cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mt7530.c (84911B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Mediatek MT7530 DSA Switch driver
      4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
      5 */
      6#include <linux/etherdevice.h>
      7#include <linux/if_bridge.h>
      8#include <linux/iopoll.h>
      9#include <linux/mdio.h>
     10#include <linux/mfd/syscon.h>
     11#include <linux/module.h>
     12#include <linux/netdevice.h>
     13#include <linux/of_irq.h>
     14#include <linux/of_mdio.h>
     15#include <linux/of_net.h>
     16#include <linux/of_platform.h>
     17#include <linux/phylink.h>
     18#include <linux/regmap.h>
     19#include <linux/regulator/consumer.h>
     20#include <linux/reset.h>
     21#include <linux/gpio/consumer.h>
     22#include <linux/gpio/driver.h>
     23#include <net/dsa.h>
     24
     25#include "mt7530.h"
     26
     27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
     28{
     29	return container_of(pcs, struct mt753x_pcs, pcs);
     30}
     31
     32/* String, offset, and register size in bytes if different from 4 bytes */
     33static const struct mt7530_mib_desc mt7530_mib[] = {
     34	MIB_DESC(1, 0x00, "TxDrop"),
     35	MIB_DESC(1, 0x04, "TxCrcErr"),
     36	MIB_DESC(1, 0x08, "TxUnicast"),
     37	MIB_DESC(1, 0x0c, "TxMulticast"),
     38	MIB_DESC(1, 0x10, "TxBroadcast"),
     39	MIB_DESC(1, 0x14, "TxCollision"),
     40	MIB_DESC(1, 0x18, "TxSingleCollision"),
     41	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
     42	MIB_DESC(1, 0x20, "TxDeferred"),
     43	MIB_DESC(1, 0x24, "TxLateCollision"),
     44	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
     45	MIB_DESC(1, 0x2c, "TxPause"),
     46	MIB_DESC(1, 0x30, "TxPktSz64"),
     47	MIB_DESC(1, 0x34, "TxPktSz65To127"),
     48	MIB_DESC(1, 0x38, "TxPktSz128To255"),
     49	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
     50	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
     51	MIB_DESC(1, 0x44, "Tx1024ToMax"),
     52	MIB_DESC(2, 0x48, "TxBytes"),
     53	MIB_DESC(1, 0x60, "RxDrop"),
     54	MIB_DESC(1, 0x64, "RxFiltering"),
     55	MIB_DESC(1, 0x68, "RxUnicast"),
     56	MIB_DESC(1, 0x6c, "RxMulticast"),
     57	MIB_DESC(1, 0x70, "RxBroadcast"),
     58	MIB_DESC(1, 0x74, "RxAlignErr"),
     59	MIB_DESC(1, 0x78, "RxCrcErr"),
     60	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
     61	MIB_DESC(1, 0x80, "RxFragErr"),
     62	MIB_DESC(1, 0x84, "RxOverSzErr"),
     63	MIB_DESC(1, 0x88, "RxJabberErr"),
     64	MIB_DESC(1, 0x8c, "RxPause"),
     65	MIB_DESC(1, 0x90, "RxPktSz64"),
     66	MIB_DESC(1, 0x94, "RxPktSz65To127"),
     67	MIB_DESC(1, 0x98, "RxPktSz128To255"),
     68	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
     69	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
     70	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
     71	MIB_DESC(2, 0xa8, "RxBytes"),
     72	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
     73	MIB_DESC(1, 0xb4, "RxIngressDrop"),
     74	MIB_DESC(1, 0xb8, "RxArlDrop"),
     75};
     76
     77/* Since phy_device has not yet been created and
     78 * phy_{read,write}_mmd_indirect is not available, we provide our own
     79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
     80 * to complete this function.
     81 */
     82static int
     83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
     84{
     85	struct mii_bus *bus = priv->bus;
     86	int value, ret;
     87
     88	/* Write the desired MMD Devad */
     89	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
     90	if (ret < 0)
     91		goto err;
     92
     93	/* Write the desired MMD register address */
     94	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
     95	if (ret < 0)
     96		goto err;
     97
     98	/* Select the Function : DATA with no post increment */
     99	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
    100	if (ret < 0)
    101		goto err;
    102
    103	/* Read the content of the MMD's selected register */
    104	value = bus->read(bus, 0, MII_MMD_DATA);
    105
    106	return value;
    107err:
    108	dev_err(&bus->dev,  "failed to read mmd register\n");
    109
    110	return ret;
    111}
    112
    113static int
    114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
    115			int devad, u32 data)
    116{
    117	struct mii_bus *bus = priv->bus;
    118	int ret;
    119
    120	/* Write the desired MMD Devad */
    121	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
    122	if (ret < 0)
    123		goto err;
    124
    125	/* Write the desired MMD register address */
    126	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
    127	if (ret < 0)
    128		goto err;
    129
    130	/* Select the Function : DATA with no post increment */
    131	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
    132	if (ret < 0)
    133		goto err;
    134
    135	/* Write the data into MMD's selected register */
    136	ret = bus->write(bus, 0, MII_MMD_DATA, data);
    137err:
    138	if (ret < 0)
    139		dev_err(&bus->dev,
    140			"failed to write mmd register\n");
    141	return ret;
    142}
    143
    144static void
    145core_write(struct mt7530_priv *priv, u32 reg, u32 val)
    146{
    147	struct mii_bus *bus = priv->bus;
    148
    149	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    150
    151	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
    152
    153	mutex_unlock(&bus->mdio_lock);
    154}
    155
    156static void
    157core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
    158{
    159	struct mii_bus *bus = priv->bus;
    160	u32 val;
    161
    162	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    163
    164	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
    165	val &= ~mask;
    166	val |= set;
    167	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
    168
    169	mutex_unlock(&bus->mdio_lock);
    170}
    171
    172static void
    173core_set(struct mt7530_priv *priv, u32 reg, u32 val)
    174{
    175	core_rmw(priv, reg, 0, val);
    176}
    177
    178static void
    179core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
    180{
    181	core_rmw(priv, reg, val, 0);
    182}
    183
    184static int
    185mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
    186{
    187	struct mii_bus *bus = priv->bus;
    188	u16 page, r, lo, hi;
    189	int ret;
    190
    191	page = (reg >> 6) & 0x3ff;
    192	r  = (reg >> 2) & 0xf;
    193	lo = val & 0xffff;
    194	hi = val >> 16;
    195
    196	/* MT7530 uses 31 as the pseudo port */
    197	ret = bus->write(bus, 0x1f, 0x1f, page);
    198	if (ret < 0)
    199		goto err;
    200
    201	ret = bus->write(bus, 0x1f, r,  lo);
    202	if (ret < 0)
    203		goto err;
    204
    205	ret = bus->write(bus, 0x1f, 0x10, hi);
    206err:
    207	if (ret < 0)
    208		dev_err(&bus->dev,
    209			"failed to write mt7530 register\n");
    210	return ret;
    211}
    212
    213static u32
    214mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
    215{
    216	struct mii_bus *bus = priv->bus;
    217	u16 page, r, lo, hi;
    218	int ret;
    219
    220	page = (reg >> 6) & 0x3ff;
    221	r = (reg >> 2) & 0xf;
    222
    223	/* MT7530 uses 31 as the pseudo port */
    224	ret = bus->write(bus, 0x1f, 0x1f, page);
    225	if (ret < 0) {
    226		dev_err(&bus->dev,
    227			"failed to read mt7530 register\n");
    228		return ret;
    229	}
    230
    231	lo = bus->read(bus, 0x1f, r);
    232	hi = bus->read(bus, 0x1f, 0x10);
    233
    234	return (hi << 16) | (lo & 0xffff);
    235}
    236
    237static void
    238mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
    239{
    240	struct mii_bus *bus = priv->bus;
    241
    242	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    243
    244	mt7530_mii_write(priv, reg, val);
    245
    246	mutex_unlock(&bus->mdio_lock);
    247}
    248
    249static u32
    250_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
    251{
    252	return mt7530_mii_read(p->priv, p->reg);
    253}
    254
    255static u32
    256_mt7530_read(struct mt7530_dummy_poll *p)
    257{
    258	struct mii_bus		*bus = p->priv->bus;
    259	u32 val;
    260
    261	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    262
    263	val = mt7530_mii_read(p->priv, p->reg);
    264
    265	mutex_unlock(&bus->mdio_lock);
    266
    267	return val;
    268}
    269
    270static u32
    271mt7530_read(struct mt7530_priv *priv, u32 reg)
    272{
    273	struct mt7530_dummy_poll p;
    274
    275	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
    276	return _mt7530_read(&p);
    277}
    278
    279static void
    280mt7530_rmw(struct mt7530_priv *priv, u32 reg,
    281	   u32 mask, u32 set)
    282{
    283	struct mii_bus *bus = priv->bus;
    284	u32 val;
    285
    286	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    287
    288	val = mt7530_mii_read(priv, reg);
    289	val &= ~mask;
    290	val |= set;
    291	mt7530_mii_write(priv, reg, val);
    292
    293	mutex_unlock(&bus->mdio_lock);
    294}
    295
    296static void
    297mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
    298{
    299	mt7530_rmw(priv, reg, 0, val);
    300}
    301
    302static void
    303mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
    304{
    305	mt7530_rmw(priv, reg, val, 0);
    306}
    307
    308static int
    309mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
    310{
    311	u32 val;
    312	int ret;
    313	struct mt7530_dummy_poll p;
    314
    315	/* Set the command operating upon the MAC address entries */
    316	val = ATC_BUSY | ATC_MAT(0) | cmd;
    317	mt7530_write(priv, MT7530_ATC, val);
    318
    319	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
    320	ret = readx_poll_timeout(_mt7530_read, &p, val,
    321				 !(val & ATC_BUSY), 20, 20000);
    322	if (ret < 0) {
    323		dev_err(priv->dev, "reset timeout\n");
    324		return ret;
    325	}
    326
    327	/* Additional sanity for read command if the specified
    328	 * entry is invalid
    329	 */
    330	val = mt7530_read(priv, MT7530_ATC);
    331	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
    332		return -EINVAL;
    333
    334	if (rsp)
    335		*rsp = val;
    336
    337	return 0;
    338}
    339
    340static void
    341mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
    342{
    343	u32 reg[3];
    344	int i;
    345
    346	/* Read from ARL table into an array */
    347	for (i = 0; i < 3; i++) {
    348		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
    349
    350		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
    351			__func__, __LINE__, i, reg[i]);
    352	}
    353
    354	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
    355	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
    356	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
    357	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
    358	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
    359	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
    360	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
    361	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
    362	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
    363	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
    364}
    365
    366static void
    367mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
    368		 u8 port_mask, const u8 *mac,
    369		 u8 aging, u8 type)
    370{
    371	u32 reg[3] = { 0 };
    372	int i;
    373
    374	reg[1] |= vid & CVID_MASK;
    375	reg[1] |= ATA2_IVL;
    376	reg[1] |= ATA2_FID(FID_BRIDGED);
    377	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
    378	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
    379	/* STATIC_ENT indicate that entry is static wouldn't
    380	 * be aged out and STATIC_EMP specified as erasing an
    381	 * entry
    382	 */
    383	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
    384	reg[1] |= mac[5] << MAC_BYTE_5;
    385	reg[1] |= mac[4] << MAC_BYTE_4;
    386	reg[0] |= mac[3] << MAC_BYTE_3;
    387	reg[0] |= mac[2] << MAC_BYTE_2;
    388	reg[0] |= mac[1] << MAC_BYTE_1;
    389	reg[0] |= mac[0] << MAC_BYTE_0;
    390
    391	/* Write array into the ARL table */
    392	for (i = 0; i < 3; i++)
    393		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
    394}
    395
    396/* Setup TX circuit including relevant PAD and driving */
    397static int
    398mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
    399{
    400	struct mt7530_priv *priv = ds->priv;
    401	u32 ncpo1, ssc_delta, trgint, i, xtal;
    402
    403	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
    404
    405	if (xtal == HWTRAP_XTAL_20MHZ) {
    406		dev_err(priv->dev,
    407			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
    408			__func__);
    409		return -EINVAL;
    410	}
    411
    412	switch (interface) {
    413	case PHY_INTERFACE_MODE_RGMII:
    414		trgint = 0;
    415		/* PLL frequency: 125MHz */
    416		ncpo1 = 0x0c80;
    417		break;
    418	case PHY_INTERFACE_MODE_TRGMII:
    419		trgint = 1;
    420		if (priv->id == ID_MT7621) {
    421			/* PLL frequency: 150MHz: 1.2GBit */
    422			if (xtal == HWTRAP_XTAL_40MHZ)
    423				ncpo1 = 0x0780;
    424			if (xtal == HWTRAP_XTAL_25MHZ)
    425				ncpo1 = 0x0a00;
    426		} else { /* PLL frequency: 250MHz: 2.0Gbit */
    427			if (xtal == HWTRAP_XTAL_40MHZ)
    428				ncpo1 = 0x0c80;
    429			if (xtal == HWTRAP_XTAL_25MHZ)
    430				ncpo1 = 0x1400;
    431		}
    432		break;
    433	default:
    434		dev_err(priv->dev, "xMII interface %d not supported\n",
    435			interface);
    436		return -EINVAL;
    437	}
    438
    439	if (xtal == HWTRAP_XTAL_25MHZ)
    440		ssc_delta = 0x57;
    441	else
    442		ssc_delta = 0x87;
    443
    444	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
    445		   P6_INTF_MODE(trgint));
    446
    447	/* Lower Tx Driving for TRGMII path */
    448	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
    449		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
    450			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
    451
    452	/* Disable MT7530 core and TRGMII Tx clocks */
    453	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
    454		   REG_GSWCK_EN | REG_TRGMIICK_EN);
    455
    456	/* Setup core clock for MT7530 */
    457	/* Disable PLL */
    458	core_write(priv, CORE_GSWPLL_GRP1, 0);
    459
    460	/* Set core clock into 500Mhz */
    461	core_write(priv, CORE_GSWPLL_GRP2,
    462		   RG_GSWPLL_POSDIV_500M(1) |
    463		   RG_GSWPLL_FBKDIV_500M(25));
    464
    465	/* Enable PLL */
    466	core_write(priv, CORE_GSWPLL_GRP1,
    467		   RG_GSWPLL_EN_PRE |
    468		   RG_GSWPLL_POSDIV_200M(2) |
    469		   RG_GSWPLL_FBKDIV_200M(32));
    470
    471	/* Setup the MT7530 TRGMII Tx Clock */
    472	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
    473	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
    474	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
    475	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
    476	core_write(priv, CORE_PLL_GROUP4,
    477		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
    478		   RG_SYSPLL_BIAS_LPF_EN);
    479	core_write(priv, CORE_PLL_GROUP2,
    480		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
    481		   RG_SYSPLL_POSDIV(1));
    482	core_write(priv, CORE_PLL_GROUP7,
    483		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
    484		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
    485
    486	/* Enable MT7530 core and TRGMII Tx clocks */
    487	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
    488		 REG_GSWCK_EN | REG_TRGMIICK_EN);
    489
    490	if (!trgint)
    491		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
    492			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
    493				   RD_TAP_MASK, RD_TAP(16));
    494	return 0;
    495}
    496
    497static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
    498{
    499	u32 val;
    500
    501	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
    502
    503	return (val & PAD_DUAL_SGMII_EN) != 0;
    504}
    505
    506static int
    507mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
    508{
    509	struct mt7530_priv *priv = ds->priv;
    510	u32 top_sig;
