wl.c (56887B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8/* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88#include <linux/slab.h> 89#include <linux/crc32.h> 90#include <linux/freezer.h> 91#include <linux/kthread.h> 92#include "ubi.h" 93#include "wl.h" 94 95/* Number of physical eraseblocks reserved for wear-leveling purposes */ 96#define WL_RESERVED_PEBS 1 97 98/* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106/* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119/* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123#define WL_MAX_FAILURES 32 124 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131/** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140{ 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165} 166 167/** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176{ 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179} 180 181/** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188static int do_work(struct ubi_device *ubi) 189{ 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226} 227 228/** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237{ 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265} 266 267/** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276{ 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286} 287 288/** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299{ 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307} 308 309/** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320{ 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342} 343 344/** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355{ 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372} 373 374/** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383{ 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403} 404 405/** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413static int prot_queue_del(struct ubi_device *ubi, int pnum) 414{ 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427} 428 429/** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440{ 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485out_free: 486 kfree(ec_hdr); 487 return err; 488} 489 490/** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498static void serve_prot_queue(struct ubi_device *ubi) 499{ 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532} 533 534/** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543{ 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551} 552 553/** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562{ 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566} 567 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571/** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * @nested: denotes whether the work_sem is already held in read mode 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585{ 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608} 609 610static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611/** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622{ 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633} 634 635static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636/** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649{ 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673#ifdef CONFIG_MTD_UBI_FASTMAP 674 if (!next_peb_for_wl(ubi) || 675#else 676 if (!ubi->free.rb_node || 677#endif 678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 679 /* 680 * No free physical eraseblocks? Well, they must be waiting in 681 * the queue to be erased. Cancel movement - it will be 682 * triggered again when a free physical eraseblock appears. 683 * 684 * No used physical eraseblocks? They must be temporarily 685 * protected from being moved. They will be moved to the 686 * @ubi->used tree later and the wear-leveling will be 687 * triggered again. 688 */ 689 dbg_wl("cancel WL, a list is empty: free %d, used %d", 690 !ubi->free.rb_node, !ubi->used.rb_node); 691 goto out_cancel; 692 } 693 694#ifdef CONFIG_MTD_UBI_FASTMAP 695 e1 = find_anchor_wl_entry(&ubi->used); 696 if (e1 && ubi->fm_anchor && 697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 698 ubi->fm_do_produce_anchor = 1; 699 /* 700 * fm_anchor is no longer considered a good anchor. 701 * NULL assignment also prevents multiple wear level checks 702 * of this PEB. 703 */ 704 wl_tree_add(ubi->fm_anchor, &ubi->free); 705 ubi->fm_anchor = NULL; 706 ubi->free_count++; 707 } 708 709 if (ubi->fm_do_produce_anchor) { 710 if (!e1) 711 goto out_cancel; 712 e2 = get_peb_for_wl(ubi); 713 if (!e2) 714 goto out_cancel; 715 716 self_check_in_wl_tree(ubi, e1, &ubi->used); 717 rb_erase(&e1->u.rb, &ubi->used); 718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 719 ubi->fm_do_produce_anchor = 0; 720 } else if (!ubi->scrub.rb_node) { 721#else 722 if (!ubi->scrub.rb_node) { 723#endif 724 /* 725 * Now pick the least worn-out used physical eraseblock and a 726 * highly worn-out free physical eraseblock. If the erase 727 * counters differ much enough, start wear-leveling. 