cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ksz9477.c (38413B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Microchip KSZ9477 switch driver main logic
      4 *
      5 * Copyright (C) 2017-2019 Microchip Technology Inc.
      6 */
      7
      8#include <linux/kernel.h>
      9#include <linux/module.h>
     10#include <linux/iopoll.h>
     11#include <linux/platform_data/microchip-ksz.h>
     12#include <linux/phy.h>
     13#include <linux/if_bridge.h>
     14#include <linux/if_vlan.h>
     15#include <net/dsa.h>
     16#include <net/switchdev.h>
     17
     18#include "ksz9477_reg.h"
     19#include "ksz_common.h"
     20
     21/* Used with variable features to indicate capabilities. */
     22#define GBIT_SUPPORT			BIT(0)
     23#define NEW_XMII			BIT(1)
     24#define IS_9893				BIT(2)
     25
     26static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
     27{
     28	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
     29}
     30
     31static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
     32			 bool set)
     33{
     34	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
     35			   bits, set ? bits : 0);
     36}
     37
     38static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
     39{
     40	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
     41}
     42
     43static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
     44			       u32 bits, bool set)
     45{
     46	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
     47			   bits, set ? bits : 0);
     48}
     49
     50static int ksz9477_change_mtu(struct dsa_switch *ds, int port, int mtu)
     51{
     52	struct ksz_device *dev = ds->priv;
     53	u16 frame_size, max_frame = 0;
     54	int i;
     55
     56	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
     57
     58	/* Cache the per-port MTU setting */
     59	dev->ports[port].max_frame = frame_size;
     60
     61	for (i = 0; i < dev->info->port_cnt; i++)
     62		max_frame = max(max_frame, dev->ports[i].max_frame);
     63
     64	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
     65				  REG_SW_MTU_MASK, max_frame);
     66}
     67
     68static int ksz9477_max_mtu(struct dsa_switch *ds, int port)
     69{
     70	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
     71}
     72
     73static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
     74{
     75	unsigned int val;
     76
     77	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
     78					val, !(val & VLAN_START), 10, 1000);
     79}
     80
     81static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
     82				  u32 *vlan_table)
     83{
     84	int ret;
     85
     86	mutex_lock(&dev->vlan_mutex);
     87
     88	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
     89	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
     90
     91	/* wait to be cleared */
     92	ret = ksz9477_wait_vlan_ctrl_ready(dev);
     93	if (ret) {
     94		dev_dbg(dev->dev, "Failed to read vlan table\n");
     95		goto exit;
     96	}
     97
     98	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
     99	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
    100	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
    101
    102	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
    103
    104exit:
    105	mutex_unlock(&dev->vlan_mutex);
    106
    107	return ret;
    108}
    109
    110static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
    111				  u32 *vlan_table)
    112{
    113	int ret;
    114
    115	mutex_lock(&dev->vlan_mutex);
    116
    117	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
    118	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
    119	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
    120
    121	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
    122	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
    123
    124	/* wait to be cleared */
    125	ret = ksz9477_wait_vlan_ctrl_ready(dev);
    126	if (ret) {
    127		dev_dbg(dev->dev, "Failed to write vlan table\n");
    128		goto exit;
    129	}
    130
    131	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
    132
    133	/* update vlan cache table */
    134	dev->vlan_cache[vid].table[0] = vlan_table[0];
    135	dev->vlan_cache[vid].table[1] = vlan_table[1];
    136	dev->vlan_cache[vid].table[2] = vlan_table[2];
    137
    138exit:
    139	mutex_unlock(&dev->vlan_mutex);
    140
    141	return ret;
    142}
    143
    144static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
    145{
    146	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
    147	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
    148	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
    149	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
    150}
    151
    152static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
    153{
    154	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
    155	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
    156	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
    157	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
    158}
    159
    160static int ksz9477_wait_alu_ready(struct ksz_device *dev)
    161{
    162	unsigned int val;
    163
    164	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
    165					val, !(val & ALU_START), 10, 1000);
    166}
    167
    168static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
    169{
    170	unsigned int val;
    171
    172	return regmap_read_poll_timeout(dev->regmap[2],
    173					REG_SW_ALU_STAT_CTRL__4,
    174					val, !(val & ALU_STAT_START),
    175					10, 1000);
    176}
    177
    178static int ksz9477_reset_switch(struct ksz_device *dev)
    179{
    180	u8 data8;
    181	u32 data32;
    182
    183	/* reset switch */
    184	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
    185
    186	/* turn off SPI DO Edge select */
    187	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
    188			   SPI_AUTO_EDGE_DETECTION, 0);
    189
    190	/* default configuration */
    191	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
    192	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
    193	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
    194	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
    195
    196	/* disable interrupts */
    197	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
    198	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
    199	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
    200
    201	/* set broadcast storm protection 10% rate */
