cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

c_can_main.c (35492B)


      1/*
      2 * CAN bus driver for Bosch C_CAN controller
      3 *
      4 * Copyright (C) 2010 ST Microelectronics
      5 * Bhupesh Sharma <bhupesh.sharma@st.com>
      6 *
      7 * Borrowed heavily from the C_CAN driver originally written by:
      8 * Copyright (C) 2007
      9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
     10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
     11 *
     12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
     13 * written by:
     14 * Copyright
     15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
     16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
     17 *
     18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
     19 * Bosch C_CAN user manual can be obtained from:
     20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
     21 * users_manual_c_can.pdf
     22 *
     23 * This file is licensed under the terms of the GNU General Public
     24 * License version 2. This program is licensed "as is" without any
     25 * warranty of any kind, whether express or implied.
     26 */
     27
     28#include <linux/kernel.h>
     29#include <linux/module.h>
     30#include <linux/interrupt.h>
     31#include <linux/delay.h>
     32#include <linux/netdevice.h>
     33#include <linux/if_arp.h>
     34#include <linux/if_ether.h>
     35#include <linux/list.h>
     36#include <linux/io.h>
     37#include <linux/pm_runtime.h>
     38#include <linux/pinctrl/consumer.h>
     39
     40#include <linux/can.h>
     41#include <linux/can/dev.h>
     42#include <linux/can/error.h>
     43
     44#include "c_can.h"
     45
     46/* Number of interface registers */
     47#define IF_ENUM_REG_LEN		11
     48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
     49
     50/* control extension register D_CAN specific */
     51#define CONTROL_EX_PDR		BIT(8)
     52
     53/* control register */
     54#define CONTROL_SWR		BIT(15)
     55#define CONTROL_TEST		BIT(7)
     56#define CONTROL_CCE		BIT(6)
     57#define CONTROL_DISABLE_AR	BIT(5)
     58#define CONTROL_ENABLE_AR	(0 << 5)
     59#define CONTROL_EIE		BIT(3)
     60#define CONTROL_SIE		BIT(2)
     61#define CONTROL_IE		BIT(1)
     62#define CONTROL_INIT		BIT(0)
     63
     64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
     65
     66/* test register */
     67#define TEST_RX			BIT(7)
     68#define TEST_TX1		BIT(6)
     69#define TEST_TX2		BIT(5)
     70#define TEST_LBACK		BIT(4)
     71#define TEST_SILENT		BIT(3)
     72#define TEST_BASIC		BIT(2)
     73
     74/* status register */
     75#define STATUS_PDA		BIT(10)
     76#define STATUS_BOFF		BIT(7)
     77#define STATUS_EWARN		BIT(6)
     78#define STATUS_EPASS		BIT(5)
     79#define STATUS_RXOK		BIT(4)
     80#define STATUS_TXOK		BIT(3)
     81
     82/* error counter register */
     83#define ERR_CNT_TEC_MASK	0xff
     84#define ERR_CNT_TEC_SHIFT	0
     85#define ERR_CNT_REC_SHIFT	8
     86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
     87#define ERR_CNT_RP_SHIFT	15
     88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
     89
     90/* bit-timing register */
     91#define BTR_BRP_MASK		0x3f
     92#define BTR_BRP_SHIFT		0
     93#define BTR_SJW_SHIFT		6
     94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
     95#define BTR_TSEG1_SHIFT		8
     96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
     97#define BTR_TSEG2_SHIFT		12
     98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
     99
    100/* interrupt register */
    101#define INT_STS_PENDING		0x8000
    102
    103/* brp extension register */
    104#define BRP_EXT_BRPE_MASK	0x0f
    105#define BRP_EXT_BRPE_SHIFT	0
    106
    107/* IFx command request */
    108#define IF_COMR_BUSY		BIT(15)
    109
    110/* IFx command mask */
    111#define IF_COMM_WR		BIT(7)
    112#define IF_COMM_MASK		BIT(6)
    113#define IF_COMM_ARB		BIT(5)
    114#define IF_COMM_CONTROL		BIT(4)
    115#define IF_COMM_CLR_INT_PND	BIT(3)
    116#define IF_COMM_TXRQST		BIT(2)
    117#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
    118#define IF_COMM_DATAA		BIT(1)
    119#define IF_COMM_DATAB		BIT(0)
    120
    121/* TX buffer setup */
    122#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
    123				 IF_COMM_TXRQST |		 \
    124				 IF_COMM_DATAA | IF_COMM_DATAB)
    125
    126/* For the low buffers we clear the interrupt bit, but keep newdat */
    127#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
    128				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
    129				 IF_COMM_DATAA | IF_COMM_DATAB)
    130
    131/* For the high buffers we clear the interrupt bit and newdat */
    132#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
    133
    134/* Receive setup of message objects */
    135#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
    136
    137/* Invalidation of message objects */
    138#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
    139
    140/* IFx arbitration */
    141#define IF_ARB_MSGVAL		BIT(31)