728 */ 729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 730 e2 = get_peb_for_wl(ubi); 731 if (!e2) 732 goto out_cancel; 733 734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 735 dbg_wl("no WL needed: min used EC %d, max free EC %d", 736 e1->ec, e2->ec); 737 738 /* Give the unused PEB back */ 739 wl_tree_add(e2, &ubi->free); 740 ubi->free_count++; 741 goto out_cancel; 742 } 743 self_check_in_wl_tree(ubi, e1, &ubi->used); 744 rb_erase(&e1->u.rb, &ubi->used); 745 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 746 e1->pnum, e1->ec, e2->pnum, e2->ec); 747 } else { 748 /* Perform scrubbing */ 749 scrubbing = 1; 750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 751 e2 = get_peb_for_wl(ubi); 752 if (!e2) 753 goto out_cancel; 754 755 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 756 rb_erase(&e1->u.rb, &ubi->scrub); 757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 758 } 759 760 ubi->move_from = e1; 761 ubi->move_to = e2; 762 spin_unlock(&ubi->wl_lock); 763 764 /* 765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 766 * We so far do not know which logical eraseblock our physical 767 * eraseblock (@e1) belongs to. We have to read the volume identifier 768 * header first. 769 * 770 * Note, we are protected from this PEB being unmapped and erased. The 771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 772 * which is being moved was unmapped. 773 */ 774 775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 776 if (err && err != UBI_IO_BITFLIPS) { 777 dst_leb_clean = 1; 778 if (err == UBI_IO_FF) { 779 /* 780 * We are trying to move PEB without a VID header. UBI 781 * always write VID headers shortly after the PEB was 782 * given, so we have a situation when it has not yet 783 * had a chance to write it, because it was preempted. 784 * So add this PEB to the protection queue so far, 785 * because presumably more data will be written there 786 * (including the missing VID header), and then we'll 787 * move it. 788 */ 789 dbg_wl("PEB %d has no VID header", e1->pnum); 790 protect = 1; 791 goto out_not_moved; 792 } else if (err == UBI_IO_FF_BITFLIPS) { 793 /* 794 * The same situation as %UBI_IO_FF, but bit-flips were 795 * detected. It is better to schedule this PEB for 796 * scrubbing. 797 */ 798 dbg_wl("PEB %d has no VID header but has bit-flips", 799 e1->pnum); 800 scrubbing = 1; 801 goto out_not_moved; 802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 803 /* 804 * While a full scan would detect interrupted erasures 805 * at attach time we can face them here when attached from 806 * Fastmap. 807 */ 808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 809 e1->pnum); 810 erase = 1; 811 goto out_not_moved; 812 } 813 814 ubi_err(ubi, "error %d while reading VID header from PEB %d", 815 err, e1->pnum); 816 goto out_error; 817 } 818 819 vol_id = be32_to_cpu(vid_hdr->vol_id); 820 lnum = be32_to_cpu(vid_hdr->lnum); 821 822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 823 if (err) { 824 if (err == MOVE_CANCEL_RACE) { 825 /* 826 * The LEB has not been moved because the volume is 827 * being deleted or the PEB has been put meanwhile. We 828 * should prevent this PEB from being selected for 829 * wear-leveling movement again, so put it to the 830 * protection queue. 831 */ 832 protect = 1; 833 dst_leb_clean = 1; 834 goto out_not_moved; 835 } 836 if (err == MOVE_RETRY) { 837 scrubbing = 1; 838 dst_leb_clean = 1; 839 goto out_not_moved; 840 } 841 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 842 err == MOVE_TARGET_RD_ERR) { 843 /* 844 * Target PEB had bit-flips or write error - torture it. 845 */ 846 torture = 1; 847 keep = 1; 848 goto out_not_moved; 849 } 850 851 if (err == MOVE_SOURCE_RD_ERR) { 852 /* 853 * An error happened while reading the source PEB. Do 854 * not switch to R/O mode in this case, and give the 855 * upper layers a possibility to recover from this, 856 * e.g. by unmapping corresponding LEB. Instead, just 857 * put this PEB to the @ubi->erroneous list to prevent 858 * UBI from trying to move it over and over again. 859 */ 860 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 861 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 862 ubi->erroneous_peb_count); 863 goto out_error; 864 } 865 dst_leb_clean = 1; 866 erroneous = 1; 867 goto out_not_moved; 868 } 869 870 if (err < 0) 871 goto out_error; 872 873 ubi_assert(0); 874 } 875 876 /* The PEB has been successfully moved */ 877 if (scrubbing) 878 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 879 e1->pnum, vol_id, lnum, e2->pnum); 880 ubi_free_vid_buf(vidb); 881 882 spin_lock(&ubi->wl_lock); 883 if (!ubi->move_to_put) { 884 wl_tree_add(e2, &ubi->used); 885 e2 = NULL; 886 } 887 ubi->move_from = ubi->move_to = NULL; 888 ubi->move_to_put = ubi->wl_scheduled = 0; 889 spin_unlock(&ubi->wl_lock); 890 891 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 892 if (err) { 893 if (e2) 894 wl_entry_destroy(ubi, e2); 895 goto out_ro; 896 } 897 898 if (e2) { 899 /* 900 * Well, the target PEB was put meanwhile, schedule it for 901 * erasure. 902 */ 903 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 904 e2->pnum, vol_id, lnum); 905 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 906 if (err) 907 goto out_ro; 908 } 909 910 dbg_wl("done"); 911 mutex_unlock(&ubi->move_mutex); 912 up_read(&ubi->fm_eba_sem); 913 return 0; 914 915 /* 916 * For some reasons the LEB was not moved, might be an error, might be 917 * something else. @e1 was not changed, so return it back. @e2 might 918 * have been changed, schedule it for erasure. 