    511	u32 hwstrap;
    512	u32 xtal;
    513	u32 val;
    514
    515	if (mt7531_dual_sgmii_supported(priv))
    516		return 0;
    517
    518	val = mt7530_read(priv, MT7531_CREV);
    519	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
    520	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
    521	if ((val & CHIP_REV_M) > 0)
    522		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
    523						    HWTRAP_XTAL_FSEL_25MHZ;
    524	else
    525		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
    526
    527	/* Step 1 : Disable MT7531 COREPLL */
    528	val = mt7530_read(priv, MT7531_PLLGP_EN);
    529	val &= ~EN_COREPLL;
    530	mt7530_write(priv, MT7531_PLLGP_EN, val);
    531
    532	/* Step 2: switch to XTAL output */
    533	val = mt7530_read(priv, MT7531_PLLGP_EN);
    534	val |= SW_CLKSW;
    535	mt7530_write(priv, MT7531_PLLGP_EN, val);
    536
    537	val = mt7530_read(priv, MT7531_PLLGP_CR0);
    538	val &= ~RG_COREPLL_EN;
    539	mt7530_write(priv, MT7531_PLLGP_CR0, val);
    540
    541	/* Step 3: disable PLLGP and enable program PLLGP */
    542	val = mt7530_read(priv, MT7531_PLLGP_EN);
    543	val |= SW_PLLGP;
    544	mt7530_write(priv, MT7531_PLLGP_EN, val);
    545
    546	/* Step 4: program COREPLL output frequency to 500MHz */
    547	val = mt7530_read(priv, MT7531_PLLGP_CR0);
    548	val &= ~RG_COREPLL_POSDIV_M;
    549	val |= 2 << RG_COREPLL_POSDIV_S;
    550	mt7530_write(priv, MT7531_PLLGP_CR0, val);
    551	usleep_range(25, 35);
    552
    553	switch (xtal) {
    554	case HWTRAP_XTAL_FSEL_25MHZ:
    555		val = mt7530_read(priv, MT7531_PLLGP_CR0);
    556		val &= ~RG_COREPLL_SDM_PCW_M;
    557		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
    558		mt7530_write(priv, MT7531_PLLGP_CR0, val);
    559		break;
    560	case HWTRAP_XTAL_FSEL_40MHZ:
    561		val = mt7530_read(priv, MT7531_PLLGP_CR0);
    562		val &= ~RG_COREPLL_SDM_PCW_M;
    563		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
    564		mt7530_write(priv, MT7531_PLLGP_CR0, val);
    565		break;
    566	}
    567
    568	/* Set feedback divide ratio update signal to high */
    569	val = mt7530_read(priv, MT7531_PLLGP_CR0);
    570	val |= RG_COREPLL_SDM_PCW_CHG;
    571	mt7530_write(priv, MT7531_PLLGP_CR0, val);
    572	/* Wait for at least 16 XTAL clocks */
    573	usleep_range(10, 20);
    574
    575	/* Step 5: set feedback divide ratio update signal to low */
    576	val = mt7530_read(priv, MT7531_PLLGP_CR0);
    577	val &= ~RG_COREPLL_SDM_PCW_CHG;
    578	mt7530_write(priv, MT7531_PLLGP_CR0, val);
    579
    580	/* Enable 325M clock for SGMII */
    581	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
    582
    583	/* Enable 250SSC clock for RGMII */
    584	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
    585
    586	/* Step 6: Enable MT7531 PLL */
    587	val = mt7530_read(priv, MT7531_PLLGP_CR0);
    588	val |= RG_COREPLL_EN;
    589	mt7530_write(priv, MT7531_PLLGP_CR0, val);
    590
    591	val = mt7530_read(priv, MT7531_PLLGP_EN);
    592	val |= EN_COREPLL;
    593	mt7530_write(priv, MT7531_PLLGP_EN, val);
    594	usleep_range(25, 35);
    595
    596	return 0;
    597}
    598
    599static void
    600mt7530_mib_reset(struct dsa_switch *ds)
    601{
    602	struct mt7530_priv *priv = ds->priv;
    603
    604	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
    605	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
    606}
    607
    608static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
    609{
    610	return mdiobus_read_nested(priv->bus, port, regnum);
    611}
    612
    613static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
    614			    u16 val)
    615{
    616	return mdiobus_write_nested(priv->bus, port, regnum, val);
    617}
    618
    619static int
    620mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
    621			int regnum)
    622{
    623	struct mii_bus *bus = priv->bus;
    624	struct mt7530_dummy_poll p;
    625	u32 reg, val;
    626	int ret;
    627
    628	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
    629
    630	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    631
    632	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    633				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    634	if (ret < 0) {
    635		dev_err(priv->dev, "poll timeout\n");
    636		goto out;
    637	}
    638
    639	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
    640	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
    641	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
    642
    643	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    644				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    645	if (ret < 0) {
    646		dev_err(priv->dev, "poll timeout\n");
    647		goto out;
    648	}
    649
    650	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
    651	      MT7531_MDIO_DEV_ADDR(devad);
    652	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
    653
    654	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    655				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    656	if (ret < 0) {
    657		dev_err(priv->dev, "poll timeout\n");
    658		goto out;
    659	}
    660
    661	ret = val & MT7531_MDIO_RW_DATA_MASK;
    662out:
    663	mutex_unlock(&bus->mdio_lock);
    664
    665	return ret;
    666}
    667
    668static int
    669mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
    670			 int regnum, u32 data)
    671{
    672	struct mii_bus *bus = priv->bus;
    673	struct mt7530_dummy_poll p;
    674	u32 val, reg;
    675	int ret;
    676
    677	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
    678
    679	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    680
    681	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    682				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    683	if (ret < 0) {
    684		dev_err(priv->dev, "poll timeout\n");
    685		goto out;
    686	}
    687
    688	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
    689	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
    690	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
    691
    692	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    693				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    694	if (ret < 0) {
    695		dev_err(priv->dev, "poll timeout\n");
    696		goto out;
    697	}
    698
    699	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
    700	      MT7531_MDIO_DEV_ADDR(devad) | data;
    701	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
    702
    703	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    704				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    705	if (ret < 0) {
    706		dev_err(priv->dev, "poll timeout\n");
    707		goto out;
    708	}
    709
    710out:
    711	mutex_unlock(&bus->mdio_lock);
    712
    713	return ret;
    714}
    715
    716static int
    717mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
    718{
    719	struct mii_bus *bus = priv->bus;
    720	struct mt7530_dummy_poll p;
    721	int ret;
    722	u32 val;
    723
    724	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
    725
    726	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    727
    728	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    729				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    730	if (ret < 0) {
    731		dev_err(priv->dev, "poll timeout\n");
    732		goto out;
    733	}
    734
    735	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
    736	      MT7531_MDIO_REG_ADDR(regnum);
    737
    738	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
    739
    740	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
    741				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
    742	if (ret < 0) {
    743		dev_err(priv->dev, "poll timeout\n");
    744		goto out;
    745	}
    746
    747	ret = val & MT7531_MDIO_RW_DATA_MASK;
    748out:
    749	mutex_unlock(&bus->mdio_lock);
    750
    751	return ret;
    752}
    753
    754static int
    755mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
    756			 u16 data)
    757{
    758	struct mii_bus *bus = priv->bus;
    759	struct mt7530_dummy_poll p;
    760	int ret;
    761	u32 reg;
    762
    763	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
    764
    765	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
    766
    767	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
    768				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
    769	if (ret < 0) {
    770		dev_err(priv->dev, "poll timeout\n");
    771		goto out;
    772	}
    773
    774	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
    775	      MT7531_MDIO_REG_ADDR(regnum) | data;
    776
    777	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
    778
    779	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
    780				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
    781	if (ret < 0) {
    782		dev_err(priv->dev, "poll timeout\n");
    783		goto out;
    784	}
    785
    786out:
    787	mutex_unlock(&bus->mdio_lock);
    788
    789	return ret;
    790}
    791
    792static int
    793mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
    794{
    795	int devad;
    796	int ret;
    797
    798	if (regnum & MII_ADDR_C45) {
    799		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
    800		ret = mt7531_ind_c45_phy_read(priv, port, devad,
    801					      regnum & MII_REGADDR_C45_MASK);
    802	} else {
    803		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
    804	}
    805
    806	return ret;
    807}
    808
    809static int
    810mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
    811		     u16 data)
    812{
    813	int devad;
    814	int ret;
    815
    816	if (regnum & MII_ADDR_C45) {
    817		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
    818		ret = mt7531_ind_c45_phy_write(priv, port, devad,
    819					       regnum & MII_REGADDR_C45_MASK,
    820					       data);
    821	} else {
    822		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
    823	}
    824
    825	return ret;
    826}
    827
    828static int
    829mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
    830{
    831	struct mt7530_priv *priv = bus->priv;
    832
    833	return priv->info->phy_read(priv, port, regnum);
    834}
    835
    836static int
    837mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
    838{
    839	struct mt7530_priv *priv = bus->priv;
    840
    841	return priv->info->phy_write(priv, port, regnum, val);
    842}
    843
    844static void
    845mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
    846		   uint8_t *data)
    847{
    848	int i;
    849
    850	if (stringset != ETH_SS_STATS)
    851		return;
    852
    853	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
    854		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
    855			ETH_GSTRING_LEN);
    856}
    857
    858static void
    859mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
    860			 uint64_t *data)
    861{
    862	struct mt7530_priv *priv = ds->priv;
    863	const struct mt7530_mib_desc *mib;
    864	u32 reg, i;
    865	u64 hi;
    866
    867	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
    868		mib = &mt7530_mib[i];
    869		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
    870
    871		data[i] = mt7530_read(priv, reg);
    872		if (mib->size == 2) {
    873			hi = mt7530_read(priv, reg + 4);
    874			data[i] |= hi << 32;
    875		}
    876	}
    877}
    878
    879static int
    880mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
    881{
    882	if (sset != ETH_SS_STATS)
    883		return 0;
    884
    885	return ARRAY_SIZE(mt7530_mib);
    886}
    887
    888static int
    889mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
    890{
    891	struct mt7530_priv *priv = ds->priv;
    892	unsigned int secs = msecs / 1000;
    893	unsigned int tmp_age_count;
    894	unsigned int error = -1;
    895	unsigned int age_count;
    896	unsigned int age_unit;
    897
    898	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
    899	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
    900		return -ERANGE;
    901
    902	/* iterate through all possible age_count to find the closest pair */
    903	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
    904		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
    905
    906		if (tmp_age_unit <= AGE_UNIT_MAX) {
    907			unsigned int tmp_error = secs -
    908				(tmp_age_count + 1) * (tmp_age_unit + 1);
    909
    910			/* found a closer pair */
    911			if (error > tmp_error) {
    912				error = tmp_error;
    913				age_count = tmp_age_count;
    914				age_unit = tmp_age_unit;
    915			}
    916
    917			/* found the exact match, so break the loop */
    918			if (!error)
    919				break;
    920		}
    921	}
    922
    923	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
    924
    925	return 0;
    926}
    927
    928static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
    929{
    930	struct mt7530_priv *priv = ds->priv;
    931	u8 tx_delay = 0;
    932	int val;
    933
    934	mutex_lock(&priv->reg_mutex);
    935
    936	val = mt7530_read(priv, MT7530_MHWTRAP);
    937
    938	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
    939	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
    940
    941	switch (priv->p5_intf_sel) {
    942	case P5_INTF_SEL_PHY_P0:
    943		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
    944		val |= MHWTRAP_PHY0_SEL;
    945		fallthrough;
    946	case P5_INTF_SEL_PHY_P4:
    947		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
    948		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
    949
    950		/* Setup the MAC by default for the cpu port */
    951		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
    952		break;
    953	case P5_INTF_SEL_GMAC5:
    954		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
    955		val &= ~MHWTRAP_P5_DIS;
    956		break;
    957	case P5_DISABLED:
    958		interface = PHY_INTERFACE_MODE_NA;
    959		break;
    960	default:
    961		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
    962			priv->p5_intf_sel);
    963		goto unlock_exit;
    964	}
    965
    966	/* Setup RGMII settings */
    967	if (phy_interface_mode_is_rgmii(interface)) {
    968		val |= MHWTRAP_P5_RGMII_MODE;
    969
    970		/* P5 RGMII RX Clock Control: delay setting for 1000M */
    971		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
    972
    973		/* Don't set delay in DSA mode */
    974		if (!dsa_is_dsa_port(priv->ds, 5) &&
    975		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
    976		     interface == PHY_INTERFACE_MODE_RGMII_ID))
    977			tx_delay = 4; /* n * 0.5 ns */
    978
    979		/* P5 RGMII TX Clock Control: delay x */
    980		mt7530_write(priv, MT7530_P5RGMIITXCR,
    981			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
    982
    983		/* reduce P5 RGMII Tx driving, 8mA */
    984		mt7530_write(priv, MT7530_IO_DRV_CR,
    985			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
    986	}
    987
    988	mt7530_write(priv, MT7530_MHWTRAP, val);
    989
    990	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
    991		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
    992
    993	priv->p5_interface = interface;
    994
    995unlock_exit:
    996	mutex_unlock(&priv->reg_mutex);
    997}
    998
    999static int
   1000mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
   1001{
   1002	struct mt7530_priv *priv = ds->priv;
   1003	int ret;
   1004
   1005	/* Setup max capability of CPU port at first */
   1006	if (priv->info->cpu_port_config) {
   1007		ret = priv->info->cpu_port_config(ds, port);
   1008		if (ret)
   1009			return ret;
   1010	}
   1011
   1012	/* Enable Mediatek header mode on the cpu port */
   1013	mt7530_write(priv, MT7530_PVC_P(port),
   1014		     PORT_SPEC_TAG);
   1015
   1016	/* Disable flooding by default */
   1017	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
   1018		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
   1019
   1020	/* Set CPU port number */
   1021	if (priv->id == ID_MT7621)
   1022		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
   1023
   1024	/* CPU port gets connected to all user ports of
   1025	 * the switch.