    142#define IF_ARB_MSGXTD		BIT(30)
    143#define IF_ARB_TRANSMIT		BIT(29)
    144
    145/* IFx message control */
    146#define IF_MCONT_NEWDAT		BIT(15)
    147#define IF_MCONT_MSGLST		BIT(14)
    148#define IF_MCONT_INTPND		BIT(13)
    149#define IF_MCONT_UMASK		BIT(12)
    150#define IF_MCONT_TXIE		BIT(11)
    151#define IF_MCONT_RXIE		BIT(10)
    152#define IF_MCONT_RMTEN		BIT(9)
    153#define IF_MCONT_TXRQST		BIT(8)
    154#define IF_MCONT_EOB		BIT(7)
    155#define IF_MCONT_DLC_MASK	0xf
    156
    157#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
    158#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
    159
    160#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
    161
    162/* Use IF1 in NAPI path and IF2 in TX path */
    163#define IF_NAPI			0
    164#define IF_TX			1
    165
    166/* minimum timeout for checking BUSY status */
    167#define MIN_TIMEOUT_VALUE	6
    168
    169/* Wait for ~1 sec for INIT bit */
    170#define INIT_WAIT_MS		1000
    171
    172/* c_can lec values */
    173enum c_can_lec_type {
    174	LEC_NO_ERROR = 0,
    175	LEC_STUFF_ERROR,
    176	LEC_FORM_ERROR,
    177	LEC_ACK_ERROR,
    178	LEC_BIT1_ERROR,
    179	LEC_BIT0_ERROR,
    180	LEC_CRC_ERROR,
    181	LEC_UNUSED,
    182	LEC_MASK = LEC_UNUSED,
    183};
    184
    185/* c_can error types:
    186 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
    187 */
    188enum c_can_bus_error_types {
    189	C_CAN_NO_ERROR = 0,
    190	C_CAN_BUS_OFF,
    191	C_CAN_ERROR_WARNING,
    192	C_CAN_ERROR_PASSIVE,
    193};
    194
    195static const struct can_bittiming_const c_can_bittiming_const = {
    196	.name = KBUILD_MODNAME,
    197	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
    198	.tseg1_max = 16,
    199	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    200	.tseg2_max = 8,
    201	.sjw_max = 4,
    202	.brp_min = 1,
    203	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
    204	.brp_inc = 1,
    205};
    206
    207static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
    208{
    209	if (priv->device)
    210		pm_runtime_get_sync(priv->device);
    211}
    212
    213static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
    214{
    215	if (priv->device)
    216		pm_runtime_put_sync(priv->device);
    217}
    218
    219static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
    220{
    221	if (priv->raminit)
    222		priv->raminit(priv, enable);
    223}
    224
    225static void c_can_irq_control(struct c_can_priv *priv, bool enable)
    226{
    227	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
    228
    229	if (enable)
    230		ctrl |= CONTROL_IRQMSK;
    231
    232	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
    233}
    234
    235static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
    236{
    237	struct c_can_priv *priv = netdev_priv(dev);
    238	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
    239
    240	priv->write_reg32(priv, reg, (cmd << 16) | obj);
    241
    242	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
    243		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
    244			return;
    245		udelay(1);
    246	}
    247	netdev_err(dev, "Updating object timed out\n");
    248}
    249
    250static inline void c_can_object_get(struct net_device *dev, int iface,
    251				    u32 obj, u32 cmd)
    252{
    253	c_can_obj_update(dev, iface, cmd, obj);
    254}
    255
    256static inline void c_can_object_put(struct net_device *dev, int iface,
    257				    u32 obj, u32 cmd)
    258{
    259	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
    260}
    261
    262/* Note: According to documentation clearing TXIE while MSGVAL is set
    263 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
    264 * load significantly.
    265 */
    266static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
    267{
    268	struct c_can_priv *priv = netdev_priv(dev);
    269
    270	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
    271	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
    272}
    273
    274static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
    275{
    276	struct c_can_priv *priv = netdev_priv(dev);
    277
    278	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
    279	c_can_inval_tx_object(dev, iface, obj);
    280}
    281
    282static void c_can_setup_tx_object(struct net_device *dev, int iface,
    283				  struct can_frame *frame, int idx)
    284{
    285	struct c_can_priv *priv = netdev_priv(dev);
    286	u16 ctrl = IF_MCONT_TX | frame->len;
    287	bool rtr = frame->can_id & CAN_RTR_FLAG;
    288	u32 arb = IF_ARB_MSGVAL;
    289	int i;
    290
    291	if (frame->can_id & CAN_EFF_FLAG) {
    292		arb |= frame->can_id & CAN_EFF_MASK;
    293		arb |= IF_ARB_MSGXTD;
    294	} else {
    295		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
    296	}
    297
    298	if (!rtr)
    299		arb |= IF_ARB_TRANSMIT;
    300
    301	/* If we change the DIR bit, we need to invalidate the buffer
    302	 * first, i.e. clear the MSGVAL flag in the arbiter.