919 */ 920out_not_moved: 921 if (vol_id != -1) 922 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 923 e1->pnum, vol_id, lnum, e2->pnum, err); 924 else 925 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 926 e1->pnum, e2->pnum, err); 927 spin_lock(&ubi->wl_lock); 928 if (protect) 929 prot_queue_add(ubi, e1); 930 else if (erroneous) { 931 wl_tree_add(e1, &ubi->erroneous); 932 ubi->erroneous_peb_count += 1; 933 } else if (scrubbing) 934 wl_tree_add(e1, &ubi->scrub); 935 else if (keep) 936 wl_tree_add(e1, &ubi->used); 937 if (dst_leb_clean) { 938 wl_tree_add(e2, &ubi->free); 939 ubi->free_count++; 940 } 941 942 ubi_assert(!ubi->move_to_put); 943 ubi->move_from = ubi->move_to = NULL; 944 ubi->wl_scheduled = 0; 945 spin_unlock(&ubi->wl_lock); 946 947 ubi_free_vid_buf(vidb); 948 if (dst_leb_clean) { 949 ensure_wear_leveling(ubi, 1); 950 } else { 951 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 952 if (err) 953 goto out_ro; 954 } 955 956 if (erase) { 957 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 958 if (err) 959 goto out_ro; 960 } 961 962 mutex_unlock(&ubi->move_mutex); 963 up_read(&ubi->fm_eba_sem); 964 return 0; 965 966out_error: 967 if (vol_id != -1) 968 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 969 err, e1->pnum, e2->pnum); 970 else 971 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 972 err, e1->pnum, vol_id, lnum, e2->pnum); 973 spin_lock(&ubi->wl_lock); 974 ubi->move_from = ubi->move_to = NULL; 975 ubi->move_to_put = ubi->wl_scheduled = 0; 976 spin_unlock(&ubi->wl_lock); 977 978 ubi_free_vid_buf(vidb); 979 wl_entry_destroy(ubi, e1); 980 wl_entry_destroy(ubi, e2); 981 982out_ro: 983 ubi_ro_mode(ubi); 984 mutex_unlock(&ubi->move_mutex); 985 up_read(&ubi->fm_eba_sem); 986 ubi_assert(err != 0); 987 return err < 0 ? err : -EIO; 988 989out_cancel: 990 ubi->wl_scheduled = 0; 991 spin_unlock(&ubi->wl_lock); 992 mutex_unlock(&ubi->move_mutex); 993 up_read(&ubi->fm_eba_sem); 994 ubi_free_vid_buf(vidb); 995 return 0; 996} 997 998/** 999 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1000 * @ubi: UBI device description object 1001 * @nested: set to non-zero if this function is called from UBI worker 1002 * 1003 * This function checks if it is time to start wear-leveling and schedules it 1004 * if yes. This function returns zero in case of success and a negative error 1005 * code in case of failure. 1006 */ 1007static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1008{ 1009 int err = 0; 1010 struct ubi_work *wrk; 1011 1012 spin_lock(&ubi->wl_lock); 1013 if (ubi->wl_scheduled) 1014 /* Wear-leveling is already in the work queue */ 1015 goto out_unlock; 1016 1017 /* 1018 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1019 * the WL worker has to be scheduled anyway. 1020 */ 1021 if (!ubi->scrub.rb_node) { 1022#ifdef CONFIG_MTD_UBI_FASTMAP 1023 if (!need_wear_leveling(ubi)) 1024 goto out_unlock; 1025#else 1026 struct ubi_wl_entry *e1; 1027 struct ubi_wl_entry *e2; 1028 1029 if (!ubi->used.rb_node || !ubi->free.rb_node) 1030 /* No physical eraseblocks - no deal */ 1031 goto out_unlock; 1032 1033 /* 1034 * We schedule wear-leveling only if the difference between the 1035 * lowest erase counter of used physical eraseblocks and a high 1036 * erase counter of free physical eraseblocks is greater than 1037 * %UBI_WL_THRESHOLD. 1038 */ 1039 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1040 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1041 1042 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1043 goto out_unlock; 1044#endif 1045 dbg_wl("schedule wear-leveling"); 1046 } else 1047 dbg_wl("schedule scrubbing"); 1048 1049 ubi->wl_scheduled = 1; 1050 spin_unlock(&ubi->wl_lock); 1051 1052 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1053 if (!wrk) { 1054 err = -ENOMEM; 1055 goto out_cancel; 1056 } 1057 1058 wrk->func = &wear_leveling_worker; 1059 if (nested) 1060 __schedule_ubi_work(ubi, wrk); 1061 else 1062 schedule_ubi_work(ubi, wrk); 1063 return err; 1064 1065out_cancel: 1066 spin_lock(&ubi->wl_lock); 1067 ubi->wl_scheduled = 0; 1068out_unlock: 1069 spin_unlock(&ubi->wl_lock); 1070 return err; 1071} 1072 1073/** 1074 * __erase_worker - physical eraseblock erase worker function. 1075 * @ubi: UBI device description object 1076 * @wl_wrk: the work object 1077 * 1078 * This function erases a physical eraseblock and perform torture testing if 1079 * needed. It also takes care about marking the physical eraseblock bad if 1080 * needed. Returns zero in case of success and a negative error code in case of 1081 * failure. 1082 */ 1083static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1084{ 1085 struct ubi_wl_entry *e = wl_wrk->e; 1086 int pnum = e->pnum; 1087 int vol_id = wl_wrk->vol_id; 1088 int lnum = wl_wrk->lnum; 1089 int err, available_consumed = 0; 1090 1091 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1092 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1093 1094 err = sync_erase(ubi, e, wl_wrk->torture); 1095 if (!err) { 1096 spin_lock(&ubi->wl_lock); 1097 1098 if (!ubi->fm_disabled && !ubi->fm_anchor && 1099 e->pnum < UBI_FM_MAX_START) { 1100 /* 1101 * Abort anchor production, if needed it will be 1102 * enabled again in the wear leveling started below. 1103 */ 1104 ubi->fm_anchor = e; 1105 ubi->fm_do_produce_anchor = 0; 1106 } else { 1107 wl_tree_add(e, &ubi->free); 1108 ubi->free_count++; 1109 } 1110 1111 spin_unlock(&ubi->wl_lock); 1112 1113 /* 1114 * One more erase operation has happened, take care about 1115 * protected physical eraseblocks. 