   1026	 */
   1027	mt7530_write(priv, MT7530_PCR_P(port),
   1028		     PCR_MATRIX(dsa_user_ports(priv->ds)));
   1029
   1030	/* Set to fallback mode for independent VLAN learning */
   1031	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
   1032		   MT7530_PORT_FALLBACK_MODE);
   1033
   1034	return 0;
   1035}
   1036
   1037static int
   1038mt7530_port_enable(struct dsa_switch *ds, int port,
   1039		   struct phy_device *phy)
   1040{
   1041	struct mt7530_priv *priv = ds->priv;
   1042
   1043	mutex_lock(&priv->reg_mutex);
   1044
   1045	/* Allow the user port gets connected to the cpu port and also
   1046	 * restore the port matrix if the port is the member of a certain
   1047	 * bridge.
   1048	 */
   1049	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
   1050	priv->ports[port].enable = true;
   1051	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
   1052		   priv->ports[port].pm);
   1053	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
   1054
   1055	mutex_unlock(&priv->reg_mutex);
   1056
   1057	return 0;
   1058}
   1059
   1060static void
   1061mt7530_port_disable(struct dsa_switch *ds, int port)
   1062{
   1063	struct mt7530_priv *priv = ds->priv;
   1064
   1065	mutex_lock(&priv->reg_mutex);
   1066
   1067	/* Clear up all port matrix which could be restored in the next
   1068	 * enablement for the port.
   1069	 */
   1070	priv->ports[port].enable = false;
   1071	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
   1072		   PCR_MATRIX_CLR);
   1073	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
   1074
   1075	mutex_unlock(&priv->reg_mutex);
   1076}
   1077
   1078static int
   1079mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
   1080{
   1081	struct mt7530_priv *priv = ds->priv;
   1082	struct mii_bus *bus = priv->bus;
   1083	int length;
   1084	u32 val;
   1085
   1086	/* When a new MTU is set, DSA always set the CPU port's MTU to the
   1087	 * largest MTU of the slave ports. Because the switch only has a global
   1088	 * RX length register, only allowing CPU port here is enough.
   1089	 */
   1090	if (!dsa_is_cpu_port(ds, port))
   1091		return 0;
   1092
   1093	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
   1094
   1095	val = mt7530_mii_read(priv, MT7530_GMACCR);
   1096	val &= ~MAX_RX_PKT_LEN_MASK;
   1097
   1098	/* RX length also includes Ethernet header, MTK tag, and FCS length */
   1099	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
   1100	if (length <= 1522) {
   1101		val |= MAX_RX_PKT_LEN_1522;
   1102	} else if (length <= 1536) {
   1103		val |= MAX_RX_PKT_LEN_1536;
   1104	} else if (length <= 1552) {
   1105		val |= MAX_RX_PKT_LEN_1552;
   1106	} else {
   1107		val &= ~MAX_RX_JUMBO_MASK;
   1108		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
   1109		val |= MAX_RX_PKT_LEN_JUMBO;
   1110	}
   1111
   1112	mt7530_mii_write(priv, MT7530_GMACCR, val);
   1113
   1114	mutex_unlock(&bus->mdio_lock);
   1115
   1116	return 0;
   1117}
   1118
   1119static int
   1120mt7530_port_max_mtu(struct dsa_switch *ds, int port)
   1121{
   1122	return MT7530_MAX_MTU;
   1123}
   1124
   1125static void
   1126mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
   1127{
   1128	struct mt7530_priv *priv = ds->priv;
   1129	u32 stp_state;
   1130
   1131	switch (state) {
   1132	case BR_STATE_DISABLED:
   1133		stp_state = MT7530_STP_DISABLED;
   1134		break;
   1135	case BR_STATE_BLOCKING:
   1136		stp_state = MT7530_STP_BLOCKING;
   1137		break;
   1138	case BR_STATE_LISTENING:
   1139		stp_state = MT7530_STP_LISTENING;
   1140		break;
   1141	case BR_STATE_LEARNING:
   1142		stp_state = MT7530_STP_LEARNING;
   1143		break;
   1144	case BR_STATE_FORWARDING:
   1145	default:
   1146		stp_state = MT7530_STP_FORWARDING;
   1147		break;
   1148	}
   1149
   1150	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
   1151		   FID_PST(FID_BRIDGED, stp_state));
   1152}
   1153
   1154static int
   1155mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
   1156			     struct switchdev_brport_flags flags,
   1157			     struct netlink_ext_ack *extack)
   1158{
   1159	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
   1160			   BR_BCAST_FLOOD))
   1161		return -EINVAL;
   1162
   1163	return 0;
   1164}
   1165
   1166static int
   1167mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
   1168			 struct switchdev_brport_flags flags,
   1169			 struct netlink_ext_ack *extack)
   1170{
   1171	struct mt7530_priv *priv = ds->priv;
   1172
   1173	if (flags.mask & BR_LEARNING)
   1174		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
   1175			   flags.val & BR_LEARNING ? 0 : SA_DIS);
   1176
   1177	if (flags.mask & BR_FLOOD)
   1178		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
   1179			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
   1180
   1181	if (flags.mask & BR_MCAST_FLOOD)
   1182		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
   1183			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
   1184
   1185	if (flags.mask & BR_BCAST_FLOOD)
   1186		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
   1187			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
   1188
   1189	return 0;
   1190}
   1191
   1192static int
   1193mt7530_port_bridge_join(struct dsa_switch *ds, int port,
   1194			struct dsa_bridge bridge, bool *tx_fwd_offload,
   1195			struct netlink_ext_ack *extack)
   1196{
   1197	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
   1198	u32 port_bitmap = BIT(MT7530_CPU_PORT);
   1199	struct mt7530_priv *priv = ds->priv;
   1200
   1201	mutex_lock(&priv->reg_mutex);
   1202
   1203	dsa_switch_for_each_user_port(other_dp, ds) {
   1204		int other_port = other_dp->index;
   1205
   1206		if (dp == other_dp)
   1207			continue;
   1208
   1209		/* Add this port to the port matrix of the other ports in the
   1210		 * same bridge. If the port is disabled, port matrix is kept
   1211		 * and not being setup until the port becomes enabled.
   1212		 */
   1213		if (!dsa_port_offloads_bridge(other_dp, &bridge))
   1214			continue;
   1215
   1216		if (priv->ports[other_port].enable)
   1217			mt7530_set(priv, MT7530_PCR_P(other_port),
   1218				   PCR_MATRIX(BIT(port)));
   1219		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
   1220
   1221		port_bitmap |= BIT(other_port);
   1222	}
   1223
   1224	/* Add the all other ports to this port matrix. */
   1225	if (priv->ports[port].enable)
   1226		mt7530_rmw(priv, MT7530_PCR_P(port),
   1227			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
   1228	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
   1229
   1230	/* Set to fallback mode for independent VLAN learning */
   1231	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
   1232		   MT7530_PORT_FALLBACK_MODE);
   1233
   1234	mutex_unlock(&priv->reg_mutex);
   1235
   1236	return 0;
   1237}
   1238
   1239static void
   1240mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
   1241{
   1242	struct mt7530_priv *priv = ds->priv;
   1243	bool all_user_ports_removed = true;
   1244	int i;
   1245
   1246	/* This is called after .port_bridge_leave when leaving a VLAN-aware
   1247	 * bridge. Don't set standalone ports to fallback mode.
   1248	 */
   1249	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
   1250		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
   1251			   MT7530_PORT_FALLBACK_MODE);
   1252
   1253	mt7530_rmw(priv, MT7530_PVC_P(port),
   1254		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
   1255		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
   1256		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
   1257		   MT7530_VLAN_ACC_ALL);
   1258
   1259	/* Set PVID to 0 */
   1260	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
   1261		   G0_PORT_VID_DEF);
   1262
   1263	for (i = 0; i < MT7530_NUM_PORTS; i++) {
   1264		if (dsa_is_user_port(ds, i) &&
   1265		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
   1266			all_user_ports_removed = false;
   1267			break;
   1268		}
   1269	}
   1270
   1271	/* CPU port also does the same thing until all user ports belonging to
   1272	 * the CPU port get out of VLAN filtering mode.
   1273	 */
   1274	if (all_user_ports_removed) {
   1275		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
   1276			     PCR_MATRIX(dsa_user_ports(priv->ds)));
   1277		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
   1278			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
   1279	}
   1280}
   1281
   1282static void
   1283mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
   1284{
   1285	struct mt7530_priv *priv = ds->priv;
   1286
   1287	/* Trapped into security mode allows packet forwarding through VLAN
   1288	 * table lookup.
   1289	 */
   1290	if (dsa_is_user_port(ds, port)) {
   1291		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
   1292			   MT7530_PORT_SECURITY_MODE);
   1293		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
   1294			   G0_PORT_VID(priv->ports[port].pvid));
   1295
   1296		/* Only accept tagged frames if PVID is not set */
   1297		if (!priv->ports[port].pvid)
   1298			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
   1299				   MT7530_VLAN_ACC_TAGGED);
   1300	}
   1301
   1302	/* Set the port as a user port which is to be able to recognize VID
   1303	 * from incoming packets before fetching entry within the VLAN table.
   1304	 */
   1305	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
   1306		   VLAN_ATTR(MT7530_VLAN_USER) |
   1307		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
   1308}
   1309
   1310static void
   1311mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
   1312			 struct dsa_bridge bridge)
   1313{
   1314	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
   1315	struct mt7530_priv *priv = ds->priv;
   1316
   1317	mutex_lock(&priv->reg_mutex);
   1318
   1319	dsa_switch_for_each_user_port(other_dp, ds) {
   1320		int other_port = other_dp->index;
   1321
   1322		if (dp == other_dp)
   1323			continue;
   1324
   1325		/* Remove this port from the port matrix of the other ports
   1326		 * in the same bridge. If the port is disabled, port matrix
   1327		 * is kept and not being setup until the port becomes enabled.