    303	 */
    304	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
    305		u32 obj = idx + priv->msg_obj_tx_first;
    306
    307		c_can_inval_msg_object(dev, iface, obj);
    308		change_bit(idx, &priv->tx_dir);
    309	}
    310
    311	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
    312
    313	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
    314
    315	if (priv->type == BOSCH_D_CAN) {
    316		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
    317
    318		for (i = 0; i < frame->len; i += 4, dreg += 2) {
    319			data = (u32)frame->data[i];
    320			data |= (u32)frame->data[i + 1] << 8;
    321			data |= (u32)frame->data[i + 2] << 16;
    322			data |= (u32)frame->data[i + 3] << 24;
    323			priv->write_reg32(priv, dreg, data);
    324		}
    325	} else {
    326		for (i = 0; i < frame->len; i += 2) {
    327			priv->write_reg(priv,
    328					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
    329					frame->data[i] |
    330					(frame->data[i + 1] << 8));
    331		}
    332	}
    333}
    334
    335static int c_can_handle_lost_msg_obj(struct net_device *dev,
    336				     int iface, int objno, u32 ctrl)
    337{
    338	struct net_device_stats *stats = &dev->stats;
    339	struct c_can_priv *priv = netdev_priv(dev);
    340	struct can_frame *frame;
    341	struct sk_buff *skb;
    342
    343	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
    344	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
    345	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
    346
    347	stats->rx_errors++;
    348	stats->rx_over_errors++;
    349
    350	/* create an error msg */
    351	skb = alloc_can_err_skb(dev, &frame);
    352	if (unlikely(!skb))
    353		return 0;
    354
    355	frame->can_id |= CAN_ERR_CRTL;
    356	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
    357
    358	netif_receive_skb(skb);
    359	return 1;
    360}
    361
    362static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
    363{
    364	struct net_device_stats *stats = &dev->stats;
    365	struct c_can_priv *priv = netdev_priv(dev);
    366	struct can_frame *frame;
    367	struct sk_buff *skb;
    368	u32 arb, data;
    369
    370	skb = alloc_can_skb(dev, &frame);
    371	if (!skb) {
    372		stats->rx_dropped++;
    373		return -ENOMEM;
    374	}
    375
    376	frame->len = can_cc_dlc2len(ctrl & 0x0F);
    377
    378	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
    379
    380	if (arb & IF_ARB_MSGXTD)
    381		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
    382	else
    383		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
    384
    385	if (arb & IF_ARB_TRANSMIT) {
    386		frame->can_id |= CAN_RTR_FLAG;
    387	} else {
    388		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
    389
    390		if (priv->type == BOSCH_D_CAN) {
    391			for (i = 0; i < frame->len; i += 4, dreg += 2) {
    392				data = priv->read_reg32(priv, dreg);
    393				frame->data[i] = data;
    394				frame->data[i + 1] = data >> 8;
    395				frame->data[i + 2] = data >> 16;
    396				frame->data[i + 3] = data >> 24;
    397			}
    398		} else {
    399			for (i = 0; i < frame->len; i += 2, dreg++) {
    400				data = priv->read_reg(priv, dreg);
    401				frame->data[i] = data;
    402				frame->data[i + 1] = data >> 8;
    403			}
    404		}
    405
    406		stats->rx_bytes += frame->len;
    407	}
    408	stats->rx_packets++;
    409
    410	netif_receive_skb(skb);
    411	return 0;
    412}
    413
    414static void c_can_setup_receive_object(struct net_device *dev, int iface,
    415				       u32 obj, u32 mask, u32 id, u32 mcont)
    416{
    417	struct c_can_priv *priv = netdev_priv(dev);
    418
    419	mask |= BIT(29);
    420	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
    421
    422	id |= IF_ARB_MSGVAL;
    423	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
    424
    425	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
    426	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
    427}
    428
    429static bool c_can_tx_busy(const struct c_can_priv *priv,
    430			  const struct c_can_tx_ring *tx_ring)
    431{
    432	if (c_can_get_tx_free(tx_ring) > 0)
    433		return false;
    434
    435	netif_stop_queue(priv->dev);
    436
    437	/* Memory barrier before checking tx_free (head and tail) */
    438	smp_mb();
    439
    440	if (c_can_get_tx_free(tx_ring) == 0) {
    441		netdev_dbg(priv->dev,
    442			   "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
    443			   tx_ring->head, tx_ring->tail,
    444			   tx_ring->head - tx_ring->tail);
    445		return true;
    446	}
    447
    448	netif_start_queue(priv->dev);
    449	return false;
    450}
    451
    452static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
    453				    struct net_device *dev)
    454{
    455	struct can_frame *frame = (struct can_frame *)skb->data;
    456	struct c_can_priv *priv = netdev_priv(dev);
    457	struct c_can_tx_ring *tx_ring = &priv->tx;
    458	u32 idx, obj, cmd = IF_COMM_TX;
    459
    460	if (can_dropped_invalid_skb(dev, skb))
    461		return NETDEV_TX_OK;
    462
    463	if (c_can_tx_busy(priv, tx_ring))
    464		return NETDEV_TX_BUSY;
    465
    466	idx = c_can_get_tx_head(tx_ring);
    467	tx_ring->head++;
    468	if (c_can_get_tx_free(tx_ring) == 0)
    469		netif_stop_queue(dev);
    470
    471	if (idx < c_can_get_tx_tail(tx_ring))
    472		cmd &= ~IF_COMM_TXRQST; /* Cache the message */
    473
    474	/* Store the message in the interface so we can call
    475	 * can_put_echo_skb(). We must do this before we enable
    476	 * transmit as we might race against do_tx().
    477	 */
    478	c_can_setup_tx_object(dev, IF_TX, frame, idx);
    479	can_put_echo_skb(skb, dev, idx, 0);
    480	obj = idx + priv->msg_obj_tx_first;
    481	c_can_object_put(dev, IF_TX, obj, cmd);
    482
    483	return NETDEV_TX_OK;
    484}
    485
    486static int c_can_wait_for_ctrl_init(struct net_device *dev,
    487				    struct c_can_priv *priv, u32 init)
    488{
    489	int retry = 0;
    490
    491	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
    492		udelay(10);
    493		if (retry++ > 1000) {
    494			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
    495			return -EIO;
    496		}
    497	}
    498	return 0;
    499}
    500
    501static int c_can_set_bittiming(struct net_device *dev)
    502{
    503	unsigned int reg_btr, reg_brpe, ctrl_save;
    504	u8 brp, brpe, sjw, tseg1, tseg2;
    505	u32 ten_bit_brp;
    506	struct c_can_priv *priv = netdev_priv(dev);
    507	const struct can_bittiming *bt = &priv->can.bittiming;
    508	int res;
    509
    510	/* c_can provides a 6-bit brp and 4-bit brpe fields */
    511	ten_bit_brp = bt->brp - 1;
    512	brp = ten_bit_brp & BTR_BRP_MASK;
    513	brpe = ten_bit_brp >> 6;
    514
    515	sjw = bt->sjw - 1;
    516	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
    517	tseg2 = bt->phase_seg2 - 1;
    518	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
    519			(tseg2 << BTR_TSEG2_SHIFT);
    520	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
    521
    522	netdev_info(dev,
    523		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
    524
    525	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
    526	ctrl_save &= ~CONTROL_INIT;
    527	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
    528	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
    529	if (res)
    530		return res;
    531
    532	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
    533	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
    534	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
    535
    536	return c_can_wait_for_ctrl_init(dev, priv, 0);
    537}
    538
    539/* Configure C_CAN message objects for Tx and Rx purposes:
    540 * C_CAN provides a total of 32 message objects that can be configured
    541 * either for Tx or Rx purposes. Here the first 16 message objects are used as
    542 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
    543 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
    544 * See user guide document for further details on configuring message
    545 * objects.
