cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rcar_canfd.c (62121B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/* Renesas R-Car CAN FD device driver
      3 *
      4 * Copyright (C) 2015 Renesas Electronics Corp.
      5 */
      6
      7/* The R-Car CAN FD controller can operate in either one of the below two modes
      8 *  - CAN FD only mode
      9 *  - Classical CAN (CAN 2.0) only mode
     10 *
     11 * This driver puts the controller in CAN FD only mode by default. In this
     12 * mode, the controller acts as a CAN FD node that can also interoperate with
     13 * CAN 2.0 nodes.
     14 *
     15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
     16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
     17 * also required to switch modes.
     18 *
     19 * Note: The h/w manual register naming convention is clumsy and not acceptable
     20 * to use as it is in the driver. However, those names are added as comments
     21 * wherever it is modified to a readable name.
     22 */
     23
     24#include <linux/module.h>
     25#include <linux/moduleparam.h>
     26#include <linux/kernel.h>
     27#include <linux/types.h>
     28#include <linux/interrupt.h>
     29#include <linux/errno.h>
     30#include <linux/netdevice.h>
     31#include <linux/platform_device.h>
     32#include <linux/can/dev.h>
     33#include <linux/clk.h>
     34#include <linux/of.h>
     35#include <linux/of_device.h>
     36#include <linux/bitmap.h>
     37#include <linux/bitops.h>
     38#include <linux/iopoll.h>
     39#include <linux/reset.h>
     40
     41#define RCANFD_DRV_NAME			"rcar_canfd"
     42
     43enum rcanfd_chip_id {
     44	RENESAS_RCAR_GEN3 = 0,
     45	RENESAS_RZG2L,
     46	RENESAS_R8A779A0,
     47};
     48
     49/* Global register bits */
     50
     51/* RSCFDnCFDGRMCFG */
     52#define RCANFD_GRMCFG_RCMC		BIT(0)
     53
     54/* RSCFDnCFDGCFG / RSCFDnGCFG */
     55#define RCANFD_GCFG_EEFE		BIT(6)
     56#define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
     57#define RCANFD_GCFG_DCS			BIT(4)
     58#define RCANFD_GCFG_DCE			BIT(1)
     59#define RCANFD_GCFG_TPRI		BIT(0)
     60
     61/* RSCFDnCFDGCTR / RSCFDnGCTR */
     62#define RCANFD_GCTR_TSRST		BIT(16)
     63#define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
     64#define RCANFD_GCTR_THLEIE		BIT(10)
     65#define RCANFD_GCTR_MEIE		BIT(9)
     66#define RCANFD_GCTR_DEIE		BIT(8)
     67#define RCANFD_GCTR_GSLPR		BIT(2)
     68#define RCANFD_GCTR_GMDC_MASK		(0x3)
     69#define RCANFD_GCTR_GMDC_GOPM		(0x0)
     70#define RCANFD_GCTR_GMDC_GRESET		(0x1)
     71#define RCANFD_GCTR_GMDC_GTEST		(0x2)
     72
     73/* RSCFDnCFDGSTS / RSCFDnGSTS */
     74#define RCANFD_GSTS_GRAMINIT		BIT(3)
     75#define RCANFD_GSTS_GSLPSTS		BIT(2)
     76#define RCANFD_GSTS_GHLTSTS		BIT(1)
     77#define RCANFD_GSTS_GRSTSTS		BIT(0)
     78/* Non-operational status */
     79#define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
     80
     81/* RSCFDnCFDGERFL / RSCFDnGERFL */
     82#define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
     83#define RCANFD_GERFL_EEF1		BIT(17)
     84#define RCANFD_GERFL_EEF0		BIT(16)
     85#define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
     86#define RCANFD_GERFL_THLES		BIT(2)
     87#define RCANFD_GERFL_MES		BIT(1)
     88#define RCANFD_GERFL_DEF		BIT(0)
     89
     90#define RCANFD_GERFL_ERR(gpriv, x) \
     91	((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
     92			RCANFD_GERFL_EEF0 | RCANFD_GERFL_EEF1) | \
     93		RCANFD_GERFL_MES | \
     94		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
     95
     96/* AFL Rx rules registers */
     97
     98/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
     99#define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
    100	(((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
    101	 (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
    102
    103#define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
    104	(((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
    105	 reg_v3u(gpriv, 0x1ff, 0xff))
    106
    107/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
    108#define RCANFD_GAFLECTR_AFLDAE		BIT(8)
    109#define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_v3u(gpriv, 0x7f, 0x1f))
    110
    111/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
    112#define RCANFD_GAFLID_GAFLLB		BIT(29)
    113
    114/* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
    115#define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
    116
    117/* Channel register bits */
    118
    119/* RSCFDnCmCFG - Classical CAN only */
    120#define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
    121#define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
    122#define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
    123#define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
    124
    125/* RSCFDnCFDCmNCFG - CAN FD only */
    126#define RCANFD_NCFG_NTSEG2(gpriv, x) \
    127	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
    128
    129#define RCANFD_NCFG_NTSEG1(gpriv, x) \
    130	(((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
    131
    132#define RCANFD_NCFG_NSJW(gpriv, x) \
    133	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
    134
    135#define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
    136
    137/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
    138#define RCANFD_CCTR_CTME		BIT(24)
    139#define RCANFD_CCTR_ERRD		BIT(23)
    140#define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
    141#define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
    142#define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
    143#define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
    144#define RCANFD_CCTR_TDCVFIE		BIT(19)
    145#define RCANFD_CCTR_SOCOIE		BIT(18)
    146#define RCANFD_CCTR_EOCOIE		BIT(17)
    147#define RCANFD_CCTR_TAIE		BIT(16)
    148#define RCANFD_CCTR_ALIE		BIT(15)
    149#define RCANFD_CCTR_BLIE		BIT(14)
    150#define RCANFD_CCTR_OLIE		BIT(13)
    151#define RCANFD_CCTR_BORIE		BIT(12)
    152#define RCANFD_CCTR_BOEIE		BIT(11)
    153#define RCANFD_CCTR_EPIE		BIT(10)
    154#define RCANFD_CCTR_EWIE		BIT(9)
    155#define RCANFD_CCTR_BEIE		BIT(8)
    156#define RCANFD_CCTR_CSLPR		BIT(2)
    157#define RCANFD_CCTR_CHMDC_MASK		(0x3)
    158#define RCANFD_CCTR_CHDMC_COPM		(0x0)
    159#define RCANFD_CCTR_CHDMC_CRESET	(0x1)
    160#define RCANFD_CCTR_CHDMC_CHLT		(0x2)
    161
    162/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
    163#define RCANFD_CSTS_COMSTS		BIT(7)
    164#define RCANFD_CSTS_RECSTS		BIT(6)
    165#define RCANFD_CSTS_TRMSTS		BIT(5)
    166#define RCANFD_CSTS_BOSTS		BIT(4)
    167#define RCANFD_CSTS_EPSTS		BIT(3)
    168#define RCANFD_CSTS_SLPSTS		BIT(2)
    169#define RCANFD_CSTS_HLTSTS		BIT(1)
    170#define RCANFD_CSTS_CRSTSTS		BIT(0)
    171
    172#define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
    173#define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
    174
    175/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
    176#define RCANFD_CERFL_ADERR		BIT(14)
    177#define RCANFD_CERFL_B0ERR		BIT(13)
    178#define RCANFD_CERFL_B1ERR		BIT(12)
    179#define RCANFD_CERFL_CERR		BIT(11)
    180#define RCANFD_CERFL_AERR		BIT(10)
    181#define RCANFD_CERFL_FERR		BIT(9)
    182#define RCANFD_CERFL_SERR		BIT(8)
    183#define RCANFD_CERFL_ALF		BIT(7)
    184#define RCANFD_CERFL_BLF		BIT(6)
    185#define RCANFD_CERFL_OVLF		BIT(5)
    186#define RCANFD_CERFL_BORF		BIT(4)
    187#define RCANFD_CERFL_BOEF		BIT(3)
    188#define RCANFD_CERFL_EPF		BIT(2)
    189#define RCANFD_CERFL_EWF		BIT(1)
    190#define RCANFD_CERFL_BEF		BIT(0)
    191
    192#define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
    193
    194/* RSCFDnCFDCmDCFG */
    195#define RCANFD_DCFG_DSJW(x)		(((x) & 0x7) << 24)
    196
    197#define RCANFD_DCFG_DTSEG2(gpriv, x) \
    198	(((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
    199
    200#define RCANFD_DCFG_DTSEG1(gpriv, x) \
    201	(((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
    202
    203#define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
    204
    205/* RSCFDnCFDCmFDCFG */
    206#define RCANFD_FDCFG_CLOE		BIT(30)
    207#define RCANFD_FDCFG_FDOE		BIT(28)
    208#define RCANFD_FDCFG_TDCE		BIT(9)
    209#define RCANFD_FDCFG_TDCOC		BIT(8)
    210#define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
    211
    212/* RSCFDnCFDRFCCx */
    213#define RCANFD_RFCC_RFIM		BIT(12)
    214#define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
    215#define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
    216#define RCANFD_RFCC_RFIE		BIT(1)
    217#define RCANFD_RFCC_RFE			BIT(0)
    218
    219/* RSCFDnCFDRFSTSx */
    220#define RCANFD_RFSTS_RFIF		BIT(3)
    221#define RCANFD_RFSTS_RFMLT		BIT(2)
    222#define RCANFD_RFSTS_RFFLL		BIT(1)
    223#define RCANFD_RFSTS_RFEMP		BIT(0)
    224
    225/* RSCFDnCFDRFIDx */
    226#define RCANFD_RFID_RFIDE		BIT(31)
    227#define RCANFD_RFID_RFRTR		BIT(30)
    228
    229/* RSCFDnCFDRFPTRx */
    230#define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
    231#define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
    232#define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
    233
    234/* RSCFDnCFDRFFDSTSx */
    235#define RCANFD_RFFDSTS_RFFDF		BIT(2)
    236#define RCANFD_RFFDSTS_RFBRS		BIT(1)
    237#define RCANFD_RFFDSTS_RFESI		BIT(0)
    238
    239/* Common FIFO bits */
    240
    241/* RSCFDnCFDCFCCk */
    242#define RCANFD_CFCC_CFTML(gpriv, x)	(((x) & 0xf) << reg_v3u(gpriv, 16, 20))
    243#define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_v3u(gpriv,  8, 16))
    244#define RCANFD_CFCC_CFIM		BIT(12)
    245#define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_v3u(gpriv, 21,  8))
    246#define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
    247#define RCANFD_CFCC_CFTXIE		BIT(2)
    248#define RCANFD_CFCC_CFE			BIT(0)
    249
    250/* RSCFDnCFDCFSTSk */
    251#define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
    252#define RCANFD_CFSTS_CFTXIF		BIT(4)
    253#define RCANFD_CFSTS_CFMLT		BIT(2)
    254#define RCANFD_CFSTS_CFFLL		BIT(1)
    255#define RCANFD_CFSTS_CFEMP		BIT(0)
    256
    257/* RSCFDnCFDCFIDk */
    258#define RCANFD_CFID_CFIDE		BIT(31)
    259#define RCANFD_CFID_CFRTR		BIT(30)
    260#define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
    261
    262/* RSCFDnCFDCFPTRk */
    263#define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
    264#define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
    265#define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
    266
    267/* RSCFDnCFDCFFDCSTSk */
    268#define RCANFD_CFFDCSTS_CFFDF		BIT(2)
    269#define RCANFD_CFFDCSTS_CFBRS		BIT(1)
    270#define RCANFD_CFFDCSTS_CFESI		BIT(0)
    271
    272/* This controller supports either Classical CAN only mode or CAN FD only mode.
    273 * These modes are supported in two separate set of register maps & names.
    274 * However, some of the register offsets are common for both modes. Those