   1328		 */
   1329		if (!dsa_port_offloads_bridge(other_dp, &bridge))
   1330			continue;
   1331
   1332		if (priv->ports[other_port].enable)
   1333			mt7530_clear(priv, MT7530_PCR_P(other_port),
   1334				     PCR_MATRIX(BIT(port)));
   1335		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
   1336	}
   1337
   1338	/* Set the cpu port to be the only one in the port matrix of
   1339	 * this port.
   1340	 */
   1341	if (priv->ports[port].enable)
   1342		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
   1343			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
   1344	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
   1345
   1346	/* When a port is removed from the bridge, the port would be set up
   1347	 * back to the default as is at initial boot which is a VLAN-unaware
   1348	 * port.
   1349	 */
   1350	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
   1351		   MT7530_PORT_MATRIX_MODE);
   1352
   1353	mutex_unlock(&priv->reg_mutex);
   1354}
   1355
   1356static int
   1357mt7530_port_fdb_add(struct dsa_switch *ds, int port,
   1358		    const unsigned char *addr, u16 vid,
   1359		    struct dsa_db db)
   1360{
   1361	struct mt7530_priv *priv = ds->priv;
   1362	int ret;
   1363	u8 port_mask = BIT(port);
   1364
   1365	mutex_lock(&priv->reg_mutex);
   1366	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
   1367	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
   1368	mutex_unlock(&priv->reg_mutex);
   1369
   1370	return ret;
   1371}
   1372
   1373static int
   1374mt7530_port_fdb_del(struct dsa_switch *ds, int port,
   1375		    const unsigned char *addr, u16 vid,
   1376		    struct dsa_db db)
   1377{
   1378	struct mt7530_priv *priv = ds->priv;
   1379	int ret;
   1380	u8 port_mask = BIT(port);
   1381
   1382	mutex_lock(&priv->reg_mutex);
   1383	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
   1384	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
   1385	mutex_unlock(&priv->reg_mutex);
   1386
   1387	return ret;
   1388}
   1389
   1390static int
   1391mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
   1392		     dsa_fdb_dump_cb_t *cb, void *data)
   1393{
   1394	struct mt7530_priv *priv = ds->priv;
   1395	struct mt7530_fdb _fdb = { 0 };
   1396	int cnt = MT7530_NUM_FDB_RECORDS;
   1397	int ret = 0;
   1398	u32 rsp = 0;
   1399
   1400	mutex_lock(&priv->reg_mutex);
   1401
   1402	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
   1403	if (ret < 0)
   1404		goto err;
   1405
   1406	do {
   1407		if (rsp & ATC_SRCH_HIT) {
   1408			mt7530_fdb_read(priv, &_fdb);
   1409			if (_fdb.port_mask & BIT(port)) {
   1410				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
   1411					 data);
   1412				if (ret < 0)
   1413					break;
   1414			}
   1415		}
   1416	} while (--cnt &&
   1417		 !(rsp & ATC_SRCH_END) &&
   1418		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
   1419err:
   1420	mutex_unlock(&priv->reg_mutex);
   1421
   1422	return 0;
   1423}
   1424
   1425static int
   1426mt7530_port_mdb_add(struct dsa_switch *ds, int port,
   1427		    const struct switchdev_obj_port_mdb *mdb,
   1428		    struct dsa_db db)
   1429{
   1430	struct mt7530_priv *priv = ds->priv;
   1431	const u8 *addr = mdb->addr;
   1432	u16 vid = mdb->vid;
   1433	u8 port_mask = 0;
   1434	int ret;
   1435
   1436	mutex_lock(&priv->reg_mutex);
   1437
   1438	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
   1439	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
   1440		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
   1441			    & PORT_MAP_MASK;
   1442
   1443	port_mask |= BIT(port);
   1444	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
   1445	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
   1446
   1447	mutex_unlock(&priv->reg_mutex);
   1448
   1449	return ret;
   1450}
   1451
   1452static int
   1453mt7530_port_mdb_del(struct dsa_switch *ds, int port,
   1454		    const struct switchdev_obj_port_mdb *mdb,
   1455		    struct dsa_db db)
   1456{
   1457	struct mt7530_priv *priv = ds->priv;
   1458	const u8 *addr = mdb->addr;
   1459	u16 vid = mdb->vid;
   1460	u8 port_mask = 0;
   1461	int ret;
   1462
   1463	mutex_lock(&priv->reg_mutex);
   1464
   1465	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
   1466	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
   1467		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
   1468			    & PORT_MAP_MASK;
   1469
   1470	port_mask &= ~BIT(port);
   1471	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
   1472			 port_mask ? STATIC_ENT : STATIC_EMP);
   1473	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
   1474
   1475	mutex_unlock(&priv->reg_mutex);
   1476
   1477	return ret;
   1478}
   1479
   1480static int
   1481mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
   1482{
   1483	struct mt7530_dummy_poll p;
   1484	u32 val;
   1485	int ret;
   1486
   1487	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
   1488	mt7530_write(priv, MT7530_VTCR, val);
   1489
   1490	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
   1491	ret = readx_poll_timeout(_mt7530_read, &p, val,
   1492				 !(val & VTCR_BUSY), 20, 20000);
   1493	if (ret < 0) {
   1494		dev_err(priv->dev, "poll timeout\n");
   1495		return ret;
   1496	}
   1497
   1498	val = mt7530_read(priv, MT7530_VTCR);
   1499	if (val & VTCR_INVALID) {
   1500		dev_err(priv->dev, "read VTCR invalid\n");
   1501		return -EINVAL;
   1502	}
   1503
   1504	return 0;
   1505}
   1506
   1507static int
   1508mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
   1509			   struct netlink_ext_ack *extack)
   1510{
   1511	if (vlan_filtering) {
   1512		/* The port is being kept as VLAN-unaware port when bridge is
   1513		 * set up with vlan_filtering not being set, Otherwise, the
   1514		 * port and the corresponding CPU port is required the setup
   1515		 * for becoming a VLAN-aware port.
   1516		 */
   1517		mt7530_port_set_vlan_aware(ds, port);
   1518		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
   1519	} else {
   1520		mt7530_port_set_vlan_unaware(ds, port);
   1521	}
   1522
   1523	return 0;
   1524}
   1525
   1526static void
   1527mt7530_hw_vlan_add(struct mt7530_priv *priv,
   1528		   struct mt7530_hw_vlan_entry *entry)
   1529{
   1530	u8 new_members;
   1531	u32 val;
   1532
   1533	new_members = entry->old_members | BIT(entry->port) |
   1534		      BIT(MT7530_CPU_PORT);
   1535
   1536	/* Validate the entry with independent learning, create egress tag per
   1537	 * VLAN and joining the port as one of the port members.
   1538	 */
   1539	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
   1540	      VLAN_VALID;
   1541	mt7530_write(priv, MT7530_VAWD1, val);
   1542
   1543	/* Decide whether adding tag or not for those outgoing packets from the
   1544	 * port inside the VLAN.
   1545	 */
   1546	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
   1547				MT7530_VLAN_EGRESS_TAG;
   1548	mt7530_rmw(priv, MT7530_VAWD2,
   1549		   ETAG_CTRL_P_MASK(entry->port),
   1550		   ETAG_CTRL_P(entry->port, val));
   1551
   1552	/* CPU port is always taken as a tagged port for serving more than one
   1553	 * VLANs across and also being applied with egress type stack mode for
   1554	 * that VLAN tags would be appended after hardware special tag used as
   1555	 * DSA tag.
   1556	 */
   1557	mt7530_rmw(priv, MT7530_VAWD2,
   1558		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
   1559		   ETAG_CTRL_P(MT7530_CPU_PORT,
   1560			       MT7530_VLAN_EGRESS_STACK));
   1561}
   1562
   1563static void
   1564mt7530_hw_vlan_del(struct mt7530_priv *priv,
   1565		   struct mt7530_hw_vlan_entry *entry)
   1566{
   1567	u8 new_members;
   1568	u32 val;
   1569
   1570	new_members = entry->old_members & ~BIT(entry->port);
   1571
   1572	val = mt7530_read(priv, MT7530_VAWD1);
   1573	if (!(val & VLAN_VALID)) {
   1574		dev_err(priv->dev,
   1575			"Cannot be deleted due to invalid entry\n");
   1576		return;
   1577	}
   1578
   1579	/* If certain member apart from CPU port is still alive in the VLAN,
   1580	 * the entry would be kept valid. Otherwise, the entry is got to be
   1581	 * disabled.
   1582	 */
   1583	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
   1584		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
   1585		      VLAN_VALID;
   1586		mt7530_write(priv, MT7530_VAWD1, val);
   1587	} else {
   1588		mt7530_write(priv, MT7530_VAWD1, 0);
   1589		mt7530_write(priv, MT7530_VAWD2, 0);
   1590	}
   1591}
   1592
   1593static void
   1594mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
   1595		      struct mt7530_hw_vlan_entry *entry,
   1596		      mt7530_vlan_op vlan_op)
   1597{
   1598	u32 val;
   1599
   1600	/* Fetch entry */
   1601	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
   1602
   1603	val = mt7530_read(priv, MT7530_VAWD1);
   1604
   1605	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
   1606
   1607	/* Manipulate entry */
   1608	vlan_op(priv, entry);
   1609
   1610	/* Flush result to hardware */
   1611	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
   1612}
   1613
   1614static int
   1615mt7530_setup_vlan0(struct mt7530_priv *priv)
   1616{
   1617	u32 val;
   1618
   1619	/* Validate the entry with independent learning, keep the original
   1620	 * ingress tag attribute.
   1621	 */
   1622	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
   1623	      VLAN_VALID;
   1624	mt7530_write(priv, MT7530_VAWD1, val);
   1625
   1626	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
   1627}
   1628
   1629static int
   1630mt7530_port_vlan_add(struct dsa_switch *ds, int port,
   1631		     const struct switchdev_obj_port_vlan *vlan,
   1632		     struct netlink_ext_ack *extack)
   1633{
   1634	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
   1635	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
   1636	struct mt7530_hw_vlan_entry new_entry;
   1637	struct mt7530_priv *priv = ds->priv;
   1638
   1639	mutex_lock(&priv->reg_mutex);
   1640
   1641	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
   1642	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
   1643
   1644	if (pvid) {
   1645		priv->ports[port].pvid = vlan->vid;
   1646
   1647		/* Accept all frames if PVID is set */
   1648		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
   1649			   MT7530_VLAN_ACC_ALL);
   1650
   1651		/* Only configure PVID if VLAN filtering is enabled */
   1652		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
   1653			mt7530_rmw(priv, MT7530_PPBV1_P(port),
   1654				   G0_PORT_VID_MASK,
   1655				   G0_PORT_VID(vlan->vid));
   1656	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
   1657		/* This VLAN is overwritten without PVID, so unset it */
   1658		priv->ports[port].pvid = G0_PORT_VID_DEF;
   1659
   1660		/* Only accept tagged frames if the port is VLAN-aware */
   1661		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
   1662			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
   1663				   MT7530_VLAN_ACC_TAGGED);
   1664
   1665		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
   1666			   G0_PORT_VID_DEF);
   1667	}
   1668
   1669	mutex_unlock(&priv->reg_mutex);
   1670
   1671	return 0;
   1672}
   1673
   1674static int
   1675mt7530_port_vlan_del(struct dsa_switch *ds, int port,
   1676		     const struct switchdev_obj_port_vlan *vlan)
   1677{
   1678	struct mt7530_hw_vlan_entry target_entry;
   1679	struct mt7530_priv *priv = ds->priv;
   1680
   1681	mutex_lock(&priv->reg_mutex);
   1682
   1683	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
   1684	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
   1685			      mt7530_hw_vlan_del);
   1686
   1687	/* PVID is being restored to the default whenever the PVID port
   1688	 * is being removed from the VLAN.