    546 */
    547static void c_can_configure_msg_objects(struct net_device *dev)
    548{
    549	struct c_can_priv *priv = netdev_priv(dev);
    550	int i;
    551
    552	/* first invalidate all message objects */
    553	for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
    554		c_can_inval_msg_object(dev, IF_NAPI, i);
    555
    556	/* setup receive message objects */
    557	for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
    558		c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
    559
    560	c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
    561				   IF_MCONT_RCV_EOB);
    562}
    563
    564static int c_can_software_reset(struct net_device *dev)
    565{
    566	struct c_can_priv *priv = netdev_priv(dev);
    567	int retry = 0;
    568
    569	if (priv->type != BOSCH_D_CAN)
    570		return 0;
    571
    572	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
    573	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
    574		msleep(20);
    575		if (retry++ > 100) {
    576			netdev_err(dev, "CCTRL: software reset failed\n");
    577			return -EIO;
    578		}
    579	}
    580
    581	return 0;
    582}
    583
    584/* Configure C_CAN chip:
    585 * - enable/disable auto-retransmission
    586 * - set operating mode
    587 * - configure message objects
    588 */
    589static int c_can_chip_config(struct net_device *dev)
    590{
    591	struct c_can_priv *priv = netdev_priv(dev);
    592	struct c_can_tx_ring *tx_ring = &priv->tx;
    593	int err;
    594
    595	err = c_can_software_reset(dev);
    596	if (err)
    597		return err;
    598
    599	/* enable automatic retransmission */
    600	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
    601
    602	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
    603	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
    604		/* loopback + silent mode : useful for hot self-test */
    605		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    606		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
    607	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
    608		/* loopback mode : useful for self-test function */
    609		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    610		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
    611	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
    612		/* silent mode : bus-monitoring mode */
    613		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    614		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
    615	}
    616
    617	/* configure message objects */
    618	c_can_configure_msg_objects(dev);
    619
    620	/* set a `lec` value so that we can check for updates later */
    621	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
    622
    623	/* Clear all internal status */
    624	tx_ring->head = 0;
    625	tx_ring->tail = 0;
    626	priv->tx_dir = 0;
    627
    628	/* set bittiming params */
    629	return c_can_set_bittiming(dev);
    630}
    631
    632static int c_can_start(struct net_device *dev)
    633{
    634	struct c_can_priv *priv = netdev_priv(dev);
    635	int err;
    636	struct pinctrl *p;
    637
    638	/* basic c_can configuration */
    639	err = c_can_chip_config(dev);
    640	if (err)
    641		return err;
    642
    643	/* Setup the command for new messages */
    644	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
    645		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
    646
    647	priv->can.state = CAN_STATE_ERROR_ACTIVE;
    648
    649	/* Attempt to use "active" if available else use "default" */
    650	p = pinctrl_get_select(priv->device, "active");
    651	if (!IS_ERR(p))
    652		pinctrl_put(p);
    653	else
    654		pinctrl_pm_select_default_state(priv->device);
    655
    656	return 0;
    657}
    658
    659static void c_can_stop(struct net_device *dev)
    660{
    661	struct c_can_priv *priv = netdev_priv(dev);
    662
    663	c_can_irq_control(priv, false);
    664
    665	/* put ctrl to init on stop to end ongoing transmission */
    666	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
    667
    668	/* deactivate pins */
    669	pinctrl_pm_select_sleep_state(dev->dev.parent);
    670	priv->can.state = CAN_STATE_STOPPED;
    671}
    672
    673static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
    674{
    675	struct c_can_priv *priv = netdev_priv(dev);
    676	int err;
    677
    678	switch (mode) {
    679	case CAN_MODE_START:
    680		err = c_can_start(dev);
    681		if (err)
    682			return err;
    683		netif_wake_queue(dev);
    684		c_can_irq_control(priv, true);
    685		break;
    686	default:
    687		return -EOPNOTSUPP;
    688	}
    689
    690	return 0;
    691}
    692
    693static int __c_can_get_berr_counter(const struct net_device *dev,
    694				    struct can_berr_counter *bec)
    695{
    696	unsigned int reg_err_counter;
    697	struct c_can_priv *priv = netdev_priv(dev);
    698
    699	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
    700	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
    701				ERR_CNT_REC_SHIFT;
    702	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
    703
    704	return 0;
    705}
    706
    707static int c_can_get_berr_counter(const struct net_device *dev,
    708				  struct can_berr_counter *bec)
    709{
    710	struct c_can_priv *priv = netdev_priv(dev);
    711	int err;
    712
    713	c_can_pm_runtime_get_sync(priv);
    714	err = __c_can_get_berr_counter(dev, bec);
    715	c_can_pm_runtime_put_sync(priv);
    716
    717	return err;
    718}
    719
    720static void c_can_do_tx(struct net_device *dev)
    721{
    722	struct c_can_priv *priv = netdev_priv(dev);
    723	struct c_can_tx_ring *tx_ring = &priv->tx;
    724	struct net_device_stats *stats = &dev->stats;
    725	u32 idx, obj, pkts = 0, bytes = 0, pend;
    726	u8 tail;
    727
    728	if (priv->msg_obj_tx_last > 32)
    729		pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
    730	else
    731		pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
    732
    733	while ((idx = ffs(pend))) {
    734		idx--;
    735		pend &= ~BIT(idx);
    736		obj = idx + priv->msg_obj_tx_first;
    737
    738		/* We use IF_NAPI interface instead of IF_TX because we
    739		 * are called from c_can_poll(), which runs inside
    740		 * NAPI. We are not transmitting.
