cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

et131x.c (119712B)


      1/* Agere Systems Inc.
      2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
      3 *
      4 * Copyright © 2005 Agere Systems Inc.
      5 * All rights reserved.
      6 *   http://www.agere.com
      7 *
      8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
      9 *
     10 *------------------------------------------------------------------------------
     11 *
     12 * SOFTWARE LICENSE
     13 *
     14 * This software is provided subject to the following terms and conditions,
     15 * which you should read carefully before using the software.  Using this
     16 * software indicates your acceptance of these terms and conditions.  If you do
     17 * not agree with these terms and conditions, do not use the software.
     18 *
     19 * Copyright © 2005 Agere Systems Inc.
     20 * All rights reserved.
     21 *
     22 * Redistribution and use in source or binary forms, with or without
     23 * modifications, are permitted provided that the following conditions are met:
     24 *
     25 * . Redistributions of source code must retain the above copyright notice, this
     26 *    list of conditions and the following Disclaimer as comments in the code as
     27 *    well as in the documentation and/or other materials provided with the
     28 *    distribution.
     29 *
     30 * . Redistributions in binary form must reproduce the above copyright notice,
     31 *    this list of conditions and the following Disclaimer in the documentation
     32 *    and/or other materials provided with the distribution.
     33 *
     34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
     35 *    may be used to endorse or promote products derived from this software
     36 *    without specific prior written permission.
     37 *
     38 * Disclaimer
     39 *
     40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
     41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
     42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
     43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
     44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
     45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
     49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
     51 * DAMAGE.
     52 */
     53
     54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     55
     56#include <linux/pci.h>
     57#include <linux/module.h>
     58#include <linux/types.h>
     59#include <linux/kernel.h>
     60
     61#include <linux/sched.h>
     62#include <linux/ptrace.h>
     63#include <linux/slab.h>
     64#include <linux/ctype.h>
     65#include <linux/string.h>
     66#include <linux/timer.h>
     67#include <linux/interrupt.h>
     68#include <linux/in.h>
     69#include <linux/delay.h>
     70#include <linux/bitops.h>
     71#include <linux/io.h>
     72
     73#include <linux/netdevice.h>
     74#include <linux/etherdevice.h>
     75#include <linux/skbuff.h>
     76#include <linux/if_arp.h>
     77#include <linux/ioport.h>
     78#include <linux/crc32.h>
     79#include <linux/random.h>
     80#include <linux/phy.h>
     81
     82#include "et131x.h"
     83
     84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
     85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
     86MODULE_LICENSE("Dual BSD/GPL");
     87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
     88
     89/* EEPROM defines */
     90#define MAX_NUM_REGISTER_POLLS          1000
     91#define MAX_NUM_WRITE_RETRIES           2
     92
     93/* MAC defines */
     94#define COUNTER_WRAP_16_BIT 0x10000
     95#define COUNTER_WRAP_12_BIT 0x1000
     96
     97/* PCI defines */
     98#define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
     99#define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
    100
    101/* ISR defines */
    102/* For interrupts, normal running is:
    103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
    104 *       watchdog_interrupt & txdma_xfer_done
    105 *
    106 * In both cases, when flow control is enabled for either Tx or bi-direction,
    107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
    108 * buffer rings are running low.
    109 */
    110#define INT_MASK_DISABLE            0xffffffff
    111
    112/* NOTE: Masking out MAC_STAT Interrupt for now...
    113 * #define INT_MASK_ENABLE             0xfff6bf17
    114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
    115 */
    116#define INT_MASK_ENABLE             0xfffebf17
    117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
    118
    119/* General defines */
    120/* Packet and header sizes */
    121#define NIC_MIN_PACKET_SIZE	60
    122
    123/* Multicast list size */
    124#define NIC_MAX_MCAST_LIST	128
    125
    126/* Supported Filters */
    127#define ET131X_PACKET_TYPE_DIRECTED		0x0001
    128#define ET131X_PACKET_TYPE_MULTICAST		0x0002
    129#define ET131X_PACKET_TYPE_BROADCAST		0x0004