    275 * offsets are listed below as Common registers.
    276 *
    277 * The CAN FD only mode specific registers & Classical CAN only mode specific
    278 * registers are listed separately. Their register names starts with
    279 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
    280 */
    281
    282/* Common registers */
    283
    284/* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
    285#define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
    286/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
    287#define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
    288/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
    289#define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
    290/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
    291#define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
    292
    293/* RSCFDnCFDGCFG / RSCFDnGCFG */
    294#define RCANFD_GCFG			(0x0084)
    295/* RSCFDnCFDGCTR / RSCFDnGCTR */
    296#define RCANFD_GCTR			(0x0088)
    297/* RSCFDnCFDGCTS / RSCFDnGCTS */
    298#define RCANFD_GSTS			(0x008c)
    299/* RSCFDnCFDGERFL / RSCFDnGERFL */
    300#define RCANFD_GERFL			(0x0090)
    301/* RSCFDnCFDGTSC / RSCFDnGTSC */
    302#define RCANFD_GTSC			(0x0094)
    303/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
    304#define RCANFD_GAFLECTR			(0x0098)
    305/* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
    306#define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
    307/* RSCFDnCFDRMNB / RSCFDnRMNB */
    308#define RCANFD_RMNB			(0x00a4)
    309/* RSCFDnCFDRMND / RSCFDnRMND */
    310#define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
    311
    312/* RSCFDnCFDRFCCx / RSCFDnRFCCx */
    313#define RCANFD_RFCC(gpriv, x)		(reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
    314/* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
    315#define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
    316/* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
    317#define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
    318
    319/* Common FIFO Control registers */
    320
    321/* RSCFDnCFDCFCCx / RSCFDnCFCCx */
    322#define RCANFD_CFCC(gpriv, ch, idx) \
    323	(reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
    324/* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
    325#define RCANFD_CFSTS(gpriv, ch, idx) \
    326	(reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
    327/* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
    328#define RCANFD_CFPCTR(gpriv, ch, idx) \
    329	(reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
    330
    331/* RSCFDnCFDFESTS / RSCFDnFESTS */
    332#define RCANFD_FESTS			(0x0238)
    333/* RSCFDnCFDFFSTS / RSCFDnFFSTS */
    334#define RCANFD_FFSTS			(0x023c)
    335/* RSCFDnCFDFMSTS / RSCFDnFMSTS */
    336#define RCANFD_FMSTS			(0x0240)
    337/* RSCFDnCFDRFISTS / RSCFDnRFISTS */
    338#define RCANFD_RFISTS			(0x0244)
    339/* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
    340#define RCANFD_CFRISTS			(0x0248)
    341/* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
    342#define RCANFD_CFTISTS			(0x024c)
    343
    344/* RSCFDnCFDTMCp / RSCFDnTMCp */
    345#define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
    346/* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
    347#define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
    348
    349/* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
    350#define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
    351/* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
    352#define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
    353/* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
    354#define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
    355/* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
    356#define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
    357/* RSCFDnCFDTMIECy / RSCFDnTMIECy */
    358#define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
    359
    360/* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
    361#define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
    362/* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
    363#define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
    364/* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
    365#define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
    366
    367/* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
    368#define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
    369/* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
    370#define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
    371/* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
    372#define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
    373
    374/* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
    375#define RCANFD_GTINTSTS0		(0x0460)
    376/* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
    377#define RCANFD_GTINTSTS1		(0x0464)
    378/* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
    379#define RCANFD_GTSTCFG			(0x0468)
    380/* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
    381#define RCANFD_GTSTCTR			(0x046c)
    382/* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
    383#define RCANFD_GLOCKK			(0x047c)
    384/* RSCFDnCFDGRMCFG */
    385#define RCANFD_GRMCFG			(0x04fc)
    386
    387/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
    388#define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
    389/* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
    390#define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
    391/* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
    392#define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
    393/* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
    394#define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
    395
    396/* Classical CAN only mode register map */
    397
    398/* RSCFDnGAFLXXXj offset */
    399#define RCANFD_C_GAFL_OFFSET		(0x0500)
    400
    401/* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
    402#define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
    403#define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
    404#define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
    405#define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
    406
    407/* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
    408#define RCANFD_C_RFOFFSET	(0x0e00)
    409#define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
    410#define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
    411#define RCANFD_C_RFDF(x, df) \
    412		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
    413
    414/* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
    415#define RCANFD_C_CFOFFSET		(0x0e80)
    416
    417#define RCANFD_C_CFID(ch, idx) \
    418	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
    419
    420#define RCANFD_C_CFPTR(ch, idx)	\
    421	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
    422
    423#define RCANFD_C_CFDF(ch, idx, df) \
    424	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
    425
    426/* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
    427#define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
    428#define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
    429#define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
    430#define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
    431
    432/* RSCFDnTHLACCm */
    433#define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
    434/* RSCFDnRPGACCr */
    435#define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
    436
    437/* R-Car V3U Classical and CAN FD mode specific register map */
    438#define RCANFD_V3U_CFDCFG		(0x1314)
    439#define RCANFD_V3U_DCFG(m)		(0x1400 + (0x20 * (m)))
    440
    441#define RCANFD_V3U_GAFL_OFFSET		(0x1800)
    442
    443/* CAN FD mode specific register map */
    444
    445/* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
    446#define RCANFD_F_DCFG(m)		(0x0500 + (0x20 * (m)))
    447#define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
    448#define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
    449#define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
    450#define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
    451
    452/* RSCFDnCFDGAFLXXXj offset */
    453#define RCANFD_F_GAFL_OFFSET		(0x1000)
    454
    455/* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
    456#define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
    457#define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
    458#define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
    459#define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
    460
    461/* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
    462#define RCANFD_F_RFOFFSET(gpriv)	reg_v3u(gpriv, 0x6000, 0x3000)
    463#define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
    464#define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
    465#define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
    466#define RCANFD_F_RFDF(gpriv, x, df) \
    467	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
    468
    469/* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
    470#define RCANFD_F_CFOFFSET(gpriv)	reg_v3u(gpriv, 0x6400, 0x3400)
    471
    472#define RCANFD_F_CFID(gpriv, ch, idx) \
    473	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
    474
    475#define RCANFD_F_CFPTR(gpriv, ch, idx) \
    476	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
    477
    478#define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
    479	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
    480
    481#define RCANFD_F_CFDF(gpriv, ch, idx, df) \
    482	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
    483	 (0x04 * (df)))
    484
    485/* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
    486#define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
    487#define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
    488#define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
    489#define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
    490
    491/* RSCFDnCFDTHLACCm */
    492#define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
    493/* RSCFDnCFDRPGACCr */
    494#define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
    495
    496/* Constants */
    497#define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
    498#define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
    499
    500#define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
    501#define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
    502
    503#define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
    504#define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
    505
    506/* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
    507 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
    508 * number is added to RFFIFO index.
