cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bcm_sf2_cfp.c (34098B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Broadcom Starfighter 2 DSA switch CFP support
      4 *
      5 * Copyright (C) 2016, Broadcom
      6 */
      7
      8#include <linux/list.h>
      9#include <linux/ethtool.h>
     10#include <linux/if_ether.h>
     11#include <linux/in.h>
     12#include <linux/netdevice.h>
     13#include <net/dsa.h>
     14#include <linux/bitmap.h>
     15#include <net/flow_offload.h>
     16#include <net/switchdev.h>
     17#include <uapi/linux/if_bridge.h>
     18
     19#include "bcm_sf2.h"
     20#include "bcm_sf2_regs.h"
     21
     22struct cfp_rule {
     23	int port;
     24	struct ethtool_rx_flow_spec fs;
     25	struct list_head next;
     26};
     27
     28struct cfp_udf_slice_layout {
     29	u8 slices[UDFS_PER_SLICE];
     30	u32 mask_value;
     31	u32 base_offset;
     32};
     33
     34struct cfp_udf_layout {
     35	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
     36};
     37
     38static const u8 zero_slice[UDFS_PER_SLICE] = { };
     39
     40/* UDF slices layout for a TCPv4/UDPv4 specification */
     41static const struct cfp_udf_layout udf_tcpip4_layout = {
     42	.udfs = {
     43		[1] = {
     44			.slices = {
     45				/* End of L2, byte offset 12, src IP[0:15] */
     46				CFG_UDF_EOL2 | 6,
     47				/* End of L2, byte offset 14, src IP[16:31] */
     48				CFG_UDF_EOL2 | 7,
     49				/* End of L2, byte offset 16, dst IP[0:15] */
     50				CFG_UDF_EOL2 | 8,
     51				/* End of L2, byte offset 18, dst IP[16:31] */
     52				CFG_UDF_EOL2 | 9,
     53				/* End of L3, byte offset 0, src port */
     54				CFG_UDF_EOL3 | 0,
     55				/* End of L3, byte offset 2, dst port */
     56				CFG_UDF_EOL3 | 1,
     57				0, 0, 0
     58			},
     59			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
     60			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
     61		},
     62	},
     63};
     64
     65/* UDF slices layout for a TCPv6/UDPv6 specification */
     66static const struct cfp_udf_layout udf_tcpip6_layout = {
     67	.udfs = {
     68		[0] = {
     69			.slices = {
     70				/* End of L2, byte offset 8, src IP[0:15] */
     71				CFG_UDF_EOL2 | 4,
     72				/* End of L2, byte offset 10, src IP[16:31] */
     73				CFG_UDF_EOL2 | 5,
     74				/* End of L2, byte offset 12, src IP[32:47] */
     75				CFG_UDF_EOL2 | 6,
     76				/* End of L2, byte offset 14, src IP[48:63] */
     77				CFG_UDF_EOL2 | 7,
     78				/* End of L2, byte offset 16, src IP[64:79] */
     79				CFG_UDF_EOL2 | 8,
     80				/* End of L2, byte offset 18, src IP[80:95] */
     81				CFG_UDF_EOL2 | 9,
     82				/* End of L2, byte offset 20, src IP[96:111] */
     83				CFG_UDF_EOL2 | 10,
     84				/* End of L2, byte offset 22, src IP[112:127] */
     85				CFG_UDF_EOL2 | 11,
     86				/* End of L3, byte offset 0, src port */
     87				CFG_UDF_EOL3 | 0,
     88			},
     89			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
     90			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
     91		},
     92		[3] = {
     93			.slices = {
     94				/* End of L2, byte offset 24, dst IP[0:15] */
     95				CFG_UDF_EOL2 | 12,
     96				/* End of L2, byte offset 26, dst IP[16:31] */
     97				CFG_UDF_EOL2 | 13,
     98				/* End of L2, byte offset 28, dst IP[32:47] */
     99				CFG_UDF_EOL2 | 14,
    100				/* End of L2, byte offset 30, dst IP[48:63] */
    101				CFG_UDF_EOL2 | 15,
    102				/* End of L2, byte offset 32, dst IP[64:79] */
    103				CFG_UDF_EOL2 | 16,
    104				/* End of L2, byte offset 34, dst IP[80:95] */
    105				CFG_UDF_EOL2 | 17,
    106				/* End of L2, byte offset 36, dst IP[96:111] */
    107				CFG_UDF_EOL2 | 18,
    108				/* End of L2, byte offset 38, dst IP[112:127] */
    109				CFG_UDF_EOL2 | 19,
    110				/* End of L3, byte offset 2, dst port */
    111				CFG_UDF_EOL3 | 1,
    112			},
    113			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
    114			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
    115		},
    116	},
    117};
    118
    119static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
    120{
    121	unsigned int i, count = 0;
    122
    123	for (i = 0; i < UDFS_PER_SLICE; i++) {
    124		if (layout[i] != 0)
    125			count++;
    126	}
    127
    128	return count;
    129}
    130
    131static inline u32 udf_upper_bits(int num_udf)
    132{
    133	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
    134}
    135
    136static inline u32 udf_lower_bits(int num_udf)
    137{
    138	return (u8)GENMASK(num_udf - 1, 0);
    139}
    140
    141static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
    142					     unsigned int start)
    143{
    144	const struct cfp_udf_slice_layout *slice_layout;
    145	unsigned int slice_idx;
    146
    147	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
    148		slice_layout = &l->udfs[slice_idx];
    149		if (memcmp(slice_layout->slices, zero_slice,
    150			   sizeof(zero_slice)))
    151			break;
    152	}
    153
    154	return slice_idx;
    155}
    156
    157static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
    158				const struct cfp_udf_layout *layout,
    159				unsigned int slice_num)
    160{
    161	u32 offset = layout->udfs[slice_num].base_offset;
    162	unsigned int i;
    163
    164	for (i = 0; i < UDFS_PER_SLICE; i++)
    165		core_writel(priv, layout->udfs[slice_num].slices[i],
    166			    offset + i * 4);
    167}
    168