    741		 */
    742		c_can_inval_tx_object(dev, IF_NAPI, obj);
    743		bytes += can_get_echo_skb(dev, idx, NULL);
    744		pkts++;
    745	}
    746
    747	if (!pkts)
    748		return;
    749
    750	tx_ring->tail += pkts;
    751	if (c_can_get_tx_free(tx_ring)) {
    752		/* Make sure that anybody stopping the queue after
    753		 * this sees the new tx_ring->tail.
    754		 */
    755		smp_mb();
    756		netif_wake_queue(priv->dev);
    757	}
    758
    759	stats->tx_bytes += bytes;
    760	stats->tx_packets += pkts;
    761
    762	tail = c_can_get_tx_tail(tx_ring);
    763
    764	if (tail == 0) {
    765		u8 head = c_can_get_tx_head(tx_ring);
    766
    767		/* Start transmission for all cached messages */
    768		for (idx = tail; idx < head; idx++) {
    769			obj = idx + priv->msg_obj_tx_first;
    770			c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
    771		}
    772	}
    773}
    774
    775/* If we have a gap in the pending bits, that means we either
    776 * raced with the hardware or failed to readout all upper
    777 * objects in the last run due to quota limit.
    778 */
    779static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
    780{
    781	u32 weight, lasts;
    782
    783	if (pend == rx_mask)
    784		return pend;
    785
    786	/* If the last set bit is larger than the number of pending
    787	 * bits we have a gap.
    788	 */
    789	weight = hweight32(pend);
    790	lasts = fls(pend);
    791
    792	/* If the bits are linear, nothing to do */
    793	if (lasts == weight)
    794		return pend;
    795
    796	/* Find the first set bit after the gap. We walk backwards
    797	 * from the last set bit.
    798	 */
    799	for (lasts--; pend & BIT(lasts - 1); lasts--)
    800		;
    801
    802	return pend & ~GENMASK(lasts - 1, 0);
    803}
    804
    805static inline void c_can_rx_object_get(struct net_device *dev,
    806				       struct c_can_priv *priv, u32 obj)
    807{
    808	c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
    809}
    810
    811static inline void c_can_rx_finalize(struct net_device *dev,
    812				     struct c_can_priv *priv, u32 obj)
    813{
    814	if (priv->type != BOSCH_D_CAN)
    815		c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
    816}
    817
    818static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
    819			      u32 pend, int quota)
    820{
    821	u32 pkts = 0, ctrl, obj;
    822
    823	while ((obj = ffs(pend)) && quota > 0) {
    824		pend &= ~BIT(obj - 1);
    825
    826		c_can_rx_object_get(dev, priv, obj);
    827		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
    828
    829		if (ctrl & IF_MCONT_MSGLST) {
    830			int n;
    831
    832			n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
    833
    834			pkts += n;
    835			quota -= n;
    836			continue;
    837		}
    838
    839		/* This really should not happen, but this covers some
    840		 * odd HW behaviour. Do not remove that unless you
    841		 * want to brick your machine.
    842		 */
    843		if (!(ctrl & IF_MCONT_NEWDAT))
    844			continue;
    845
    846		/* read the data from the message object */
    847		c_can_read_msg_object(dev, IF_NAPI, ctrl);
    848
    849		c_can_rx_finalize(dev, priv, obj);
    850
    851		pkts++;
    852		quota--;
    853	}
    854
    855	return pkts;
    856}
    857
    858static inline u32 c_can_get_pending(struct c_can_priv *priv)
    859{
    860	u32 pend;
    861
    862	if (priv->msg_obj_rx_last > 16)
    863		pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
    864	else
    865		pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
    866
    867	return pend;
    868}
    869
    870/* theory of operation:
    871 *
    872 * c_can core saves a received CAN message into the first free message
    873 * object it finds free (starting with the lowest). Bits NEWDAT and
    874 * INTPND are set for this message object indicating that a new message
    875 * has arrived.
    876 *
    877 * We clear the newdat bit right away.
    878 *
    879 * This can result in packet reordering when the readout is slow.
    880 */
    881static int c_can_do_rx_poll(struct net_device *dev, int quota)
    882{
    883	struct c_can_priv *priv = netdev_priv(dev);
    884	u32 pkts = 0, pend = 0, toread, n;
    885
    886	while (quota > 0) {
    887		if (!pend) {
    888			pend = c_can_get_pending(priv);
    889			if (!pend)
    890				break;
    891			/* If the pending field has a gap, handle the
    892			 * bits above the gap first.