    202	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
    203			   BROADCAST_STORM_RATE,
    204			   (BROADCAST_STORM_VALUE *
    205			   BROADCAST_STORM_PROT_RATE) / 100);
    206
    207	data8 = SW_ENABLE_REFCLKO;
    208	if (dev->synclko_disable)
    209		data8 = 0;
    210	else if (dev->synclko_125)
    211		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
    212	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
    213
    214	return 0;
    215}
    216
    217static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
    218			      u64 *cnt)
    219{
    220	struct ksz_port *p = &dev->ports[port];
    221	unsigned int val;
    222	u32 data;
    223	int ret;
    224
    225	/* retain the flush/freeze bit */
    226	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
    227	data |= MIB_COUNTER_READ;
    228	data |= (addr << MIB_COUNTER_INDEX_S);
    229	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
    230
    231	ret = regmap_read_poll_timeout(dev->regmap[2],
    232			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
    233			val, !(val & MIB_COUNTER_READ), 10, 1000);
    234	/* failed to read MIB. get out of loop */
    235	if (ret) {
    236		dev_dbg(dev->dev, "Failed to get MIB\n");
    237		return;
    238	}
    239
    240	/* count resets upon read */
    241	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
    242	*cnt += data;
    243}
    244
    245static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
    246			      u64 *dropped, u64 *cnt)
    247{
    248	addr = dev->info->mib_names[addr].index;
    249	ksz9477_r_mib_cnt(dev, port, addr, cnt);
    250}
    251
    252static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
    253{
    254	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
    255	struct ksz_port *p = &dev->ports[port];
    256
    257	/* enable/disable the port for flush/freeze function */
    258	mutex_lock(&p->mib.cnt_mutex);
    259	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
    260
    261	/* used by MIB counter reading code to know freeze is enabled */
    262	p->freeze = freeze;
    263	mutex_unlock(&p->mib.cnt_mutex);
    264}
    265
    266static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
    267{
    268	struct ksz_port_mib *mib = &dev->ports[port].mib;
    269
    270	/* flush all enabled port MIB counters */
    271	mutex_lock(&mib->cnt_mutex);
    272	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
    273		     MIB_COUNTER_FLUSH_FREEZE);
    274	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
    275	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
    276	mutex_unlock(&mib->cnt_mutex);
    277}
    278
    279static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
    280						      int port,
    281						      enum dsa_tag_protocol mp)
    282{
    283	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
    284	struct ksz_device *dev = ds->priv;
    285
    286	if (dev->features & IS_9893)
    287		proto = DSA_TAG_PROTO_KSZ9893;
    288	return proto;
    289}
    290
    291static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
    292{
    293	struct ksz_device *dev = ds->priv;
    294	u16 val = 0xffff;
    295
    296	/* No real PHY after this. Simulate the PHY.
    297	 * A fixed PHY can be setup in the device tree, but this function is
    298	 * still called for that port during initialization.
    299	 * For RGMII PHY there is no way to access it so the fixed PHY should
    300	 * be used.  For SGMII PHY the supporting code will be added later.
    301	 */
    302	if (addr >= dev->phy_port_cnt) {
    303		struct ksz_port *p = &dev->ports[addr];
    304
    305		switch (reg) {
    306		case MII_BMCR:
    307			val = 0x1140;
    308			break;
    309		case MII_BMSR:
    310			val = 0x796d;
    311			break;
    312		case MII_PHYSID1:
    313			val = 0x0022;
    314			break;
    315		case MII_PHYSID2:
    316			val = 0x1631;
    317			break;
    318		case MII_ADVERTISE:
    319			val = 0x05e1;
    320			break;
    321		case MII_LPA:
    322			val = 0xc5e1;
    323			break;
    324		case MII_CTRL1000:
    325			val = 0x0700;
    326			break;
    327		case MII_STAT1000:
    328			if (p->phydev.speed == SPEED_1000)
    329				val = 0x3800;
    330			else
    331				val = 0;
    332			break;
    333		}
    334	} else {
    335		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
    336	}
    337
    338	return val;
    339}
    340
    341static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
    342			       u16 val)
    343{
    344	struct ksz_device *dev = ds->priv;
    345
    346	/* No real PHY after this. */
    347	if (addr >= dev->phy_port_cnt)
    348		return 0;
    349
    350	/* No gigabit support.  Do not write to this register. */
    351	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
    352		return 0;
    353	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
    354
    355	return 0;
    356}
    357
    358static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
    359				    u8 member)
    360{
    361	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
    362}
    363
    364static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
    365				       u8 state)
    366{
    367	ksz_port_stp_state_set(ds, port, state, P_STP_CTRL);
    368}
    369
    370static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
    371{
    372	u8 data;
    373
    374	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
    375			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
    376			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
    377
    378	if (port < dev->info->port_cnt) {
    379		/* flush individual port */
    380		ksz_pread8(dev, port, P_STP_CTRL, &data);
    381		if (!(data & PORT_LEARN_DISABLE))
    382			ksz_pwrite8(dev, port, P_STP_CTRL,
    383				    data | PORT_LEARN_DISABLE);
    384		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
    385		ksz_pwrite8(dev, port, P_STP_CTRL, data);
    386	} else {
    387		/* flush all */
    388		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
    389	}
    390}
    391
    392static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
    393				       bool flag,
    394				       struct netlink_ext_ack *extack)
    395{
    396	struct ksz_device *dev = ds->priv;
    397
    398	if (flag) {
    399		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
    400			     PORT_VLAN_LOOKUP_VID_0, true);
    401		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
    402	} else {
    403		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