    130#define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
    131#define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
    132
    133/* Tx Timeout */
    134#define ET131X_TX_TIMEOUT	(1 * HZ)
    135#define NIC_SEND_HANG_THRESHOLD	0
    136
    137/* MP_ADAPTER flags */
    138#define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
    139
    140/* MP_SHARED flags */
    141#define FMP_ADAPTER_LOWER_POWER		0x00200000
    142
    143#define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
    144#define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
    145
    146#define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
    147
    148/* Some offsets in PCI config space that are actually used. */
    149#define ET1310_PCI_MAC_ADDRESS		0xA4
    150#define ET1310_PCI_EEPROM_STATUS	0xB2
    151#define ET1310_PCI_ACK_NACK		0xC0
    152#define ET1310_PCI_REPLAY		0xC2
    153#define ET1310_PCI_L0L1LATENCY		0xCF
    154
    155/* PCI Product IDs */
    156#define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
    157#define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
    158
    159/* Define order of magnitude converter */
    160#define NANO_IN_A_MICRO	1000
    161
    162#define PARM_RX_NUM_BUFS_DEF    4
    163#define PARM_RX_TIME_INT_DEF    10
    164#define PARM_RX_MEM_END_DEF     0x2bc
    165#define PARM_TX_TIME_INT_DEF    40
    166#define PARM_TX_NUM_BUFS_DEF    4
    167#define PARM_DMA_CACHE_DEF      0
    168
    169/* RX defines */
    170#define FBR_CHUNKS		32
    171#define MAX_DESC_PER_RING_RX	1024
    172
    173/* number of RFDs - default and min */
    174#define RFD_LOW_WATER_MARK	40
    175#define NIC_DEFAULT_NUM_RFD	1024
    176#define NUM_FBRS		2
    177
    178#define MAX_PACKETS_HANDLED	256
    179#define ET131X_MIN_MTU		64
    180#define ET131X_MAX_MTU		9216
    181
    182#define ALCATEL_MULTICAST_PKT	0x01000000
    183#define ALCATEL_BROADCAST_PKT	0x02000000
    184
    185/* typedefs for Free Buffer Descriptors */
    186struct fbr_desc {
    187	u32 addr_lo;
    188	u32 addr_hi;
    189	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
    190};
    191
    192/* Packet Status Ring Descriptors
    193 *
    194 * Word 0:
    195 *
    196 * top 16 bits are from the Alcatel Status Word as enumerated in
    197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
    198 *
    199 * 0: hp			hash pass
    200 * 1: ipa			IP checksum assist
    201 * 2: ipp			IP checksum pass
    202 * 3: tcpa			TCP checksum assist
    203 * 4: tcpp			TCP checksum pass
    204 * 5: wol			WOL Event
    205 * 6: rxmac_error		RXMAC Error Indicator
    206 * 7: drop			Drop packet
    207 * 8: ft			Frame Truncated
    208 * 9: jp			Jumbo Packet
    209 * 10: vp			VLAN Packet
    210 * 11-15: unused
    211 * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
    212 * 17: asw_RX_DV_event		short receive event detected
    213 * 18: asw_false_carrier_event	bad carrier since last good packet
    214 * 19: asw_code_err		one or more nibbles signalled as errors
    215 * 20: asw_CRC_err		CRC error
    216 * 21: asw_len_chk_err		frame length field incorrect
    217 * 22: asw_too_long		frame length > 1518 bytes
    218 * 23: asw_OK			valid CRC + no code error
    219 * 24: asw_multicast		has a multicast address
    220 * 25: asw_broadcast		has a broadcast address
    221 * 26: asw_dribble_nibble	spurious bits after EOP
    222 * 27: asw_control_frame	is a control frame
    223 * 28: asw_pause_frame		is a pause frame
    224 * 29: asw_unsupported_op	unsupported OP code
    225 * 30: asw_VLAN_tag		VLAN tag detected
    226 * 31: asw_long_evt		Rx long event
    227 *
    228 * Word 1:
    229 * 0-15: length			length in bytes
    230 * 16-25: bi			Buffer Index
    231 * 26-27: ri			Ring Index
    232 * 28-31: reserved
    233 */
    234struct pkt_stat_desc {
    235	u32 word0;
    236	u32 word1;
    237};
    238
    239/* Typedefs for the RX DMA status word */
    240
    241/* rx status word 0 holds part of the status bits of the Rx DMA engine
    242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
    243 * which contains the Free Buffer ring 0 and 1 available offset.
    244 *
    245 * bit 0-9 FBR1 offset
    246 * bit 10 Wrap flag for FBR1
    247 * bit 16-25 FBR0 offset
    248 * bit 26 Wrap flag for FBR0
    249 */
    250
    251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
    252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
    253 * which contains the Packet Status Ring available offset.
    254 *
    255 * bit 0-15 reserved
    256 * bit 16-27 PSRoffset
    257 * bit 28 PSRwrap
    258 * bit 29-31 unused
    259 */
    260
    261/* struct rx_status_block is a structure representing the status of the Rx
    262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
    263 */
    264struct rx_status_block {
    265	u32 word0;
    266	u32 word1;
    267};
    268
    269/* Structure for look-up table holding free buffer ring pointers, addresses
    270 * and state.