    509 */
    510#define RCANFD_RFFIFO_IDX		0
    511
    512/* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
    513 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
    514 */
    515#define RCANFD_CFFIFO_IDX		0
    516
    517/* fCAN clock select register settings */
    518enum rcar_canfd_fcanclk {
    519	RCANFD_CANFDCLK = 0,		/* CANFD clock */
    520	RCANFD_EXTCLK,			/* Externally input clock */
    521};
    522
    523struct rcar_canfd_global;
    524
    525/* Channel priv data */
    526struct rcar_canfd_channel {
    527	struct can_priv can;			/* Must be the first member */
    528	struct net_device *ndev;
    529	struct rcar_canfd_global *gpriv;	/* Controller reference */
    530	void __iomem *base;			/* Register base address */
    531	struct napi_struct napi;
    532	u32 tx_head;				/* Incremented on xmit */
    533	u32 tx_tail;				/* Incremented on xmit done */
    534	u32 channel;				/* Channel number */
    535	spinlock_t tx_lock;			/* To protect tx path */
    536};
    537
    538/* Global priv data */
    539struct rcar_canfd_global {
    540	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
    541	void __iomem *base;		/* Register base address */
    542	struct platform_device *pdev;	/* Respective platform device */
    543	struct clk *clkp;		/* Peripheral clock */
    544	struct clk *can_clk;		/* fCAN clock */
    545	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
    546	unsigned long channels_mask;	/* Enabled channels mask */
    547	bool fdmode;			/* CAN FD or Classical CAN only mode */
    548	struct reset_control *rstc1;
    549	struct reset_control *rstc2;
    550	enum rcanfd_chip_id chip_id;
    551	u32 max_channels;
    552};
    553
    554/* CAN FD mode nominal rate constants */
    555static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
    556	.name = RCANFD_DRV_NAME,
    557	.tseg1_min = 2,
    558	.tseg1_max = 128,
    559	.tseg2_min = 2,
    560	.tseg2_max = 32,
    561	.sjw_max = 32,
    562	.brp_min = 1,
    563	.brp_max = 1024,
    564	.brp_inc = 1,
    565};
    566
    567/* CAN FD mode data rate constants */
    568static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
    569	.name = RCANFD_DRV_NAME,
    570	.tseg1_min = 2,
    571	.tseg1_max = 16,
    572	.tseg2_min = 2,
    573	.tseg2_max = 8,
    574	.sjw_max = 8,
    575	.brp_min = 1,
    576	.brp_max = 256,
    577	.brp_inc = 1,
    578};
    579
    580/* Classical CAN mode bitrate constants */
    581static const struct can_bittiming_const rcar_canfd_bittiming_const = {
    582	.name = RCANFD_DRV_NAME,
    583	.tseg1_min = 4,
    584	.tseg1_max = 16,
    585	.tseg2_min = 2,
    586	.tseg2_max = 8,
    587	.sjw_max = 4,
    588	.brp_min = 1,
    589	.brp_max = 1024,
    590	.brp_inc = 1,
    591};
    592
    593/* Helper functions */
    594static inline bool is_v3u(struct rcar_canfd_global *gpriv)
    595{
    596	return gpriv->chip_id == RENESAS_R8A779A0;
    597}
    598
    599static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
    600			  u32 v3u, u32 not_v3u)
    601{
    602	return is_v3u(gpriv) ? v3u : not_v3u;
    603}
    604
    605static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
    606{
    607	u32 data = readl(reg);
    608
    609	data &= ~mask;
    610	data |= (val & mask);
    611	writel(data, reg);
    612}
    613
    614static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
    615{
    616	return readl(base + (offset));
    617}
    618
    619static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
    620{
    621	writel(val, base + (offset));
    622}
    623
    624static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
    625{
    626	rcar_canfd_update(val, val, base + (reg));
    627}
    628
    629static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
    630{
    631	rcar_canfd_update(val, 0, base + (reg));
    632}
    633
    634static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
    635				  u32 mask, u32 val)
    636{
    637	rcar_canfd_update(mask, val, base + (reg));
    638}
    639
    640static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
    641				struct canfd_frame *cf, u32 off)
    642{
    643	u32 i, lwords;
    644
    645	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
    646	for (i = 0; i < lwords; i++)
    647		*((u32 *)cf->data + i) =
    648			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
    649}
    650
    651static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
    652				struct canfd_frame *cf, u32 off)
    653{
    654	u32 i, lwords;
    655
    656	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
    657	for (i = 0; i < lwords; i++)
    658		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
    659				 *((u32 *)cf->data + i));
    660}
    661
    662static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
    663{
    664	u32 i;
    665
    666	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
    667		can_free_echo_skb(ndev, i, NULL);
    668}
    669
    670static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
    671{
    672	if (is_v3u(gpriv)) {
    673		if (gpriv->fdmode)
    674			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
    675					   RCANFD_FDCFG_FDOE);
    676		else
    677			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
    678					   RCANFD_FDCFG_CLOE);
    679	} else {
    680		if (gpriv->fdmode)
    681			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
    682					   RCANFD_GRMCFG_RCMC);
    683		else
    684			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
    685					     RCANFD_GRMCFG_RCMC);
    686	}
    687}
    688
    689static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
    690{
    691	u32 sts, ch;
    692	int err;
    693
    694	/* Check RAMINIT flag as CAN RAM initialization takes place
    695	 * after the MCU reset
    696	 */
    697	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
    698				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
    699	if (err) {
    700		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
    701		return err;
    702	}
    703
    704	/* Transition to Global Reset mode */
    705	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
    706	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
    707			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
    708
    709	/* Ensure Global reset mode */
    710	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
    711				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
    712	if (err) {
    713		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
    714		return err;
    715	}
    716
    717	/* Reset Global error flags */
    718	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
    719
    720	/* Set the controller into appropriate mode */
    721	rcar_canfd_set_mode(gpriv);
    722
    723	/* Transition all Channels to reset mode */
    724	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
    725		rcar_canfd_clear_bit(gpriv->base,
    726				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
    727
    728		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
    729				      RCANFD_CCTR_CHMDC_MASK,
    730				      RCANFD_CCTR_CHDMC_CRESET);
    731
    732		/* Ensure Channel reset mode */
    733		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
    734					 (sts & RCANFD_CSTS_CRSTSTS),
    735					 2, 500000);
    736		if (err) {
    737			dev_dbg(&gpriv->pdev->dev,
    738				"channel %u reset failed\n", ch);
    739			return err;
    740		}
    741	}
    742	return 0;
    743}
    744
    745static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
    746{
    747	u32 cfg, ch;
    748
    749	/* Global configuration settings */
    750
    751	/* ECC Error flag Enable */
    752	cfg = RCANFD_GCFG_EEFE;
    753
    754	if (gpriv->fdmode)
    755		/* Truncate payload to configured message size RFPLS */
    756		cfg |= RCANFD_GCFG_CMPOC;
    757
    758	/* Set External Clock if selected */
    759	if (gpriv->fcan != RCANFD_CANFDCLK)
    760		cfg |= RCANFD_GCFG_DCS;
    761
    762	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
    763
    764	/* Channel configuration settings */
    765	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
    766		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
    767				   RCANFD_CCTR_ERRD);
    768		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
    769				      RCANFD_CCTR_BOM_MASK,
    770				      RCANFD_CCTR_BOM_BENTRY);
    771	}
    772}
    773
    774static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
    775					   u32 ch)
    776{
    777	u32 cfg;
    778	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
    779	u32 ridx = ch + RCANFD_RFFIFO_IDX;
    780
    781	if (ch == 0) {
    782		start = 0; /* Channel 0 always starts from 0th rule */
    783	} else {
    784		/* Get number of Channel 0 rules and adjust */
    785		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
    786		start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
    787	}
    788
    789	/* Enable write access to entry */
    790	page = RCANFD_GAFL_PAGENUM(start);
    791	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
    792			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
    793			    RCANFD_GAFLECTR_AFLDAE));
    794
    795	/* Write number of rules for channel */
    796	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
    797			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
    798	if (is_v3u(gpriv))
    799		offset = RCANFD_V3U_GAFL_OFFSET;
    800	else if (gpriv->fdmode)
    801		offset = RCANFD_F_GAFL_OFFSET;
    802	else
    803		offset = RCANFD_C_GAFL_OFFSET;
    804
    805	/* Accept all IDs */
    806	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
    807	/* IDE or RTR is not considered for matching */
    808	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
    809	/* Any data length accepted */
    810	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
    811	/* Place the msg in corresponding Rx FIFO entry */
    812	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
    813			   RCANFD_GAFLP1_GAFLFDP(ridx));
    814
    815	/* Disable write access to page */
    816	rcar_canfd_clear_bit(gpriv->base,
    817			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
    818}
    819
    820static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
    821{
    822	/* Rx FIFO is used for reception */
    823	u32 cfg;
    824	u16 rfdc, rfpls;
    825
    826	/* Select Rx FIFO based on channel */
    827	u32 ridx = ch + RCANFD_RFFIFO_IDX;
    828
    829	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
    830	if (gpriv->fdmode)
    831		rfpls = 7;	/* b111 - Max 64 bytes payload */
    832	else
    833		rfpls = 0;	/* b000 - Max 8 bytes payload */
    834
    835	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
    836		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
    837	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
    838}
    839
    840static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
    841{
    842	/* Tx/Rx(Common) FIFO configured in Tx mode is
    843	 * used for transmission
    844	 *
    845	 * Each channel has 3 Common FIFO dedicated to them.