    169static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
    170{
    171	unsigned int timeout = 1000;
    172	u32 reg;
    173
    174	reg = core_readl(priv, CORE_CFP_ACC);
    175	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
    176	reg |= OP_STR_DONE | op;
    177	core_writel(priv, reg, CORE_CFP_ACC);
    178
    179	do {
    180		reg = core_readl(priv, CORE_CFP_ACC);
    181		if (!(reg & OP_STR_DONE))
    182			break;
    183
    184		cpu_relax();
    185	} while (timeout--);
    186
    187	if (!timeout)
    188		return -ETIMEDOUT;
    189
    190	return 0;
    191}
    192
    193static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
    194					     unsigned int addr)
    195{
    196	u32 reg;
    197
    198	WARN_ON(addr >= priv->num_cfp_rules);
    199
    200	reg = core_readl(priv, CORE_CFP_ACC);
    201	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
    202	reg |= addr << XCESS_ADDR_SHIFT;
    203	core_writel(priv, reg, CORE_CFP_ACC);
    204}
    205
    206static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
    207{
    208	/* Entry #0 is reserved */
    209	return priv->num_cfp_rules - 1;
    210}
    211
    212static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
    213				   unsigned int rule_index,
    214				   int src_port,
    215				   unsigned int port_num,
    216				   unsigned int queue_num,
    217				   bool fwd_map_change)
    218{
    219	int ret;
    220	u32 reg;
    221
    222	/* Replace ARL derived destination with DST_MAP derived, define
    223	 * which port and queue this should be forwarded to.
    224	 */
    225	if (fwd_map_change)
    226		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
    227		      BIT(port_num + DST_MAP_IB_SHIFT) |
    228		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
    229	else
    230		reg = 0;
    231
    232	/* Enable looping back to the original port */
    233	if (src_port == port_num)
    234		reg |= LOOP_BK_EN;
    235
    236	core_writel(priv, reg, CORE_ACT_POL_DATA0);
    237
    238	/* Set classification ID that needs to be put in Broadcom tag */
    239	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
    240
    241	core_writel(priv, 0, CORE_ACT_POL_DATA2);
    242
    243	/* Configure policer RAM now */
    244	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
    245	if (ret) {
    246		pr_err("Policer entry at %d failed\n", rule_index);
    247		return ret;
    248	}
    249
    250	/* Disable the policer */
    251	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
    252
    253	/* Now the rate meter */
    254	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
    255	if (ret) {
    256		pr_err("Meter entry at %d failed\n", rule_index);
    257		return ret;
    258	}
    259
    260	return 0;
    261}
    262
    263static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
    264				   struct flow_dissector_key_ipv4_addrs *addrs,
    265				   struct flow_dissector_key_ports *ports,
    266				   const __be16 vlan_tci,
    267				   unsigned int slice_num, u8 num_udf,
    268				   bool mask)
    269{
    270	u32 reg, offset;
    271
    272	/* UDF_Valid[7:0]	[31:24]
    273	 * S-Tag		[23:8]
    274	 * C-Tag		[7:0]
    275	 */
    276	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
    277	if (mask)
    278		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
    279	else
    280		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
    281
    282	/* C-Tag		[31:24]
    283	 * UDF_n_A8		[23:8]
    284	 * UDF_n_A7		[7:0]
    285	 */
    286	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
    287	if (mask)
    288		offset = CORE_CFP_MASK_PORT(4);
    289	else
    290		offset = CORE_CFP_DATA_PORT(4);
    291	core_writel(priv, reg, offset);
    292
    293	/* UDF_n_A7		[31:24]
    294	 * UDF_n_A6		[23:8]
    295	 * UDF_n_A5		[7:0]
    296	 */
    297	reg = be16_to_cpu(ports->dst) >> 8;
    298	if (mask)
    299		offset = CORE_CFP_MASK_PORT(3);
    300	else
    301		offset = CORE_CFP_DATA_PORT(3);
    302	core_writel(priv, reg, offset);
    303
    304	/* UDF_n_A5		[31:24]
    305	 * UDF_n_A4		[23:8]
    306	 * UDF_n_A3		[7:0]
    307	 */
    308	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
    309	      (u32)be16_to_cpu(ports->src) << 8 |
    310	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
    311	if (mask)
    312		offset = CORE_CFP_MASK_PORT(2);
    313	else
    314		offset = CORE_CFP_DATA_PORT(2);
    315	core_writel(priv, reg, offset);
    316
    317	/* UDF_n_A3		[31:24]
    318	 * UDF_n_A2		[23:8]
    319	 * UDF_n_A1		[7:0]
    320	 */
    321	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
    322	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
    323	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
    324	if (mask)
    325		offset = CORE_CFP_MASK_PORT(1);
    326	else
    327		offset = CORE_CFP_DATA_PORT(1);
    328	core_writel(priv, reg, offset);
    329
    330	/* UDF_n_A1		[31:24]
    331	 * UDF_n_A0		[23:8]
    332	 * Reserved		[7:4]
    333	 * Slice ID		[3:2]
    334	 * Slice valid		[1:0]
    335	 */
    336	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
    337	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
    338	      SLICE_NUM(slice_num) | SLICE_VALID;
    339	if (mask)
    340		offset = CORE_CFP_MASK_PORT(0);
    341	else
    342		offset = CORE_CFP_DATA_PORT(0);
    343	core_writel(priv, reg, offset);
    344}
    345
    346static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
    347				     unsigned int port_num,
    348				     unsigned int queue_num,