    271 */
    272struct fbr_lookup {
    273	void		*virt[MAX_DESC_PER_RING_RX];
    274	u32		 bus_high[MAX_DESC_PER_RING_RX];
    275	u32		 bus_low[MAX_DESC_PER_RING_RX];
    276	void		*ring_virtaddr;
    277	dma_addr_t	 ring_physaddr;
    278	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
    279	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
    280	u32		 local_full;
    281	u32		 num_entries;
    282	dma_addr_t	 buffsize;
    283};
    284
    285/* struct rx_ring is the structure representing the adaptor's local
    286 * reference(s) to the rings
    287 */
    288struct rx_ring {
    289	struct fbr_lookup *fbr[NUM_FBRS];
    290	void *ps_ring_virtaddr;
    291	dma_addr_t ps_ring_physaddr;
    292	u32 local_psr_full;
    293	u32 psr_entries;
    294
    295	struct rx_status_block *rx_status_block;
    296	dma_addr_t rx_status_bus;
    297
    298	struct list_head recv_list;
    299	u32 num_ready_recv;
    300
    301	u32 num_rfd;
    302
    303	bool unfinished_receives;
    304};
    305
    306/* TX defines */
    307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
    308 *
    309 * 0-15: length of packet
    310 * 16-27: VLAN tag
    311 * 28: VLAN CFI
    312 * 29-31: VLAN priority
    313 *
    314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
    315 *
    316 * 0: last packet in the sequence
    317 * 1: first packet in the sequence
    318 * 2: interrupt the processor when this pkt sent
    319 * 3: Control word - no packet data
    320 * 4: Issue half-duplex backpressure : XON/XOFF
    321 * 5: send pause frame
    322 * 6: Tx frame has error
    323 * 7: append CRC
    324 * 8: MAC override
    325 * 9: pad packet
    326 * 10: Packet is a Huge packet
    327 * 11: append VLAN tag
    328 * 12: IP checksum assist
    329 * 13: TCP checksum assist
    330 * 14: UDP checksum assist
    331 */
    332#define TXDESC_FLAG_LASTPKT		0x0001
    333#define TXDESC_FLAG_FIRSTPKT		0x0002
    334#define TXDESC_FLAG_INTPROC		0x0004
    335
    336/* struct tx_desc represents each descriptor on the ring */
    337struct tx_desc {
    338	u32 addr_hi;
    339	u32 addr_lo;
    340	u32 len_vlan;	/* control words how to xmit the */
    341	u32 flags;	/* data (detailed above) */
    342};
    343
    344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
    345 * by 0x101c / 0x1020. This is a DMA10 type
    346 */
    347
    348/* TCB (Transmit Control Block: Host Side) */
    349struct tcb {
    350	struct tcb *next;	/* Next entry in ring */
    351	u32 count;		/* Used to spot stuck/lost packets */
    352	u32 stale;		/* Used to spot stuck/lost packets */
    353	struct sk_buff *skb;	/* Network skb we are tied to */
    354	u32 index;		/* Ring indexes */
    355	u32 index_start;
    356};
    357
    358/* Structure representing our local reference(s) to the ring */
    359struct tx_ring {
    360	/* TCB (Transmit Control Block) memory and lists */
    361	struct tcb *tcb_ring;
    362
    363	/* List of TCBs that are ready to be used */
    364	struct tcb *tcb_qhead;
    365	struct tcb *tcb_qtail;
    366
    367	/* list of TCBs that are currently being sent. */
    368	struct tcb *send_head;
    369	struct tcb *send_tail;
    370	int used;
    371
    372	/* The actual descriptor ring */
    373	struct tx_desc *tx_desc_ring;
    374	dma_addr_t tx_desc_ring_pa;
    375
    376	/* send_idx indicates where we last wrote to in the descriptor ring. */
    377	u32 send_idx;
    378
    379	/* The location of the write-back status block */
    380	u32 *tx_status;
    381	dma_addr_t tx_status_pa;
    382
    383	/* Packets since the last IRQ: used for interrupt coalescing */
    384	int since_irq;
    385};
    386
    387/* Do not change these values: if changed, then change also in respective
    388 * TXdma and Rxdma engines
    389 */
    390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
    391#define NUM_TCB                      64
    392
    393/* These values are all superseded by registry entries to facilitate tuning.
    394 * Once the desired performance has been achieved, the optimal registry values
    395 * should be re-populated to these #defines:
    396 */
    397#define TX_ERROR_PERIOD             1000
    398
    399#define LO_MARK_PERCENT_FOR_PSR     15
    400#define LO_MARK_PERCENT_FOR_RX      15
    401
    402/* RFD (Receive Frame Descriptor) */
    403struct rfd {
    404	struct list_head list_node;
    405	struct sk_buff *skb;
    406	u32 len;	/* total size of receive frame */
    407	u16 bufferindex;
    408	u8 ringindex;
    409};
    410
    411/* Flow Control */
    412#define FLOW_BOTH	0
    413#define FLOW_TXONLY	1
    414#define FLOW_RXONLY	2
    415#define FLOW_NONE	3
    416
    417/* Struct to define some device statistics */
    418struct ce_stats {
    419	u32		multicast_pkts_rcvd;
    420	u32		rcvd_pkts_dropped;
    421
    422	u32		tx_underflows;
    423	u32		tx_collisions;
    424	u32		tx_excessive_collisions;
    425	u32		tx_first_collisions;
    426	u32		tx_late_collisions;
    427	u32		tx_max_pkt_errs;
    428	u32		tx_deferred;
    429
    430	u32		rx_overflows;
    431	u32		rx_length_errs;
    432	u32		rx_align_errs;
    433	u32		rx_crc_errs;
    434	u32		rx_code_violations;
    435	u32		rx_other_errs;
    436
    437	u32		interrupt_status;
    438};
    439
    440/* The private adapter structure */
    441struct et131x_adapter {
    442	struct net_device *netdev;
    443	struct pci_dev *pdev;
    444	struct mii_bus *mii_bus;
    445	struct napi_struct napi;
    446
    447	/* Flags that indicate current state of the adapter */
    448	u32 flags;
    449
    450	/* local link state, to determine if a state change has occurred */
    451	int link;
    452
    453	/* Configuration  */
    454	u8 rom_addr[ETH_ALEN];
    455	u8 addr[ETH_ALEN];
    456	bool has_eeprom;
    457	u8 eeprom_data[2];
    458
    459	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
    460	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
    461	spinlock_t rcv_lock; /* protects the rx_ring receive list */
    462
    463	/* Packet Filter and look ahead size */
    464	u32 packet_filter;
    465
    466	/* multicast list */
    467	u32 multicast_addr_count;
    468	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
    469
    470	/* Pointer to the device's PCI register space */
    471	struct address_map __iomem *regs;
    472
    473	/* Registry parameters */
    474	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
    475	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
    476
    477	/* Derived from the registry: */
    478	u8 flow;		/* flow control validated by the far-end */
    479
    480	/* Minimize init-time */
    481	struct timer_list error_timer;
    482
    483	/* variable putting the phy into coma mode when boot up with no cable
    484	 * plugged in after 5 seconds
    485	 */
    486	u8 boot_coma;
    487
    488	/* Tx Memory Variables */
    489	struct tx_ring tx_ring;
    490
    491	/* Rx Memory Variables */
    492	struct rx_ring rx_ring;
    493
    494	struct ce_stats stats;
    495};
    496
    497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
    498{
    499	u32 reg;
    500	int i;
    501
    502	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
    503	 *    bits 7,1:0 both equal to 1, at least once after reset.