    846	 * Use the 1st (index 0) out of 3
    847	 */
    848	u32 cfg;
    849	u16 cftml, cfm, cfdc, cfpls;
    850
    851	cftml = 0;		/* 0th buffer */
    852	cfm = 1;		/* b01 - Transmit mode */
    853	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
    854	if (gpriv->fdmode)
    855		cfpls = 7;	/* b111 - Max 64 bytes payload */
    856	else
    857		cfpls = 0;	/* b000 - Max 8 bytes payload */
    858
    859	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
    860		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
    861		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
    862	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
    863
    864	if (gpriv->fdmode)
    865		/* Clear FD mode specific control/status register */
    866		rcar_canfd_write(gpriv->base,
    867				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
    868}
    869
    870static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
    871{
    872	u32 ctr;
    873
    874	/* Clear any stray error interrupt flags */
    875	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
    876
    877	/* Global interrupts setup */
    878	ctr = RCANFD_GCTR_MEIE;
    879	if (gpriv->fdmode)
    880		ctr |= RCANFD_GCTR_CFMPOFIE;
    881
    882	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
    883}
    884
    885static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
    886						 *gpriv)
    887{
    888	/* Disable all interrupts */
    889	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
    890
    891	/* Clear any stray error interrupt flags */
    892	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
    893}
    894
    895static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
    896						 *priv)
    897{
    898	u32 ctr, ch = priv->channel;
    899
    900	/* Clear any stray error flags */
    901	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
    902
    903	/* Channel interrupts setup */
    904	ctr = (RCANFD_CCTR_TAIE |
    905	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
    906	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
    907	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
    908	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
    909	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
    910}
    911
    912static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
    913						  *priv)
    914{
    915	u32 ctr, ch = priv->channel;
    916
    917	ctr = (RCANFD_CCTR_TAIE |
    918	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
    919	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
    920	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
    921	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
    922	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
    923
    924	/* Clear any stray error flags */
    925	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
    926}
    927
    928static void rcar_canfd_global_error(struct net_device *ndev)
    929{
    930	struct rcar_canfd_channel *priv = netdev_priv(ndev);
    931	struct rcar_canfd_global *gpriv = priv->gpriv;
    932	struct net_device_stats *stats = &ndev->stats;
    933	u32 ch = priv->channel;
    934	u32 gerfl, sts;
    935	u32 ridx = ch + RCANFD_RFFIFO_IDX;
    936
    937	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
    938	if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
    939		netdev_dbg(ndev, "Ch0: ECC Error flag\n");
    940		stats->tx_dropped++;
    941	}
    942	if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
    943		netdev_dbg(ndev, "Ch1: ECC Error flag\n");
    944		stats->tx_dropped++;
    945	}
    946	if (gerfl & RCANFD_GERFL_MES) {
    947		sts = rcar_canfd_read(priv->base,
    948				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
    949		if (sts & RCANFD_CFSTS_CFMLT) {
    950			netdev_dbg(ndev, "Tx Message Lost flag\n");
    951			stats->tx_dropped++;
    952			rcar_canfd_write(priv->base,
    953					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
    954					 sts & ~RCANFD_CFSTS_CFMLT);
    955		}
    956
    957		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
    958		if (sts & RCANFD_RFSTS_RFMLT) {
    959			netdev_dbg(ndev, "Rx Message Lost flag\n");
    960			stats->rx_dropped++;
    961			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
    962					 sts & ~RCANFD_RFSTS_RFMLT);
    963		}
    964	}
    965	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
    966		/* Message Lost flag will be set for respective channel
    967		 * when this condition happens with counters and flags
    968		 * already updated.
    969		 */
    970		netdev_dbg(ndev, "global payload overflow interrupt\n");
    971	}
    972
    973	/* Clear all global error interrupts. Only affected channels bits
    974	 * get cleared
    975	 */
    976	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
    977}
    978
    979static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
    980			     u16 txerr, u16 rxerr)
    981{
    982	struct rcar_canfd_channel *priv = netdev_priv(ndev);
    983	struct net_device_stats *stats = &ndev->stats;
    984	struct can_frame *cf;
    985	struct sk_buff *skb;
    986	u32 ch = priv->channel;
    987
    988	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
    989
    990	/* Propagate the error condition to the CAN stack */
    991	skb = alloc_can_err_skb(ndev, &cf);
    992	if (!skb) {
    993		stats->rx_dropped++;
    994		return;
    995	}
    996
    997	/* Channel error interrupts */
    998	if (cerfl & RCANFD_CERFL_BEF) {
    999		netdev_dbg(ndev, "Bus error\n");
   1000		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
   1001		cf->data[2] = CAN_ERR_PROT_UNSPEC;
   1002		priv->can.can_stats.bus_error++;
   1003	}
   1004	if (cerfl & RCANFD_CERFL_ADERR) {
   1005		netdev_dbg(ndev, "ACK Delimiter Error\n");
   1006		stats->tx_errors++;
   1007		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
   1008	}
   1009	if (cerfl & RCANFD_CERFL_B0ERR) {
   1010		netdev_dbg(ndev, "Bit Error (dominant)\n");
   1011		stats->tx_errors++;
   1012		cf->data[2] |= CAN_ERR_PROT_BIT0;
   1013	}
   1014	if (cerfl & RCANFD_CERFL_B1ERR) {
   1015		netdev_dbg(ndev, "Bit Error (recessive)\n");
   1016		stats->tx_errors++;
   1017		cf->data[2] |= CAN_ERR_PROT_BIT1;
   1018	}
   1019	if (cerfl & RCANFD_CERFL_CERR) {
   1020		netdev_dbg(ndev, "CRC Error\n");
   1021		stats->rx_errors++;
   1022		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
   1023	}
   1024	if (cerfl & RCANFD_CERFL_AERR) {
   1025		netdev_dbg(ndev, "ACK Error\n");
   1026		stats->tx_errors++;
   1027		cf->can_id |= CAN_ERR_ACK;
   1028		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
   1029	}
   1030	if (cerfl & RCANFD_CERFL_FERR) {
   1031		netdev_dbg(ndev, "Form Error\n");
   1032		stats->rx_errors++;
   1033		cf->data[2] |= CAN_ERR_PROT_FORM;
   1034	}
   1035	if (cerfl & RCANFD_CERFL_SERR) {
   1036		netdev_dbg(ndev, "Stuff Error\n");
   1037		stats->rx_errors++;
   1038		cf->data[2] |= CAN_ERR_PROT_STUFF;
   1039	}
   1040	if (cerfl & RCANFD_CERFL_ALF) {
   1041		netdev_dbg(ndev, "Arbitration lost Error\n");
   1042		priv->can.can_stats.arbitration_lost++;
   1043		cf->can_id |= CAN_ERR_LOSTARB;
   1044		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
   1045	}
   1046	if (cerfl & RCANFD_CERFL_BLF) {
   1047		netdev_dbg(ndev, "Bus Lock Error\n");
   1048		stats->rx_errors++;
   1049		cf->can_id |= CAN_ERR_BUSERROR;
   1050	}
   1051	if (cerfl & RCANFD_CERFL_EWF) {
   1052		netdev_dbg(ndev, "Error warning interrupt\n");
   1053		priv->can.state = CAN_STATE_ERROR_WARNING;
   1054		priv->can.can_stats.error_warning++;
   1055		cf->can_id |= CAN_ERR_CRTL;
   1056		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
   1057			CAN_ERR_CRTL_RX_WARNING;
   1058		cf->data[6] = txerr;
   1059		cf->data[7] = rxerr;
   1060	}
   1061	if (cerfl & RCANFD_CERFL_EPF) {
   1062		netdev_dbg(ndev, "Error passive interrupt\n");
   1063		priv->can.state = CAN_STATE_ERROR_PASSIVE;
   1064		priv->can.can_stats.error_passive++;
   1065		cf->can_id |= CAN_ERR_CRTL;
   1066		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
   1067			CAN_ERR_CRTL_RX_PASSIVE;
   1068		cf->data[6] = txerr;
   1069		cf->data[7] = rxerr;
   1070	}
   1071	if (cerfl & RCANFD_CERFL_BOEF) {
   1072		netdev_dbg(ndev, "Bus-off entry interrupt\n");
   1073		rcar_canfd_tx_failure_cleanup(ndev);
   1074		priv->can.state = CAN_STATE_BUS_OFF;
   1075		priv->can.can_stats.bus_off++;
   1076		can_bus_off(ndev);
   1077		cf->can_id |= CAN_ERR_BUSOFF;
   1078	}
   1079	if (cerfl & RCANFD_CERFL_OVLF) {
   1080		netdev_dbg(ndev,
   1081			   "Overload Frame Transmission error interrupt\n");