    404		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
    405			     PORT_VLAN_LOOKUP_VID_0, false);
    406	}
    407
    408	return 0;
    409}
    410
    411static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
    412				 const struct switchdev_obj_port_vlan *vlan,
    413				 struct netlink_ext_ack *extack)
    414{
    415	struct ksz_device *dev = ds->priv;
    416	u32 vlan_table[3];
    417	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
    418	int err;
    419
    420	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
    421	if (err) {
    422		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
    423		return err;
    424	}
    425
    426	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
    427	if (untagged)
    428		vlan_table[1] |= BIT(port);
    429	else
    430		vlan_table[1] &= ~BIT(port);
    431	vlan_table[1] &= ~(BIT(dev->cpu_port));
    432
    433	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
    434
    435	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
    436	if (err) {
    437		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
    438		return err;
    439	}
    440
    441	/* change PVID */
    442	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
    443		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
    444
    445	return 0;
    446}
    447
    448static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
    449				 const struct switchdev_obj_port_vlan *vlan)
    450{
    451	struct ksz_device *dev = ds->priv;
    452	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
    453	u32 vlan_table[3];
    454	u16 pvid;
    455
    456	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
    457	pvid = pvid & 0xFFF;
    458
    459	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
    460		dev_dbg(dev->dev, "Failed to get vlan table\n");
    461		return -ETIMEDOUT;
    462	}
    463
    464	vlan_table[2] &= ~BIT(port);
    465
    466	if (pvid == vlan->vid)
    467		pvid = 1;
    468
    469	if (untagged)
    470		vlan_table[1] &= ~BIT(port);
    471
    472	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
    473		dev_dbg(dev->dev, "Failed to set vlan table\n");
    474		return -ETIMEDOUT;
    475	}
    476
    477	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
    478
    479	return 0;
    480}
    481
    482static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
    483				const unsigned char *addr, u16 vid,
    484				struct dsa_db db)
    485{
    486	struct ksz_device *dev = ds->priv;
    487	u32 alu_table[4];
    488	u32 data;
    489	int ret = 0;
    490
    491	mutex_lock(&dev->alu_mutex);
    492
    493	/* find any entry with mac & vid */
    494	data = vid << ALU_FID_INDEX_S;
    495	data |= ((addr[0] << 8) | addr[1]);
    496	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
    497
    498	data = ((addr[2] << 24) | (addr[3] << 16));
    499	data |= ((addr[4] << 8) | addr[5]);
    500	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
    501
    502	/* start read operation */
    503	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
    504
    505	/* wait to be finished */
    506	ret = ksz9477_wait_alu_ready(dev);
    507	if (ret) {
    508		dev_dbg(dev->dev, "Failed to read ALU\n");
    509		goto exit;
    510	}
    511
    512	/* read ALU entry */
    513	ksz9477_read_table(dev, alu_table);
    514
    515	/* update ALU entry */
    516	alu_table[0] = ALU_V_STATIC_VALID;
    517	alu_table[1] |= BIT(port);
    518	if (vid)
    519		alu_table[1] |= ALU_V_USE_FID;
    520	alu_table[2] = (vid << ALU_V_FID_S);
    521	alu_table[2] |= ((addr[0] << 8) | addr[1]);
    522	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
    523	alu_table[3] |= ((addr[4] << 8) | addr[5]);
    524
    525	ksz9477_write_table(dev, alu_table);
    526
    527	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
    528
    529	/* wait to be finished */
    530	ret = ksz9477_wait_alu_ready(dev);
    531	if (ret)
    532		dev_dbg(dev->dev, "Failed to write ALU\n");
    533
    534exit:
    535	mutex_unlock(&dev->alu_mutex);
    536
    537	return ret;
    538}
    539
    540static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
    541				const unsigned char *addr, u16 vid,
    542				struct dsa_db db)
    543{
    544	struct ksz_device *dev = ds->priv;
    545	u32 alu_table[4];
    546	u32 data;
    547	int ret = 0;
    548
    549	mutex_lock(&dev->alu_mutex);
    550
    551	/* read any entry with mac & vid */
    552	data = vid << ALU_FID_INDEX_S;
    553	data |= ((addr[0] << 8) | addr[1]);
    554	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
    555
    556	data = ((addr[2] << 24) | (addr[3] << 16));
    557	data |= ((addr[4] << 8) | addr[5]);
    558	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
    559
    560	/* start read operation */
    561	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
    562
    563	/* wait to be finished */
    564	ret = ksz9477_wait_alu_ready(dev);
    565	if (ret) {
    566		dev_dbg(dev->dev, "Failed to read ALU\n");
    567		goto exit;
    568	}
    569
    570	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
    571	if (alu_table[0] & ALU_V_STATIC_VALID) {
    572		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
    573		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
    574		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
    575
    576		/* clear forwarding port */
    577		alu_table[2] &= ~BIT(port);
    578
    579		/* if there is no port to forward, clear table */
    580		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
    581			alu_table[0] = 0;
    582			alu_table[1] = 0;
    583			alu_table[2] = 0;
    584			alu_table[3] = 0;
    585		}
    586	} else {
    587		alu_table[0] = 0;
    588		alu_table[1] = 0;
    589		alu_table[2] = 0;
    590		alu_table[3] = 0;
    591	}
    592
    593	ksz9477_write_table(dev, alu_table);
    594
    595	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
    596
    597	/* wait to be finished */
    598	ret = ksz9477_wait_alu_ready(dev);
    599	if (ret)
    600		dev_dbg(dev->dev, "Failed to write ALU\n");
    601
    602exit:
    603	mutex_unlock(&dev->alu_mutex);
    604
    605	return ret;
    606}
    607
    608static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
    609{
    610	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
    611	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
    612	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
    613	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
    614			ALU_V_PRIO_AGE_CNT_M;
    615	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