1116 */ 1117 serve_prot_queue(ubi); 1118 1119 /* And take care about wear-leveling */ 1120 err = ensure_wear_leveling(ubi, 1); 1121 return err; 1122 } 1123 1124 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1125 1126 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1127 err == -EBUSY) { 1128 int err1; 1129 1130 /* Re-schedule the LEB for erasure */ 1131 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1132 if (err1) { 1133 wl_entry_destroy(ubi, e); 1134 err = err1; 1135 goto out_ro; 1136 } 1137 return err; 1138 } 1139 1140 wl_entry_destroy(ubi, e); 1141 if (err != -EIO) 1142 /* 1143 * If this is not %-EIO, we have no idea what to do. Scheduling 1144 * this physical eraseblock for erasure again would cause 1145 * errors again and again. Well, lets switch to R/O mode. 1146 */ 1147 goto out_ro; 1148 1149 /* It is %-EIO, the PEB went bad */ 1150 1151 if (!ubi->bad_allowed) { 1152 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1153 goto out_ro; 1154 } 1155 1156 spin_lock(&ubi->volumes_lock); 1157 if (ubi->beb_rsvd_pebs == 0) { 1158 if (ubi->avail_pebs == 0) { 1159 spin_unlock(&ubi->volumes_lock); 1160 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1161 goto out_ro; 1162 } 1163 ubi->avail_pebs -= 1; 1164 available_consumed = 1; 1165 } 1166 spin_unlock(&ubi->volumes_lock); 1167 1168 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1169 err = ubi_io_mark_bad(ubi, pnum); 1170 if (err) 1171 goto out_ro; 1172 1173 spin_lock(&ubi->volumes_lock); 1174 if (ubi->beb_rsvd_pebs > 0) { 1175 if (available_consumed) { 1176 /* 1177 * The amount of reserved PEBs increased since we last 1178 * checked. 1179 */ 1180 ubi->avail_pebs += 1; 1181 available_consumed = 0; 1182 } 1183 ubi->beb_rsvd_pebs -= 1; 1184 } 1185 ubi->bad_peb_count += 1; 1186 ubi->good_peb_count -= 1; 1187 ubi_calculate_reserved(ubi); 1188 if (available_consumed) 1189 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1190 else if (ubi->beb_rsvd_pebs) 1191 ubi_msg(ubi, "%d PEBs left in the reserve", 1192 ubi->beb_rsvd_pebs); 1193 else 1194 ubi_warn(ubi, "last PEB from the reserve was used"); 1195 spin_unlock(&ubi->volumes_lock); 1196 1197 return err; 1198 1199out_ro: 1200 if (available_consumed) { 1201 spin_lock(&ubi->volumes_lock); 1202 ubi->avail_pebs += 1; 1203 spin_unlock(&ubi->volumes_lock); 1204 } 1205 ubi_ro_mode(ubi); 1206 return err; 1207} 1208 1209static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1210 int shutdown) 1211{ 1212 int ret; 1213 1214 if (shutdown) { 1215 struct ubi_wl_entry *e = wl_wrk->e; 1216 1217 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1218 kfree(wl_wrk); 1219 wl_entry_destroy(ubi, e); 1220 return 0; 1221 } 1222 1223 ret = __erase_worker(ubi, wl_wrk); 1224 kfree(wl_wrk); 1225 return ret; 1226} 1227 1228/** 1229 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1230 * @ubi: UBI device description object 1231 * @vol_id: the volume ID that last used this PEB 1232 * @lnum: the last used logical eraseblock number for the PEB 1233 * @pnum: physical eraseblock to return 1234 * @torture: if this physical eraseblock has to be tortured 1235 * 1236 * This function is called to return physical eraseblock @pnum to the pool of 1237 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1238 * occurred to this @pnum and it has to be tested. This function returns zero 1239 * in case of success, and a negative error code in case of failure. 1240 */ 1241int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1242 int pnum, int torture) 1243{ 1244 int err; 1245 struct ubi_wl_entry *e; 1246 1247 dbg_wl("PEB %d", pnum); 1248 ubi_assert(pnum >= 0); 1249 ubi_assert(pnum < ubi->peb_count); 1250 1251 down_read(&ubi->fm_protect); 1252 1253retry: 1254 spin_lock(&ubi->wl_lock); 1255 e = ubi->lookuptbl[pnum]; 1256 if (e == ubi->move_from) { 1257 /* 1258 * User is putting the physical eraseblock which was selected to 1259 * be moved. It will be scheduled for erasure in the 1260 * wear-leveling worker. 1261 */ 1262 dbg_wl("PEB %d is being moved, wait", pnum); 1263 spin_unlock(&ubi->wl_lock); 1264 1265 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1266 mutex_lock(&ubi->move_mutex); 1267 mutex_unlock(&ubi->move_mutex); 1268 goto retry; 1269 } else if (e == ubi->move_to) { 1270 /* 1271 * User is putting the physical eraseblock which was selected 1272 * as the target the data is moved to. It may happen if the EBA 1273 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1274 * but the WL sub-system has not put the PEB to the "used" tree 1275 * yet, but it is about to do this. So we just set a flag which 1276 * will tell the WL worker that the PEB is not needed anymore 1277 * and should be scheduled for erasure. 1278 */ 1279 dbg_wl("PEB %d is the target of data moving", pnum); 1280 ubi_assert(!ubi->move_to_put); 1281 ubi->move_to_put = 1; 1282 spin_unlock(&ubi->wl_lock); 1283 up_read(&ubi->fm_protect); 1284 return 0; 1285 } else { 1286 if (in_wl_tree(e, &ubi->used)) { 1287 self_check_in_wl_tree(ubi, e, &ubi->used); 1288 rb_erase(&e->u.rb, &ubi->used); 1289 } else if (in_wl_tree(e, &ubi->scrub)) { 1290 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1291 rb_erase(&e->u.rb, &ubi->scrub); 1292 } else if (in_wl_tree(e, &ubi->erroneous)) { 1293 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1294 rb_erase(&e->u.rb, &ubi->erroneous); 1295 ubi->erroneous_peb_count -= 1; 1296 ubi_assert(ubi->erroneous_peb_count >= 0); 1297 /* Erroneous PEBs should be tortured */ 1298 torture = 1; 1299 } else { 1300 err = prot_queue_del(ubi, e->pnum); 1301 if (err) { 1302 ubi_err(ubi, "PEB %d not found", pnum); 1303 ubi_ro_mode(ubi); 1304 spin_unlock(&ubi->wl_lock); 1305 up_read(&ubi->fm_protect); 1306 return err; 1307 } 1308 } 1309 } 1310 spin_unlock(&ubi->wl_lock); 1311 1312 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1313 if (err) { 1314 spin_lock(&ubi->wl_lock); 1315 wl_tree_add(e, &ubi->used); 1316 spin_unlock(&ubi->wl_lock); 1317 } 1318 1319 up_read(&ubi->fm_protect); 1320 return err; 1321} 1322 1323/** 1324 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1325 * @ubi: UBI device description object 1326 * @pnum: the physical eraseblock to schedule 1327 * 1328 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1329 * needs scrubbing. This function schedules a physical eraseblock for 1330 * scrubbing which is done in background. This function returns zero in case of 1331 * success and a negative error code in case of failure. 