    504	 *    Subsequent operations need only to check that bits 1:0 are equal
    505	 *    to 1 prior to starting a single byte read/write
    506	 */
    507	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
    508		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
    509			return -EIO;
    510
    511		/* I2C idle and Phy Queue Avail both true */
    512		if ((reg & 0x3000) == 0x3000) {
    513			if (status)
    514				*status = reg;
    515			return reg & 0xFF;
    516		}
    517	}
    518	return -ETIMEDOUT;
    519}
    520
    521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
    522{
    523	struct pci_dev *pdev = adapter->pdev;
    524	int index = 0;
    525	int retries;
    526	int err = 0;
    527	int writeok = 0;
    528	u32 status;
    529	u32 val = 0;
    530
    531	/* For an EEPROM, an I2C single byte write is defined as a START
    532	 * condition followed by the device address, EEPROM address, one byte
    533	 * of data and a STOP condition.  The STOP condition will trigger the
    534	 * EEPROM's internally timed write cycle to the nonvolatile memory.
    535	 * All inputs are disabled during this write cycle and the EEPROM will
    536	 * not respond to any access until the internal write is complete.
    537	 */
    538	err = eeprom_wait_ready(pdev, NULL);
    539	if (err < 0)
    540		return err;
    541
    542	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
    543	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
    544	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
    545	  *    byte addressing).
    546	  */
    547	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
    548				  LBCIF_CONTROL_LBCIF_ENABLE |
    549					LBCIF_CONTROL_I2C_WRITE))
    550		return -EIO;
    551
    552	/* Prepare EEPROM address for Step 3 */
    553	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
    554		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
    555			break;
    556		/* Write the data to the LBCIF Data Register (the I2C write
    557		 * will begin).
    558		 */
    559		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
    560			break;
    561		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
    562		 * 1:0 are both equal to 1, the I2C write has completed and the
    563		 * internal write cycle of the EEPROM is about to start.
    564		 * (bits 1:0 = 01 is a legal state while waiting from both
    565		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
    566		 * something is broken).
    567		 */
    568		err = eeprom_wait_ready(pdev, &status);
    569		if (err < 0)
    570			return 0;
    571
    572		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
    573		 * an error has occurred.Don't break here if we are revision
    574		 * 1, this is so we do a blind write for load bug.
    575		 */
    576		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
    577		    adapter->pdev->revision == 0)
    578			break;
    579
    580		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
    581		 * ACK error has occurred on the address phase of the write.
    582		 * This could be due to an actual hardware failure or the
    583		 * EEPROM may still be in its internal write cycle from a
    584		 * previous write. This write operation was ignored and must be
    585		  *repeated later.
    586		 */
    587		if (status & LBCIF_STATUS_ACK_ERROR) {
    588			/* This could be due to an actual hardware failure
    589			 * or the EEPROM may still be in its internal write
    590			 * cycle from a previous write. This write operation
    591			 * was ignored and must be repeated later.
    592			 */
    593			udelay(10);
    594			continue;
    595		}
    596
    597		writeok = 1;
    598		break;
    599	}
    600
    601	udelay(10);
    602
    603	while (1) {
    604		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
    605					  LBCIF_CONTROL_LBCIF_ENABLE))
    606			writeok = 0;
    607
    608		/* Do read until internal ACK_ERROR goes away meaning write
    609		 * completed
    610		 */
    611		do {
    612			pci_write_config_dword(pdev,
    613					       LBCIF_ADDRESS_REGISTER,
    614					       addr);
    615			do {
    616				pci_read_config_dword(pdev,
    617						      LBCIF_DATA_REGISTER,
    618						      &val);
    619			} while ((val & 0x00010000) == 0);
    620		} while (val & 0x00040000);
    621
    622		if ((val & 0xFF00) != 0xC000 || index == 10000)
    623			break;
    624		index++;
    625	}
    626	return writeok ? 0 : -EIO;
    627}
    628
    629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
    630{
    631	struct pci_dev *pdev = adapter->pdev;
    632	int err;
    633	u32 status;
    634
    635	/* A single byte read is similar to the single byte write, with the
    636	 * exception of the data flow:
    637	 */
    638	err = eeprom_wait_ready(pdev, NULL);
    639	if (err < 0)
    640		return err;
    641	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
    642	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
    643	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
    644	 * addressing).