   1082		stats->tx_errors++;
   1083		cf->can_id |= CAN_ERR_PROT;
   1084		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
   1085	}
   1086
   1087	/* Clear channel error interrupts that are handled */
   1088	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
   1089			 RCANFD_CERFL_ERR(~cerfl));
   1090	netif_rx(skb);
   1091}
   1092
   1093static void rcar_canfd_tx_done(struct net_device *ndev)
   1094{
   1095	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1096	struct rcar_canfd_global *gpriv = priv->gpriv;
   1097	struct net_device_stats *stats = &ndev->stats;
   1098	u32 sts;
   1099	unsigned long flags;
   1100	u32 ch = priv->channel;
   1101
   1102	do {
   1103		u8 unsent, sent;
   1104
   1105		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
   1106		stats->tx_packets++;
   1107		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
   1108
   1109		spin_lock_irqsave(&priv->tx_lock, flags);
   1110		priv->tx_tail++;
   1111		sts = rcar_canfd_read(priv->base,
   1112				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
   1113		unsent = RCANFD_CFSTS_CFMC(sts);
   1114
   1115		/* Wake producer only when there is room */
   1116		if (unsent != RCANFD_FIFO_DEPTH)
   1117			netif_wake_queue(ndev);
   1118
   1119		if (priv->tx_head - priv->tx_tail <= unsent) {
   1120			spin_unlock_irqrestore(&priv->tx_lock, flags);
   1121			break;
   1122		}
   1123		spin_unlock_irqrestore(&priv->tx_lock, flags);
   1124
   1125	} while (1);
   1126
   1127	/* Clear interrupt */
   1128	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
   1129			 sts & ~RCANFD_CFSTS_CFTXIF);
   1130}
   1131
   1132static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
   1133{
   1134	struct rcar_canfd_channel *priv = gpriv->ch[ch];
   1135	struct net_device *ndev = priv->ndev;
   1136	u32 gerfl;
   1137
   1138	/* Handle global error interrupts */
   1139	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
   1140	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
   1141		rcar_canfd_global_error(ndev);
   1142}
   1143
   1144static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
   1145{
   1146	struct rcar_canfd_global *gpriv = dev_id;
   1147	u32 ch;
   1148
   1149	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
   1150		rcar_canfd_handle_global_err(gpriv, ch);
   1151
   1152	return IRQ_HANDLED;
   1153}
   1154
   1155static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
   1156{
   1157	struct rcar_canfd_channel *priv = gpriv->ch[ch];
   1158	u32 ridx = ch + RCANFD_RFFIFO_IDX;
   1159	u32 sts;
   1160
   1161	/* Handle Rx interrupts */
   1162	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
   1163	if (likely(sts & RCANFD_RFSTS_RFIF)) {
   1164		if (napi_schedule_prep(&priv->napi)) {
   1165			/* Disable Rx FIFO interrupts */
   1166			rcar_canfd_clear_bit(priv->base,
   1167					     RCANFD_RFCC(gpriv, ridx),
   1168					     RCANFD_RFCC_RFIE);
   1169			__napi_schedule(&priv->napi);
   1170		}
   1171	}
   1172}
   1173
   1174static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
   1175{
   1176	struct rcar_canfd_global *gpriv = dev_id;
   1177	u32 ch;
   1178
   1179	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
   1180		rcar_canfd_handle_global_receive(gpriv, ch);
   1181
   1182	return IRQ_HANDLED;
   1183}
   1184
   1185static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
   1186{
   1187	struct rcar_canfd_global *gpriv = dev_id;
   1188	u32 ch;
   1189
   1190	/* Global error interrupts still indicate a condition specific
   1191	 * to a channel. RxFIFO interrupt is a global interrupt.
   1192	 */
   1193	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
   1194		rcar_canfd_handle_global_err(gpriv, ch);
   1195		rcar_canfd_handle_global_receive(gpriv, ch);
   1196	}
   1197	return IRQ_HANDLED;
   1198}
   1199
   1200static void rcar_canfd_state_change(struct net_device *ndev,
   1201				    u16 txerr, u16 rxerr)
   1202{
   1203	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1204	struct net_device_stats *stats = &ndev->stats;
   1205	enum can_state rx_state, tx_state, state = priv->can.state;
   1206	struct can_frame *cf;
   1207	struct sk_buff *skb;
   1208
   1209	/* Handle transition from error to normal states */
   1210	if (txerr < 96 && rxerr < 96)
   1211		state = CAN_STATE_ERROR_ACTIVE;
   1212	else if (txerr < 128 && rxerr < 128)
   1213		state = CAN_STATE_ERROR_WARNING;
   1214
   1215	if (state != priv->can.state) {
   1216		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
   1217			   state, priv->can.state, txerr, rxerr);
   1218		skb = alloc_can_err_skb(ndev, &cf);
   1219		if (!skb) {
   1220			stats->rx_dropped++;
   1221			return;
   1222		}
   1223		tx_state = txerr >= rxerr ? state : 0;
   1224		rx_state = txerr <= rxerr ? state : 0;
   1225
   1226		can_change_state(ndev, cf, tx_state, rx_state);
   1227		netif_rx(skb);
   1228	}
   1229}
   1230
   1231static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
   1232{
   1233	struct rcar_canfd_channel *priv = gpriv->ch[ch];
   1234	struct net_device *ndev = priv->ndev;
   1235	u32 sts;
   1236
   1237	/* Handle Tx interrupts */
   1238	sts = rcar_canfd_read(priv->base,
   1239			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
   1240	if (likely(sts & RCANFD_CFSTS_CFTXIF))
   1241		rcar_canfd_tx_done(ndev);
   1242}
   1243
   1244static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
   1245{
   1246	struct rcar_canfd_global *gpriv = dev_id;
   1247	u32 ch;
   1248
   1249	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
   1250		rcar_canfd_handle_channel_tx(gpriv, ch);
   1251
   1252	return IRQ_HANDLED;
   1253}
   1254
   1255static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
   1256{
   1257	struct rcar_canfd_channel *priv = gpriv->ch[ch];
   1258	struct net_device *ndev = priv->ndev;
   1259	u16 txerr, rxerr;
   1260	u32 sts, cerfl;
   1261
   1262	/* Handle channel error interrupts */
   1263	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
   1264	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
   1265	txerr = RCANFD_CSTS_TECCNT(sts);
   1266	rxerr = RCANFD_CSTS_RECCNT(sts);
   1267	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
   1268		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
   1269
   1270	/* Handle state change to lower states */
   1271	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
   1272		     priv->can.state != CAN_STATE_BUS_OFF))
   1273		rcar_canfd_state_change(ndev, txerr, rxerr);
   1274}
   1275
   1276static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
   1277{
   1278	struct rcar_canfd_global *gpriv = dev_id;
   1279	u32 ch;
   1280
   1281	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
   1282		rcar_canfd_handle_channel_err(gpriv, ch);
   1283
   1284	return IRQ_HANDLED;
   1285}
   1286
   1287static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
   1288{
   1289	struct rcar_canfd_global *gpriv = dev_id;
   1290	u32 ch;
   1291
   1292	/* Common FIFO is a per channel resource */
   1293	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
   1294		rcar_canfd_handle_channel_err(gpriv, ch);
   1295		rcar_canfd_handle_channel_tx(gpriv, ch);
   1296	}
   1297
   1298	return IRQ_HANDLED;
   1299}
   1300
   1301static void rcar_canfd_set_bittiming(struct net_device *dev)
   1302{
   1303	struct rcar_canfd_channel *priv = netdev_priv(dev);
   1304	struct rcar_canfd_global *gpriv = priv->gpriv;
   1305	const struct can_bittiming *bt = &priv->can.bittiming;
   1306	const struct can_bittiming *dbt = &priv->can.data_bittiming;
   1307	u16 brp, sjw, tseg1, tseg2;
   1308	u32 cfg;
   1309	u32 ch = priv->channel;
   1310
   1311	/* Nominal bit timing settings */
   1312	brp = bt->brp - 1;
   1313	sjw = bt->sjw - 1;
   1314	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
   1315	tseg2 = bt->phase_seg2 - 1;
   1316
   1317	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
   1318		/* CAN FD only mode */
   1319		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
   1320		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
   1321
   1322		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
   1323		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
   1324			   brp, sjw, tseg1, tseg2);
   1325
   1326		/* Data bit timing settings */
   1327		brp = dbt->brp - 1;
   1328		sjw = dbt->sjw - 1;
   1329		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
   1330		tseg2 = dbt->phase_seg2 - 1;
   1331
   1332		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
   1333		       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
   1334