1332 */ 1333int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1334{ 1335 struct ubi_wl_entry *e; 1336 1337 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1338 1339retry: 1340 spin_lock(&ubi->wl_lock); 1341 e = ubi->lookuptbl[pnum]; 1342 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1343 in_wl_tree(e, &ubi->erroneous)) { 1344 spin_unlock(&ubi->wl_lock); 1345 return 0; 1346 } 1347 1348 if (e == ubi->move_to) { 1349 /* 1350 * This physical eraseblock was used to move data to. The data 1351 * was moved but the PEB was not yet inserted to the proper 1352 * tree. We should just wait a little and let the WL worker 1353 * proceed. 1354 */ 1355 spin_unlock(&ubi->wl_lock); 1356 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1357 yield(); 1358 goto retry; 1359 } 1360 1361 if (in_wl_tree(e, &ubi->used)) { 1362 self_check_in_wl_tree(ubi, e, &ubi->used); 1363 rb_erase(&e->u.rb, &ubi->used); 1364 } else { 1365 int err; 1366 1367 err = prot_queue_del(ubi, e->pnum); 1368 if (err) { 1369 ubi_err(ubi, "PEB %d not found", pnum); 1370 ubi_ro_mode(ubi); 1371 spin_unlock(&ubi->wl_lock); 1372 return err; 1373 } 1374 } 1375 1376 wl_tree_add(e, &ubi->scrub); 1377 spin_unlock(&ubi->wl_lock); 1378 1379 /* 1380 * Technically scrubbing is the same as wear-leveling, so it is done 1381 * by the WL worker. 1382 */ 1383 return ensure_wear_leveling(ubi, 0); 1384} 1385 1386/** 1387 * ubi_wl_flush - flush all pending works. 1388 * @ubi: UBI device description object 1389 * @vol_id: the volume id to flush for 1390 * @lnum: the logical eraseblock number to flush for 1391 * 1392 * This function executes all pending works for a particular volume id / 1393 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1394 * acts as a wildcard for all of the corresponding volume numbers or logical 1395 * eraseblock numbers. It returns zero in case of success and a negative error 1396 * code in case of failure. 1397 */ 1398int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1399{ 1400 int err = 0; 1401 int found = 1; 1402 1403 /* 1404 * Erase while the pending works queue is not empty, but not more than 1405 * the number of currently pending works. 1406 */ 1407 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1408 vol_id, lnum, ubi->works_count); 1409 1410 while (found) { 1411 struct ubi_work *wrk, *tmp; 1412 found = 0; 1413 1414 down_read(&ubi->work_sem); 1415 spin_lock(&ubi->wl_lock); 1416 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1417 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1418 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1419 list_del(&wrk->list); 1420 ubi->works_count -= 1; 1421 ubi_assert(ubi->works_count >= 0); 1422 spin_unlock(&ubi->wl_lock); 1423 1424 err = wrk->func(ubi, wrk, 0); 1425 if (err) { 1426 up_read(&ubi->work_sem); 1427 return err; 1428 } 1429 1430 spin_lock(&ubi->wl_lock); 1431 found = 1; 1432 break; 1433 } 1434 } 1435 spin_unlock(&ubi->wl_lock); 1436 up_read(&ubi->work_sem); 1437 } 1438 1439 /* 1440 * Make sure all the works which have been done in parallel are 1441 * finished. 1442 */ 1443 down_write(&ubi->work_sem); 1444 up_write(&ubi->work_sem); 1445 1446 return err; 1447} 1448 1449static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1450{ 1451 if (in_wl_tree(e, &ubi->scrub)) 1452 return false; 1453 else if (in_wl_tree(e, &ubi->erroneous)) 1454 return false; 1455 else if (ubi->move_from == e) 1456 return false; 1457 else if (ubi->move_to == e) 1458 return false; 1459 1460 return true; 1461} 1462 1463/** 1464 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1465 * @ubi: UBI device description object 1466 * @pnum: the physical eraseblock to schedule 1467 * @force: dont't read the block, assume bitflips happened and take action. 1468 * 1469 * This function reads the given eraseblock and checks if bitflips occured. 1470 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1471 * If scrubbing is forced with @force, the eraseblock is not read, 1472 * but scheduled for scrubbing right away. 1473 * 1474 * Returns: 1475 * %EINVAL, PEB is out of range 1476 * %ENOENT, PEB is no longer used by UBI 1477 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1478 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1479 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1480 * %0, no bit flips detected 1481 */ 1482int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1483{ 1484 int err = 0; 1485 struct ubi_wl_entry *e; 1486 1487 if (pnum < 0 || pnum >= ubi->peb_count) { 1488 err = -EINVAL; 1489 goto out; 1490 } 1491 1492 /* 1493 * Pause all parallel work, otherwise it can happen that the 1494 * erase worker frees a wl entry