    349				     struct ethtool_rx_flow_spec *fs)
    350{
    351	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
    352	struct ethtool_rx_flow_spec_input input = {};
    353	const struct cfp_udf_layout *layout;
    354	unsigned int slice_num, rule_index;
    355	struct ethtool_rx_flow_rule *flow;
    356	struct flow_match_ipv4_addrs ipv4;
    357	struct flow_match_ports ports;
    358	struct flow_match_ip ip;
    359	u8 ip_proto, ip_frag;
    360	u8 num_udf;
    361	u32 reg;
    362	int ret;
    363
    364	switch (fs->flow_type & ~FLOW_EXT) {
    365	case TCP_V4_FLOW:
    366		ip_proto = IPPROTO_TCP;
    367		break;
    368	case UDP_V4_FLOW:
    369		ip_proto = IPPROTO_UDP;
    370		break;
    371	default:
    372		return -EINVAL;
    373	}
    374
    375	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
    376
    377	/* Extract VLAN TCI */
    378	if (fs->flow_type & FLOW_EXT) {
    379		vlan_tci = fs->h_ext.vlan_tci;
    380		vlan_m_tci = fs->m_ext.vlan_tci;
    381	}
    382
    383	/* Locate the first rule available */
    384	if (fs->location == RX_CLS_LOC_ANY)
    385		rule_index = find_first_zero_bit(priv->cfp.used,
    386						 priv->num_cfp_rules);
    387	else
    388		rule_index = fs->location;
    389
    390	if (rule_index > bcm_sf2_cfp_rule_size(priv))
    391		return -ENOSPC;
    392
    393	input.fs = fs;
    394	flow = ethtool_rx_flow_rule_create(&input);
    395	if (IS_ERR(flow))
    396		return PTR_ERR(flow);
    397
    398	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
    399	flow_rule_match_ports(flow->rule, &ports);
    400	flow_rule_match_ip(flow->rule, &ip);
    401
    402	layout = &udf_tcpip4_layout;
    403	/* We only use one UDF slice for now */
    404	slice_num = bcm_sf2_get_slice_number(layout, 0);
    405	if (slice_num == UDF_NUM_SLICES) {
    406		ret = -EINVAL;
    407		goto out_err_flow_rule;
    408	}
    409
    410	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
    411
    412	/* Apply the UDF layout for this filter */
    413	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
    414
    415	/* Apply to all packets received through this port */
    416	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
    417
    418	/* Source port map match */
    419	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
    420
    421	/* S-Tag status		[31:30]
    422	 * C-Tag status		[29:28]
    423	 * L2 framing		[27:26]
    424	 * L3 framing		[25:24]
    425	 * IP ToS		[23:16]
    426	 * IP proto		[15:08]
    427	 * IP Fragm		[7]
    428	 * Non 1st frag		[6]
    429	 * IP Authen		[5]
    430	 * TTL range		[4:3]
    431	 * PPPoE session	[2]
    432	 * Reserved		[1]
    433	 * UDF_Valid[8]		[0]
    434	 */
    435	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
    436		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
    437		    udf_upper_bits(num_udf),
    438		    CORE_CFP_DATA_PORT(6));
    439
    440	/* Mask with the specific layout for IPv4 packets */
    441	core_writel(priv, layout->udfs[slice_num].mask_value |
    442		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
    443
    444	/* Program the match and the mask */
    445	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
    446			       slice_num, num_udf, false);
    447	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
    448			       SLICE_NUM_MASK, num_udf, true);
    449
    450	/* Insert into TCAM now */
    451	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
    452
    453	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
    454	if (ret) {
    455		pr_err("TCAM entry at addr %d failed\n", rule_index);
    456		goto out_err_flow_rule;
    457	}
    458
    459	/* Insert into Action and policer RAMs now */
    460	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
    461				      queue_num, true);
    462	if (ret)
    463		goto out_err_flow_rule;
    464
    465	/* Turn on CFP for this rule now */
    466	reg = core_readl(priv, CORE_CFP_CTL_REG);
    467	reg |= BIT(port);
    468	core_writel(priv, reg, CORE_CFP_CTL_REG);
    469
    470	/* Flag the rule as being used and return it */
    471	set_bit(rule_index, priv->cfp.used);
    472	set_bit(rule_index, priv->cfp.unique);
    473	fs->location = rule_index;
    474
    475	return 0;
    476
    477out_err_flow_rule:
    478	ethtool_rx_flow_rule_destroy(flow);
    479	return ret;
    480}
    481
    482static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
    483				   const __be32 *ip6_addr, const __be16 port,
    484				   const __be16 vlan_tci,
    485				   unsigned int slice_num, u32 udf_bits,
    486				   bool mask)
    487{
    488	u32 reg, tmp, val, offset;
    489
    490	/* UDF_Valid[7:0]	[31:24]
    491	 * S-Tag		[23:8]
    492	 * C-Tag		[7:0]
    493	 */
    494	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
    495	if (mask)
    496		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
    497	else
    498		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
    499
    500	/* C-Tag		[31:24]
    501	 * UDF_n_B8		[23:8]	(port)
    502	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
    503	 */
    504	reg = be32_to_cpu(ip6_addr[3]);
    505	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
    506	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
    507	if (mask)
    508		offset = CORE_CFP_MASK_PORT(4);
    509	else
    510		offset = CORE_CFP_DATA_PORT(4);
    511	core_writel(priv, val, offset);
    512
    513	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
    514	 * UDF_n_B6		[23:8] (addr[31:16])