   1335		if (is_v3u(gpriv))
   1336			rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
   1337		else
   1338			rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
   1339		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
   1340			   brp, sjw, tseg1, tseg2);
   1341	} else {
   1342		/* Classical CAN only mode */
   1343		if (is_v3u(gpriv)) {
   1344			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
   1345			       RCANFD_NCFG_NBRP(brp) |
   1346			       RCANFD_NCFG_NSJW(gpriv, sjw) |
   1347			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
   1348		} else {
   1349			cfg = (RCANFD_CFG_TSEG1(tseg1) |
   1350			       RCANFD_CFG_BRP(brp) |
   1351			       RCANFD_CFG_SJW(sjw) |
   1352			       RCANFD_CFG_TSEG2(tseg2));
   1353		}
   1354
   1355		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
   1356		netdev_dbg(priv->ndev,
   1357			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
   1358			   brp, sjw, tseg1, tseg2);
   1359	}
   1360}
   1361
   1362static int rcar_canfd_start(struct net_device *ndev)
   1363{
   1364	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1365	struct rcar_canfd_global *gpriv = priv->gpriv;
   1366	int err = -EOPNOTSUPP;
   1367	u32 sts, ch = priv->channel;
   1368	u32 ridx = ch + RCANFD_RFFIFO_IDX;
   1369
   1370	rcar_canfd_set_bittiming(ndev);
   1371
   1372	rcar_canfd_enable_channel_interrupts(priv);
   1373
   1374	/* Set channel to Operational mode */
   1375	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
   1376			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
   1377
   1378	/* Verify channel mode change */
   1379	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
   1380				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
   1381	if (err) {
   1382		netdev_err(ndev, "channel %u communication state failed\n", ch);
   1383		goto fail_mode_change;
   1384	}
   1385
   1386	/* Enable Common & Rx FIFO */
   1387	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
   1388			   RCANFD_CFCC_CFE);
   1389	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
   1390
   1391	priv->can.state = CAN_STATE_ERROR_ACTIVE;
   1392	return 0;
   1393
   1394fail_mode_change:
   1395	rcar_canfd_disable_channel_interrupts(priv);
   1396	return err;
   1397}
   1398
   1399static int rcar_canfd_open(struct net_device *ndev)
   1400{
   1401	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1402	struct rcar_canfd_global *gpriv = priv->gpriv;
   1403	int err;
   1404
   1405	/* Peripheral clock is already enabled in probe */
   1406	err = clk_prepare_enable(gpriv->can_clk);
   1407	if (err) {
   1408		netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
   1409		goto out_clock;
   1410	}
   1411
   1412	err = open_candev(ndev);
   1413	if (err) {
   1414		netdev_err(ndev, "open_candev() failed, error %d\n", err);
   1415		goto out_can_clock;
   1416	}
   1417
   1418	napi_enable(&priv->napi);
   1419	err = rcar_canfd_start(ndev);
   1420	if (err)
   1421		goto out_close;
   1422	netif_start_queue(ndev);
   1423	return 0;
   1424out_close:
   1425	napi_disable(&priv->napi);
   1426	close_candev(ndev);
   1427out_can_clock:
   1428	clk_disable_unprepare(gpriv->can_clk);
   1429out_clock:
   1430	return err;
   1431}
   1432
   1433static void rcar_canfd_stop(struct net_device *ndev)
   1434{
   1435	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1436	struct rcar_canfd_global *gpriv = priv->gpriv;
   1437	int err;
   1438	u32 sts, ch = priv->channel;
   1439	u32 ridx = ch + RCANFD_RFFIFO_IDX;
   1440
   1441	/* Transition to channel reset mode  */
   1442	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
   1443			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
   1444
   1445	/* Check Channel reset mode */
   1446	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
   1447				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
   1448	if (err)
   1449		netdev_err(ndev, "channel %u reset failed\n", ch);
   1450
   1451	rcar_canfd_disable_channel_interrupts(priv);
   1452
   1453	/* Disable Common & Rx FIFO */
   1454	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
   1455			     RCANFD_CFCC_CFE);
   1456	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
   1457
   1458	/* Set the state as STOPPED */
   1459	priv->can.state = CAN_STATE_STOPPED;
   1460}
   1461
   1462static int rcar_canfd_close(struct net_device *ndev)
   1463{
   1464	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1465	struct rcar_canfd_global *gpriv = priv->gpriv;
   1466
   1467	netif_stop_queue(ndev);
   1468	rcar_canfd_stop(ndev);
   1469	napi_disable(&priv->napi);
   1470	clk_disable_unprepare(gpriv->can_clk);
   1471	close_candev(ndev);
   1472	return 0;
   1473}
   1474
   1475static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
   1476					 struct net_device *ndev)
   1477{
   1478	struct rcar_canfd_channel *priv = netdev_priv(ndev);
   1479	struct rcar_canfd_global *gpriv = priv->gpriv;
   1480	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
   1481	u32 sts = 0, id, dlc;
   1482	unsigned long flags;
   1483	u32 ch = priv->channel;
   1484
   1485	if (can_dropped_invalid_skb(ndev, skb))
   1486		return NETDEV_TX_OK;
   1487
   1488	if (cf->can_id & CAN_EFF_FLAG) {
   1489		id = cf->can_id & CAN_EFF_MASK;
   1490		id |= RCANFD_CFID_CFIDE;
   1491	} else {
   1492		id = cf->can_id & CAN_SFF_MASK;
   1493	}
   1494
   1495	if (cf->can_id & CAN_RTR_FLAG)
   1496		id |= RCANFD_CFID_CFRTR;
   1497
   1498	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
   1499
   1500	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
   1501		rcar_canfd_write(priv->base,
   1502				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
   1503		rcar_canfd_write(priv->base,
   1504				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
   1505
   1506		if (can_is_canfd_skb(skb)) {
   1507			/* CAN FD frame format */
   1508			sts |= RCANFD_CFFDCSTS_CFFDF;
   1509			if (cf->flags & CANFD_BRS)
   1510				sts |= RCANFD_CFFDCSTS_CFBRS;
   1511
   1512			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
   1513				sts |= RCANFD_CFFDCSTS_CFESI;
   1514		}
   1515
   1516		rcar_canfd_write(priv->base,
   1517				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
   1518
   1519		rcar_canfd_put_data(priv, cf,
   1520				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
   1521	} else {
   1522		rcar_canfd_write(priv->base,
   1523				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
   1524		rcar_canfd_write(priv->base,
   1525				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
   1526		rcar_canfd_put_data(priv, cf,
   1527				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
   1528	}
   1529
   1530	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
   1531
   1532	spin_lock_irqsave(&priv->tx_lock, flags);
   1533	priv->tx_head++;
   1534
   1535	/* Stop the queue if we've filled all FIFO entries */
   1536	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
   1537		netif_stop_queue(ndev);
   1538
   1539	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
   1540	 * pointer for the Common FIFO
   1541	 */
   1542	rcar_canfd_write(priv->base,
   1543			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
   1544
   1545	spin_unlock_irqrestore(&priv->tx_lock, flags);
   1546	return NETDEV_TX_OK;
   1547}
   1548
   1549static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
   1550{
   1551	struct net_device_stats *stats = &priv->ndev->stats;
   1552	struct rcar_canfd_global *gpriv = priv->gpriv;
   1553	struct canfd_frame *cf;
   1554	struct sk_buff *skb;
   1555	u32 sts = 0, id, dlc;
   1556	u32 ch = priv->channel;
   1557	u32 ridx = ch + RCANFD_RFFIFO_IDX;
   1558
   1559	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
   1560		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
   1561		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
   1562
   1563		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
   1564
   1565		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
   1566		    sts & RCANFD_RFFDSTS_RFFDF)
   1567			skb = alloc_canfd_skb(priv->ndev, &cf);
   1568		else
   1569			skb = alloc_can_skb(priv->ndev,
   1570					    (struct can_frame **)&cf);
   1571	} else {
   1572		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
   1573		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
   1574		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
   1575	}
   1576
   1577	if (!skb) {
   1578		stats->rx_dropped++;
   1579		return;
   1580	}
   1581
   1582	if (id & RCANFD_RFID_RFIDE)
   1583		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
   1584	else