under us. 1495 */ 1496 down_write(&ubi->work_sem); 1497 1498 /* 1499 * Make sure that the wl entry does not change state while 1500 * inspecting it. 1501 */ 1502 spin_lock(&ubi->wl_lock); 1503 e = ubi->lookuptbl[pnum]; 1504 if (!e) { 1505 spin_unlock(&ubi->wl_lock); 1506 err = -ENOENT; 1507 goto out_resume; 1508 } 1509 1510 /* 1511 * Does it make sense to check this PEB? 1512 */ 1513 if (!scrub_possible(ubi, e)) { 1514 spin_unlock(&ubi->wl_lock); 1515 err = -EBUSY; 1516 goto out_resume; 1517 } 1518 spin_unlock(&ubi->wl_lock); 1519 1520 if (!force) { 1521 mutex_lock(&ubi->buf_mutex); 1522 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1523 mutex_unlock(&ubi->buf_mutex); 1524 } 1525 1526 if (force || err == UBI_IO_BITFLIPS) { 1527 /* 1528 * Okay, bit flip happened, let's figure out what we can do. 1529 */ 1530 spin_lock(&ubi->wl_lock); 1531 1532 /* 1533 * Recheck. We released wl_lock, UBI might have killed the 1534 * wl entry under us. 1535 */ 1536 e = ubi->lookuptbl[pnum]; 1537 if (!e) { 1538 spin_unlock(&ubi->wl_lock); 1539 err = -ENOENT; 1540 goto out_resume; 1541 } 1542 1543 /* 1544 * Need to re-check state 1545 */ 1546 if (!scrub_possible(ubi, e)) { 1547 spin_unlock(&ubi->wl_lock); 1548 err = -EBUSY; 1549 goto out_resume; 1550 } 1551 1552 if (in_pq(ubi, e)) { 1553 prot_queue_del(ubi, e->pnum); 1554 wl_tree_add(e, &ubi->scrub); 1555 spin_unlock(&ubi->wl_lock); 1556 1557 err = ensure_wear_leveling(ubi, 1); 1558 } else if (in_wl_tree(e, &ubi->used)) { 1559 rb_erase(&e->u.rb, &ubi->used); 1560 wl_tree_add(e, &ubi->scrub); 1561 spin_unlock(&ubi->wl_lock); 1562 1563 err = ensure_wear_leveling(ubi, 1); 1564 } else if (in_wl_tree(e, &ubi->free)) { 1565 rb_erase(&e->u.rb, &ubi->free); 1566 ubi->free_count--; 1567 spin_unlock(&ubi->wl_lock); 1568 1569 /* 1570 * This PEB is empty we can schedule it for 1571 * erasure right away. No wear leveling needed. 1572 */ 1573 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1574 force ? 0 : 1, true); 1575 } else { 1576 spin_unlock(&ubi->wl_lock); 1577 err = -EAGAIN; 1578 } 1579 1580 if (!err && !force) 1581 err = -EUCLEAN; 1582 } else { 1583 err = 0; 1584 } 1585 1586out_resume: 1587 up_write(&ubi->work_sem); 1588out: 1589 1590 return err; 1591} 1592 1593/** 1594 * tree_destroy - destroy an RB-tree. 1595 * @ubi: UBI device description object 1596 * @root: the root of the tree to destroy 1597 */ 1598static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1599{ 1600 struct rb_node *rb; 1601 struct ubi_wl_entry *e; 1602 1603 rb = root->rb_node; 1604 while (rb) { 1605 if (rb->rb_left) 1606 rb = rb->rb_left; 1607 else if (rb->rb_right) 1608 rb = rb->rb_right; 1609 else { 1610 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1611 1612 rb = rb_parent(rb); 1613 if (rb) { 1614 if (rb->rb_left == &e->u.rb) 1615 rb->rb_left = NULL; 1616 else 1617 rb->rb_right = NULL; 1618 } 1619 1620 wl_entry_destroy(ubi, e); 1621 } 1622 } 1623} 1624 1625/** 1626 * ubi_thread - UBI background thread. 1627 * @u: the UBI device description object pointer 1628 */ 1629int ubi_thread(void *u) 1630{ 1631 int failures = 0; 1632 struct ubi_device *ubi = u; 1633 1634 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1635 ubi->bgt_name, task_pid_nr(current)); 1636 1637 set_freezable(); 1638 for (;;) { 1639 int err; 1640 1641 if (kthread_should_stop()) 1642 break; 1643 1644 if (try_to_freeze()) 1645 continue; 1646 1647 spin_lock(&ubi->wl_lock); 1648 if (list_empty(&ubi->works) || ubi->ro_mode || 1649 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1650 set_current_state(TASK_INTERRUPTIBLE); 1651 spin_unlock(&ubi->wl_lock); 1652 1653 /* 1654 * Check kthread_should_stop() after we set the task 1655 * state to guarantee that we either see the stop bit 1656 * and exit or the task state is reset to runnable such 1657 * that it's not scheduled out indefinitely and detects 1658 * the stop bit at kthread_should_stop(). 1659 */ 1660 if (kthread_should_stop()) { 1661 set_current_state(TASK_RUNNING); 1662 break; 1663 } 1664 1665 schedule(); 1666 continue; 1667 } 1668 spin_unlock(&ubi->wl_lock); 1669 1670 err = do_work(ubi); 1671 if (err) { 1672 ubi_err(ubi, "%s: work failed with error code %d", 1673 ubi->bgt_name, err); 1674 if (failures++ > WL_MAX_FAILURES) { 1675 /* 1676 * Too many failures, disable the thread and 1677 * switch to read-only mode. 1678 */ 1679 ubi_msg(ubi, "%s: %d consecutive failures", 1680 ubi->bgt_name, WL_MAX_FAILURES); 1681 ubi_ro_mode(ubi); 1682 ubi->thread_enabled = 0; 1683 continue; 1684 } 1685 } else 1686 failures = 0; 1687 1688 cond_resched(); 1689 } 1690 1691 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1692 ubi->thread_enabled = 0; 1693 return 0; 1694} 1695 1696/** 1697 * shutdown_work - shutdown all pending works. 1698 * @ubi: UBI device description object 1699 */ 1700static void shutdown_work(struct ubi_device *ubi) 1701{ 1702 while (!list_empty(&ubi->works)) { 1703 struct ubi_work *wrk; 1704 1705 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1706 list_del(&wrk->list); 1707 wrk->func(ubi, wrk, 1); 1708 ubi->works_count -= 1; 1709 ubi_assert(ubi->works_count >= 0); 1710 } 1711} 1712 1713/** 1714 * erase_aeb - erase a PEB given in UBI attach info PEB 1715 * @ubi: UBI device description object 1716 * @aeb: UBI attach info PEB 1717 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1718 */ 1719static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1720{ 1721 struct ubi_wl_entry *e; 1722 int err; 1723 1724 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1725 if (!e) 1726 return -ENOMEM; 1727 1728 e->pnum = aeb->pnum; 1729 e->ec = aeb->ec; 1730 ubi->lookuptbl[e->pnum] = e; 1731 1732 if (sync) { 1733 err = sync_erase(ubi, e, false); 1734 if (err) 1735 goto out_free; 1736 1737 wl_tree_add(e, &ubi->free); 1738 ubi->free_count++; 1739 } else { 1740 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1741 if (err) 1742 goto out_free; 1743 } 1744 1745 return 0; 1746 1747out_free: 1748 wl_entry_destroy(ubi, e); 1749 1750 return err; 1751} 1752 1753/** 1754 * ubi_wl_init - initialize the WL sub-system using attaching information. 