    893			 */
    894			toread = c_can_adjust_pending(pend,
    895						      priv->msg_obj_rx_mask);
    896		} else {
    897			toread = pend;
    898		}
    899		/* Remove the bits from pend */
    900		pend &= ~toread;
    901		/* Read the objects */
    902		n = c_can_read_objects(dev, priv, toread, quota);
    903		pkts += n;
    904		quota -= n;
    905	}
    906
    907	return pkts;
    908}
    909
    910static int c_can_handle_state_change(struct net_device *dev,
    911				     enum c_can_bus_error_types error_type)
    912{
    913	unsigned int reg_err_counter;
    914	unsigned int rx_err_passive;
    915	struct c_can_priv *priv = netdev_priv(dev);
    916	struct can_frame *cf;
    917	struct sk_buff *skb;
    918	struct can_berr_counter bec;
    919
    920	switch (error_type) {
    921	case C_CAN_NO_ERROR:
    922		priv->can.state = CAN_STATE_ERROR_ACTIVE;
    923		break;
    924	case C_CAN_ERROR_WARNING:
    925		/* error warning state */
    926		priv->can.can_stats.error_warning++;
    927		priv->can.state = CAN_STATE_ERROR_WARNING;
    928		break;
    929	case C_CAN_ERROR_PASSIVE:
    930		/* error passive state */
    931		priv->can.can_stats.error_passive++;
    932		priv->can.state = CAN_STATE_ERROR_PASSIVE;
    933		break;
    934	case C_CAN_BUS_OFF:
    935		/* bus-off state */
    936		priv->can.state = CAN_STATE_BUS_OFF;
    937		priv->can.can_stats.bus_off++;
    938		break;
    939	default:
    940		break;
    941	}
    942
    943	/* propagate the error condition to the CAN stack */
    944	skb = alloc_can_err_skb(dev, &cf);
    945	if (unlikely(!skb))
    946		return 0;
    947
    948	__c_can_get_berr_counter(dev, &bec);
    949	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
    950	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
    951				ERR_CNT_RP_SHIFT;
    952
    953	switch (error_type) {
    954	case C_CAN_NO_ERROR:
    955		/* error warning state */
    956		cf->can_id |= CAN_ERR_CRTL;
    957		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
    958		cf->data[6] = bec.txerr;
    959		cf->data[7] = bec.rxerr;
    960		break;
    961	case C_CAN_ERROR_WARNING:
    962		/* error warning state */
    963		cf->can_id |= CAN_ERR_CRTL;
    964		cf->data[1] = (bec.txerr > bec.rxerr) ?
    965			CAN_ERR_CRTL_TX_WARNING :
    966			CAN_ERR_CRTL_RX_WARNING;
    967		cf->data[6] = bec.txerr;
    968		cf->data[7] = bec.rxerr;
    969
    970		break;
    971	case C_CAN_ERROR_PASSIVE:
    972		/* error passive state */
    973		cf->can_id |= CAN_ERR_CRTL;
    974		if (rx_err_passive)
    975			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
    976		if (bec.txerr > 127)
    977			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
    978
    979		cf->data[6] = bec.txerr;
    980		cf->data[7] = bec.rxerr;
    981		break;
    982	case C_CAN_BUS_OFF:
    983		/* bus-off state */
    984		cf->can_id |= CAN_ERR_BUSOFF;
    985		can_bus_off(dev);
    986		break;
    987	default:
    988		break;
    989	}
    990
    991	netif_receive_skb(skb);
    992
    993	return 1;
    994}
    995
    996static int c_can_handle_bus_err(struct net_device *dev,
    997				enum c_can_lec_type lec_type)
    998{
    999	struct c_can_priv *priv = netdev_priv(dev);
   1000	struct net_device_stats *stats = &dev->stats;
   1001	struct can_frame *cf;
   1002	struct sk_buff *skb;
   1003
   1004	/* early exit if no lec update or no error.
   1005	 * no lec update means that no CAN bus event has been detected
   1006	 * since CPU wrote 0x7 value to status reg.
   1007	 */
   1008	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
   1009		return 0;
   1010
   1011	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
   1012		return 0;
   1013
   1014	/* common for all type of bus errors */
   1015	priv->can.can_stats.bus_error++;
   1016	stats->rx_errors++;
   1017
   1018	/* propagate the error condition to the CAN stack */
   1019	skb = alloc_can_err_skb(dev, &cf);
   1020	if (unlikely(!skb))
   1021		return 0;
   1022
   1023	/* check for 'last error code' which tells us the
   1024	 * type of the last error to occur on the CAN bus
   1025	 */
   1026	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
   1027
   1028	switch (lec_type) {
   1029	case LEC_STUFF_ERROR:
   1030		netdev_dbg(dev, "stuff error\n");
   1031		cf->data[2] |= CAN_ERR_PROT_STUFF;
   1032		break;
   1033	case LEC_FORM_ERROR:
   1034		netdev_dbg(dev, "form error\n");
   1035		cf->data[2] |= CAN_ERR_PROT_FORM;
   1036		break;
   1037	case LEC_ACK_ERROR:
   1038		netdev_dbg(dev, "ack error\n");
   1039		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
   1040		break;
   1041	case LEC_BIT1_ERROR:
   1042		netdev_dbg(dev, "bit1 error\n");
   1043		cf->data[2] |= CAN_ERR_PROT_BIT1;
   1044		break;
   1045	case LEC_BIT0_ERROR:
   1046		netdev_dbg(dev, "bit0 error\n");
   1047		cf->data[2] |= CAN_ERR_PROT_BIT0;
   1048		break;
   1049	case LEC_CRC_ERROR:
   1050		netdev_dbg(dev, "CRC error\n");
   1051		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
   1052		break;
   1053	default:
   1054		break;
   1055	}
   1056
   1057	netif_receive_skb(skb);
