBs anymore, but we preserve the older
     23 * design for the backward compatibility reasons.
     24 *
     25 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
     26 * erased, and the updated volume table is written back to LEB 0. Then same for
     27 * LEB 1. This scheme guarantees recoverability from unclean reboots.
     28 *
     29 * In this UBI implementation the on-flash volume table does not contain any
     30 * information about how much data static volumes contain.
     31 *
     32 * But it would still be beneficial to store this information in the volume
     33 * table. For example, suppose we have a static volume X, and all its physical
     34 * eraseblocks became bad for some reasons. Suppose we are attaching the
     35 * corresponding MTD device, for some reason we find no logical eraseblocks
     36 * corresponding to the volume X. According to the volume table volume X does
     37 * exist. So we don't know whether it is just empty or all its physical
     38 * eraseblocks went bad. So we cannot alarm the user properly.
     39 *
     40 * The volume table also stores so-called "update marker", which is used for
     41 * volume updates. Before updating the volume, the update marker is set, and
     42 * after the update operation is finished, the update marker is cleared. So if
     43 * the update operation was interrupted (e.g. by an unclean reboot) - the
     44 * update marker is still there and we know that the volume's contents is
     45 * damaged.
     46 */
     47
     48#include <linux/crc32.h>
     49#include <linux/err.h>
     50#include <linux/slab.h>
     51#include <asm/div64.h>
     52#include "ubi.h"
     53
     54static void self_vtbl_check(const struct ubi_device *ubi);
     55
     56/* Empty volume table record */
     57static struct ubi_vtbl_record empty_vtbl_record;
     58
     59/**
     60 * ubi_update_layout_vol - helper for updatting layout volumes on flash
     61 * @ubi: UBI device description object
     62 */
     63static int ubi_update_layout_vol(struct ubi_device *ubi)
     64{
     65	struct ubi_volume *layout_vol;
     66	int i, err;
     67
     68	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
     69	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
     70		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
     71						ubi->vtbl_size);
     72		if (err)
     73			return err;
     74	}
     75
     76	return 0;
     77}
     78
     79/**
     80 * ubi_change_vtbl_record - change volume table record.
     81 * @ubi: UBI device description object
     82 * @idx: table index to change
     83 * @vtbl_rec: new volume table record
     84 *
     85 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
     86 * volume table record is written. The caller does not have to calculate CRC of
     87 * the record as it is done by this function. Returns zero in case of success
     88 * and a negative error code in case of failure.
     89 */
     90int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
     91			   struct ubi_vtbl_record *vtbl_rec)
     92{
     93	int err;
     94	uint32_t crc;
     95
     96	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
     97
     98	if (!vtbl_rec)
     99		vtbl_rec = &empty_vtbl_record;
    100	else {
    101		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
    102		vtbl_rec->crc = cpu_to_be32(crc);
    103	}
    104
    105	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
    106	err = ubi_update_layout_vol(ubi);
    107
    108	self_vtbl_check(ubi);
    109	return err ? err : 0;
    110}
    111
    112/**
    113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
    114 * @ubi: UBI device description object
    115 * @rename_list: list of &struct ubi_rename_entry objects
    116 *
    117 * This function re-names multiple volumes specified in @req in the volume
    118 * table. Returns zero in case of success and a negative error code in case of
    119 * failure.
    120 */
    121int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
    122			    struct list_head *rename_list)
    123{
    124	struct ubi_rename_entry *re;
    125
    126	list_for_each_entry(re, rename_list, list) {
    127		uint32_t crc;
    128		struct ubi_volume *vol = re->desc->vol;
    129		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
    130
    131		if (re->remove) {
    132			memcpy(vtbl_rec, &empty_vtbl_record,
    133			       sizeof(struct ubi_vtbl_record));
    134			continue;
    135		}
    136
    137		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
    138		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
    139		memset(vtbl_rec->name + re->new_name_len, 0,
    140		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
    141		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
    142			    UBI_VTBL_RECORD_SIZE_CRC);
    143		vtbl_rec->crc = cpu_to_be32(crc);
    144	}
    145
    146	return ubi_update_layout_vol(ubi);
    147}
    148
    149/**
    150 * vtbl_check - check if volume table is not corrupted and sensible.
    151 * @ubi: UBI device description object
    152 * @vtbl: volume table
    153 *
    154 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
    155 * and %-EINVAL if it contains inconsistent data.