1755 * @ubi: UBI device description object 1756 * @ai: attaching information 1757 * 1758 * This function returns zero in case of success, and a negative error code in 1759 * case of failure. 1760 */ 1761int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1762{ 1763 int err, i, reserved_pebs, found_pebs = 0; 1764 struct rb_node *rb1, *rb2; 1765 struct ubi_ainf_volume *av; 1766 struct ubi_ainf_peb *aeb, *tmp; 1767 struct ubi_wl_entry *e; 1768 1769 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1770 spin_lock_init(&ubi->wl_lock); 1771 mutex_init(&ubi->move_mutex); 1772 init_rwsem(&ubi->work_sem); 1773 ubi->max_ec = ai->max_ec; 1774 INIT_LIST_HEAD(&ubi->works); 1775 1776 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1777 1778 err = -ENOMEM; 1779 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1780 if (!ubi->lookuptbl) 1781 return err; 1782 1783 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1784 INIT_LIST_HEAD(&ubi->pq[i]); 1785 ubi->pq_head = 0; 1786 1787 ubi->free_count = 0; 1788 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1789 cond_resched(); 1790 1791 err = erase_aeb(ubi, aeb, false); 1792 if (err) 1793 goto out_free; 1794 1795 found_pebs++; 1796 } 1797 1798 list_for_each_entry(aeb, &ai->free, u.list) { 1799 cond_resched(); 1800 1801 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1802 if (!e) { 1803 err = -ENOMEM; 1804 goto out_free; 1805 } 1806 1807 e->pnum = aeb->pnum; 1808 e->ec = aeb->ec; 1809 ubi_assert(e->ec >= 0); 1810 1811 wl_tree_add(e, &ubi->free); 1812 ubi->free_count++; 1813 1814 ubi->lookuptbl[e->pnum] = e; 1815 1816 found_pebs++; 1817 } 1818 1819 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1820 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1821 cond_resched(); 1822 1823 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1824 if (!e) { 1825 err = -ENOMEM; 1826 goto out_free; 1827 } 1828 1829 e->pnum = aeb->pnum; 1830 e->ec = aeb->ec; 1831 ubi->lookuptbl[e->pnum] = e; 1832 1833 if (!aeb->scrub) { 1834 dbg_wl("add PEB %d EC %d to the used tree", 1835 e->pnum, e->ec); 1836 wl_tree_add(e, &ubi->used); 1837 } else { 1838 dbg_wl("add PEB %d EC %d to the scrub tree", 1839 e->pnum, e->ec); 1840 wl_tree_add(e, &ubi->scrub); 1841 } 1842 1843 found_pebs++; 1844 } 1845 } 1846 1847 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1848 cond_resched(); 1849 1850 e = ubi_find_fm_block(ubi, aeb->pnum); 1851 1852 if (e) { 1853 ubi_assert(!ubi->lookuptbl[e->pnum]); 1854 ubi->lookuptbl[e->pnum] = e; 1855 } else { 1856 bool sync = false; 1857 1858 /* 1859 * Usually old Fastmap PEBs are scheduled for erasure 1860 * and we don't have to care about them but if we face 1861 * an power cut before scheduling them we need to 1862 * take care of them here. 1863 */ 1864 if (ubi->lookuptbl[aeb->pnum]) 1865 continue; 1866 1867 /* 1868 * The fastmap update code might not find a free PEB for 1869 * writing the fastmap anchor to and then reuses the 1870 * current fastmap anchor PEB. When this PEB gets erased 1871 * and a power cut happens before it is written again we 1872 * must make sure that the fastmap attach code doesn't 1873 * find any outdated fastmap anchors, hence we erase the 1874 * outdated fastmap anchor PEBs synchronously here. 1875 */ 1876 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1877 sync = true; 1878 1879 err = erase_aeb(ubi, aeb, sync); 1880 if (err) 1881 goto out_free; 1882 } 1883 1884 found_pebs++; 1885 } 1886 1887 dbg_wl("found %i PEBs", found_pebs); 1888 1889 ubi_assert(ubi->good_peb_count == found_pebs); 1890 1891 reserved_pebs = WL_RESERVED_PEBS; 1892 ubi_fastmap_init(ubi, &reserved_pebs); 1893 1894 if (ubi->avail_pebs < reserved_pebs) { 1895 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1896 ubi->avail_pebs, reserved_pebs); 1897 if (ubi->corr_peb_count) 1898 ubi_err(ubi, "%d PEBs are corrupted and not used", 1899 ubi->corr_peb_count); 1900 err = -ENOSPC; 1901 goto out_free; 1902 } 1903 ubi->avail_pebs -= reserved_pebs; 1904 ubi->rsvd_pebs += reserved_pebs; 1905 1906 /* Schedule wear-leveling if needed */ 1907 err = ensure_wear_leveling(ubi, 0); 1908 if (err) 1909 goto out_free; 1910 1911#ifdef CONFIG_MTD_UBI_FASTMAP 1912 if (!ubi->ro_mode && !ubi->fm_disabled) 1913 ubi_ensure_anchor_pebs(ubi); 1914#endif 1915 return 0; 1916 1917out_free: 1918 shutdown_work(ubi); 1919 tree_destroy(ubi, &ubi->used); 1920 tree_destroy(ubi, &ubi->free); 1921 tree_destroy(ubi, &ubi->scrub); 1922 kfree(ubi->lookuptbl); 1923 return err; 1924} 1925 1926/** 1927 * protection_queue_destroy - destroy the protection queue. 1928 * @ubi: UBI device description object 1929 */ 1930static void protection_queue_destroy(struct ubi_device *ubi) 1931{ 1932 int i; 1933 struct ubi_wl_entry *e, *tmp; 1934 1935 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1936 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1937 list_del(&e->u.list); 1938 wl_entry_destroy(ubi, e); 1939 } 1940 } 1941} 1942 1943/** 1944 * ubi_wl_close - close the wear-leveling sub-system. 