    616
    617	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
    618	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
    619	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
    620
    621	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
    622
    623	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
    624	alu->mac[1] = alu_table[2] & 0xFF;
    625	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
    626	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
    627	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
    628	alu->mac[5] = alu_table[3] & 0xFF;
    629}
    630
    631static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
    632				 dsa_fdb_dump_cb_t *cb, void *data)
    633{
    634	struct ksz_device *dev = ds->priv;
    635	int ret = 0;
    636	u32 ksz_data;
    637	u32 alu_table[4];
    638	struct alu_struct alu;
    639	int timeout;
    640
    641	mutex_lock(&dev->alu_mutex);
    642
    643	/* start ALU search */
    644	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
    645
    646	do {
    647		timeout = 1000;
    648		do {
    649			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
    650			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
    651				break;
    652			usleep_range(1, 10);
    653		} while (timeout-- > 0);
    654
    655		if (!timeout) {
    656			dev_dbg(dev->dev, "Failed to search ALU\n");
    657			ret = -ETIMEDOUT;
    658			goto exit;
    659		}
    660
    661		/* read ALU table */
    662		ksz9477_read_table(dev, alu_table);
    663
    664		ksz9477_convert_alu(&alu, alu_table);
    665
    666		if (alu.port_forward & BIT(port)) {
    667			ret = cb(alu.mac, alu.fid, alu.is_static, data);
    668			if (ret)
    669				goto exit;
    670		}
    671	} while (ksz_data & ALU_START);
    672
    673exit:
    674
    675	/* stop ALU search */
    676	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
    677
    678	mutex_unlock(&dev->alu_mutex);
    679
    680	return ret;
    681}
    682
    683static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
    684				const struct switchdev_obj_port_mdb *mdb,
    685				struct dsa_db db)
    686{
    687	struct ksz_device *dev = ds->priv;
    688	u32 static_table[4];
    689	u32 data;
    690	int index;
    691	u32 mac_hi, mac_lo;
    692	int err = 0;
    693
    694	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
    695	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
    696	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
    697
    698	mutex_lock(&dev->alu_mutex);
    699
    700	for (index = 0; index < dev->info->num_statics; index++) {
    701		/* find empty slot first */
    702		data = (index << ALU_STAT_INDEX_S) |
    703			ALU_STAT_READ | ALU_STAT_START;
    704		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
    705
    706		/* wait to be finished */
    707		err = ksz9477_wait_alu_sta_ready(dev);
    708		if (err) {
    709			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
    710			goto exit;
    711		}
    712
    713		/* read ALU static table */
    714		ksz9477_read_table(dev, static_table);
    715
    716		if (static_table[0] & ALU_V_STATIC_VALID) {
    717			/* check this has same vid & mac address */
    718			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
    719			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
    720			    static_table[3] == mac_lo) {
    721				/* found matching one */
    722				break;
    723			}
    724		} else {
    725			/* found empty one */
    726			break;
    727		}
    728	}
    729
    730	/* no available entry */
    731	if (index == dev->info->num_statics) {
    732		err = -ENOSPC;
    733		goto exit;
    734	}
    735
    736	/* add entry */
    737	static_table[0] = ALU_V_STATIC_VALID;
    738	static_table[1] |= BIT(port);
    739	if (mdb->vid)
    740		static_table[1] |= ALU_V_USE_FID;
    741	static_table[2] = (mdb->vid << ALU_V_FID_S);
    742	static_table[2] |= mac_hi;
    743	static_table[3] = mac_lo;
    744
    745	ksz9477_write_table(dev, static_table);
    746
    747	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
    748	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
    749
    750	/* wait to be finished */
    751	if (ksz9477_wait_alu_sta_ready(dev))
    752		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
    753
    754exit:
    755	mutex_unlock(&dev->alu_mutex);
    756	return err;
    757}
    758
    759static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
    760				const struct switchdev_obj_port_mdb *mdb,
    761				struct dsa_db db)
    762{
    763	struct ksz_device *dev = ds->priv;
    764	u32 static_table[4];
    765	u32 data;
    766	int index;
    767	int ret = 0;
    768	u32 mac_hi, mac_lo;
    769
    770	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
    771	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
    772	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
    773
    774	mutex_lock(&dev->alu_mutex);
    775
    776	for (index = 0; index < dev->info->num_statics; index++) {
    777		/* find empty slot first */
    778		data = (index << ALU_STAT_INDEX_S) |
    779			ALU_STAT_READ | ALU_STAT_START;
    780		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
    781
    782		/* wait to be finished */
    783		ret = ksz9477_wait_alu_sta_ready(dev);
    784		if (ret) {
    785			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
    786			goto exit;
    787		}
    788
    789		/* read ALU static table */
    790		ksz9477_read_table(dev, static_table);
    791
    792		if (static_table[0] & ALU_V_STATIC_VALID) {
    793			/* check this has same vid & mac address */
    794
    795			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
    796			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
    797			    static_table[3] == mac_lo) {
    798				/* found matching one */
    799				break;
    800			}
    801		}
    802	}
    803
    804	/* no available entry */
    805	if (index == dev->info->num_statics)
    806		goto exit;
    807
    808	/* clear port */
    809	static_table[1] &= ~BIT(port);
    810
    811	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
    812		/* delete entry */
    813		static_table[0] = 0;
    814		static_table[1] = 0;
    815		static_table[2] = 0;
    816		static_table[3] = 0;
    817	}
    818
    819	ksz9477_write_table(dev, static_table);
    820
    821	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
    822	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
    823
    824	/* wait to be finished */