    515	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
    516	 */
    517	tmp = be32_to_cpu(ip6_addr[2]);
    518	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
    519	      ((tmp >> 8) & 0xff);
    520	if (mask)
    521		offset = CORE_CFP_MASK_PORT(3);
    522	else
    523		offset = CORE_CFP_DATA_PORT(3);
    524	core_writel(priv, val, offset);
    525
    526	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
    527	 * UDF_n_B4		[23:8] (addr[63:48])
    528	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
    529	 */
    530	reg = be32_to_cpu(ip6_addr[1]);
    531	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
    532	      ((reg >> 8) & 0xff);
    533	if (mask)
    534		offset = CORE_CFP_MASK_PORT(2);
    535	else
    536		offset = CORE_CFP_DATA_PORT(2);
    537	core_writel(priv, val, offset);
    538
    539	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
    540	 * UDF_n_B2		[23:8] (addr[95:80])
    541	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
    542	 */
    543	tmp = be32_to_cpu(ip6_addr[0]);
    544	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
    545	      ((tmp >> 8) & 0xff);
    546	if (mask)
    547		offset = CORE_CFP_MASK_PORT(1);
    548	else
    549		offset = CORE_CFP_DATA_PORT(1);
    550	core_writel(priv, val, offset);
    551
    552	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
    553	 * UDF_n_B0		[23:8] (addr[127:112])
    554	 * Reserved		[7:4]
    555	 * Slice ID		[3:2]
    556	 * Slice valid		[1:0]
    557	 */
    558	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
    559	       SLICE_NUM(slice_num) | SLICE_VALID;
    560	if (mask)
    561		offset = CORE_CFP_MASK_PORT(0);
    562	else
    563		offset = CORE_CFP_DATA_PORT(0);
    564	core_writel(priv, reg, offset);
    565}
    566
    567static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
    568					      int port, u32 location)
    569{
    570	struct cfp_rule *rule;
    571
    572	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
    573		if (rule->port == port && rule->fs.location == location)
    574			return rule;
    575	}
    576
    577	return NULL;
    578}
    579
    580static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
    581				struct ethtool_rx_flow_spec *fs)
    582{
    583	struct cfp_rule *rule = NULL;
    584	size_t fs_size = 0;
    585	int ret = 1;
    586
    587	if (list_empty(&priv->cfp.rules_list))
    588		return ret;
    589
    590	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
    591		ret = 1;
    592		if (rule->port != port)
    593			continue;
    594
    595		if (rule->fs.flow_type != fs->flow_type ||
    596		    rule->fs.ring_cookie != fs->ring_cookie ||
    597		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
    598			continue;
    599
    600		switch (fs->flow_type & ~FLOW_EXT) {
    601		case TCP_V6_FLOW:
    602		case UDP_V6_FLOW:
    603			fs_size = sizeof(struct ethtool_tcpip6_spec);
    604			break;
    605		case TCP_V4_FLOW:
    606		case UDP_V4_FLOW:
    607			fs_size = sizeof(struct ethtool_tcpip4_spec);
    608			break;
    609		default:
    610			continue;
    611		}
    612
    613		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
    614		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
    615		/* Compare VLAN TCI values as well */
    616		if (rule->fs.flow_type & FLOW_EXT) {
    617			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
    618			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
    619		}
    620		if (ret == 0)
    621			break;
    622	}
    623
    624	return ret;
    625}
    626
    627static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
    628				     unsigned int port_num,
    629				     unsigned int queue_num,
    630				     struct ethtool_rx_flow_spec *fs)
    631{
    632	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
    633	struct ethtool_rx_flow_spec_input input = {};
    634	unsigned int slice_num, rule_index[2];
    635	const struct cfp_udf_layout *layout;
    636	struct ethtool_rx_flow_rule *flow;
    637	struct flow_match_ipv6_addrs ipv6;
    638	struct flow_match_ports ports;
    639	u8 ip_proto, ip_frag;
    640	int ret = 0;
    641	u8 num_udf;
    642	u32 reg;
    643
    644	switch (fs->flow_type & ~FLOW_EXT) {
    645	case TCP_V6_FLOW:
    646		ip_proto = IPPROTO_TCP;
    647		break;
    648	case UDP_V6_FLOW:
    649		ip_proto = IPPROTO_UDP;
    650		break;
    651	default:
    652		return -EINVAL;
    653	}
    654
    655	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
    656
    657	/* Extract VLAN TCI */
    658	if (fs->flow_type & FLOW_EXT) {
    659		vlan_tci = fs->h_ext.vlan_tci;
    660		vlan_m_tci = fs->m_ext.vlan_tci;
    661	}
    662
    663	layout = &udf_tcpip6_layout;
    664	slice_num = bcm_sf2_get_slice_number(layout, 0);
    665	if (slice_num == UDF_NUM_SLICES)
    666		return -EINVAL;
    667
    668	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
    669
    670	/* Negotiate two indexes, one for the second half which we are chained
    671	 * from, which is what we will return to user-space, and a second one
    672	 * which is used to store its first half. That first half does not
    673	 * allow any choice of placement, so it just needs to find the next
    674	 * available bit. We return the second half as fs->location because
    675	 * that helps with the rule lookup later on since the second half is
    676	 * chained from its first half, we can easily identify IPv6 CFP rules
    677	 * by looking whether they carry a CHAIN_ID.