   1689	 */
   1690	if (priv->ports[port].pvid == vlan->vid) {
   1691		priv->ports[port].pvid = G0_PORT_VID_DEF;
   1692
   1693		/* Only accept tagged frames if the port is VLAN-aware */
   1694		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
   1695			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
   1696				   MT7530_VLAN_ACC_TAGGED);
   1697
   1698		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
   1699			   G0_PORT_VID_DEF);
   1700	}
   1701
   1702
   1703	mutex_unlock(&priv->reg_mutex);
   1704
   1705	return 0;
   1706}
   1707
   1708static int mt753x_mirror_port_get(unsigned int id, u32 val)
   1709{
   1710	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
   1711				   MIRROR_PORT(val);
   1712}
   1713
   1714static int mt753x_mirror_port_set(unsigned int id, u32 val)
   1715{
   1716	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
   1717				   MIRROR_PORT(val);
   1718}
   1719
   1720static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
   1721				  struct dsa_mall_mirror_tc_entry *mirror,
   1722				  bool ingress, struct netlink_ext_ack *extack)
   1723{
   1724	struct mt7530_priv *priv = ds->priv;
   1725	int monitor_port;
   1726	u32 val;
   1727
   1728	/* Check for existent entry */
   1729	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
   1730		return -EEXIST;
   1731
   1732	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
   1733
   1734	/* MT7530 only supports one monitor port */
   1735	monitor_port = mt753x_mirror_port_get(priv->id, val);
   1736	if (val & MT753X_MIRROR_EN(priv->id) &&
   1737	    monitor_port != mirror->to_local_port)
   1738		return -EEXIST;
   1739
   1740	val |= MT753X_MIRROR_EN(priv->id);
   1741	val &= ~MT753X_MIRROR_MASK(priv->id);
   1742	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
   1743	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
   1744
   1745	val = mt7530_read(priv, MT7530_PCR_P(port));
   1746	if (ingress) {
   1747		val |= PORT_RX_MIR;
   1748		priv->mirror_rx |= BIT(port);
   1749	} else {
   1750		val |= PORT_TX_MIR;
   1751		priv->mirror_tx |= BIT(port);
   1752	}
   1753	mt7530_write(priv, MT7530_PCR_P(port), val);
   1754
   1755	return 0;
   1756}
   1757
   1758static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
   1759				   struct dsa_mall_mirror_tc_entry *mirror)
   1760{
   1761	struct mt7530_priv *priv = ds->priv;
   1762	u32 val;
   1763
   1764	val = mt7530_read(priv, MT7530_PCR_P(port));
   1765	if (mirror->ingress) {
   1766		val &= ~PORT_RX_MIR;
   1767		priv->mirror_rx &= ~BIT(port);
   1768	} else {
   1769		val &= ~PORT_TX_MIR;
   1770		priv->mirror_tx &= ~BIT(port);
   1771	}
   1772	mt7530_write(priv, MT7530_PCR_P(port), val);
   1773
   1774	if (!priv->mirror_rx && !priv->mirror_tx) {
   1775		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
   1776		val &= ~MT753X_MIRROR_EN(priv->id);
   1777		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
   1778	}
   1779}
   1780
   1781static enum dsa_tag_protocol
   1782mtk_get_tag_protocol(struct dsa_switch *ds, int port,
   1783		     enum dsa_tag_protocol mp)
   1784{
   1785	return DSA_TAG_PROTO_MTK;
   1786}
   1787
   1788#ifdef CONFIG_GPIOLIB
   1789static inline u32
   1790mt7530_gpio_to_bit(unsigned int offset)
   1791{
   1792	/* Map GPIO offset to register bit
   1793	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
   1794	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
   1795	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
   1796	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
   1797	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
   1798	 */
   1799	return BIT(offset + offset / 3);
   1800}
   1801
   1802static int
   1803mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
   1804{
   1805	struct mt7530_priv *priv = gpiochip_get_data(gc);
   1806	u32 bit = mt7530_gpio_to_bit(offset);
   1807
   1808	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
   1809}
   1810
   1811static void
   1812mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
   1813{
   1814	struct mt7530_priv *priv = gpiochip_get_data(gc);
   1815	u32 bit = mt7530_gpio_to_bit(offset);
   1816
   1817	if (value)
   1818		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
   1819	else
   1820		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
   1821}
   1822
   1823static int
   1824mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
   1825{
   1826	struct mt7530_priv *priv = gpiochip_get_data(gc);
   1827	u32 bit = mt7530_gpio_to_bit(offset);
   1828
   1829	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
   1830		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
   1831}
   1832
   1833static int
   1834mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
   1835{
   1836	struct mt7530_priv *priv = gpiochip_get_data(gc);
   1837	u32 bit = mt7530_gpio_to_bit(offset);
   1838
   1839	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
   1840	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
   1841
   1842	return 0;
   1843}
   1844
   1845static int
   1846mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
   1847{
   1848	struct mt7530_priv *priv = gpiochip_get_data(gc);
   1849	u32 bit = mt7530_gpio_to_bit(offset);
   1850
   1851	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
   1852
   1853	if (value)
   1854		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
   1855	else
   1856		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
   1857
   1858	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
   1859
   1860	return 0;
   1861}
   1862
   1863static int
   1864mt7530_setup_gpio(struct mt7530_priv *priv)
   1865{
   1866	struct device *dev = priv->dev;
   1867	struct gpio_chip *gc;
   1868
   1869	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
   1870	if (!gc)
   1871		return -ENOMEM;
   1872
   1873	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
   1874	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
   1875	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
   1876
   1877	gc->label = "mt7530";
   1878	gc->parent = dev;
   1879	gc->owner = THIS_MODULE;
   1880	gc->get_direction = mt7530_gpio_get_direction;
   1881	gc->direction_input = mt7530_gpio_direction_input;
   1882	gc->direction_output = mt7530_gpio_direction_output;
   1883	gc->get = mt7530_gpio_get;
   1884	gc->set = mt7530_gpio_set;
   1885	gc->base = -1;
   1886	gc->ngpio = 15;
   1887	gc->can_sleep = true;
   1888
   1889	return devm_gpiochip_add_data(dev, gc, priv);
   1890}
   1891#endif /* CONFIG_GPIOLIB */
   1892
   1893static irqreturn_t
   1894mt7530_irq_thread_fn(int irq, void *dev_id)
   1895{
   1896	struct mt7530_priv *priv = dev_id;
   1897	bool handled = false;
   1898	u32 val;
   1899	int p;
   1900
   1901	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
   1902	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
   1903	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
   1904	mutex_unlock(&priv->bus->mdio_lock);
   1905
   1906	for (p = 0; p < MT7530_NUM_PHYS; p++) {
   1907		if (BIT(p) & val) {
   1908			unsigned int irq;
   1909
   1910			irq = irq_find_mapping(priv->irq_domain, p);
   1911			handle_nested_irq(irq);
   1912			handled = true;
   1913		}
   1914	}
   1915
   1916	return IRQ_RETVAL(handled);
   1917}
   1918
   1919static void
   1920mt7530_irq_mask(struct irq_data *d)
   1921{
   1922	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
   1923
   1924	priv->irq_enable &= ~BIT(d->hwirq);
   1925}
   1926
   1927static void
   1928mt7530_irq_unmask(struct irq_data *d)
   1929{
   1930	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
   1931
   1932	priv->irq_enable |= BIT(d->hwirq);
   1933}
   1934
   1935static void
   1936mt7530_irq_bus_lock(struct irq_data *d)
   1937{
   1938	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
   1939
   1940	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
   1941}
   1942
   1943static void
   1944mt7530_irq_bus_sync_unlock(struct irq_data *d)
   1945{
   1946	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
   1947
   1948	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
   1949	mutex_unlock(&priv->bus->mdio_lock);
   1950}
   1951
   1952static struct irq_chip mt7530_irq_chip = {
   1953	.name = KBUILD_MODNAME,
   1954	.irq_mask = mt7530_irq_mask,
   1955	.irq_unmask = mt7530_irq_unmask,
   1956	.irq_bus_lock = mt7530_irq_bus_lock,
   1957	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
   1958};
   1959
   1960static int
   1961mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
   1962	       irq_hw_number_t hwirq)
   1963{
   1964	irq_set_chip_data(irq, domain->host_data);
   1965	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
   1966	irq_set_nested_thread(irq, true);
   1967	irq_set_noprobe(irq);
   1968
   1969	return 0;
   1970}
   1971
   1972static const struct irq_domain_ops mt7530_irq_domain_ops = {
   1973	.map = mt7530_irq_map,
   1974	.xlate = irq_domain_xlate_onecell,
   1975};
   1976
   1977static void
   1978mt7530_setup_mdio_irq(struct mt7530_priv *priv)
   1979{
   1980	struct dsa_switch *ds = priv->ds;
   1981	int p;
   1982
   1983	for (p = 0; p < MT7530_NUM_PHYS; p++) {
   1984		if (BIT(p) & ds->phys_mii_mask) {
   1985			unsigned int irq;
   1986
   1987			irq = irq_create_mapping(priv->irq_domain, p);
   1988			ds->slave_mii_bus->irq[p] = irq;
   1989		}
   1990	}
   1991}
   1992
   1993static int
   1994mt7530_setup_irq(struct mt7530_priv *priv)
   1995{
   1996	struct device *dev = priv->dev;
   1997	struct device_node *np = dev->of_node;
   1998	int ret;
   1999
   2000	if (!of_property_read_bool(np, "interrupt-controller")) {
   2001		dev_info(dev, "no interrupt support\n");
   2002		return 0;
   2003	}
   2004
   2005	priv->irq = of_irq_get(np, 0);
   2006	if (priv->irq <= 0) {
   2007		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
   2008		return priv->irq ? : -EINVAL;
   2009	}
   2010
   2011	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
   2012						 &mt7530_irq_domain_ops, priv);
   2013	if (!priv->irq_domain) {
   2014		dev_err(dev, "failed to create IRQ domain\n");
   2015		return -ENOMEM;
   2016	}
   2017
   2018	/* This register must be set for MT7530 to properly fire interrupts */
   2019	if (priv->id != ID_MT7531)
   2020		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
   2021
   2022	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
   2023				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
   2024	if (ret) {
   2025		irq_domain_remove(priv->irq_domain);
   2026		dev_err(dev, "failed to request IRQ: %d\n", ret);
   2027		return ret;
   2028	}
   2029
   2030	return 0;
   2031}
   2032
   2033static void
   2034mt7530_free_mdio_irq(struct mt7530_priv *priv)
   2035{
   2036	int p;
   2037
   2038	for (p = 0; p < MT7530_NUM_PHYS; p++) {
   2039		if (BIT(p) & priv->ds->phys_mii_mask) {
   2040			unsigned int irq;
   2041
   2042			irq = irq_find_mapping(priv->irq_domain, p);
   2043			irq_dispose_mapping(irq);
   2044		}
   2045	}
   2046}
   2047
   2048static void
   2049mt7530_free_irq_common(struct mt7530_priv *priv)
   2050{
   2051	free_irq(priv->irq, priv);
   2052	irq_domain_remove(priv->irq_domain);
   2053}
   2054
   2055static void
   2056mt7530_free_irq(struct mt7530_priv *priv)
   2057{
   2058	mt7530_free_mdio_irq(priv);
   2059	mt7530_free_irq_common(priv);
   2060}
   2061
   2062static int
   2063mt7530_setup_mdio(struct mt7530_priv *priv)
   2064{
   2065	struct dsa_switch *ds = priv->ds;
   2066	struct device *dev = priv->dev;
   2067	struct mii_bus *bus;
   2068	static int idx;
   2069	int ret;
   2070
   2071	bus = devm_mdiobus_alloc(dev);
   2072	if (!bus)
   2073		return -ENOMEM;
   2074
   2075	ds->slave_mii_bus = bus;
   2076	bus->priv = priv;
   2077	bus->name = KBUILD_MODNAME "-mii";
   2078	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
   2079	bus->read = mt753x_phy_read;
   2080	bus->write = mt753x_phy_write;
   2081	bus->parent = dev;
   2082	bus->phy_mask = ~ds->phys_mii_mask;
   2083
   2084	if (priv->irq)
   2085		mt7530_setup_mdio_irq(priv);
   2086
   2087	ret = devm_mdiobus_register(dev, bus);
   2088	if (ret) {
   2089		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
   2090		if (priv->irq)
   2091			mt7530_free_mdio_irq(priv);
   2092	}
   2093
   2094	return ret;
   2095}
   2096
   2097static int
   2098mt7530_setup(struct dsa_switch *ds)
   2099{
   2100	struct mt7530_priv *priv = ds->priv;
   2101	struct device_node *phy_node;
   2102	struct device_node *mac_np;
   2103	struct mt7530_dummy_poll p;
   2104	phy_interface_t interface;
   2105	struct device_node *dn;
   2106	u32 id, val;
   2107	int ret, i;
   2108
   2109	/* The parent node of master netdev which holds the common system
   2110	 * controller also is the container for two GMACs nodes representing
   2111	 * as two netdev instances.