    156 */
    157static int vtbl_check(const struct ubi_device *ubi,
    158		      const struct ubi_vtbl_record *vtbl)
    159{
    160	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
    161	int upd_marker, err;
    162	uint32_t crc;
    163	const char *name;
    164
    165	for (i = 0; i < ubi->vtbl_slots; i++) {
    166		cond_resched();
    167
    168		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
    169		alignment = be32_to_cpu(vtbl[i].alignment);
    170		data_pad = be32_to_cpu(vtbl[i].data_pad);
    171		upd_marker = vtbl[i].upd_marker;
    172		vol_type = vtbl[i].vol_type;
    173		name_len = be16_to_cpu(vtbl[i].name_len);
    174		name = &vtbl[i].name[0];
    175
    176		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
    177		if (be32_to_cpu(vtbl[i].crc) != crc) {
    178			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
    179				 i, crc, be32_to_cpu(vtbl[i].crc));
    180			ubi_dump_vtbl_record(&vtbl[i], i);
    181			return 1;
    182		}
    183
    184		if (reserved_pebs == 0) {
    185			if (memcmp(&vtbl[i], &empty_vtbl_record,
    186						UBI_VTBL_RECORD_SIZE)) {
    187				err = 2;
    188				goto bad;
    189			}
    190			continue;
    191		}
    192
    193		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
    194		    name_len < 0) {
    195			err = 3;
    196			goto bad;
    197		}
    198
    199		if (alignment > ubi->leb_size || alignment == 0) {
    200			err = 4;
    201			goto bad;
    202		}
    203
    204		n = alignment & (ubi->min_io_size - 1);
    205		if (alignment != 1 && n) {
    206			err = 5;
    207			goto bad;
    208		}
    209
    210		n = ubi->leb_size % alignment;
    211		if (data_pad != n) {
    212			ubi_err(ubi, "bad data_pad, has to be %d", n);
    213			err = 6;
    214			goto bad;
    215		}
    216
    217		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
    218			err = 7;
    219			goto bad;
    220		}
    221
    222		if (upd_marker != 0 && upd_marker != 1) {
    223			err = 8;
    224			goto bad;
    225		}
    226
    227		if (reserved_pebs > ubi->good_peb_count) {
    228			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
    229				reserved_pebs, ubi->good_peb_count);
    230			err = 9;
    231			goto bad;
    232		}
    233
    234		if (name_len > UBI_VOL_NAME_MAX) {
    235			err = 10;
    236			goto bad;
    237		}
    238
    239		if (name[0] == '\0') {
    240			err = 11;
    241			goto bad;
    242		}
    243
    244		if (name_len != strnlen(name, name_len + 1)) {
    245			err = 12;
    246			goto bad;
    247		}
    248	}
    249
    250	/* Checks that all names are unique */
    251	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
    252		for (n = i + 1; n < ubi->vtbl_slots; n++) {
    253			int len1 = be16_to_cpu(vtbl[i].name_len);
    254			int len2 = be16_to_cpu(vtbl[n].name_len);
    255
    256			if (len1 > 0 && len1 == len2 &&
    257			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
    258				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
    259					i, n, vtbl[i].name);
    260				ubi_dump_vtbl_record(&vtbl[i], i);
    261				ubi_dump_vtbl_record(&vtbl[n], n);
    262				return -EINVAL;
    263			}
    264		}
    265	}
    266
    267	return 0;
    268
    269bad:
    270	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
    271	ubi_dump_vtbl_record(&vtbl[i], i);
    272	return -EINVAL;
    273}
    274
    275/**
    276 * create_vtbl - create a copy of volume table.
    277 * @ubi: UBI device description object
    278 * @ai: attaching information
    279 * @copy: number of the volume table copy
    280 * @vtbl: contents of the volume table
    281 *
    282 * This function returns zero in case of success and a negative error code in
    283 * case of failure.