   1585		cf->can_id = id & CAN_SFF_MASK;
   1586
   1587	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
   1588		if (sts & RCANFD_RFFDSTS_RFFDF)
   1589			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
   1590		else
   1591			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
   1592
   1593		if (sts & RCANFD_RFFDSTS_RFESI) {
   1594			cf->flags |= CANFD_ESI;
   1595			netdev_dbg(priv->ndev, "ESI Error\n");
   1596		}
   1597
   1598		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
   1599			cf->can_id |= CAN_RTR_FLAG;
   1600		} else {
   1601			if (sts & RCANFD_RFFDSTS_RFBRS)
   1602				cf->flags |= CANFD_BRS;
   1603
   1604			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
   1605		}
   1606	} else {
   1607		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
   1608		if (id & RCANFD_RFID_RFRTR)
   1609			cf->can_id |= CAN_RTR_FLAG;
   1610		else if (is_v3u(gpriv))
   1611			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
   1612		else
   1613			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
   1614	}
   1615
   1616	/* Write 0xff to RFPC to increment the CPU-side
   1617	 * pointer of the Rx FIFO
   1618	 */
   1619	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
   1620
   1621	if (!(cf->can_id & CAN_RTR_FLAG))
   1622		stats->rx_bytes += cf->len;
   1623	stats->rx_packets++;
   1624	netif_receive_skb(skb);
   1625}
   1626
   1627static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
   1628{
   1629	struct rcar_canfd_channel *priv =
   1630		container_of(napi, struct rcar_canfd_channel, napi);
   1631	struct rcar_canfd_global *gpriv = priv->gpriv;
   1632	int num_pkts;
   1633	u32 sts;
   1634	u32 ch = priv->channel;
   1635	u32 ridx = ch + RCANFD_RFFIFO_IDX;
   1636
   1637	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
   1638		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
   1639		/* Check FIFO empty condition */
   1640		if (sts & RCANFD_RFSTS_RFEMP)
   1641			break;
   1642
   1643		rcar_canfd_rx_pkt(priv);
   1644
   1645		/* Clear interrupt bit */
   1646		if (sts & RCANFD_RFSTS_RFIF)
   1647			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
   1648					 sts & ~RCANFD_RFSTS_RFIF);
   1649	}
   1650
   1651	/* All packets processed */
   1652	if (num_pkts < quota) {
   1653		if (napi_complete_done(napi, num_pkts)) {
   1654			/* Enable Rx FIFO interrupts */
   1655			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
   1656					   RCANFD_RFCC_RFIE);
   1657		}
   1658	}
   1659	return num_pkts;
   1660}
   1661
   1662static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
   1663{
   1664	int err;
   1665
   1666	switch (mode) {
   1667	case CAN_MODE_START:
   1668		err = rcar_canfd_start(ndev);
   1669		if (err)
   1670			return err;
   1671		netif_wake_queue(ndev);
   1672		return 0;
   1673	default:
   1674		return -EOPNOTSUPP;
   1675	}
   1676}
   1677
   1678static int rcar_canfd_get_berr_counter(const struct net_device *dev,
   1679				       struct can_berr_counter *bec)
   1680{
   1681	struct rcar_canfd_channel *priv = netdev_priv(dev);
   1682	u32 val, ch = priv->channel;
   1683
   1684	/* Peripheral clock is already enabled in probe */
   1685	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
   1686	bec->txerr = RCANFD_CSTS_TECCNT(val);
   1687	bec->rxerr = RCANFD_CSTS_RECCNT(val);
   1688	return 0;
   1689}
   1690
   1691static const struct net_device_ops rcar_canfd_netdev_ops = {
   1692	.ndo_open = rcar_canfd_open,
   1693	.ndo_stop = rcar_canfd_close,
   1694	.ndo_start_xmit = rcar_canfd_start_xmit,
   1695	.ndo_change_mtu = can_change_mtu,
   1696};
   1697
   1698static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
   1699				    u32 fcan_freq)
   1700{
   1701	struct platform_device *pdev = gpriv->pdev;
   1702	struct rcar_canfd_channel *priv;
   1703	struct net_device *ndev;
   1704	int err = -ENODEV;
   1705
   1706	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
   1707	if (!ndev) {
   1708		dev_err(&pdev->dev, "alloc_candev() failed\n");
   1709		return -ENOMEM;
   1710	}
   1711	priv = netdev_priv(ndev);
   1712
   1713	ndev->netdev_ops = &rcar_canfd_netdev_ops;
   1714	ndev->flags |= IFF_ECHO;
   1715	priv->ndev = ndev;
   1716	priv->base = gpriv->base;
   1717	priv->channel = ch;
   1718	priv->can.clock.freq = fcan_freq;
   1719	dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
   1720
   1721	if (gpriv->chip_id == RENESAS_RZG2L) {
   1722		char *irq_name;
   1723		int err_irq;
   1724		int tx_irq;
   1725
   1726		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
   1727		if (err_irq < 0) {
   1728			err = err_irq;
   1729			goto fail;
   1730		}
   1731
   1732		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
   1733		if (tx_irq < 0) {
   1734			err = tx_irq;
   1735			goto fail;
   1736		}
   1737
   1738		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
   1739					  "canfd.ch%d_err", ch);
   1740		if (!irq_name) {
   1741			err = -ENOMEM;
   1742			goto fail;
   1743		}
   1744		err = devm_request_irq(&pdev->dev, err_irq,
   1745				       rcar_canfd_channel_err_interrupt, 0,
   1746				       irq_name, gpriv);
   1747		if (err) {
   1748			dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
   1749				err_irq, err);
   1750			goto fail;
   1751		}
   1752		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
   1753					  "canfd.ch%d_trx", ch);
   1754		if (!irq_name) {
   1755			err = -ENOMEM;
   1756			goto fail;
   1757		}
   1758		err = devm_request_irq(&pdev->dev, tx_irq,
   1759				       rcar_canfd_channel_tx_interrupt, 0,
   1760				       irq_name, gpriv);
   1761		if (err) {
   1762			dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
   1763				tx_irq, err);
   1764			goto fail;
   1765		}
   1766	}
   1767
   1768	if (gpriv->fdmode) {
   1769		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
   1770		priv->can.data_bittiming_const =
   1771			&rcar_canfd_data_bittiming_const;
   1772
   1773		/* Controller starts in CAN FD only mode */
   1774		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
   1775		if (err)
   1776			goto fail;
   1777		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
   1778	} else {
   1779		/* Controller starts in Classical CAN only mode */
   1780		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
   1781		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
   1782	}
   1783
   1784	priv->can.do_set_mode = rcar_canfd_do_set_mode;
   1785	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
   1786	priv->gpriv = gpriv;
   1787	SET_NETDEV_DEV(ndev, &pdev->dev);
   1788
   1789	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
   1790			      RCANFD_NAPI_WEIGHT);
   1791	spin_lock_init(&priv->tx_lock);
   1792	gpriv->ch[priv->channel] = priv;
   1793	err = register_candev(ndev);
   1794	if (err) {
   1795		dev_err(&pdev->dev,
   1796			"register_candev() failed, error %d\n", err);
   1797		goto fail_candev;
   1798	}
   1799	dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
   1800	return 0;
   1801
   1802fail_candev:
   1803	netif_napi_del(&priv->napi);
   1804fail:
   1805	free_candev(ndev);
   1806	return err;
   1807}
   1808
   1809static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
   1810{
   1811	struct rcar_canfd_channel *priv = gpriv->ch[ch];
   1812
   1813	if (priv) {
   1814		unregister_candev(priv->ndev);
   1815		netif_napi_del(&priv->napi);
   1816		free_candev(priv->ndev);
   1817	}
   1818}
   1819
   1820static int rcar_canfd_probe(struct platform_device *pdev)
   1821{
   1822	void __iomem *addr;
   1823	u32 sts, ch, fcan_freq;
   1824	struct rcar_canfd_global *gpriv;
   1825	struct device_node *of_child;
   1826	unsigned long channels_mask = 0;
   1827	int err, ch_irq, g_irq;
   1828	int g_err_irq, g_recc_irq;
   1829	bool fdmode = true;			/* CAN FD only mode - default */
   1830	enum rcanfd_chip_id chip_id;
   1831	int max_channels;
   1832	char name[9] = "channelX";
   1833	int i;
   1834
   1835	chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
   1836	max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
   1837
   1838	if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
   1839		fdmode = false;			/* Classical CAN only mode */
   1840
   1841	for (i = 0; i < max_channels; ++i) {
   1842		name[7] = '0' + i;
   1843		of_child = of_get_child_by_name(pdev->dev.of_node, name);
   1844		if (of_child && of_device_is_available(of_child))
   1845			channels_mask |= BIT(i);
   1846	}
   1847
   1848	if (chip_id != RENESAS_RZG2L) {
   1849		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
   1850		if (ch_irq < 0) {
   1851			/* For backward compatibility get irq by index */