    678	 *
    679	 * We also want the second half to have a lower rule_index than its
    680	 * first half because the HW search is by incrementing addresses.
    681	 */
    682	if (fs->location == RX_CLS_LOC_ANY)
    683		rule_index[1] = find_first_zero_bit(priv->cfp.used,
    684						    priv->num_cfp_rules);
    685	else
    686		rule_index[1] = fs->location;
    687	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
    688		return -ENOSPC;
    689
    690	/* Flag it as used (cleared on error path) such that we can immediately
    691	 * obtain a second one to chain from.
    692	 */
    693	set_bit(rule_index[1], priv->cfp.used);
    694
    695	rule_index[0] = find_first_zero_bit(priv->cfp.used,
    696					    priv->num_cfp_rules);
    697	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
    698		ret = -ENOSPC;
    699		goto out_err;
    700	}
    701
    702	input.fs = fs;
    703	flow = ethtool_rx_flow_rule_create(&input);
    704	if (IS_ERR(flow)) {
    705		ret = PTR_ERR(flow);
    706		goto out_err;
    707	}
    708	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
    709	flow_rule_match_ports(flow->rule, &ports);
    710
    711	/* Apply the UDF layout for this filter */
    712	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
    713
    714	/* Apply to all packets received through this port */
    715	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
    716
    717	/* Source port map match */
    718	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
    719
    720	/* S-Tag status		[31:30]
    721	 * C-Tag status		[29:28]
    722	 * L2 framing		[27:26]
    723	 * L3 framing		[25:24]
    724	 * IP ToS		[23:16]
    725	 * IP proto		[15:08]
    726	 * IP Fragm		[7]
    727	 * Non 1st frag		[6]
    728	 * IP Authen		[5]
    729	 * TTL range		[4:3]
    730	 * PPPoE session	[2]
    731	 * Reserved		[1]
    732	 * UDF_Valid[8]		[0]
    733	 */
    734	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
    735		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
    736	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
    737
    738	/* Mask with the specific layout for IPv6 packets including
    739	 * UDF_Valid[8]
    740	 */
    741	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
    742	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
    743
    744	/* Slice the IPv6 source address and port */
    745	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
    746			       ports.key->src, vlan_tci, slice_num,
    747			       udf_lower_bits(num_udf), false);
    748	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
    749			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
    750			       udf_lower_bits(num_udf), true);
    751
    752	/* Insert into TCAM now because we need to insert a second rule */
    753	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
    754
    755	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
    756	if (ret) {
    757		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
    758		goto out_err_flow_rule;
    759	}
    760
    761	/* Insert into Action and policer RAMs now */
    762	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
    763				      queue_num, false);
    764	if (ret)
    765		goto out_err_flow_rule;
    766
    767	/* Now deal with the second slice to chain this rule */
    768	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
    769	if (slice_num == UDF_NUM_SLICES) {
    770		ret = -EINVAL;
    771		goto out_err_flow_rule;
    772	}
    773
    774	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
    775
    776	/* Apply the UDF layout for this filter */
    777	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
    778
    779	/* Chained rule, source port match is coming from the rule we are
    780	 * chained from.