    284 */
    285static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
    286		       int copy, void *vtbl)
    287{
    288	int err, tries = 0;
    289	struct ubi_vid_io_buf *vidb;
    290	struct ubi_vid_hdr *vid_hdr;
    291	struct ubi_ainf_peb *new_aeb;
    292
    293	dbg_gen("create volume table (copy #%d)", copy + 1);
    294
    295	vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
    296	if (!vidb)
    297		return -ENOMEM;
    298
    299	vid_hdr = ubi_get_vid_hdr(vidb);
    300
    301retry:
    302	new_aeb = ubi_early_get_peb(ubi, ai);
    303	if (IS_ERR(new_aeb)) {
    304		err = PTR_ERR(new_aeb);
    305		goto out_free;
    306	}
    307
    308	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
    309	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
    310	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
    311	vid_hdr->data_size = vid_hdr->used_ebs =
    312			     vid_hdr->data_pad = cpu_to_be32(0);
    313	vid_hdr->lnum = cpu_to_be32(copy);
    314	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
    315
    316	/* The EC header is already there, write the VID header */
    317	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb);
    318	if (err)
    319		goto write_error;
    320
    321	/* Write the layout volume contents */
    322	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
    323	if (err)
    324		goto write_error;
    325
    326	/*
    327	 * And add it to the attaching information. Don't delete the old version
    328	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
    329	 */
    330	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
    331	ubi_free_aeb(ai, new_aeb);
    332	ubi_free_vid_buf(vidb);
    333	return err;
    334
    335write_error:
    336	if (err == -EIO && ++tries <= 5) {
    337		/*
    338		 * Probably this physical eraseblock went bad, try to pick
    339		 * another one.
    340		 */
    341		list_add(&new_aeb->u.list, &ai->erase);
    342		goto retry;
    343	}
    344	ubi_free_aeb(ai, new_aeb);
    345out_free:
    346	ubi_free_vid_buf(vidb);
    347	return err;
    348
    349}
    350
    351/**
    352 * process_lvol - process the layout volume.
    353 * @ubi: UBI device description object
    354 * @ai: attaching information
    355 * @av: layout volume attaching information
    356 *
    357 * This function is responsible for reading the layout volume, ensuring it is
    358 * not corrupted, and recovering from corruptions if needed. Returns volume
    359 * table in case of success and a negative error code in case of failure.
    360 */
    361static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
    362					    struct ubi_attach_info *ai,
    363					    struct ubi_ainf_volume *av)
    364{
    365	int err;
    366	struct rb_node *rb;
    367	struct ubi_ainf_peb *aeb;
    368	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
    369	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
    370
    371	/*
    372	 * UBI goes through the following steps when it changes the layout
    373	 * volume:
    374	 * a. erase LEB 0;
    375	 * b. write new data to LEB 0;
    376	 * c. erase LEB 1;
    377	 * d. write new data to LEB 1.
    378	 *
    379	 * Before the change, both LEBs contain the same data.
    380	 *
    381	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
    382	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
    383	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
    384	 * finally, unclean reboots may result in a situation when neither LEB
    385	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
    386	 * 0 contains more recent information.
    387	 *
    388	 * So the plan is to first check LEB 0. Then
    389	 * a. if LEB 0 is OK, it must be containing the most recent data; then
    390	 *    we compare it with LEB 1, and if they are different, we copy LEB
    391	 *    0 to LEB 1;
    392	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
    393	 *    to LEB 0.
    394	 */
    395
    396	dbg_gen("check layout volume");
    397
    398	/* Read both LEB 0 and LEB 1 into memory */
    399	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
    400		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
    401		if (!leb[aeb->lnum]) {
    402			err = -ENOMEM;
    403			goto out_free;
    404		}
    405
    406		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
    407				       ubi->vtbl_size);
    408		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
    409			/*
    410			 * Scrub the PEB later. Note, -EBADMSG indicates an
    411			 * uncorrectable ECC error, but we have our own CRC and
    412			 * the data will be checked later. If the data is OK,
    413			 * the PEB will be scrubbed (because we set
    414			 * aeb->scrub). If the data is not OK, the contents of
    415			 * the PEB will be recovered from the second copy, and
    416			 * aeb->scrub will be cleared in
    417			 * 'ubi_add_to_av()'.