    825	ret = ksz9477_wait_alu_sta_ready(dev);
    826	if (ret)
    827		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
    828
    829exit:
    830	mutex_unlock(&dev->alu_mutex);
    831
    832	return ret;
    833}
    834
    835static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
    836				   struct dsa_mall_mirror_tc_entry *mirror,
    837				   bool ingress, struct netlink_ext_ack *extack)
    838{
    839	struct ksz_device *dev = ds->priv;
    840	u8 data;
    841	int p;
    842
    843	/* Limit to one sniffer port
    844	 * Check if any of the port is already set for sniffing
    845	 * If yes, instruct the user to remove the previous entry & exit
    846	 */
    847	for (p = 0; p < dev->info->port_cnt; p++) {
    848		/* Skip the current sniffing port */
    849		if (p == mirror->to_local_port)
    850			continue;
    851
    852		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
    853
    854		if (data & PORT_MIRROR_SNIFFER) {
    855			NL_SET_ERR_MSG_MOD(extack,
    856					   "Sniffer port is already configured, delete existing rules & retry");
    857			return -EBUSY;
    858		}
    859	}
    860
    861	if (ingress)
    862		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
    863	else
    864		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
    865
    866	/* configure mirror port */
    867	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
    868		     PORT_MIRROR_SNIFFER, true);
    869
    870	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
    871
    872	return 0;
    873}
    874
    875static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
    876				    struct dsa_mall_mirror_tc_entry *mirror)
    877{
    878	struct ksz_device *dev = ds->priv;
    879	bool in_use = false;
    880	u8 data;
    881	int p;
    882
    883	if (mirror->ingress)
    884		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
    885	else
    886		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
    887
    888
    889	/* Check if any of the port is still referring to sniffer port */
    890	for (p = 0; p < dev->info->port_cnt; p++) {
    891		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
    892
    893		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
    894			in_use = true;
    895			break;
    896		}
    897	}
    898
    899	/* delete sniffing if there are no other mirroring rules */
    900	if (!in_use)
    901		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
    902			     PORT_MIRROR_SNIFFER, false);
    903}
    904
    905static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
    906{
    907	bool gbit;
    908
    909	if (dev->features & NEW_XMII)
    910		gbit = !(data & PORT_MII_NOT_1GBIT);
    911	else
    912		gbit = !!(data & PORT_MII_1000MBIT_S1);
    913	return gbit;
    914}
    915
    916static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
    917{
    918	if (dev->features & NEW_XMII) {
    919		if (gbit)
    920			*data &= ~PORT_MII_NOT_1GBIT;
    921		else
    922			*data |= PORT_MII_NOT_1GBIT;
    923	} else {
    924		if (gbit)
    925			*data |= PORT_MII_1000MBIT_S1;
    926		else
    927			*data &= ~PORT_MII_1000MBIT_S1;
    928	}
    929}
    930
    931static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
    932{
    933	int mode;
    934
    935	if (dev->features & NEW_XMII) {
    936		switch (data & PORT_MII_SEL_M) {
    937		case PORT_MII_SEL:
    938			mode = 0;
    939			break;
    940		case PORT_RMII_SEL:
    941			mode = 1;
    942			break;
    943		case PORT_GMII_SEL:
    944			mode = 2;
    945			break;
    946		default:
    947			mode = 3;
    948		}
    949	} else {
    950		switch (data & PORT_MII_SEL_M) {
    951		case PORT_MII_SEL_S1:
    952			mode = 0;
    953			break;
    954		case PORT_RMII_SEL_S1:
    955			mode = 1;
    956			break;
    957		case PORT_GMII_SEL_S1:
    958			mode = 2;
    959			break;
    960		default:
    961			mode = 3;
    962		}
    963	}
    964	return mode;
    965}
    966
    967static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
    968{
    969	u8 xmii;
    970
    971	if (dev->features & NEW_XMII) {
    972		switch (mode) {
    973		case 0:
    974			xmii = PORT_MII_SEL;
    975			break;
    976		case 1:
    977			xmii = PORT_RMII_SEL;
    978			break;
    979		case 2:
    980			xmii = PORT_GMII_SEL;
    981			break;
    982		default:
    983			xmii = PORT_RGMII_SEL;
    984			break;
    985		}
    986	} else {
    987		switch (mode) {
    988		case 0:
    989			xmii = PORT_MII_SEL_S1;
    990			break;
    991		case 1:
    992			xmii = PORT_RMII_SEL_S1;
    993			break;
    994		case 2:
    995			xmii = PORT_GMII_SEL_S1;
    996			break;
    997		default:
    998			xmii = PORT_RGMII_SEL_S1;
    999			break;
   1000		}
   1001	}
   1002	*data &= ~PORT_MII_SEL_M;
   1003	*data |= xmii;
   1004}
   1005
   1006static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
   1007{
   1008	phy_interface_t interface;
   1009	bool gbit;
   1010	int mode;
   1011	u8 data8;
   1012
   1013	if (port < dev->phy_port_cnt)
   1014		return PHY_INTERFACE_MODE_NA;
   1015	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
   1016	gbit = ksz9477_get_gbit(dev, data8);
   1017	mode = ksz9477_get_xmii(dev, data8);
   1018	switch (mode) {
   1019	case 2:
   1020		interface = PHY_INTERFACE_MODE_GMII;
   1021		if (gbit)
   1022			break;
   1023		fallthrough;
   1024	case 0:
   1025		interface = PHY_INTERFACE_MODE_MII;
   1026		break;
   1027	case 1:
   1028		interface = PHY_INTERFACE_MODE_RMII;
   1029		break;
   1030	default:
   1031		interface = PHY_INTERFACE_MODE_RGMII;
   1032		if (data8 & PORT_RGMII_ID_EG_ENABLE)
   1033			interface = PHY_INTERFACE_MODE_RGMII_TXID;
   1034		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
   1035			interface = PHY_INTERFACE_MODE_RGMII_RXID;
   1036			if (data8 & PORT_RGMII_ID_EG_ENABLE)
   1037				interface = PHY_INTERFACE_MODE_RGMII_ID;
   1038		}
   1039		break;
   1040	}
   1041	return interface;
   1042}
   1043
   1044static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
   1045				   u8 dev_addr, u16 reg_addr, u16 val)
   1046{
   1047	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
   1048		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
   1049	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
   1050	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
   1051		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
   1052	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
   1053}
   1054
   1055static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
   1056{
   1057	/* Apply PHY settings to address errata listed in