    781	 */
    782	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
    783	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
    784
    785	/*
    786	 * CHAIN ID		[31:24] chain to previous slice
    787	 * Reserved		[23:20]
    788	 * UDF_Valid[11:8]	[19:16]
    789	 * UDF_Valid[7:0]	[15:8]
    790	 * UDF_n_D11		[7:0]
    791	 */
    792	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
    793		udf_lower_bits(num_udf) << 8;
    794	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
    795
    796	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
    797	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
    798		udf_lower_bits(num_udf) << 8;
    799	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
    800
    801	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
    802			       ports.key->dst, 0, slice_num,
    803			       0, false);
    804	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
    805			       ports.key->dst, 0, SLICE_NUM_MASK,
    806			       0, true);
    807
    808	/* Insert into TCAM now */
    809	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
    810
    811	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
    812	if (ret) {
    813		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
    814		goto out_err_flow_rule;
    815	}
    816
    817	/* Insert into Action and policer RAMs now, set chain ID to
    818	 * the one we are chained to
    819	 */
    820	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
    821				      queue_num, true);
    822	if (ret)
    823		goto out_err_flow_rule;
    824
    825	/* Turn on CFP for this rule now */
    826	reg = core_readl(priv, CORE_CFP_CTL_REG);
    827	reg |= BIT(port);
    828	core_writel(priv, reg, CORE_CFP_CTL_REG);
    829
    830	/* Flag the second half rule as being used now, return it as the
    831	 * location, and flag it as unique while dumping rules
    832	 */
    833	set_bit(rule_index[0], priv->cfp.used);
    834	set_bit(rule_index[1], priv->cfp.unique);
    835	fs->location = rule_index[1];
    836
    837	return ret;
    838
    839out_err_flow_rule:
    840	ethtool_rx_flow_rule_destroy(flow);
    841out_err:
    842	clear_bit(rule_index[1], priv->cfp.used);
    843	return ret;
    844}
    845
    846static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
    847				   struct ethtool_rx_flow_spec *fs)
    848{
    849	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
    850	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
    851	__u64 ring_cookie = fs->ring_cookie;
    852	struct switchdev_obj_port_vlan vlan;
    853	unsigned int queue_num, port_num;
    854	u16 vid;
    855	int ret;
    856
    857	/* This rule is a Wake-on-LAN filter and we must specifically
    858	 * target the CPU port in order for it to be working.
    859	 */
    860	if (ring_cookie == RX_CLS_FLOW_WAKE)
    861		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
    862
    863	/* We do not support discarding packets, check that the
    864	 * destination port is enabled and that we are within the
    865	 * number of ports supported by the switch
    866	 */
    867	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
    868
    869	if (ring_cookie == RX_CLS_FLOW_DISC ||
    870	    !(dsa_is_user_port(ds, port_num) ||
    871	      dsa_is_cpu_port(ds, port_num)) ||
    872	    port_num >= priv->hw_params.num_ports)
    873		return -EINVAL;
    874
    875	/* If the rule is matching a particular VLAN, make sure that we honor
    876	 * the matching and have it tagged or untagged on the destination port,
    877	 * we do this on egress with a VLAN entry. The egress tagging attribute
    878	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
    879	 * a 0 means tagged.
    880	 */
    881	if (fs->flow_type & FLOW_EXT) {
    882		/* We cannot support matching multiple VLAN IDs yet */
    883		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
    884		    VLAN_VID_MASK)
    885			return -EINVAL;
    886
    887		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
    888		vlan.vid = vid;
    889		if (be32_to_cpu(fs->h_ext.data[1]) & 1)
    890			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
    891		else
    892			vlan.flags = 0;
    893
    894		ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
    895		if (ret)
    896			return ret;
    897	}
    898
    899	/*
    900	 * We have a small oddity where Port 6 just does not have a
    901	 * valid bit here (so we substract by one).
    902	 */
    903	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
    904	if (port_num >= 7)
    905		port_num -= 1;
    906
    907	switch (fs->flow_type & ~FLOW_EXT) {
    908	case TCP_V4_FLOW:
    909	case UDP_V4_FLOW:
    910		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
    911						queue_num, fs);
    912		break;
    913	case TCP_V6_FLOW:
    914	case UDP_V6_FLOW:
    915		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
    916						queue_num, fs);
    917		break;
    918	default:
    919		ret = -EINVAL;
    920		break;
    921	}
    922
    923	return ret;
    924}
    925
    926static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
    927				struct ethtool_rx_flow_spec *fs)
    928{
    929	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
    930	struct cfp_rule *rule = NULL;
    931	int ret = -EINVAL;
    932
    933	/* Check for unsupported extensions */
    934	if (fs->flow_type & FLOW_MAC_EXT)
    935		return -EINVAL;
    936
    937	if (fs->location != RX_CLS_LOC_ANY &&
    938	    fs->location > bcm_sf2_cfp_rule_size(priv))
    939		return -EINVAL;
    940
    941	if ((fs->flow_type & FLOW_EXT) &&
    942	    !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
    943		return -EOPNOTSUPP;
    944
    945	if (fs->location != RX_CLS_LOC_ANY &&
    946	    test_bit(fs->location, priv->cfp.used))
    947		return -EBUSY;
    948
    949	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
    950	if (ret == 0)
    951		return -EEXIST;
    952
    953	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
    954	if (!rule)
    955		return -ENOMEM;
    956
    957	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
    958	if (ret) {
    959		kfree(rule);
    960		return ret;
    961	}
    962
    963	rule->port = port;
    964	memcpy(&rule->fs, fs, sizeof(*fs));
    965	list_add_tail(&rule->next, &priv->cfp.rules_list);
    966
    967	return ret;
    968}
    969
    970static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
    971				    u32 loc, u32 *next_loc)
    972{
    973	int ret;
    974	u32 reg;
    975
    976	/* Indicate which rule we want to read */
    977	bcm_sf2_cfp_rule_addr_set(priv, loc);
    978
    979	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
    980	if (ret)
    981		return ret;
    982
    983	/* Check if this is possibly an IPv6 rule that would
    984	 * indicate we need to delete its companion rule
    985	 * as well
    986	 */
    987	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
    988	if (next_loc)
    989		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
    990
    991	/* Clear its valid bits */
    992	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
    993	reg &= ~SLICE_VALID;
    994	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
    995
    996	/* Write back this entry into the TCAM now */
    997	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
    998	if (ret)
    999		return ret;
   1000
   1001	clear_bit(loc, priv->cfp.used);
   1002	clear_bit(loc, priv->cfp.unique);
   1003
   1004	return 0;
   1005}
   1006
   1007static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
   1008				   u32 loc)
   1009{
   1010	u32 next_loc = 0;
   1011	int ret;
   1012
   1013	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
   1014	if (ret)
   1015		return ret;
   1016
   1017	/* If this was an IPv6 rule, delete is companion rule too */
   1018	if (next_loc)
   1019		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
   1020
   1021	return ret;
   1022}
   1023
   1024static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
   1025{
   1026	struct cfp_rule *rule;
   1027	int ret;
   1028
   1029	if (loc > bcm_sf2_cfp_rule_size(priv))
   1030		return -EINVAL;
   1031
   1032	/* Refuse deleting unused rules, and those that are not unique since
   1033	 * that could leave IPv6 rules with one of the chained rule in the
   1034	 * table.