    418			 */
    419			aeb->scrub = 1;
    420		else if (err)
    421			goto out_free;
    422	}
    423
    424	err = -EINVAL;
    425	if (leb[0]) {
    426		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
    427		if (leb_corrupted[0] < 0)
    428			goto out_free;
    429	}
    430
    431	if (!leb_corrupted[0]) {
    432		/* LEB 0 is OK */
    433		if (leb[1])
    434			leb_corrupted[1] = memcmp(leb[0], leb[1],
    435						  ubi->vtbl_size);
    436		if (leb_corrupted[1]) {
    437			ubi_warn(ubi, "volume table copy #2 is corrupted");
    438			err = create_vtbl(ubi, ai, 1, leb[0]);
    439			if (err)
    440				goto out_free;
    441			ubi_msg(ubi, "volume table was restored");
    442		}
    443
    444		/* Both LEB 1 and LEB 2 are OK and consistent */
    445		vfree(leb[1]);
    446		return leb[0];
    447	} else {
    448		/* LEB 0 is corrupted or does not exist */
    449		if (leb[1]) {
    450			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
    451			if (leb_corrupted[1] < 0)
    452				goto out_free;
    453		}
    454		if (leb_corrupted[1]) {
    455			/* Both LEB 0 and LEB 1 are corrupted */
    456			ubi_err(ubi, "both volume tables are corrupted");
    457			goto out_free;
    458		}
    459
    460		ubi_warn(ubi, "volume table copy #1 is corrupted");
    461		err = create_vtbl(ubi, ai, 0, leb[1]);
    462		if (err)
    463			goto out_free;
    464		ubi_msg(ubi, "volume table was restored");
    465
    466		vfree(leb[0]);
    467		return leb[1];
    468	}
    469
    470out_free:
    471	vfree(leb[0]);
    472	vfree(leb[1]);
    473	return ERR_PTR(err);
    474}
    475
    476/**
    477 * create_empty_lvol - create empty layout volume.
    478 * @ubi: UBI device description object
    479 * @ai: attaching information
    480 *
    481 * This function returns volume table contents in case of success and a
    482 * negative error code in case of failure.
    483 */
    484static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
    485						 struct ubi_attach_info *ai)
    486{
    487	int i;
    488	struct ubi_vtbl_record *vtbl;
    489
    490	vtbl = vzalloc(ubi->vtbl_size);
    491	if (!vtbl)
    492		return ERR_PTR(-ENOMEM);
    493
    494	for (i = 0; i < ubi->vtbl_slots; i++)
    495		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
    496
    497	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
    498		int err;
    499
    500		err = create_vtbl(ubi, ai, i, vtbl);
    501		if (err) {
    502			vfree(vtbl);
    503			return ERR_PTR(err);
    504		}
    505	}
    506
    507	return vtbl;
    508}
    509
    510/**
    511 * init_volumes - initialize volume information for existing volumes.
    512 * @ubi: UBI device description object
    513 * @ai: scanning information
    514 * @vtbl: volume table
    515 *
    516 * This function allocates volume description objects for existing volumes.
    517 * Returns zero in case of success and a negative error code in case of
    518 * failure.
    519 */
    520static int init_volumes(struct ubi_device *ubi,
    521			const struct ubi_attach_info *ai,
    522			const struct ubi_vtbl_record *vtbl)
    523{
    524	int i, err, reserved_pebs = 0;
    525	struct ubi_ainf_volume *av;
    526	struct ubi_volume *vol;
    527
    528	for (i = 0; i < ubi->vtbl_slots; i++) {
    529		cond_resched();
    530
    531		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
    532			continue; /* Empty record */
    533
    534		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
    535		if (!vol)
    536			return -ENOMEM;
    537
    538		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
    539		vol->alignment = be32_to_cpu(vtbl[i].alignment);
    540		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
    541		vol->upd_marker = vtbl[i].upd_marker;
    542		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
    543					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
    544		vol->name_len = be16_to_cpu(vtbl[i].name_len);
    545		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
    546		memcpy(vol->name, vtbl[i].name, vol->name_len);
    547		vol->name[vol->name_len] = '\0';
    548		vol->vol_id = i;
    549
    550		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
    551			vol->skip_check = 1;
    552
    553		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
    554			/* Auto re-size flag may be set only for one volume */
    555			if (ubi->autoresize_vol_id != -1) {
    556				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
    557					ubi->autoresize_vol_id, i);
    558				kfree(vol);
    559				return -EINVAL;
    560			}
    561
    562			ubi->autoresize_vol_id = i;
    563		}
    564
    565		ubi_assert(!ubi->volumes[i]);
    566		ubi->volumes[i] = vol;
    567		ubi->vol_count += 1;
    568		vol->ubi = ubi;
    569		reserved_pebs += vol->reserved_pebs;
    570
    571		/*
    572		 * We use ubi->peb_count and not vol->reserved_pebs because
    573		 * we want to keep the code simple. Otherwise we'd have to
    574		 * resize/check the bitmap upon volume resize too.
    575		 * Allocating a few bytes more does not hurt.
    576		 */
    577		err = ubi_fastmap_init_checkmap(vol, ubi->peb_count);
    578		if (err)
    579			return err;
    580
    581		/*
    582		 * In case of dynamic volume UBI knows nothing about how many
    583		 * data is stored there. So assume the whole volume is used.