   1058	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
   1059	 * Silicon Errata and Data Sheet Clarification documents:
   1060	 *
   1061	 * Register settings are needed to improve PHY receive performance
   1062	 */
   1063	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
   1064	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
   1065	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
   1066	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
   1067	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
   1068	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
   1069	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
   1070
   1071	/* Transmit waveform amplitude can be improved
   1072	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
   1073	 */
   1074	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
   1075
   1076	/* Energy Efficient Ethernet (EEE) feature select must
   1077	 * be manually disabled (except on KSZ8565 which is 100Mbit)
   1078	 */
   1079	if (dev->features & GBIT_SUPPORT)
   1080		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
   1081
   1082	/* Register settings are required to meet data sheet
   1083	 * supply current specifications
   1084	 */
   1085	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
   1086	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
   1087	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
   1088	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
   1089	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
   1090	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
   1091	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
   1092	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
   1093	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
   1094	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
   1095	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
   1096	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
   1097	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
   1098}
   1099
   1100static void ksz9477_get_caps(struct dsa_switch *ds, int port,
   1101			     struct phylink_config *config)
   1102{
   1103	ksz_phylink_get_caps(ds, port, config);
   1104
   1105	config->mac_capabilities = MAC_10 | MAC_100 | MAC_1000FD |
   1106				   MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
   1107}
   1108
   1109static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
   1110{
   1111	struct ksz_port *p = &dev->ports[port];
   1112	struct dsa_switch *ds = dev->ds;
   1113	u8 data8, member;
   1114	u16 data16;
   1115
   1116	/* enable tag tail for host port */
   1117	if (cpu_port)
   1118		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
   1119			     true);
   1120
   1121	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
   1122
   1123	/* set back pressure */
   1124	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
   1125
   1126	/* enable broadcast storm limit */
   1127	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
   1128
   1129	/* disable DiffServ priority */
   1130	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
   1131
   1132	/* replace priority */
   1133	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
   1134		     false);
   1135	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
   1136			   MTI_PVID_REPLACE, false);
   1137
   1138	/* enable 802.1p priority */
   1139	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
   1140
   1141	if (port < dev->phy_port_cnt) {
   1142		/* do not force flow control */
   1143		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
   1144			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
   1145			     false);
   1146
   1147		if (dev->info->phy_errata_9477)
   1148			ksz9477_phy_errata_setup(dev, port);
   1149	} else {
   1150		/* force flow control */
   1151		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
   1152			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
   1153			     true);
   1154
   1155		/* configure MAC to 1G & RGMII mode */
   1156		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
   1157		switch (p->interface) {
   1158		case PHY_INTERFACE_MODE_MII:
   1159			ksz9477_set_xmii(dev, 0, &data8);
   1160			ksz9477_set_gbit(dev, false, &data8);
   1161			p->phydev.speed = SPEED_100;
   1162			break;
   1163		case PHY_INTERFACE_MODE_RMII:
   1164			ksz9477_set_xmii(dev, 1, &data8);
   1165			ksz9477_set_gbit(dev, false, &data8);
   1166			p->phydev.speed = SPEED_100;
   1167			break;
   1168		case PHY_INTERFACE_MODE_GMII:
   1169			ksz9477_set_xmii(dev, 2, &data8);
   1170			ksz9477_set_gbit(dev, true, &data8);
   1171			p->phydev.speed = SPEED_1000;
   1172			break;
   1173		default:
   1174			ksz9477_set_xmii(dev, 3, &data8);
   1175			ksz9477_set_gbit(dev, true, &data8);
   1176			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
   1177			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
   1178			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
   1179			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
   1180				data8 |= PORT_RGMII_ID_IG_ENABLE;
   1181			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
   1182			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
   1183				data8 |= PORT_RGMII_ID_EG_ENABLE;
   1184			/* On KSZ9893, disable RGMII in-band status support */
   1185			if (dev->features & IS_9893)
   1186				data8 &= ~PORT_MII_MAC_MODE;
   1187			p->phydev.speed = SPEED_1000;
   1188			break;
   1189		}
   1190		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
   1191		p->phydev.duplex = 1;
   1192	}
   1193
   1194	if (cpu_port)
   1195		member = dsa_user_ports(ds);
   1196	else
   1197		member = BIT(dsa_upstream_port(ds, port));
   1198
   1199	ksz9477_cfg_port_member(dev, port, member);
   1200
   1201	/* clear pending interrupts */
   1202	if (port < dev->phy_port_cnt)
   1203		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
   1204}
   1205
   1206static void ksz9477_config_cpu_port(struct dsa_switch *ds)
   1207{
   1208	struct ksz_device *dev = ds->priv;
   1209	struct ksz_port *p;
   1210	int i;
   1211
   1212	for (i = 0; i < dev->info->port_cnt; i++) {
   1213		if (dsa_is_cpu_port(ds, i) &&
   1214		    (dev->info->cpu_ports & (1 << i))) {
   1215			phy_interface_t interface;
   1216			const char *prev_msg;
   1217			const char *prev_mode;
   1218
   1219			dev->cpu_port = i;
   1220			p = &dev->ports[i];
   1221
   1222			/* Read from XMII register to determine host port
   1223			 * interface.  If set specifically in device tree
   1224			 * note the difference to help debugging.