    645	 */
    646	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
    647				  LBCIF_CONTROL_LBCIF_ENABLE))
    648		return -EIO;
    649	/* Write the address to the LBCIF Address Register (I2C read will
    650	 * begin).
    651	 */
    652	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
    653		return -EIO;
    654	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
    655	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
    656	 * has occurred).
    657	 */
    658	err = eeprom_wait_ready(pdev, &status);
    659	if (err < 0)
    660		return err;
    661	/* Regardless of error status, read data byte from LBCIF Data
    662	 * Register.
    663	 */
    664	*pdata = err;
    665
    666	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
    667}
    668
    669static int et131x_init_eeprom(struct et131x_adapter *adapter)
    670{
    671	struct pci_dev *pdev = adapter->pdev;
    672	u8 eestatus;
    673
    674	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
    675
    676	/* THIS IS A WORKAROUND:
    677	 * I need to call this function twice to get my card in a
    678	 * LG M1 Express Dual running. I tried also a msleep before this
    679	 * function, because I thought there could be some time conditions
    680	 * but it didn't work. Call the whole function twice also work.
    681	 */
    682	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
    683		dev_err(&pdev->dev,
    684			"Could not read PCI config space for EEPROM Status\n");
    685		return -EIO;
    686	}
    687
    688	/* Determine if the error(s) we care about are present. If they are
    689	 * present we need to fail.
    690	 */
    691	if (eestatus & 0x4C) {
    692		int write_failed = 0;
    693
    694		if (pdev->revision == 0x01) {
    695			int	i;
    696			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
    697
    698			/* Re-write the first 4 bytes if we have an eeprom
    699			 * present and the revision id is 1, this fixes the
    700			 * corruption seen with 1310 B Silicon
    701			 */
    702			for (i = 0; i < 3; i++)
    703				if (eeprom_write(adapter, i, eedata[i]) < 0)
    704					write_failed = 1;
    705		}
    706		if (pdev->revision  != 0x01 || write_failed) {
    707			dev_err(&pdev->dev,
    708				"Fatal EEPROM Status Error - 0x%04x\n",
    709				eestatus);
    710
    711			/* This error could mean that there was an error
    712			 * reading the eeprom or that the eeprom doesn't exist.
    713			 * We will treat each case the same and not try to
    714			 * gather additional information that normally would
    715			 * come from the eeprom, like MAC Address
    716			 */
    717			adapter->has_eeprom = false;
    718			return -EIO;
    719		}
    720	}
    721	adapter->has_eeprom = true;
    722
    723	/* Read the EEPROM for information regarding LED behavior. Refer to
    724	 * et131x_xcvr_init() for its use.
    725	 */
    726	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
    727	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
    728
    729	if (adapter->eeprom_data[0] != 0xcd)
    730		/* Disable all optional features */
    731		adapter->eeprom_data[1] = 0x00;
    732
    733	return 0;
    734}
    735
    736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
    737{
    738	/* Setup the receive dma configuration register for normal operation */
    739	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
    740	struct rx_ring *rx_ring = &adapter->rx_ring;
    741
    742	if (rx_ring->fbr[1]->buffsize == 4096)
    743		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
    744	else if (rx_ring->fbr[1]->buffsize == 8192)
    745		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
    746	else if (rx_ring->fbr[1]->buffsize == 16384)
    747		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
    748
    749	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
    750	if (rx_ring->fbr[0]->buffsize == 256)
    751		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
    752	else if (rx_ring->fbr[0]->buffsize == 512)
    753		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
    754	else if (rx_ring->fbr[0]->buffsize == 1024)
    755		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
    756	writel(csr, &adapter->regs->rxdma.csr);
    757
    758	csr = readl(&adapter->regs->rxdma.csr);
    759	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
    760		udelay(5);
    761		csr = readl(&adapter->regs->rxdma.csr);
    762		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
    763			dev_err(&adapter->pdev->dev,
    764				"RX Dma failed to exit halt state. CSR 0x%08x\n",
    765				csr);
    766		}
    767	}
    768}
    769
    770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
    771{
    772	u32 csr;
    773	/* Setup the receive dma configuration register */
    774	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
    775	       &adapter->regs->rxdma.csr);
    776	csr = readl(&adapter->regs->rxdma.csr);
    777	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
    778		udelay(5);
    779		csr = readl(&adapter->regs->rxdma.csr);
    780		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
    781			dev_err(&adapter->pdev->dev,
    782				"RX Dma failed to enter halt state. CSR 0x%08x\n",
    783				csr);
    784	}
    785}
    786
    787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
    788{
    789	/* Setup the transmit dma configuration register for normal
    790	 * operation
    791	 */
    792	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
    793	       &adapter->regs->txdma.csr);
    794}
    795
    796static inline void add_10bit(u32 *v, int n)
    797{
    798	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
    799}
    800
    801static inline void add_12bit(u32 *v, int n)
    802{
    803	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
    804}
    805
    806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
    807{
    808	struct mac_regs __iomem *macregs = &adapter->regs->mac;
    809	u32 station1;
    810	u32 station2;
    811	u32 ipg;
    812
    813	/* First we need to reset everything.  Write to MAC configuration
    814	 * register 1 to perform reset.