    584		 */
    585		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
    586			vol->used_ebs = vol->reserved_pebs;
    587			vol->last_eb_bytes = vol->usable_leb_size;
    588			vol->used_bytes =
    589				(long long)vol->used_ebs * vol->usable_leb_size;
    590			continue;
    591		}
    592
    593		/* Static volumes only */
    594		av = ubi_find_av(ai, i);
    595		if (!av || !av->leb_count) {
    596			/*
    597			 * No eraseblocks belonging to this volume found. We
    598			 * don't actually know whether this static volume is
    599			 * completely corrupted or just contains no data. And
    600			 * we cannot know this as long as data size is not
    601			 * stored on flash. So we just assume the volume is
    602			 * empty. FIXME: this should be handled.
    603			 */
    604			continue;
    605		}
    606
    607		if (av->leb_count != av->used_ebs) {
    608			/*
    609			 * We found a static volume which misses several
    610			 * eraseblocks. Treat it as corrupted.
    611			 */
    612			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
    613				 av->vol_id, av->used_ebs - av->leb_count);
    614			vol->corrupted = 1;
    615			continue;
    616		}
    617
    618		vol->used_ebs = av->used_ebs;
    619		vol->used_bytes =
    620			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
    621		vol->used_bytes += av->last_data_size;
    622		vol->last_eb_bytes = av->last_data_size;
    623	}
    624
    625	/* And add the layout volume */
    626	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
    627	if (!vol)
    628		return -ENOMEM;
    629
    630	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
    631	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
    632	vol->vol_type = UBI_DYNAMIC_VOLUME;
    633	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
    634	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
    635	vol->usable_leb_size = ubi->leb_size;
    636	vol->used_ebs = vol->reserved_pebs;
    637	vol->last_eb_bytes = vol->reserved_pebs;
    638	vol->used_bytes =
    639		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
    640	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
    641	vol->ref_count = 1;
    642
    643	ubi_assert(!ubi->volumes[i]);
    644	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
    645	reserved_pebs += vol->reserved_pebs;
    646	ubi->vol_count += 1;
    647	vol->ubi = ubi;
    648	err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS);
    649	if (err)
    650		return err;
    651
    652	if (reserved_pebs > ubi->avail_pebs) {
    653		ubi_err(ubi, "not enough PEBs, required %d, available %d",
    654			reserved_pebs, ubi->avail_pebs);
    655		if (ubi->corr_peb_count)
    656			ubi_err(ubi, "%d PEBs are corrupted and not used",
    657				ubi->corr_peb_count);
    658		return -ENOSPC;
    659	}
    660	ubi->rsvd_pebs += reserved_pebs;
    661	ubi->avail_pebs -= reserved_pebs;
    662
    663	return 0;
    664}
    665
    666/**
    667 * check_av - check volume attaching information.
    668 * @vol: UBI volume description object
    669 * @av: volume attaching information
    670 *
    671 * This function returns zero if the volume attaching information is consistent
    672 * to the data read from the volume tabla, and %-EINVAL if not.
    673 */
    674static int check_av(const struct ubi_volume *vol,
    675		    const struct ubi_ainf_volume *av)
    676{
    677	int err;
    678
    679	if (av->highest_lnum >= vol->reserved_pebs) {
    680		err = 1;
    681		goto bad;
    682	}
    683	if (av->leb_count > vol->reserved_pebs) {
    684		err = 2;
    685		goto bad;
    686	}
    687	if (av->vol_type != vol->vol_type) {
    688		err = 3;
    689		goto bad;
    690	}
    691	if (av->used_ebs > vol->reserved_pebs) {
    692		err = 4;
    693		goto bad;
    694	}
    695	if (av->data_pad != vol->data_pad) {
    696		err = 5;
    697		goto bad;
    698	}
    699	return 0;
    700
    701bad:
    702	ubi_err(vol->ubi, "bad attaching information, error %d", err);
    703	ubi_dump_av(av);
    704	ubi_dump_vol_info(vol);
    705	return -EINVAL;
    706}
    707
    708/**
    709 * check_attaching_info - check that attaching information.
    710 * @ubi: UBI device description object
    711 * @ai: attaching information
    712 *
    713 * Even though we protect on-flash data by CRC checksums, we still don't trust
    714 * the media. This function ensures that attaching information is consistent to
    715 * the information read from the volume table. Returns zero if the attaching
    716 * information is OK and %-EINVAL if it is not.