   1058	return 1;
   1059}
   1060
   1061static int c_can_poll(struct napi_struct *napi, int quota)
   1062{
   1063	struct net_device *dev = napi->dev;
   1064	struct c_can_priv *priv = netdev_priv(dev);
   1065	u16 curr, last = priv->last_status;
   1066	int work_done = 0;
   1067
   1068	/* Only read the status register if a status interrupt was pending */
   1069	if (atomic_xchg(&priv->sie_pending, 0)) {
   1070		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
   1071		curr = priv->last_status;
   1072		/* Ack status on C_CAN. D_CAN is self clearing */
   1073		if (priv->type != BOSCH_D_CAN)
   1074			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
   1075	} else {
   1076		/* no change detected ... */
   1077		curr = last;
   1078	}
   1079
   1080	/* handle state changes */
   1081	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
   1082		netdev_dbg(dev, "entered error warning state\n");
   1083		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
   1084	}
   1085
   1086	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
   1087		netdev_dbg(dev, "entered error passive state\n");
   1088		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
   1089	}
   1090
   1091	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
   1092		netdev_dbg(dev, "entered bus off state\n");
   1093		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
   1094		goto end;
   1095	}
   1096
   1097	/* handle bus recovery events */
   1098	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
   1099		netdev_dbg(dev, "left bus off state\n");
   1100		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
   1101	}
   1102
   1103	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
   1104		netdev_dbg(dev, "left error passive state\n");
   1105		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
   1106	}
   1107
   1108	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
   1109		netdev_dbg(dev, "left error warning state\n");
   1110		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
   1111	}
   1112
   1113	/* handle lec errors on the bus */
   1114	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
   1115
   1116	/* Handle Tx/Rx events. We do this unconditionally */
   1117	work_done += c_can_do_rx_poll(dev, (quota - work_done));
   1118	c_can_do_tx(dev);
   1119
   1120end:
   1121	if (work_done < quota) {
   1122		napi_complete_done(napi, work_done);
   1123		/* enable all IRQs if we are not in bus off state */
   1124		if (priv->can.state != CAN_STATE_BUS_OFF)
   1125			c_can_irq_control(priv, true);
   1126	}
   1127
   1128	return work_done;
   1129}
   1130
   1131static irqreturn_t c_can_isr(int irq, void *dev_id)
   1132{
   1133	struct net_device *dev = (struct net_device *)dev_id;
   1134	struct c_can_priv *priv = netdev_priv(dev);
   1135	int reg_int;
   1136
   1137	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
   1138	if (!reg_int)
   1139		return IRQ_NONE;
   1140
   1141	/* save for later use */
   1142	if (reg_int & INT_STS_PENDING)
   1143		atomic_set(&priv->sie_pending, 1);
   1144
   1145	/* disable all interrupts and schedule the NAPI */
   1146	c_can_irq_control(priv, false);
   1147	napi_schedule(&priv->napi);
   1148
   1149	return IRQ_HANDLED;
   1150}
   1151
   1152static int c_can_open(struct net_device *dev)
   1153{
   1154	int err;
   1155	struct c_can_priv *priv = netdev_priv(dev);
   1156
   1157	c_can_pm_runtime_get_sync(priv);
   1158	c_can_reset_ram(priv, true);
   1159
   1160	/* open the can device */
   1161	err = open_candev(dev);
   1162	if (err) {
   1163		netdev_err(dev, "failed to open can device\n");
   1164		goto exit_open_fail;
   1165	}
   1166
   1167	/* register interrupt handler */
   1168	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
   1169			  dev);
   1170	if (err < 0) {
   1171		netdev_err(dev, "failed to request interrupt\n");
   1172		goto exit_irq_fail;
   1173	}
   1174
   1175	/* start the c_can controller */
   1176	err = c_can_start(dev);
   1177	if (err)
   1178		goto exit_start_fail;
   1179
   1180	napi_enable(&priv->napi);
   1181	/* enable status change, error and module interrupts */
   1182	c_can_irq_control(priv, true);
   1183	netif_start_queue(dev);
   1184
   1185	return 0;
   1186
   1187exit_start_fail:
   1188	free_irq(dev->irq, dev);
   1189exit_irq_fail:
   1190	close_candev(dev);
   1191exit_open_fail:
   1192	c_can_reset_ram(priv, false);
   1193	c_can_pm_runtime_put_sync(priv);
   1194	return err;
   1195}
   1196
   1197static int c_can_close(struct net_device *dev)
   1198{
   1199	struct c_can_priv *priv = netdev_priv(dev);
   1200
   1201	netif_stop_queue(dev);
   1202	napi_disable(&priv->napi);
   1203	c_can_stop(dev);
   1204	free_irq(dev->irq, dev);
   1205	close_candev(dev);
   1206
   1207	c_can_reset_ram(priv, false);
   1208	c_can_pm_runtime_put_sync(priv);
   1209
   1210	return 0;
   1211}
   1212
   1213struct net_device *alloc_c_can_dev(int msg_obj_num)
   1214{
   1215	struct net_device *dev;
   1216	struct c_can_priv *priv;
   1217	int msg_obj_tx_num = msg_obj_num / 2;
   1218
   1219	dev = alloc_candev(sizeof(*priv), msg_obj_tx_num);