1945 * @ubi: UBI device description object 1946 */ 1947void ubi_wl_close(struct ubi_device *ubi) 1948{ 1949 dbg_wl("close the WL sub-system"); 1950 ubi_fastmap_close(ubi); 1951 shutdown_work(ubi); 1952 protection_queue_destroy(ubi); 1953 tree_destroy(ubi, &ubi->used); 1954 tree_destroy(ubi, &ubi->erroneous); 1955 tree_destroy(ubi, &ubi->free); 1956 tree_destroy(ubi, &ubi->scrub); 1957 kfree(ubi->lookuptbl); 1958} 1959 1960/** 1961 * self_check_ec - make sure that the erase counter of a PEB is correct. 1962 * @ubi: UBI device description object 1963 * @pnum: the physical eraseblock number to check 1964 * @ec: the erase counter to check 1965 * 1966 * This function returns zero if the erase counter of physical eraseblock @pnum 1967 * is equivalent to @ec, and a negative error code if not or if an error 1968 * occurred. 1969 */ 1970static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1971{ 1972 int err; 1973 long long read_ec; 1974 struct ubi_ec_hdr *ec_hdr; 1975 1976 if (!ubi_dbg_chk_gen(ubi)) 1977 return 0; 1978 1979 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1980 if (!ec_hdr) 1981 return -ENOMEM; 1982 1983 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1984 if (err && err != UBI_IO_BITFLIPS) { 1985 /* The header does not have to exist */ 1986 err = 0; 1987 goto out_free; 1988 } 1989 1990 read_ec = be64_to_cpu(ec_hdr->ec); 1991 if (ec != read_ec && read_ec - ec > 1) { 1992 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1993 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1994 dump_stack(); 1995 err = 1; 1996 } else 1997 err = 0; 1998 1999out_free: 2000 kfree(ec_hdr); 2001 return err; 2002} 2003 2004/** 2005 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2006 * @ubi: UBI device description object 2007 * @e: the wear-leveling entry to check 2008 * @root: the root of the tree 2009 * 2010 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2011 * is not. 2012 */ 2013static int self_check_in_wl_tree(const struct ubi_device *ubi, 2014 struct ubi_wl_entry *e, struct rb_root *root) 2015{ 2016 if (!ubi_dbg_chk_gen(ubi)) 2017 return 0; 2018 2019 if (in_wl_tree(e, root)) 2020 return 0; 2021 2022 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2023 e->pnum, e->ec, root); 2024 dump_stack(); 2025 return -EINVAL; 2026} 2027 2028/** 2029 * self_check_in_pq - check if wear-leveling entry is in the protection 2030 * queue. 2031 * @ubi: UBI device description object 2032 * @e: the wear-leveling entry to check 2033 * 2034 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2035 */ 2036static int self_check_in_pq(const struct ubi_device *ubi, 2037 struct ubi_wl_entry *e) 2038{ 2039 if (!ubi_dbg_chk_gen(ubi)) 2040 return 0; 2041 2042 if (in_pq(ubi, e)) 2043 return 0; 2044 2045 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2046 e->pnum, e->ec); 2047 dump_stack(); 2048 return -EINVAL; 2049} 2050#ifndef CONFIG_MTD_UBI_FASTMAP 2051static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2052{ 2053 struct ubi_wl_entry *e; 2054 2055 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2056 self_check_in_wl_tree(ubi, e, &ubi->free); 2057 ubi->free_count--; 2058 ubi_assert(ubi->free_count >= 0); 2059 rb_erase(&e->u.rb, &ubi->free); 2060 2061 return e; 2062} 2063 2064/** 2065 * produce_free_peb - produce a free physical eraseblock. 2066 * @ubi: UBI device description object 2067 * 2068 * This function tries to make a free PEB by means of synchronous execution of 2069 * pending works. This may be needed if, for example the background thread is 2070 * disabled. Returns zero in case of success and a negative error code in case 2071 * of failure. 2072 */ 2073static int produce_free_peb(struct ubi_device *ubi) 2074{ 2075 int err; 2076 2077 while (!ubi->free.rb_node && ubi->works_count) { 2078 spin_unlock(&ubi->wl_lock); 2079 2080 dbg_wl("do one work synchronously"); 2081 err = do_work(ubi); 2082 2083 spin_lock(&ubi->wl_lock); 2084 if (err) 2085 return err; 2086 } 2087 2088 return 0; 2089} 2090 2091/** 2092 * ubi_wl_get_peb - get a physical eraseblock. 2093 * @ubi: UBI device description object 2094 * 2095 * This function returns a physical eraseblock in case of success and a 2096 * negative error code in case of failure. 2097 * Returns with ubi->fm_eba_sem held in read mode! 2098 */ 2099int ubi_wl_get_peb(struct ubi_device *ubi) 2100{ 2101 int err; 2102 struct ubi_wl_entry *e; 2103 2104retry: 2105 down_read(&ubi->fm_eba_sem); 2106 spin_lock(&ubi->wl_lock); 2107 if (!ubi->free.rb_node) { 2108 if (ubi->works_count == 0) { 2109 ubi_err(ubi, "no free eraseblocks"); 2110 ubi_assert(list_empty(&ubi->works)); 2111 spin_unlock(&ubi->wl_lock); 2112 return -ENOSPC; 2113 } 2114 2115 err = produce_free_peb(ubi); 2116 if (err < 0) { 2117 spin_unlock(&ubi->wl_lock); 2118 return err; 2119 } 2120 spin_unlock(&ubi->wl_lock); 2121 up_read(&ubi->fm_eba_sem); 2122 goto retry; 2123 2124 } 2125 e = wl_get_wle(ubi); 2126 prot_queue_add(ubi, e); 2127 spin_unlock(&ubi->wl_lock); 2128 2129 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2130 ubi->peb_size - ubi->vid_hdr_aloffset); 2131 if (err) { 2132 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2133 return err; 2134 } 2135 2136 return e->pnum; 2137} 2138#else 2139#include "fastmap-wl.c" 2140#endif