    717 */
    718static int check_attaching_info(const struct ubi_device *ubi,
    719			       struct ubi_attach_info *ai)
    720{
    721	int err, i;
    722	struct ubi_ainf_volume *av;
    723	struct ubi_volume *vol;
    724
    725	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
    726		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
    727			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
    728		return -EINVAL;
    729	}
    730
    731	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
    732	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
    733		ubi_err(ubi, "too large volume ID %d found",
    734			ai->highest_vol_id);
    735		return -EINVAL;
    736	}
    737
    738	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
    739		cond_resched();
    740
    741		av = ubi_find_av(ai, i);
    742		vol = ubi->volumes[i];
    743		if (!vol) {
    744			if (av)
    745				ubi_remove_av(ai, av);
    746			continue;
    747		}
    748
    749		if (vol->reserved_pebs == 0) {
    750			ubi_assert(i < ubi->vtbl_slots);
    751
    752			if (!av)
    753				continue;
    754
    755			/*
    756			 * During attaching we found a volume which does not
    757			 * exist according to the information in the volume
    758			 * table. This must have happened due to an unclean
    759			 * reboot while the volume was being removed. Discard
    760			 * these eraseblocks.
    761			 */
    762			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
    763			ubi_remove_av(ai, av);
    764		} else if (av) {
    765			err = check_av(vol, av);
    766			if (err)
    767				return err;
    768		}
    769	}
    770
    771	return 0;
    772}
    773
    774/**
    775 * ubi_read_volume_table - read the volume table.
    776 * @ubi: UBI device description object
    777 * @ai: attaching information
    778 *
    779 * This function reads volume table, checks it, recover from errors if needed,
    780 * or creates it if needed. Returns zero in case of success and a negative
    781 * error code in case of failure.
    782 */
    783int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
    784{
    785	int err;
    786	struct ubi_ainf_volume *av;
    787
    788	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
    789
    790	/*
    791	 * The number of supported volumes is limited by the eraseblock size
    792	 * and by the UBI_MAX_VOLUMES constant.
    793	 */
    794	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
    795	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
    796		ubi->vtbl_slots = UBI_MAX_VOLUMES;
    797
    798	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
    799	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
    800
    801	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
    802	if (!av) {
    803		/*
    804		 * No logical eraseblocks belonging to the layout volume were
    805		 * found. This could mean that the flash is just empty. In
    806		 * this case we create empty layout volume.
    807		 *
    808		 * But if flash is not empty this must be a corruption or the
    809		 * MTD device just contains garbage.
    810		 */
    811		if (ai->is_empty) {
    812			ubi->vtbl = create_empty_lvol(ubi, ai);
    813			if (IS_ERR(ubi->vtbl))
    814				return PTR_ERR(ubi->vtbl);
    815		} else {
    816			ubi_err(ubi, "the layout volume was not found");
    817			return -EINVAL;
    818		}
    819	} else {
    820		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
    821			/* This must not happen with proper UBI images */
    822			ubi_err(ubi, "too many LEBs (%d) in layout volume",
    823				av->leb_count);
    824			return -EINVAL;
    825		}
    826
    827		ubi->vtbl = process_lvol(ubi, ai, av);
    828		if (IS_ERR(ubi->vtbl))
    829			return PTR_ERR(ubi->vtbl);
    830	}
    831
    832	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
    833
    834	/*
    835	 * The layout volume is OK, initialize the corresponding in-RAM data
    836	 * structures.
    837	 */
    838	err = init_volumes(ubi, ai, ubi->vtbl);
    839	if (err)
    840		goto out_free;
    841
    842	/*
    843	 * Make sure that the attaching information is consistent to the
    844	 * information stored in the volume table.
    845	 */
    846	err = check_attaching_info(ubi, ai);
    847	if (err)
    848		goto out_free;
    849
    850	return 0;
    851
    852out_free:
    853	vfree(ubi->vtbl);
    854	ubi_free_all_volumes(ubi);
    855	return err;
    856}
    857
    858/**
    859 * self_vtbl_check - check volume table.
    860 * @ubi: UBI device description object
    861 */
    862static void self_vtbl_check(const struct ubi_device *ubi)
    863{
    864	if (!ubi_dbg_chk_gen(ubi))
    865		return;
    866
    867	if (vtbl_check(ubi, ubi->vtbl)) {
    868		ubi_err(ubi, "self-check failed");
    869		BUG();
    870	}
    871}