   2112	 */
   2113	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
   2114	ds->assisted_learning_on_cpu_port = true;
   2115	ds->mtu_enforcement_ingress = true;
   2116
   2117	if (priv->id == ID_MT7530) {
   2118		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
   2119		ret = regulator_enable(priv->core_pwr);
   2120		if (ret < 0) {
   2121			dev_err(priv->dev,
   2122				"Failed to enable core power: %d\n", ret);
   2123			return ret;
   2124		}
   2125
   2126		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
   2127		ret = regulator_enable(priv->io_pwr);
   2128		if (ret < 0) {
   2129			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
   2130				ret);
   2131			return ret;
   2132		}
   2133	}
   2134
   2135	/* Reset whole chip through gpio pin or memory-mapped registers for
   2136	 * different type of hardware
   2137	 */
   2138	if (priv->mcm) {
   2139		reset_control_assert(priv->rstc);
   2140		usleep_range(1000, 1100);
   2141		reset_control_deassert(priv->rstc);
   2142	} else {
   2143		gpiod_set_value_cansleep(priv->reset, 0);
   2144		usleep_range(1000, 1100);
   2145		gpiod_set_value_cansleep(priv->reset, 1);
   2146	}
   2147
   2148	/* Waiting for MT7530 got to stable */
   2149	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
   2150	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
   2151				 20, 1000000);
   2152	if (ret < 0) {
   2153		dev_err(priv->dev, "reset timeout\n");
   2154		return ret;
   2155	}
   2156
   2157	id = mt7530_read(priv, MT7530_CREV);
   2158	id >>= CHIP_NAME_SHIFT;
   2159	if (id != MT7530_ID) {
   2160		dev_err(priv->dev, "chip %x can't be supported\n", id);
   2161		return -ENODEV;
   2162	}
   2163
   2164	/* Reset the switch through internal reset */
   2165	mt7530_write(priv, MT7530_SYS_CTRL,
   2166		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
   2167		     SYS_CTRL_REG_RST);
   2168
   2169	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
   2170	val = mt7530_read(priv, MT7530_MHWTRAP);
   2171	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
   2172	val |= MHWTRAP_MANUAL;
   2173	mt7530_write(priv, MT7530_MHWTRAP, val);
   2174
   2175	priv->p6_interface = PHY_INTERFACE_MODE_NA;
   2176
   2177	/* Enable and reset MIB counters */
   2178	mt7530_mib_reset(ds);
   2179
   2180	for (i = 0; i < MT7530_NUM_PORTS; i++) {
   2181		/* Disable forwarding by default on all ports */
   2182		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
   2183			   PCR_MATRIX_CLR);
   2184
   2185		/* Disable learning by default on all ports */
   2186		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
   2187
   2188		if (dsa_is_cpu_port(ds, i)) {
   2189			ret = mt753x_cpu_port_enable(ds, i);
   2190			if (ret)
   2191				return ret;
   2192		} else {
   2193			mt7530_port_disable(ds, i);
   2194
   2195			/* Set default PVID to 0 on all user ports */
   2196			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
   2197				   G0_PORT_VID_DEF);
   2198		}
   2199		/* Enable consistent egress tag */
   2200		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
   2201			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
   2202	}
   2203
   2204	/* Setup VLAN ID 0 for VLAN-unaware bridges */
   2205	ret = mt7530_setup_vlan0(priv);
   2206	if (ret)
   2207		return ret;
   2208
   2209	/* Setup port 5 */
   2210	priv->p5_intf_sel = P5_DISABLED;
   2211	interface = PHY_INTERFACE_MODE_NA;
   2212
   2213	if (!dsa_is_unused_port(ds, 5)) {
   2214		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
   2215		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
   2216		if (ret && ret != -ENODEV)
   2217			return ret;
   2218	} else {
   2219		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
   2220		for_each_child_of_node(dn, mac_np) {
   2221			if (!of_device_is_compatible(mac_np,
   2222						     "mediatek,eth-mac"))
   2223				continue;
   2224
   2225			ret = of_property_read_u32(mac_np, "reg", &id);
   2226			if (ret < 0 || id != 1)
   2227				continue;
   2228
   2229			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
   2230			if (!phy_node)
   2231				continue;
   2232
   2233			if (phy_node->parent == priv->dev->of_node->parent) {
   2234				ret = of_get_phy_mode(mac_np, &interface);
   2235				if (ret && ret != -ENODEV) {
   2236					of_node_put(mac_np);
   2237					of_node_put(phy_node);
   2238					return ret;
   2239				}
   2240				id = of_mdio_parse_addr(ds->dev, phy_node);
   2241				if (id == 0)
   2242					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
   2243				if (id == 4)
   2244					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
   2245			}
   2246			of_node_put(mac_np);
   2247			of_node_put(phy_node);
   2248			break;
   2249		}
   2250	}
   2251
   2252#ifdef CONFIG_GPIOLIB
   2253	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
   2254		ret = mt7530_setup_gpio(priv);
   2255		if (ret)
   2256			return ret;
   2257	}
   2258#endif /* CONFIG_GPIOLIB */
   2259
   2260	mt7530_setup_port5(ds, interface);
   2261
   2262	/* Flush the FDB table */
   2263	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
   2264	if (ret < 0)
   2265		return ret;
   2266
   2267	return 0;
   2268}
   2269
   2270static int
   2271mt7531_setup(struct dsa_switch *ds)
   2272{
   2273	struct mt7530_priv *priv = ds->priv;
   2274	struct mt7530_dummy_poll p;
   2275	u32 val, id;
   2276	int ret, i;
   2277
   2278	/* Reset whole chip through gpio pin or memory-mapped registers for
   2279	 * different type of hardware
   2280	 */
   2281	if (priv->mcm) {
   2282		reset_control_assert(priv->rstc);
   2283		usleep_range(1000, 1100);
   2284		reset_control_deassert(priv->rstc);
   2285	} else {
   2286		gpiod_set_value_cansleep(priv->reset, 0);
   2287		usleep_range(1000, 1100);
   2288		gpiod_set_value_cansleep(priv->reset, 1);
   2289	}
   2290
   2291	/* Waiting for MT7530 got to stable */
   2292	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
   2293	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
   2294				 20, 1000000);
   2295	if (ret < 0) {
   2296		dev_err(priv->dev, "reset timeout\n");
   2297		return ret;
   2298	}
   2299
   2300	id = mt7530_read(priv, MT7531_CREV);
   2301	id >>= CHIP_NAME_SHIFT;
   2302
   2303	if (id != MT7531_ID) {
   2304		dev_err(priv->dev, "chip %x can't be supported\n", id);
   2305		return -ENODEV;
   2306	}
   2307
   2308	/* Reset the switch through internal reset */
   2309	mt7530_write(priv, MT7530_SYS_CTRL,
   2310		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
   2311		     SYS_CTRL_REG_RST);
   2312
   2313	if (mt7531_dual_sgmii_supported(priv)) {
   2314		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
   2315
   2316		/* Let ds->slave_mii_bus be able to access external phy. */
   2317		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
   2318			   MT7531_EXT_P_MDC_11);
   2319		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
   2320			   MT7531_EXT_P_MDIO_12);
   2321	} else {
   2322		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
   2323	}
   2324	dev_dbg(ds->dev, "P5 support %s interface\n",
   2325		p5_intf_modes(priv->p5_intf_sel));
   2326
   2327	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
   2328		   MT7531_GPIO0_INTERRUPT);
   2329
   2330	/* Let phylink decide the interface later. */
   2331	priv->p5_interface = PHY_INTERFACE_MODE_NA;
   2332	priv->p6_interface = PHY_INTERFACE_MODE_NA;
   2333
   2334	/* Enable PHY core PLL, since phy_device has not yet been created
   2335	 * provided for phy_[read,write]_mmd_indirect is called, we provide
   2336	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
   2337	 * function.
   2338	 */
   2339	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
   2340				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
   2341	val |= MT7531_PHY_PLL_BYPASS_MODE;
   2342	val &= ~MT7531_PHY_PLL_OFF;
   2343	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
   2344				 CORE_PLL_GROUP4, val);
   2345
   2346	/* BPDU to CPU port */
   2347	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
   2348		   BIT(MT7530_CPU_PORT));
   2349	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
   2350		   MT753X_BPDU_CPU_ONLY);
   2351
   2352	/* Enable and reset MIB counters */
   2353	mt7530_mib_reset(ds);
   2354
   2355	for (i = 0; i < MT7530_NUM_PORTS; i++) {
   2356		/* Disable forwarding by default on all ports */
   2357		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
   2358			   PCR_MATRIX_CLR);
   2359
   2360		/* Disable learning by default on all ports */
   2361		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
   2362
   2363		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
   2364
   2365		if (dsa_is_cpu_port(ds, i)) {
   2366			ret = mt753x_cpu_port_enable(ds, i);
   2367			if (ret)
   2368				return ret;
   2369		} else {
   2370			mt7530_port_disable(ds, i);
   2371
   2372			/* Set default PVID to 0 on all user ports */
   2373			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
   2374				   G0_PORT_VID_DEF);
   2375		}
   2376
   2377		/* Enable consistent egress tag */
   2378		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
   2379			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
   2380	}
   2381
   2382	/* Setup VLAN ID 0 for VLAN-unaware bridges */
   2383	ret = mt7530_setup_vlan0(priv);
   2384	if (ret)
   2385		return ret;
   2386
   2387	ds->assisted_learning_on_cpu_port = true;
   2388	ds->mtu_enforcement_ingress = true;
   2389
   2390	/* Flush the FDB table */
   2391	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
   2392	if (ret < 0)
   2393		return ret;
   2394
   2395	return 0;
   2396}
   2397
   2398static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
   2399				     struct phylink_config *config)
   2400{
   2401	switch (port) {
   2402	case 0 ... 4: /* Internal phy */
   2403		__set_bit(PHY_INTERFACE_MODE_GMII,
   2404			  config->supported_interfaces);
   2405		break;
   2406
   2407	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
   2408		phy_interface_set_rgmii(config->supported_interfaces);
   2409		__set_bit(PHY_INTERFACE_MODE_MII,
   2410			  config->supported_interfaces);
   2411		__set_bit(PHY_INTERFACE_MODE_GMII,
   2412			  config->supported_interfaces);
   2413		break;
   2414
   2415	case 6: /* 1st cpu port */
   2416		__set_bit(PHY_INTERFACE_MODE_RGMII,
   2417			  config->supported_interfaces);
   2418		__set_bit(PHY_INTERFACE_MODE_TRGMII,
   2419			  config->supported_interfaces);
   2420		break;
   2421	}
   2422}
   2423
   2424static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
   2425{
   2426	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
   2427}
   2428
   2429static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
   2430				     struct phylink_config *config)
   2431{
   2432	struct mt7530_priv *priv = ds->priv;
   2433
   2434	switch (port) {
   2435	case 0 ... 4: /* Internal phy */
   2436		__set_bit(PHY_INTERFACE_MODE_GMII,
   2437			  config->supported_interfaces);
   2438		break;
   2439
   2440	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
   2441		if (mt7531_is_rgmii_port(priv, port)) {
   2442			phy_interface_set_rgmii(config->supported_interfaces);
   2443			break;
   2444		}
   2445		fallthrough;
   2446
   2447	case 6: /* 1st cpu port supports sgmii/8023z only */
   2448		__set_bit(PHY_INTERFACE_MODE_SGMII,
   2449			  config->supported_interfaces);
   2450		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
   2451			  config->supported_interfaces);
   2452		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
   2453			  config->supported_interfaces);
   2454
   2455		config->mac_capabilities |= MAC_2500FD;
   2456		break;
   2457	}
   2458}
   2459
   2460static int
   2461mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
   2462{
   2463	struct mt7530_priv *priv = ds->priv;
   2464
   2465	return priv->info->pad_setup(ds, state->interface);
   2466}
   2467
   2468static int
   2469mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
   2470		  phy_interface_t interface)
   2471{
   2472	struct mt7530_priv *priv = ds->priv;
   2473
   2474	/* Only need to setup port5. */
   2475	if (port != 5)
   2476		return 0;
   2477
   2478	mt7530_setup_port5(priv->ds, interface);
   2479
   2480	return 0;
   2481}
   2482
   2483static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
   2484			      phy_interface_t interface,
   2485			      struct phy_device *phydev)
   2486{
   2487	u32 val;
   2488
   2489	if (!mt7531_is_rgmii_port(priv, port)) {
   2490		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
   2491			port);
   2492		return -EINVAL;
   2493	}
   2494
   2495	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
   2496	val |= GP_CLK_EN;
   2497	val &= ~GP_MODE_MASK;
   2498	val |= GP_MODE(MT7531_GP_MODE_RGMII);
   2499	val &= ~CLK_SKEW_IN_MASK;
   2500	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
   2501	val &= ~CLK_SKEW_OUT_MASK;
   2502	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
   2503	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
   2504
   2505	/* Do not adjust rgmii delay when vendor phy driver presents. */
   2506	if (!phydev || phy_driver_is_genphy(phydev)) {
   2507		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
   2508		switch (interface) {
   2509		case PHY_INTERFACE_MODE_RGMII:
   2510			val |= TXCLK_NO_REVERSE;
   2511			val |= RXCLK_NO_DELAY;
   2512			break;
   2513		case PHY_INTERFACE_MODE_RGMII_RXID:
   2514			val |= TXCLK_NO_REVERSE;
   2515			break;
   2516		case PHY_INTERFACE_MODE_RGMII_TXID:
   2517			val |= RXCLK_NO_DELAY;
   2518			break;
   2519		case PHY_INTERFACE_MODE_RGMII_ID:
   2520			break;
   2521		default:
   2522			return -EINVAL;
   2523		}
   2524	}
   2525	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
   2526
   2527	return 0;
   2528}
   2529
   2530static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
   2531			       phy_interface_t interface, int speed, int duplex)
   2532{
   2533	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
   2534	int port = pcs_to_mt753x_pcs(pcs)->port;
   2535	unsigned int val;
   2536
   2537	/* For adjusting speed and duplex of SGMII force mode. */
   2538	if (interface != PHY_INTERFACE_MODE_SGMII ||
   2539	    phylink_autoneg_inband(mode))
   2540		return;
   2541
   2542	/* SGMII force mode setting */
   2543	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
   2544	val &= ~MT7531_SGMII_IF_MODE_MASK;
   2545
   2546	switch (speed) {
   2547	case SPEED_10:
   2548		val |= MT7531_SGMII_FORCE_SPEED_10;
   2549		break;
   2550	case SPEED_100:
   2551		val |= MT7531_SGMII_FORCE_SPEED_100;
   2552		break;
   2553	case SPEED_1000:
   2554		val |= MT7531_SGMII_FORCE_SPEED_1000;
   2555		break;
   2556	}
   2557
   2558	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
   2559	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
   2560	 *
   2561	 * The speed check is unnecessary as the MAC capabilities apply
   2562	 * this restriction. --rmk
   2563	 */
   2564	if ((speed == SPEED_10 || speed == SPEED_100) &&
   2565	    duplex != DUPLEX_FULL)
   2566		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
   2567
   2568	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
   2569}
   2570
   2571static bool mt753x_is_mac_port(u32 port)
   2572{
   2573	return (port == 5 || port == 6);
   2574}
   2575
   2576static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
   2577					 phy_interface_t interface)
   2578{
   2579	u32 val;
   2580
   2581	if (!mt753x_is_mac_port(port))
   2582		return -EINVAL;
   2583
   2584	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
   2585		   MT7531_SGMII_PHYA_PWD);
   2586
   2587	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
   2588	val &= ~MT7531_RG_TPHY_SPEED_MASK;
   2589	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
   2590	 * encoding.