   1852			ch_irq = platform_get_irq(pdev, 0);
   1853			if (ch_irq < 0)
   1854				return ch_irq;
   1855		}
   1856
   1857		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
   1858		if (g_irq < 0) {
   1859			/* For backward compatibility get irq by index */
   1860			g_irq = platform_get_irq(pdev, 1);
   1861			if (g_irq < 0)
   1862				return g_irq;
   1863		}
   1864	} else {
   1865		g_err_irq = platform_get_irq_byname(pdev, "g_err");
   1866		if (g_err_irq < 0)
   1867			return g_err_irq;
   1868
   1869		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
   1870		if (g_recc_irq < 0)
   1871			return g_recc_irq;
   1872	}
   1873
   1874	/* Global controller context */
   1875	gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
   1876	if (!gpriv) {
   1877		err = -ENOMEM;
   1878		goto fail_dev;
   1879	}
   1880	gpriv->pdev = pdev;
   1881	gpriv->channels_mask = channels_mask;
   1882	gpriv->fdmode = fdmode;
   1883	gpriv->chip_id = chip_id;
   1884	gpriv->max_channels = max_channels;
   1885
   1886	if (gpriv->chip_id == RENESAS_RZG2L) {
   1887		gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
   1888		if (IS_ERR(gpriv->rstc1))
   1889			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
   1890					     "failed to get rstp_n\n");
   1891
   1892		gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
   1893		if (IS_ERR(gpriv->rstc2))
   1894			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
   1895					     "failed to get rstc_n\n");
   1896	}
   1897
   1898	/* Peripheral clock */
   1899	gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
   1900	if (IS_ERR(gpriv->clkp)) {
   1901		err = PTR_ERR(gpriv->clkp);
   1902		dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
   1903			err);
   1904		goto fail_dev;
   1905	}
   1906
   1907	/* fCAN clock: Pick External clock. If not available fallback to
   1908	 * CANFD clock
   1909	 */
   1910	gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
   1911	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
   1912		gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
   1913		if (IS_ERR(gpriv->can_clk)) {
   1914			err = PTR_ERR(gpriv->can_clk);
   1915			dev_err(&pdev->dev,
   1916				"cannot get canfd clock, error %d\n", err);
   1917			goto fail_dev;
   1918		}
   1919		gpriv->fcan = RCANFD_CANFDCLK;
   1920
   1921	} else {
   1922		gpriv->fcan = RCANFD_EXTCLK;
   1923	}
   1924	fcan_freq = clk_get_rate(gpriv->can_clk);
   1925
   1926	if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
   1927		/* CANFD clock is further divided by (1/2) within the IP */
   1928		fcan_freq /= 2;
   1929
   1930	addr = devm_platform_ioremap_resource(pdev, 0);
   1931	if (IS_ERR(addr)) {
   1932		err = PTR_ERR(addr);
   1933		goto fail_dev;
   1934	}
   1935	gpriv->base = addr;
   1936
   1937	/* Request IRQ that's common for both channels */
   1938	if (gpriv->chip_id != RENESAS_RZG2L) {
   1939		err = devm_request_irq(&pdev->dev, ch_irq,
   1940				       rcar_canfd_channel_interrupt, 0,
   1941				       "canfd.ch_int", gpriv);
   1942		if (err) {
   1943			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
   1944				ch_irq, err);
   1945			goto fail_dev;
   1946		}
   1947
   1948		err = devm_request_irq(&pdev->dev, g_irq,
   1949				       rcar_canfd_global_interrupt, 0,
   1950				       "canfd.g_int", gpriv);
   1951		if (err) {
   1952			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
   1953				g_irq, err);
   1954			goto fail_dev;
   1955		}
   1956	} else {
   1957		err = devm_request_irq(&pdev->dev, g_recc_irq,
   1958				       rcar_canfd_global_receive_fifo_interrupt, 0,
   1959				       "canfd.g_recc", gpriv);
   1960
   1961		if (err) {
   1962			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
   1963				g_recc_irq, err);
   1964			goto fail_dev;
   1965		}
   1966
   1967		err = devm_request_irq(&pdev->dev, g_err_irq,
   1968				       rcar_canfd_global_err_interrupt, 0,
   1969				       "canfd.g_err", gpriv);
   1970		if (err) {
   1971			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
   1972				g_err_irq, err);
   1973			goto fail_dev;
   1974		}
   1975	}
   1976
   1977	err = reset_control_reset(gpriv->rstc1);
   1978	if (err)
   1979		goto fail_dev;
   1980	err = reset_control_reset(gpriv->rstc2);
   1981	if (err) {
   1982		reset_control_assert(gpriv->rstc1);
   1983		goto fail_dev;
   1984	}
   1985
   1986	/* Enable peripheral clock for register access */
   1987	err = clk_prepare_enable(gpriv->clkp);
   1988	if (err) {
   1989		dev_err(&pdev->dev,
   1990			"failed to enable peripheral clock, error %d\n", err);
   1991		goto fail_reset;
   1992	}
   1993
   1994	err = rcar_canfd_reset_controller(gpriv);
   1995	if (err) {
   1996		dev_err(&pdev->dev, "reset controller failed\n");
   1997		goto fail_clk;
   1998	}
   1999
   2000	/* Controller in Global reset & Channel reset mode */
   2001	rcar_canfd_configure_controller(gpriv);
   2002
   2003	/* Configure per channel attributes */
   2004	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
   2005		/* Configure Channel's Rx fifo */
   2006		rcar_canfd_configure_rx(gpriv, ch);
   2007
   2008		/* Configure Channel's Tx (Common) fifo */
   2009		rcar_canfd_configure_tx(gpriv, ch);
   2010
   2011		/* Configure receive rules */
   2012		rcar_canfd_configure_afl_rules(gpriv, ch);
   2013	}
   2014
   2015	/* Configure common interrupts */
   2016	rcar_canfd_enable_global_interrupts(gpriv);
   2017
   2018	/* Start Global operation mode */
   2019	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
   2020			      RCANFD_GCTR_GMDC_GOPM);
   2021
   2022	/* Verify mode change */
   2023	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
   2024				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
   2025	if (err) {
   2026		dev_err(&pdev->dev, "global operational mode failed\n");
   2027		goto fail_mode;
   2028	}
   2029
   2030	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
   2031		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
   2032		if (err)
   2033			goto fail_channel;
   2034	}
   2035
   2036	platform_set_drvdata(pdev, gpriv);
   2037	dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
   2038		 gpriv->fcan, gpriv->fdmode);
   2039	return 0;
   2040
   2041fail_channel:
   2042	for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
   2043		rcar_canfd_channel_remove(gpriv, ch);
   2044fail_mode:
   2045	rcar_canfd_disable_global_interrupts(gpriv);
   2046fail_clk:
   2047	clk_disable_unprepare(gpriv->clkp);
   2048fail_reset:
   2049	reset_control_assert(gpriv->rstc1);
   2050	reset_control_assert(gpriv->rstc2);
   2051fail_dev:
   2052	return err;
   2053}
   2054
   2055static int rcar_canfd_remove(struct platform_device *pdev)
   2056{
   2057	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
   2058	u32 ch;
   2059
   2060	rcar_canfd_reset_controller(gpriv);
   2061	rcar_canfd_disable_global_interrupts(gpriv);
   2062
   2063	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
   2064		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
   2065		rcar_canfd_channel_remove(gpriv, ch);
   2066	}
   2067
   2068	/* Enter global sleep mode */
   2069	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
   2070	clk_disable_unprepare(gpriv->clkp);
   2071	reset_control_assert(gpriv->rstc1);
   2072	reset_control_assert(gpriv->rstc2);
   2073
   2074	return 0;
   2075}
   2076
   2077static int __maybe_unused rcar_canfd_suspend(struct device *dev)
   2078{
   2079	return 0;
   2080}
   2081
   2082static int __maybe_unused rcar_canfd_resume(struct device *dev)
   2083{
   2084	return 0;
   2085}
   2086
   2087static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
   2088			 rcar_canfd_resume);
   2089
   2090static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
   2091	{ .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
   2092	{ .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
   2093	{ .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
   2094	{ }
   2095};
   2096
   2097MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
   2098
   2099static struct platform_driver rcar_canfd_driver = {
   2100	.driver = {
   2101		.name = RCANFD_DRV_NAME,
   2102		.of_match_table = of_match_ptr(rcar_canfd_of_table),
   2103		.pm = &rcar_canfd_pm_ops,
   2104	},
   2105	.probe = rcar_canfd_probe,
   2106	.remove = rcar_canfd_remove,
   2107};
   2108
   2109module_platform_driver(rcar_canfd_driver);
   2110
   2111MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
   2112MODULE_LICENSE("GPL");
   2113MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
   2114MODULE_ALIAS("platform:" RCANFD_DRV_NAME);