    815	 */
    816	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
    817	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
    818	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
    819	       &macregs->cfg1);
    820
    821	/* Next lets configure the MAC Inter-packet gap register */
    822	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
    823	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
    824	writel(ipg, &macregs->ipg);
    825
    826	/* Next lets configure the MAC Half Duplex register */
    827	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
    828	writel(0x00A1F037, &macregs->hfdp);
    829
    830	/* Next lets configure the MAC Interface Control register */
    831	writel(0, &macregs->if_ctrl);
    832
    833	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
    834
    835	/* Next lets configure the MAC Station Address register.  These
    836	 * values are read from the EEPROM during initialization and stored
    837	 * in the adapter structure.  We write what is stored in the adapter
    838	 * structure to the MAC Station Address registers high and low.  This
    839	 * station address is used for generating and checking pause control
    840	 * packets.
    841	 */
    842	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
    843		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
    844	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
    845		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
    846		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
    847		    adapter->addr[2];
    848	writel(station1, &macregs->station_addr_1);
    849	writel(station2, &macregs->station_addr_2);
    850
    851	/* Max ethernet packet in bytes that will be passed by the mac without
    852	 * being truncated.  Allow the MAC to pass 4 more than our max packet
    853	 * size.  This is 4 for the Ethernet CRC.
    854	 *
    855	 * Packets larger than (registry_jumbo_packet) that do not contain a
    856	 * VLAN ID will be dropped by the Rx function.
    857	 */
    858	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
    859
    860	/* clear out MAC config reset */
    861	writel(0, &macregs->cfg1);
    862}
    863
    864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
    865{
    866	int32_t delay = 0;
    867	struct mac_regs __iomem *mac = &adapter->regs->mac;
    868	struct phy_device *phydev = adapter->netdev->phydev;
    869	u32 cfg1;
    870	u32 cfg2;
    871	u32 ifctrl;
    872	u32 ctl;
    873
    874	ctl = readl(&adapter->regs->txmac.ctl);
    875	cfg1 = readl(&mac->cfg1);
    876	cfg2 = readl(&mac->cfg2);
    877	ifctrl = readl(&mac->if_ctrl);
    878
    879	/* Set up the if mode bits */
    880	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
    881	if (phydev->speed == SPEED_1000) {
    882		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
    883		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
    884	} else {
    885		cfg2 |= ET_MAC_CFG2_IFMODE_100;
    886		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
    887	}
    888
    889	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
    890							ET_MAC_CFG1_TX_FLOW;
    891
    892	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
    893	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
    894		cfg1 |= ET_MAC_CFG1_RX_FLOW;
    895	writel(cfg1, &mac->cfg1);
    896
    897	/* Now we need to initialize the MAC Configuration 2 register */
    898	/* preamble 7, check length, huge frame off, pad crc, crc enable
    899	 * full duplex off
    900	 */
    901	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
    902	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
    903	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
    904	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
    905	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
    906	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
    907
    908	if (phydev->duplex == DUPLEX_FULL)
    909		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
    910
    911	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
    912	if (phydev->duplex == DUPLEX_HALF)
    913		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
    914
    915	writel(ifctrl, &mac->if_ctrl);
    916	writel(cfg2, &mac->cfg2);
    917
    918	do {
    919		udelay(10);
    920		delay++;
    921		cfg1 = readl(&mac->cfg1);
    922	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
    923
    924	if (delay == 100) {
    925		dev_warn(&adapter->pdev->dev,
    926			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
    927			 cfg1);
    928	}
    929
    930	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
    931	writel(ctl, &adapter->regs->txmac.ctl);
    932
    933	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
    934		et131x_rx_dma_enable(adapter);
    935		et131x_tx_dma_enable(adapter);
    936	}
    937}
    938
    939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
    940{
    941	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
    942
    943	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
    944}
    945
    946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
    947{
    948	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
    949	u32 hash1 = 0;
    950	u32 hash2 = 0;
    951	u32 hash3 = 0;
    952	u32 hash4 = 0;
    953
    954	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
    955	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
    956	 * specified) then we should pass NO multi-cast addresses to the
    957	 * driver.