   1035	 */
   1036	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
   1037		return -EINVAL;
   1038
   1039	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
   1040	if (!rule)
   1041		return -EINVAL;
   1042
   1043	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
   1044
   1045	list_del(&rule->next);
   1046	kfree(rule);
   1047
   1048	return ret;
   1049}
   1050
   1051static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
   1052{
   1053	unsigned int i;
   1054
   1055	for (i = 0; i < sizeof(flow->m_u); i++)
   1056		flow->m_u.hdata[i] ^= 0xff;
   1057
   1058	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
   1059	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
   1060	flow->m_ext.data[0] ^= cpu_to_be32(~0);
   1061	flow->m_ext.data[1] ^= cpu_to_be32(~0);
   1062}
   1063
   1064static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
   1065				struct ethtool_rxnfc *nfc)
   1066{
   1067	struct cfp_rule *rule;
   1068
   1069	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
   1070	if (!rule)
   1071		return -EINVAL;
   1072
   1073	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
   1074
   1075	bcm_sf2_invert_masks(&nfc->fs);
   1076
   1077	/* Put the TCAM size here */
   1078	nfc->data = bcm_sf2_cfp_rule_size(priv);
   1079
   1080	return 0;
   1081}
   1082
   1083/* We implement the search doing a TCAM search operation */
   1084static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
   1085				    int port, struct ethtool_rxnfc *nfc,
   1086				    u32 *rule_locs)
   1087{
   1088	unsigned int index = 1, rules_cnt = 0;
   1089
   1090	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
   1091		rule_locs[rules_cnt] = index;
   1092		rules_cnt++;
   1093	}
   1094
   1095	/* Put the TCAM size here */
   1096	nfc->data = bcm_sf2_cfp_rule_size(priv);
   1097	nfc->rule_cnt = rules_cnt;
   1098
   1099	return 0;
   1100}
   1101
   1102int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
   1103		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
   1104{
   1105	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
   1106	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1107	int ret = 0;
   1108
   1109	mutex_lock(&priv->cfp.lock);
   1110
   1111	switch (nfc->cmd) {
   1112	case ETHTOOL_GRXCLSRLCNT:
   1113		/* Subtract the default, unusable rule */
   1114		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
   1115					      priv->num_cfp_rules) - 1;
   1116		/* We support specifying rule locations */
   1117		nfc->data |= RX_CLS_LOC_SPECIAL;
   1118		break;
   1119	case ETHTOOL_GRXCLSRULE:
   1120		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
   1121		break;
   1122	case ETHTOOL_GRXCLSRLALL:
   1123		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
   1124		break;
   1125	default:
   1126		ret = -EOPNOTSUPP;
   1127		break;
   1128	}
   1129
   1130	mutex_unlock(&priv->cfp.lock);
   1131
   1132	if (ret)
   1133		return ret;
   1134
   1135	/* Pass up the commands to the attached master network device */
   1136	if (p->ethtool_ops->get_rxnfc) {
   1137		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
   1138		if (ret == -EOPNOTSUPP)
   1139			ret = 0;
   1140	}
   1141
   1142	return ret;
   1143}
   1144
   1145int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
   1146		      struct ethtool_rxnfc *nfc)
   1147{
   1148	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
   1149	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1150	int ret = 0;
   1151
   1152	mutex_lock(&priv->cfp.lock);
   1153
   1154	switch (nfc->cmd) {
   1155	case ETHTOOL_SRXCLSRLINS:
   1156		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
   1157		break;
   1158
   1159	case ETHTOOL_SRXCLSRLDEL:
   1160		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
   1161		break;
   1162	default:
   1163		ret = -EOPNOTSUPP;
   1164		break;
   1165	}
   1166
   1167	mutex_unlock(&priv->cfp.lock);
   1168
   1169	if (ret)
   1170		return ret;
   1171
   1172	/* Pass up the commands to the attached master network device.
   1173	 * This can fail, so rollback the operation if we need to.