   1225			 */
   1226			interface = ksz9477_get_interface(dev, i);
   1227			if (!p->interface) {
   1228				if (dev->compat_interface) {
   1229					dev_warn(dev->dev,
   1230						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
   1231						 "Please update your device tree.\n",
   1232						 i);
   1233					p->interface = dev->compat_interface;
   1234				} else {
   1235					p->interface = interface;
   1236				}
   1237			}
   1238			if (interface && interface != p->interface) {
   1239				prev_msg = " instead of ";
   1240				prev_mode = phy_modes(interface);
   1241			} else {
   1242				prev_msg = "";
   1243				prev_mode = "";
   1244			}
   1245			dev_info(dev->dev,
   1246				 "Port%d: using phy mode %s%s%s\n",
   1247				 i,
   1248				 phy_modes(p->interface),
   1249				 prev_msg,
   1250				 prev_mode);
   1251
   1252			/* enable cpu port */
   1253			ksz9477_port_setup(dev, i, true);
   1254			p->on = 1;
   1255		}
   1256	}
   1257
   1258	for (i = 0; i < dev->info->port_cnt; i++) {
   1259		if (i == dev->cpu_port)
   1260			continue;
   1261		p = &dev->ports[i];
   1262
   1263		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
   1264		p->on = 1;
   1265		if (i < dev->phy_port_cnt)
   1266			p->phy = 1;
   1267		if (dev->chip_id == 0x00947700 && i == 6) {
   1268			p->sgmii = 1;
   1269
   1270			/* SGMII PHY detection code is not implemented yet. */
   1271			p->phy = 0;
   1272		}
   1273	}
   1274}
   1275
   1276static int ksz9477_setup(struct dsa_switch *ds)
   1277{
   1278	struct ksz_device *dev = ds->priv;
   1279	int ret = 0;
   1280
   1281	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
   1282				       dev->info->num_vlans, GFP_KERNEL);
   1283	if (!dev->vlan_cache)
   1284		return -ENOMEM;
   1285
   1286	ret = ksz9477_reset_switch(dev);
   1287	if (ret) {
   1288		dev_err(ds->dev, "failed to reset switch\n");
   1289		return ret;
   1290	}
   1291
   1292	/* Required for port partitioning. */
   1293	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
   1294		      true);
   1295
   1296	/* Do not work correctly with tail tagging. */
   1297	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
   1298
   1299	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
   1300	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
   1301
   1302	/* Now we can configure default MTU value */
   1303	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
   1304				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
   1305	if (ret)
   1306		return ret;
   1307
   1308	ksz9477_config_cpu_port(ds);
   1309
   1310	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
   1311
   1312	/* queue based egress rate limit */
   1313	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
   1314
   1315	/* enable global MIB counter freeze function */
   1316	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
   1317
   1318	/* start switch */
   1319	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
   1320
   1321	ksz_init_mib_timer(dev);
   1322
   1323	ds->configure_vlan_while_not_filtering = false;
   1324
   1325	return 0;
   1326}
   1327
   1328static const struct dsa_switch_ops ksz9477_switch_ops = {
   1329	.get_tag_protocol	= ksz9477_get_tag_protocol,
   1330	.setup			= ksz9477_setup,
   1331	.phy_read		= ksz9477_phy_read16,
   1332	.phy_write		= ksz9477_phy_write16,
   1333	.phylink_mac_link_down	= ksz_mac_link_down,
   1334	.phylink_get_caps	= ksz9477_get_caps,
   1335	.port_enable		= ksz_enable_port,
   1336	.get_strings		= ksz_get_strings,
   1337	.get_ethtool_stats	= ksz_get_ethtool_stats,
   1338	.get_sset_count		= ksz_sset_count,
   1339	.port_bridge_join	= ksz_port_bridge_join,
   1340	.port_bridge_leave	= ksz_port_bridge_leave,
   1341	.port_stp_state_set	= ksz9477_port_stp_state_set,
   1342	.port_fast_age		= ksz_port_fast_age,
   1343	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
   1344	.port_vlan_add		= ksz9477_port_vlan_add,
   1345	.port_vlan_del		= ksz9477_port_vlan_del,
   1346	.port_fdb_dump		= ksz9477_port_fdb_dump,
   1347	.port_fdb_add		= ksz9477_port_fdb_add,
   1348	.port_fdb_del		= ksz9477_port_fdb_del,
   1349	.port_mdb_add           = ksz9477_port_mdb_add,
   1350	.port_mdb_del           = ksz9477_port_mdb_del,