    958	 */
    959	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
    960		int i;
    961
    962		/* Loop through our multicast array and set up the device */
    963		for (i = 0; i < adapter->multicast_addr_count; i++) {
    964			u32 result;
    965
    966			result = ether_crc(6, adapter->multicast_list[i]);
    967
    968			result = (result & 0x3F800000) >> 23;
    969
    970			if (result < 32) {
    971				hash1 |= (1 << result);
    972			} else if ((31 < result) && (result < 64)) {
    973				result -= 32;
    974				hash2 |= (1 << result);
    975			} else if ((63 < result) && (result < 96)) {
    976				result -= 64;
    977				hash3 |= (1 << result);
    978			} else {
    979				result -= 96;
    980				hash4 |= (1 << result);
    981			}
    982		}
    983	}
    984
    985	/* Write out the new hash to the device */
    986	if (!et1310_in_phy_coma(adapter)) {
    987		writel(hash1, &rxmac->multi_hash1);
    988		writel(hash2, &rxmac->multi_hash2);
    989		writel(hash3, &rxmac->multi_hash3);
    990		writel(hash4, &rxmac->multi_hash4);
    991	}
    992}
    993
    994static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
    995{
    996	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
    997	u32 uni_pf1;
    998	u32 uni_pf2;
    999	u32 uni_pf3;
   1000
   1001	/* Set up unicast packet filter reg 3 to be the first two octets of
   1002	 * the MAC address for both address
   1003	 *
   1004	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
   1005	 * MAC address for second address
   1006	 *
   1007	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
   1008	 * MAC address for first address
   1009	 */
   1010	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
   1011		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
   1012		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
   1013		   adapter->addr[1];
   1014
   1015	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
   1016		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
   1017		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
   1018		   adapter->addr[5];
   1019
   1020	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
   1021		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
   1022		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
   1023		   adapter->addr[5];
   1024
   1025	if (!et1310_in_phy_coma(adapter)) {
   1026		writel(uni_pf1, &rxmac->uni_pf_addr1);
   1027		writel(uni_pf2, &rxmac->uni_pf_addr2);
   1028		writel(uni_pf3, &rxmac->uni_pf_addr3);
   1029	}
   1030}
   1031
   1032static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
   1033{
   1034	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
   1035	struct phy_device *phydev = adapter->netdev->phydev;
   1036	u32 sa_lo;
   1037	u32 sa_hi = 0;
   1038	u32 pf_ctrl = 0;
   1039	u32 __iomem *wolw;
   1040
   1041	/* Disable the MAC while it is being configured (also disable WOL) */
   1042	writel(0x8, &rxmac->ctrl);
   1043
   1044	/* Initialize WOL to disabled. */
   1045	writel(0, &rxmac->crc0);
   1046	writel(0, &rxmac->crc12);
   1047	writel(0, &rxmac->crc34);
   1048
   1049	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
   1050	 * its default Values of 0x00000000 because there are not WOL masks
   1051	 * as of this time.
   1052	 */
   1053	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
   1054		writel(0, wolw);
   1055
   1056	/* Lets setup the WOL Source Address */
   1057	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
   1058		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
   1059		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
   1060		 adapter->addr[5];
   1061	writel(sa_lo, &rxmac->sa_lo);
   1062
   1063	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
   1064		       adapter->addr[1];
   1065	writel(sa_hi, &rxmac->sa_hi);
   1066
   1067	/* Disable all Packet Filtering */
   1068	writel(0, &rxmac->pf_ctrl);
   1069
   1070	/* Let's initialize the Unicast Packet filtering address */
   1071	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
   1072		et1310_setup_device_for_unicast(adapter);
   1073		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
   1074	} else {
   1075		writel(0, &rxmac->uni_pf_addr1);
   1076		writel(0, &rxmac->uni_pf_addr2);
   1077		writel(0, &rxmac->uni_pf_addr3);
   1078	}
   1079
   1080	/* Let's initialize the Multicast hash */
   1081	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
   1082		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
   1083		et1310_setup_device_for_multicast(adapter);
   1084	}
   1085
   1086	/* Runt packet filtering.  Didn't work in version A silicon. */
   1087	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
   1088	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
   1089
   1090	if (adapter->registry_jumbo_packet > 8192)
   1091		/* In order to transmit jumbo packets greater than 8k, the
   1092		 * FIFO between RxMAC and RxDMA needs to be reduced in size
   1093		 * to (16k - Jumbo packet size).  In order to implement this,
   1094		 * we must use "cut through" mode in the RxMAC, which chops
   1095		 * packets down into segments which are (max_size * 16).  In
   1096		 * this case we selected 256 bytes, since this is the size of
   1097		 * the PCI-Express TLP's that the 1310 uses.
   1098		 *
   1099		 * seg_en on, fc_en off, size 0x10
   1100		 */
   1101		writel(0x41, &rxmac->mcif_ctrl_max_seg);
   1102	else
   1103		writel(0, &rxmac->mcif_ctrl_max_seg);
   1104
   1105	writel(0, &rxmac->mcif_water_mark);
   1106	writel(0, &rxmac->mif_ctrl);
   1107	writel(0, &rxmac->space_avail);
   1108
   1109	/* Initialize the the mif_ctrl register
   1110	 * bit 3:  Receive code error. One or more nibbles were signaled as
   1111	 *	   errors  during the reception of the packet.  Clear this
   1112	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
   1113	 *	   experimentally at UNH.
   1114	 * bit 4:  Receive CRC error. The packet's CRC did not match the
   1115	 *	   internally generated CRC.
   1116	 * bit 5:  Receive length check error. Indicates that frame length
   1117	 *	   field value in the packet does not match the actual data
   1118	 *	   byte length and is not a type field.
   1119	 * bit 16: Receive frame truncated.
   1120	 * bit 17: Drop packet enable
   1121	 */
   1122	if (phydev && phydev->speed == SPEED_100)
   1123		writel(0x30038, &rxmac->mif_ctrl);
   1124	else
   1125		writel(0x30030, &rxmac->mif_ctrl);
   1126
   1127	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
   1128	 * filter is always enabled since it is where the runt packets are
   1129	 * supposed to be dropped.  For version A silicon, runt packet
   1130	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
   1131	 * but we still leave the packet filter on.