   2591	 */
   2592	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
   2593		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
   2594	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
   2595
   2596	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
   2597
   2598	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
   2599	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
   2600	 */
   2601	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
   2602		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
   2603		   MT7531_SGMII_FORCE_SPEED_1000);
   2604
   2605	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
   2606
   2607	return 0;
   2608}
   2609
   2610static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
   2611				      phy_interface_t interface)
   2612{
   2613	if (!mt753x_is_mac_port(port))
   2614		return -EINVAL;
   2615
   2616	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
   2617		   MT7531_SGMII_PHYA_PWD);
   2618
   2619	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
   2620		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
   2621
   2622	mt7530_set(priv, MT7531_SGMII_MODE(port),
   2623		   MT7531_SGMII_REMOTE_FAULT_DIS |
   2624		   MT7531_SGMII_SPEED_DUPLEX_AN);
   2625
   2626	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
   2627		   MT7531_SGMII_TX_CONFIG_MASK, 1);
   2628
   2629	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
   2630
   2631	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
   2632
   2633	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
   2634
   2635	return 0;
   2636}
   2637
   2638static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
   2639{
   2640	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
   2641	int port = pcs_to_mt753x_pcs(pcs)->port;
   2642	u32 val;
   2643
   2644	/* Only restart AN when AN is enabled */
   2645	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
   2646	if (val & MT7531_SGMII_AN_ENABLE) {
   2647		val |= MT7531_SGMII_AN_RESTART;
   2648		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
   2649	}
   2650}
   2651
   2652static int
   2653mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
   2654		  phy_interface_t interface)
   2655{
   2656	struct mt7530_priv *priv = ds->priv;
   2657	struct phy_device *phydev;
   2658	struct dsa_port *dp;
   2659
   2660	if (!mt753x_is_mac_port(port)) {
   2661		dev_err(priv->dev, "port %d is not a MAC port\n", port);
   2662		return -EINVAL;
   2663	}
   2664
   2665	switch (interface) {
   2666	case PHY_INTERFACE_MODE_RGMII:
   2667	case PHY_INTERFACE_MODE_RGMII_ID:
   2668	case PHY_INTERFACE_MODE_RGMII_RXID:
   2669	case PHY_INTERFACE_MODE_RGMII_TXID:
   2670		dp = dsa_to_port(ds, port);
   2671		phydev = dp->slave->phydev;
   2672		return mt7531_rgmii_setup(priv, port, interface, phydev);
   2673	case PHY_INTERFACE_MODE_SGMII:
   2674		return mt7531_sgmii_setup_mode_an(priv, port, interface);
   2675	case PHY_INTERFACE_MODE_NA:
   2676	case PHY_INTERFACE_MODE_1000BASEX:
   2677	case PHY_INTERFACE_MODE_2500BASEX:
   2678		if (phylink_autoneg_inband(mode))
   2679			return -EINVAL;
   2680
   2681		return mt7531_sgmii_setup_mode_force(priv, port, interface);
   2682	default:
   2683		return -EINVAL;
   2684	}
   2685
   2686	return -EINVAL;
   2687}
   2688
   2689static int
   2690mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
   2691		  const struct phylink_link_state *state)
   2692{
   2693	struct mt7530_priv *priv = ds->priv;
   2694
   2695	return priv->info->mac_port_config(ds, port, mode, state->interface);
   2696}
   2697
   2698static struct phylink_pcs *
   2699mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
   2700			      phy_interface_t interface)
   2701{
   2702	struct mt7530_priv *priv = ds->priv;
   2703
   2704	switch (interface) {
   2705	case PHY_INTERFACE_MODE_TRGMII:
   2706	case PHY_INTERFACE_MODE_SGMII:
   2707	case PHY_INTERFACE_MODE_1000BASEX:
   2708	case PHY_INTERFACE_MODE_2500BASEX:
   2709		return &priv->pcs[port].pcs;
   2710
   2711	default:
   2712		return NULL;
   2713	}
   2714}
   2715
   2716static void
   2717mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
   2718			  const struct phylink_link_state *state)
   2719{
   2720	struct mt7530_priv *priv = ds->priv;
   2721	u32 mcr_cur, mcr_new;
   2722
   2723	switch (port) {
   2724	case 0 ... 4: /* Internal phy */
   2725		if (state->interface != PHY_INTERFACE_MODE_GMII)
   2726			goto unsupported;
   2727		break;
   2728	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
   2729		if (priv->p5_interface == state->interface)
   2730			break;
   2731
   2732		if (mt753x_mac_config(ds, port, mode, state) < 0)
   2733			goto unsupported;
   2734
   2735		if (priv->p5_intf_sel != P5_DISABLED)
   2736			priv->p5_interface = state->interface;
   2737		break;
   2738	case 6: /* 1st cpu port */
   2739		if (priv->p6_interface == state->interface)
   2740			break;
   2741
   2742		mt753x_pad_setup(ds, state);
   2743
   2744		if (mt753x_mac_config(ds, port, mode, state) < 0)
   2745			goto unsupported;
   2746
   2747		priv->p6_interface = state->interface;
   2748		break;
   2749	default:
   2750unsupported:
   2751		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
   2752			__func__, phy_modes(state->interface), port);
   2753		return;
   2754	}
   2755
   2756	if (phylink_autoneg_inband(mode) &&
   2757	    state->interface != PHY_INTERFACE_MODE_SGMII) {
   2758		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
   2759			__func__);
   2760		return;
   2761	}
   2762
   2763	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
   2764	mcr_new = mcr_cur;
   2765	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
   2766	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
   2767		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
   2768
   2769	/* Are we connected to external phy */
   2770	if (port == 5 && dsa_is_user_port(ds, 5))
   2771		mcr_new |= PMCR_EXT_PHY;
   2772
   2773	if (mcr_new != mcr_cur)
   2774		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
   2775}
   2776
   2777static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
   2778					 unsigned int mode,
   2779					 phy_interface_t interface)
   2780{
   2781	struct mt7530_priv *priv = ds->priv;
   2782
   2783	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
   2784}
   2785
   2786static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
   2787				       unsigned int mode,
   2788				       phy_interface_t interface,
   2789				       int speed, int duplex)
   2790{
   2791	if (pcs->ops->pcs_link_up)
   2792		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
   2793}
   2794
   2795static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
   2796				       unsigned int mode,
   2797				       phy_interface_t interface,
   2798				       struct phy_device *phydev,
   2799				       int speed, int duplex,
   2800				       bool tx_pause, bool rx_pause)
   2801{
   2802	struct mt7530_priv *priv = ds->priv;
   2803	u32 mcr;
   2804
   2805	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
   2806
   2807	/* MT753x MAC works in 1G full duplex mode for all up-clocked
   2808	 * variants.
   2809	 */
   2810	if (interface == PHY_INTERFACE_MODE_TRGMII ||
   2811	    (phy_interface_mode_is_8023z(interface))) {
   2812		speed = SPEED_1000;
   2813		duplex = DUPLEX_FULL;
   2814	}
   2815
   2816	switch (speed) {
   2817	case SPEED_1000:
   2818		mcr |= PMCR_FORCE_SPEED_1000;
   2819		break;
   2820	case SPEED_100:
   2821		mcr |= PMCR_FORCE_SPEED_100;
   2822		break;
   2823	}
   2824	if (duplex == DUPLEX_FULL) {
   2825		mcr |= PMCR_FORCE_FDX;
   2826		if (tx_pause)
   2827			mcr |= PMCR_TX_FC_EN;
   2828		if (rx_pause)
   2829			mcr |= PMCR_RX_FC_EN;
   2830	}
   2831
   2832	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
   2833		switch (speed) {
   2834		case SPEED_1000:
   2835			mcr |= PMCR_FORCE_EEE1G;
   2836			break;
   2837		case SPEED_100:
   2838			mcr |= PMCR_FORCE_EEE100;
   2839			break;
   2840		}
   2841	}
   2842
   2843	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
   2844}
   2845
   2846static int
   2847mt7531_cpu_port_config(struct dsa_switch *ds, int port)
   2848{
   2849	struct mt7530_priv *priv = ds->priv;
   2850	phy_interface_t interface;
   2851	int speed;
   2852	int ret;
   2853
   2854	switch (port) {
   2855	case 5:
   2856		if (mt7531_is_rgmii_port(priv, port))
   2857			interface = PHY_INTERFACE_MODE_RGMII;
   2858		else
   2859			interface = PHY_INTERFACE_MODE_2500BASEX;
   2860
   2861		priv->p5_interface = interface;
   2862		break;
   2863	case 6:
   2864		interface = PHY_INTERFACE_MODE_2500BASEX;
   2865
   2866		mt7531_pad_setup(ds, interface);
   2867
   2868		priv->p6_interface = interface;
   2869		break;
   2870	default:
   2871		return -EINVAL;
   2872	}
   2873
   2874	if (interface == PHY_INTERFACE_MODE_2500BASEX)
   2875		speed = SPEED_2500;
   2876	else
   2877		speed = SPEED_1000;
   2878
   2879	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
   2880	if (ret)
   2881		return ret;
   2882	mt7530_write(priv, MT7530_PMCR_P(port),
   2883		     PMCR_CPU_PORT_SETTING(priv->id));
   2884	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
   2885				   interface, speed, DUPLEX_FULL);
   2886	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
   2887				   speed, DUPLEX_FULL, true, true);
   2888
   2889	return 0;
   2890}
   2891
   2892static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
   2893				    struct phylink_config *config)
   2894{
   2895	struct mt7530_priv *priv = ds->priv;
   2896
   2897	/* This switch only supports full-duplex at 1Gbps */
   2898	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
   2899				   MAC_10 | MAC_100 | MAC_1000FD;
   2900
   2901	/* This driver does not make use of the speed, duplex, pause or the
   2902	 * advertisement in its mac_config, so it is safe to mark this driver
   2903	 * as non-legacy.