   1174	 */
   1175	if (p->ethtool_ops->set_rxnfc) {
   1176		ret = p->ethtool_ops->set_rxnfc(p, nfc);
   1177		if (ret && ret != -EOPNOTSUPP) {
   1178			mutex_lock(&priv->cfp.lock);
   1179			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
   1180			mutex_unlock(&priv->cfp.lock);
   1181		} else {
   1182			ret = 0;
   1183		}
   1184	}
   1185
   1186	return ret;
   1187}
   1188
   1189int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
   1190{
   1191	unsigned int timeout = 1000;
   1192	u32 reg;
   1193
   1194	reg = core_readl(priv, CORE_CFP_ACC);
   1195	reg |= TCAM_RESET;
   1196	core_writel(priv, reg, CORE_CFP_ACC);
   1197
   1198	do {
   1199		reg = core_readl(priv, CORE_CFP_ACC);
   1200		if (!(reg & TCAM_RESET))
   1201			break;
   1202
   1203		cpu_relax();
   1204	} while (timeout--);
   1205
   1206	if (!timeout)
   1207		return -ETIMEDOUT;
   1208
   1209	return 0;
   1210}
   1211
   1212void bcm_sf2_cfp_exit(struct dsa_switch *ds)
   1213{
   1214	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1215	struct cfp_rule *rule, *n;
   1216
   1217	if (list_empty(&priv->cfp.rules_list))
   1218		return;
   1219
   1220	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
   1221		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
   1222}
   1223
   1224int bcm_sf2_cfp_resume(struct dsa_switch *ds)
   1225{
   1226	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1227	struct cfp_rule *rule;
   1228	int ret = 0;
   1229	u32 reg;
   1230
   1231	if (list_empty(&priv->cfp.rules_list))
   1232		return ret;
   1233
   1234	reg = core_readl(priv, CORE_CFP_CTL_REG);
   1235	reg &= ~CFP_EN_MAP_MASK;
   1236	core_writel(priv, reg, CORE_CFP_CTL_REG);
   1237
   1238	ret = bcm_sf2_cfp_rst(priv);
   1239	if (ret)
   1240		return ret;
   1241
   1242	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
   1243		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
   1244					      rule->fs.location);
   1245		if (ret) {
   1246			dev_err(ds->dev, "failed to remove rule\n");
   1247			return ret;
   1248		}
   1249
   1250		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
   1251		if (ret) {
   1252			dev_err(ds->dev, "failed to restore rule\n");
   1253			return ret;
   1254		}
   1255	}
   1256
   1257	return ret;
   1258}
   1259
   1260static const struct bcm_sf2_cfp_stat {
   1261	unsigned int offset;
   1262	unsigned int ram_loc;
   1263	const char *name;
   1264} bcm_sf2_cfp_stats[] = {
   1265	{
   1266		.offset = CORE_STAT_GREEN_CNTR,
   1267		.ram_loc = GREEN_STAT_RAM,
   1268		.name = "Green"
   1269	},
   1270	{
   1271		.offset = CORE_STAT_YELLOW_CNTR,
   1272		.ram_loc = YELLOW_STAT_RAM,
   1273		.name = "Yellow"
   1274	},
   1275	{
   1276		.offset = CORE_STAT_RED_CNTR,
   1277		.ram_loc = RED_STAT_RAM,
   1278		.name = "Red"
   1279	},
   1280};
   1281
   1282void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
   1283			     u32 stringset, uint8_t *data)
   1284{
   1285	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1286	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
   1287	char buf[ETH_GSTRING_LEN];
   1288	unsigned int i, j, iter;
   1289
   1290	if (stringset != ETH_SS_STATS)
   1291		return;
   1292
   1293	for (i = 1; i < priv->num_cfp_rules; i++) {
   1294		for (j = 0; j < s; j++) {
   1295			snprintf(buf, sizeof(buf),
   1296				 "CFP%03d_%sCntr",
   1297				 i, bcm_sf2_cfp_stats[j].name);
   1298			iter = (i - 1) * s + j;
   1299			strlcpy(data + iter * ETH_GSTRING_LEN,
   1300				buf, ETH_GSTRING_LEN);
   1301		}
   1302	}
   1303}
   1304
   1305void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
   1306				   uint64_t *data)
   1307{
   1308	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1309	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
   1310	const struct bcm_sf2_cfp_stat *stat;
   1311	unsigned int i, j, iter;
   1312	struct cfp_rule *rule;
   1313	int ret;
   1314
   1315	mutex_lock(&priv->cfp.lock);
   1316	for (i = 1; i < priv->num_cfp_rules; i++) {
   1317		rule = bcm_sf2_cfp_rule_find(priv, port, i);
   1318		if (!rule)
   1319			continue;
   1320
   1321		for (j = 0; j < s; j++) {
   1322			stat = &bcm_sf2_cfp_stats[j];
   1323
   1324			bcm_sf2_cfp_rule_addr_set(priv, i);
   1325			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
   1326			if (ret)
   1327				continue;
   1328
   1329			iter = (i - 1) * s + j;
   1330			data[iter] = core_readl(priv, stat->offset);
   1331		}
   1332
   1333	}
   1334	mutex_unlock(&priv->cfp.lock);
   1335}
   1336
   1337int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
   1338{
   1339	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
   1340
   1341	if (sset != ETH_SS_STATS)
   1342		return 0;
   1343
   1344	/* 3 counters per CFP rules */
   1345	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
   1346}