   1220	if (!dev)
   1221		return NULL;
   1222
   1223	priv = netdev_priv(dev);
   1224	priv->msg_obj_num = msg_obj_num;
   1225	priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
   1226	priv->msg_obj_rx_first = 1;
   1227	priv->msg_obj_rx_last =
   1228		priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
   1229	priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
   1230
   1231	priv->msg_obj_tx_num = msg_obj_tx_num;
   1232	priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
   1233	priv->msg_obj_tx_last =
   1234		priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
   1235
   1236	priv->tx.head = 0;
   1237	priv->tx.tail = 0;
   1238	priv->tx.obj_num = msg_obj_tx_num;
   1239
   1240	netif_napi_add_weight(dev, &priv->napi, c_can_poll,
   1241			      priv->msg_obj_rx_num);
   1242
   1243	priv->dev = dev;
   1244	priv->can.bittiming_const = &c_can_bittiming_const;
   1245	priv->can.do_set_mode = c_can_set_mode;
   1246	priv->can.do_get_berr_counter = c_can_get_berr_counter;
   1247	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
   1248					CAN_CTRLMODE_LISTENONLY |
   1249					CAN_CTRLMODE_BERR_REPORTING;
   1250
   1251	return dev;
   1252}
   1253EXPORT_SYMBOL_GPL(alloc_c_can_dev);
   1254
   1255#ifdef CONFIG_PM
   1256int c_can_power_down(struct net_device *dev)
   1257{
   1258	u32 val;
   1259	unsigned long time_out;
   1260	struct c_can_priv *priv = netdev_priv(dev);
   1261
   1262	if (!(dev->flags & IFF_UP))
   1263		return 0;
   1264
   1265	WARN_ON(priv->type != BOSCH_D_CAN);
   1266
   1267	/* set PDR value so the device goes to power down mode */
   1268	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
   1269	val |= CONTROL_EX_PDR;
   1270	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
   1271
   1272	/* Wait for the PDA bit to get set */
   1273	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
   1274	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
   1275	       time_after(time_out, jiffies))
   1276		cpu_relax();
   1277
   1278	if (time_after(jiffies, time_out))
   1279		return -ETIMEDOUT;
   1280
   1281	c_can_stop(dev);
   1282
   1283	c_can_reset_ram(priv, false);
   1284	c_can_pm_runtime_put_sync(priv);
   1285
   1286	return 0;
   1287}
   1288EXPORT_SYMBOL_GPL(c_can_power_down);
   1289
   1290int c_can_power_up(struct net_device *dev)
   1291{
   1292	u32 val;
   1293	unsigned long time_out;
   1294	struct c_can_priv *priv = netdev_priv(dev);
   1295	int ret;
   1296
   1297	if (!(dev->flags & IFF_UP))
   1298		return 0;
   1299
   1300	WARN_ON(priv->type != BOSCH_D_CAN);
   1301
   1302	c_can_pm_runtime_get_sync(priv);
   1303	c_can_reset_ram(priv, true);
   1304
   1305	/* Clear PDR and INIT bits */
   1306	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
   1307	val &= ~CONTROL_EX_PDR;
   1308	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
   1309	val = priv->read_reg(priv, C_CAN_CTRL_REG);
   1310	val &= ~CONTROL_INIT;
   1311	priv->write_reg(priv, C_CAN_CTRL_REG, val);
   1312
   1313	/* Wait for the PDA bit to get clear */
   1314	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
   1315	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
   1316	       time_after(time_out, jiffies))
   1317		cpu_relax();
   1318
   1319	if (time_after(jiffies, time_out)) {
   1320		ret = -ETIMEDOUT;
   1321		goto err_out;
   1322	}
   1323
   1324	ret = c_can_start(dev);
   1325	if (ret)
   1326		goto err_out;
   1327
   1328	c_can_irq_control(priv, true);
   1329
   1330	return 0;
   1331
   1332err_out:
   1333	c_can_reset_ram(priv, false);
   1334	c_can_pm_runtime_put_sync(priv);
   1335
   1336	return ret;
   1337}
   1338EXPORT_SYMBOL_GPL(c_can_power_up);
   1339#endif
   1340
   1341void free_c_can_dev(struct net_device *dev)
   1342{
   1343	struct c_can_priv *priv = netdev_priv(dev);
   1344
   1345	netif_napi_del(&priv->napi);
   1346	free_candev(dev);
   1347}
   1348EXPORT_SYMBOL_GPL(free_c_can_dev);
   1349
   1350static const struct net_device_ops c_can_netdev_ops = {
   1351	.ndo_open = c_can_open,
   1352	.ndo_stop = c_can_close,
   1353	.ndo_start_xmit = c_can_start_xmit,
   1354	.ndo_change_mtu = can_change_mtu,
   1355};
   1356
   1357int register_c_can_dev(struct net_device *dev)
   1358{
   1359	/* Deactivate pins to prevent DRA7 DCAN IP from being
   1360	 * stuck in transition when module is disabled.
   1361	 * Pins are activated in c_can_start() and deactivated
   1362	 * in c_can_stop()
   1363	 */
   1364	pinctrl_pm_select_sleep_state(dev->dev.parent);
   1365
   1366	dev->flags |= IFF_ECHO;	/* we support local echo */
   1367	dev->netdev_ops = &c_can_netdev_ops;
   1368	c_can_set_ethtool_ops(dev);
   1369
   1370	return register_candev(dev);
   1371}
   1372EXPORT_SYMBOL_GPL(register_c_can_dev);
   1373
   1374void unregister_c_can_dev(struct net_device *dev)
   1375{
   1376	unregister_candev(dev);
   1377}
   1378EXPORT_SYMBOL_GPL(unregister_c_can_dev);
   1379
   1380MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
   1381MODULE_LICENSE("GPL v2");
   1382MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");