   2904	 */
   2905	config->legacy_pre_march2020 = false;
   2906
   2907	priv->info->mac_port_get_caps(ds, port, config);
   2908}
   2909
   2910static int mt753x_pcs_validate(struct phylink_pcs *pcs,
   2911			       unsigned long *supported,
   2912			       const struct phylink_link_state *state)
   2913{
   2914	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
   2915	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
   2916	    phy_interface_mode_is_8023z(state->interface))
   2917		phylink_clear(supported, Autoneg);
   2918
   2919	return 0;
   2920}
   2921
   2922static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
   2923				 struct phylink_link_state *state)
   2924{
   2925	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
   2926	int port = pcs_to_mt753x_pcs(pcs)->port;
   2927	u32 pmsr;
   2928
   2929	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
   2930
   2931	state->link = (pmsr & PMSR_LINK);
   2932	state->an_complete = state->link;
   2933	state->duplex = !!(pmsr & PMSR_DPX);
   2934
   2935	switch (pmsr & PMSR_SPEED_MASK) {
   2936	case PMSR_SPEED_10:
   2937		state->speed = SPEED_10;
   2938		break;
   2939	case PMSR_SPEED_100:
   2940		state->speed = SPEED_100;
   2941		break;
   2942	case PMSR_SPEED_1000:
   2943		state->speed = SPEED_1000;
   2944		break;
   2945	default:
   2946		state->speed = SPEED_UNKNOWN;
   2947		break;
   2948	}
   2949
   2950	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
   2951	if (pmsr & PMSR_RX_FC)
   2952		state->pause |= MLO_PAUSE_RX;
   2953	if (pmsr & PMSR_TX_FC)
   2954		state->pause |= MLO_PAUSE_TX;
   2955}
   2956
   2957static int
   2958mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
   2959			      struct phylink_link_state *state)
   2960{
   2961	u32 status, val;
   2962	u16 config_reg;
   2963
   2964	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
   2965	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
   2966	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
   2967	    (status & MT7531_SGMII_AN_ENABLE)) {
   2968		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
   2969		config_reg = val >> 16;
   2970
   2971		switch (config_reg & LPA_SGMII_SPD_MASK) {
   2972		case LPA_SGMII_1000:
   2973			state->speed = SPEED_1000;
   2974			break;
   2975		case LPA_SGMII_100:
   2976			state->speed = SPEED_100;
   2977			break;
   2978		case LPA_SGMII_10:
   2979			state->speed = SPEED_10;
   2980			break;
   2981		default:
   2982			dev_err(priv->dev, "invalid sgmii PHY speed\n");
   2983			state->link = false;
   2984			return -EINVAL;
   2985		}
   2986
   2987		if (config_reg & LPA_SGMII_FULL_DUPLEX)
   2988			state->duplex = DUPLEX_FULL;
   2989		else
   2990			state->duplex = DUPLEX_HALF;
   2991	}
   2992
   2993	return 0;
   2994}
   2995
   2996static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
   2997				 struct phylink_link_state *state)
   2998{
   2999	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
   3000	int port = pcs_to_mt753x_pcs(pcs)->port;
   3001
   3002	if (state->interface == PHY_INTERFACE_MODE_SGMII)
   3003		mt7531_sgmii_pcs_get_state_an(priv, port, state);
   3004	else
   3005		state->link = false;
   3006}
   3007
   3008static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
   3009			     phy_interface_t interface,
   3010			     const unsigned long *advertising,
   3011			     bool permit_pause_to_mac)
   3012{
   3013	return 0;
   3014}
   3015
   3016static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
   3017{
   3018}
   3019
   3020static const struct phylink_pcs_ops mt7530_pcs_ops = {
   3021	.pcs_validate = mt753x_pcs_validate,
   3022	.pcs_get_state = mt7530_pcs_get_state,
   3023	.pcs_config = mt753x_pcs_config,
   3024	.pcs_an_restart = mt7530_pcs_an_restart,
   3025};
   3026
   3027static const struct phylink_pcs_ops mt7531_pcs_ops = {
   3028	.pcs_validate = mt753x_pcs_validate,
   3029	.pcs_get_state = mt7531_pcs_get_state,
   3030	.pcs_config = mt753x_pcs_config,
   3031	.pcs_an_restart = mt7531_pcs_an_restart,
   3032	.pcs_link_up = mt7531_pcs_link_up,
   3033};
   3034
   3035static int
   3036mt753x_setup(struct dsa_switch *ds)
   3037{
   3038	struct mt7530_priv *priv = ds->priv;
   3039	int i, ret;
   3040
   3041	/* Initialise the PCS devices */
   3042	for (i = 0; i < priv->ds->num_ports; i++) {
   3043		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
   3044		priv->pcs[i].priv = priv;
   3045		priv->pcs[i].port = i;
   3046	}
   3047
   3048	ret = priv->info->sw_setup(ds);
   3049	if (ret)
   3050		return ret;
   3051
   3052	ret = mt7530_setup_irq(priv);
   3053	if (ret)
   3054		return ret;
   3055
   3056	ret = mt7530_setup_mdio(priv);
   3057	if (ret && priv->irq)
   3058		mt7530_free_irq_common(priv);
   3059
   3060	return ret;
   3061}
   3062
   3063static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
   3064			      struct ethtool_eee *e)
   3065{
   3066	struct mt7530_priv *priv = ds->priv;
   3067	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
   3068
   3069	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
   3070	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
   3071
   3072	return 0;
   3073}
   3074
   3075static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
   3076			      struct ethtool_eee *e)
   3077{
   3078	struct mt7530_priv *priv = ds->priv;
   3079	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
   3080
   3081	if (e->tx_lpi_timer > 0xFFF)
   3082		return -EINVAL;
   3083
   3084	set = SET_LPI_THRESH(e->tx_lpi_timer);
   3085	if (!e->tx_lpi_enabled)
   3086		/* Force LPI Mode without a delay */
   3087		set |= LPI_MODE_EN;
   3088	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
   3089
   3090	return 0;
   3091}
   3092
   3093static const struct dsa_switch_ops mt7530_switch_ops = {
   3094	.get_tag_protocol	= mtk_get_tag_protocol,
   3095	.setup			= mt753x_setup,
   3096	.get_strings		= mt7530_get_strings,
   3097	.get_ethtool_stats	= mt7530_get_ethtool_stats,
   3098	.get_sset_count		= mt7530_get_sset_count,
   3099	.set_ageing_time	= mt7530_set_ageing_time,
   3100	.port_enable		= mt7530_port_enable,
   3101	.port_disable		= mt7530_port_disable,
   3102	.port_change_mtu	= mt7530_port_change_mtu,
   3103	.port_max_mtu		= mt7530_port_max_mtu,
   3104	.port_stp_state_set	= mt7530_stp_state_set,
   3105	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
   3106	.port_bridge_flags	= mt7530_port_bridge_flags,
   3107	.port_bridge_join	= mt7530_port_bridge_join,
   3108	.port_bridge_leave	= mt7530_port_bridge_leave,
   3109	.port_fdb_add		= mt7530_port_fdb_add,
   3110	.port_fdb_del		= mt7530_port_fdb_del,
   3111	.port_fdb_dump		= mt7530_port_fdb_dump,
   3112	.port_mdb_add		= mt7530_port_mdb_add,
   3113	.port_mdb_del		= mt7530_port_mdb_del,
   3114	.port_vlan_filtering	= mt7530_port_vlan_filtering,
   3115	.port_vlan_add		= mt7530_port_vlan_add,
   3116	.port_vlan_del		= mt7530_port_vlan_del,
   3117	.port_mirror_add	= mt753x_port_mirror_add,
   3118	.port_mirror_del	= mt753x_port_mirror_del,
   3119	.phylink_get_caps	= mt753x_phylink_get_caps,
   3120	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
   3121	.phylink_mac_config	= mt753x_phylink_mac_config,
   3122	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
   3123	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
   3124	.get_mac_eee		= mt753x_get_mac_eee,
   3125	.set_mac_eee		= mt753x_set_mac_eee,
   3126};
   3127
   3128static const struct mt753x_info mt753x_table[] = {
   3129	[ID_MT7621] = {
   3130		.id = ID_MT7621,
   3131		.pcs_ops = &mt7530_pcs_ops,
   3132		.sw_setup = mt7530_setup,
   3133		.phy_read = mt7530_phy_read,
   3134		.phy_write = mt7530_phy_write,
   3135		.pad_setup = mt7530_pad_clk_setup,
   3136		.mac_port_get_caps = mt7530_mac_port_get_caps,
   3137		.mac_port_config = mt7530_mac_config,
   3138	},
   3139	[ID_MT7530] = {
   3140		.id = ID_MT7530,
   3141		.pcs_ops = &mt7530_pcs_ops,
   3142		.sw_setup = mt7530_setup,
   3143		.phy_read = mt7530_phy_read,
   3144		.phy_write = mt7530_phy_write,
   3145		.pad_setup = mt7530_pad_clk_setup,
   3146		.mac_port_get_caps = mt7530_mac_port_get_caps,
   3147		.mac_port_config = mt7530_mac_config,
   3148	},
   3149	[ID_MT7531] = {
   3150		.id = ID_MT7531,
   3151		.pcs_ops = &mt7531_pcs_ops,
   3152		.sw_setup = mt7531_setup,
   3153		.phy_read = mt7531_ind_phy_read,
   3154		.phy_write = mt7531_ind_phy_write,
   3155		.pad_setup = mt7531_pad_setup,
   3156		.cpu_port_config = mt7531_cpu_port_config,
   3157		.mac_port_get_caps = mt7531_mac_port_get_caps,
   3158		.mac_port_config = mt7531_mac_config,
   3159	},
   3160};
   3161
   3162static const struct of_device_id mt7530_of_match[] = {
   3163	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
   3164	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
   3165	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
   3166	{ /* sentinel */ },
   3167};
   3168MODULE_DEVICE_TABLE(of, mt7530_of_match);
   3169
   3170static int
   3171mt7530_probe(struct mdio_device *mdiodev)
   3172{
   3173	struct mt7530_priv *priv;
   3174	struct device_node *dn;
   3175
   3176	dn = mdiodev->dev.of_node;
   3177
   3178	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
   3179	if (!priv)
   3180		return -ENOMEM;
   3181
   3182	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
   3183	if (!priv->ds)
   3184		return -ENOMEM;
   3185
   3186	priv->ds->dev = &mdiodev->dev;
   3187	priv->ds->num_ports = MT7530_NUM_PORTS;
   3188
   3189	/* Use medatek,mcm property to distinguish hardware type that would
   3190	 * casues a little bit differences on power-on sequence.
   3191	 */
   3192	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
   3193	if (priv->mcm) {
   3194		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
   3195
   3196		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
   3197		if (IS_ERR(priv->rstc)) {
   3198			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
   3199			return PTR_ERR(priv->rstc);
   3200		}
   3201	}
   3202
   3203	/* Get the hardware identifier from the devicetree node.
   3204	 * We will need it for some of the clock and regulator setup.
   3205	 */
   3206	priv->info = of_device_get_match_data(&mdiodev->dev);
   3207	if (!priv->info)
   3208		return -EINVAL;
   3209
   3210	/* Sanity check if these required device operations are filled
   3211	 * properly.
   3212	 */
   3213	if (!priv->info->sw_setup || !priv->info->pad_setup ||
   3214	    !priv->info->phy_read || !priv->info->phy_write ||
   3215	    !priv->info->mac_port_get_caps ||
   3216	    !priv->info->mac_port_config)
   3217		return -EINVAL;
   3218
   3219	priv->id = priv->info->id;
   3220
   3221	if (priv->id == ID_MT7530) {
   3222		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
   3223		if (IS_ERR(priv->core_pwr))
   3224			return PTR_ERR(priv->core_pwr);
   3225
   3226		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
   3227		if (IS_ERR(priv->io_pwr))
   3228			return PTR_ERR(priv->io_pwr);
   3229	}
   3230
   3231	/* Not MCM that indicates switch works as the remote standalone
   3232	 * integrated circuit so the GPIO pin would be used to complete
   3233	 * the reset, otherwise memory-mapped register accessing used
   3234	 * through syscon provides in the case of MCM.
   3235	 */
   3236	if (!priv->mcm) {
   3237		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
   3238						      GPIOD_OUT_LOW);
   3239		if (IS_ERR(priv->reset)) {
   3240			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
   3241			return PTR_ERR(priv->reset);
   3242		}
   3243	}
   3244
   3245	priv->bus = mdiodev->bus;
   3246	priv->dev = &mdiodev->dev;
   3247	priv->ds->priv = priv;
   3248	priv->ds->ops = &mt7530_switch_ops;
   3249	mutex_init(&priv->reg_mutex);
   3250	dev_set_drvdata(&mdiodev->dev, priv);
   3251
   3252	return dsa_register_switch(priv->ds);
   3253}
   3254
   3255static void
   3256mt7530_remove(struct mdio_device *mdiodev)
   3257{
   3258	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
   3259	int ret = 0;
   3260
   3261	if (!priv)
   3262		return;
   3263
   3264	ret = regulator_disable(priv->core_pwr);
   3265	if (ret < 0)
   3266		dev_err(priv->dev,
   3267			"Failed to disable core power: %d\n", ret);
   3268
   3269	ret = regulator_disable(priv->io_pwr);
   3270	if (ret < 0)
   3271		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
   3272			ret);
   3273
   3274	if (priv->irq)
   3275		mt7530_free_irq(priv);
   3276
   3277	dsa_unregister_switch(priv->ds);
   3278	mutex_destroy(&priv->reg_mutex);
   3279
   3280	dev_set_drvdata(&mdiodev->dev, NULL);
   3281}
   3282
   3283static void mt7530_shutdown(struct mdio_device *mdiodev)
   3284{
   3285	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
   3286
   3287	if (!priv)
   3288		return;
   3289
   3290	dsa_switch_shutdown(priv->ds);
   3291
   3292	dev_set_drvdata(&mdiodev->dev, NULL);
   3293}
   3294
   3295static struct mdio_driver mt7530_mdio_driver = {
   3296	.probe  = mt7530_probe,
   3297	.remove = mt7530_remove,
   3298	.shutdown = mt7530_shutdown,
   3299	.mdiodrv.driver = {
   3300		.name = "mt7530",
   3301		.of_match_table = mt7530_of_match,
   3302	},
   3303};
   3304
   3305mdio_module_driver(mt7530_mdio_driver);
   3306
   3307MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
   3308MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
   3309MODULE_LICENSE("GPL");