   1351	.port_mirror_add	= ksz9477_port_mirror_add,
   1352	.port_mirror_del	= ksz9477_port_mirror_del,
   1353	.get_stats64		= ksz_get_stats64,
   1354	.port_change_mtu	= ksz9477_change_mtu,
   1355	.port_max_mtu		= ksz9477_max_mtu,
   1356};
   1357
   1358static u32 ksz9477_get_port_addr(int port, int offset)
   1359{
   1360	return PORT_CTRL_ADDR(port, offset);
   1361}
   1362
   1363static int ksz9477_switch_detect(struct ksz_device *dev)
   1364{
   1365	u8 data8;
   1366	u8 id_hi;
   1367	u8 id_lo;
   1368	u32 id32;
   1369	int ret;
   1370
   1371	/* turn off SPI DO Edge select */
   1372	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
   1373	if (ret)
   1374		return ret;
   1375
   1376	data8 &= ~SPI_AUTO_EDGE_DETECTION;
   1377	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
   1378	if (ret)
   1379		return ret;
   1380
   1381	/* read chip id */
   1382	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
   1383	if (ret)
   1384		return ret;
   1385	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
   1386	if (ret)
   1387		return ret;
   1388
   1389	/* Number of ports can be reduced depending on chip. */
   1390	dev->phy_port_cnt = 5;
   1391
   1392	/* Default capability is gigabit capable. */
   1393	dev->features = GBIT_SUPPORT;
   1394
   1395	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
   1396	id_hi = (u8)(id32 >> 16);
   1397	id_lo = (u8)(id32 >> 8);
   1398	if ((id_lo & 0xf) == 3) {
   1399		/* Chip is from KSZ9893 design. */
   1400		dev_info(dev->dev, "Found KSZ9893\n");
   1401		dev->features |= IS_9893;
   1402
   1403		/* Chip does not support gigabit. */
   1404		if (data8 & SW_QW_ABLE)
   1405			dev->features &= ~GBIT_SUPPORT;
   1406		dev->phy_port_cnt = 2;
   1407	} else {
   1408		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
   1409		/* Chip uses new XMII register definitions. */
   1410		dev->features |= NEW_XMII;
   1411
   1412		/* Chip does not support gigabit. */
   1413		if (!(data8 & SW_GIGABIT_ABLE))
   1414			dev->features &= ~GBIT_SUPPORT;
   1415	}
   1416
   1417	/* Change chip id to known ones so it can be matched against them. */
   1418	id32 = (id_hi << 16) | (id_lo << 8);
   1419
   1420	dev->chip_id = id32;
   1421
   1422	return 0;
   1423}
   1424
   1425static int ksz9477_switch_init(struct ksz_device *dev)
   1426{
   1427	dev->ds->ops = &ksz9477_switch_ops;
   1428
   1429	dev->port_mask = (1 << dev->info->port_cnt) - 1;
   1430
   1431	return 0;
   1432}
   1433
   1434static void ksz9477_switch_exit(struct ksz_device *dev)
   1435{
   1436	ksz9477_reset_switch(dev);
   1437}
   1438
   1439static const struct ksz_dev_ops ksz9477_dev_ops = {
   1440	.get_port_addr = ksz9477_get_port_addr,
   1441	.cfg_port_member = ksz9477_cfg_port_member,
   1442	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
   1443	.port_setup = ksz9477_port_setup,
   1444	.r_mib_cnt = ksz9477_r_mib_cnt,
   1445	.r_mib_pkt = ksz9477_r_mib_pkt,
   1446	.r_mib_stat64 = ksz_r_mib_stats64,
   1447	.freeze_mib = ksz9477_freeze_mib,
   1448	.port_init_cnt = ksz9477_port_init_cnt,
   1449	.shutdown = ksz9477_reset_switch,
   1450	.detect = ksz9477_switch_detect,
   1451	.init = ksz9477_switch_init,
   1452	.exit = ksz9477_switch_exit,
   1453};
   1454
   1455int ksz9477_switch_register(struct ksz_device *dev)
   1456{
   1457	int ret, i;
   1458	struct phy_device *phydev;
   1459
   1460	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
   1461	if (ret)
   1462		return ret;
   1463
   1464	for (i = 0; i < dev->phy_port_cnt; ++i) {
   1465		if (!dsa_is_user_port(dev->ds, i))
   1466			continue;
   1467
   1468		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
   1469
   1470		/* The MAC actually cannot run in 1000 half-duplex mode. */
   1471		phy_remove_link_mode(phydev,
   1472				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
   1473
   1474		/* PHY does not support gigabit. */
   1475		if (!(dev->features & GBIT_SUPPORT))
   1476			phy_remove_link_mode(phydev,
   1477					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
   1478	}
   1479	return ret;
   1480}
   1481EXPORT_SYMBOL(ksz9477_switch_register);
   1482
   1483MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
   1484MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
   1485MODULE_LICENSE("GPL");