   1132	 */
   1133	writel(pf_ctrl, &rxmac->pf_ctrl);
   1134	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
   1135}
   1136
   1137static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
   1138{
   1139	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
   1140
   1141	/* We need to update the Control Frame Parameters
   1142	 * cfpt - control frame pause timer set to 64 (0x40)
   1143	 * cfep - control frame extended pause timer set to 0x0
   1144	 */
   1145	if (adapter->flow == FLOW_NONE)
   1146		writel(0, &txmac->cf_param);
   1147	else
   1148		writel(0x40, &txmac->cf_param);
   1149}
   1150
   1151static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
   1152{
   1153	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
   1154	u32 __iomem *reg;
   1155
   1156	/* initialize all the macstat registers to zero on the device  */
   1157	for (reg = &macstat->txrx_0_64_byte_frames;
   1158	     reg <= &macstat->carry_reg2; reg++)
   1159		writel(0, reg);
   1160
   1161	/* Unmask any counters that we want to track the overflow of.
   1162	 * Initially this will be all counters.  It may become clear later
   1163	 * that we do not need to track all counters.
   1164	 */
   1165	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
   1166	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
   1167}
   1168
   1169static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
   1170			       u8 reg, u16 *value)
   1171{
   1172	struct mac_regs __iomem *mac = &adapter->regs->mac;
   1173	int status = 0;
   1174	u32 delay = 0;
   1175	u32 mii_addr;
   1176	u32 mii_cmd;
   1177	u32 mii_indicator;
   1178
   1179	/* Save a local copy of the registers we are dealing with so we can
   1180	 * set them back
   1181	 */
   1182	mii_addr = readl(&mac->mii_mgmt_addr);
   1183	mii_cmd = readl(&mac->mii_mgmt_cmd);
   1184
   1185	/* Stop the current operation */
   1186	writel(0, &mac->mii_mgmt_cmd);
   1187
   1188	/* Set up the register we need to read from on the correct PHY */
   1189	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
   1190
   1191	writel(0x1, &mac->mii_mgmt_cmd);
   1192
   1193	do {
   1194		udelay(50);
   1195		delay++;
   1196		mii_indicator = readl(&mac->mii_mgmt_indicator);
   1197	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
   1198
   1199	/* If we hit the max delay, we could not read the register */
   1200	if (delay == 50) {
   1201		dev_warn(&adapter->pdev->dev,
   1202			 "reg 0x%08x could not be read\n", reg);
   1203		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
   1204			 mii_indicator);
   1205
   1206		status = -EIO;
   1207		goto out;
   1208	}
   1209
   1210	/* If we hit here we were able to read the register and we need to
   1211	 * return the value to the caller
   1212	 */
   1213	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
   1214
   1215out:
   1216	/* Stop the read operation */
   1217	writel(0, &mac->mii_mgmt_cmd);
   1218
   1219	/* set the registers we touched back to the state at which we entered
   1220	 * this function
   1221	 */
   1222	writel(mii_addr, &mac->mii_mgmt_addr);
   1223	writel(mii_cmd, &mac->mii_mgmt_cmd);
   1224
   1225	return status;
   1226}
   1227
   1228static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
   1229{
   1230	struct phy_device *phydev = adapter->netdev->phydev;
   1231
   1232	if (!phydev)
   1233		return -EIO;
   1234
   1235	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
   1236}
   1237
   1238static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
   1239			    u16 value)
   1240{
   1241	struct mac_regs __iomem *mac = &adapter->regs->mac;
   1242	int status = 0;
   1243	u32 delay = 0;
   1244	u32 mii_addr;
   1245	u32 mii_cmd;
   1246	u32 mii_indicator;
   1247
   1248	/* Save a local copy of the registers we are dealing with so we can
   1249	 * set them back
   1250	 */
   1251	mii_addr = readl(&mac->mii_mgmt_addr);
   1252	mii_cmd = readl(&mac->mii_mgmt_cmd);
   1253
   1254	/* Stop the current operation */
   1255	writel(0, &mac->mii_mgmt_cmd);
   1256
   1257	/* Set up the register we need to write to on the correct PHY */
   1258	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
   1259
   1260	/* Add the value to write to the registers to the mac */
   1261	writel(value, &mac->mii_mgmt_ctrl);
   1262
   1263	do {
   1264		udelay(50);
   1265		delay++;
   1266		mii_indicator = readl(&mac->mii_mgmt_indicator);
   1267	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
   1268
   1269	/* If we hit the max delay, we could not write the register */
   1270	if (delay == 100) {
   1271		u16 tmp;
   1272
   1273		dev_warn(&adapter->pdev->dev,
   1274			 "reg 0x%08x could not be written", reg);
   1275		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
   1276			 mii_indicator);
   1277		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
   1278			 readl(&mac->mii_mgmt_cmd));
   1279
   1280		et131x_mii_read(adapter, reg, &tmp);
   1281
   1282		status = -EIO;
   1283	}
   1284	/* Stop the write operation */
   1285	writel(0, &mac->mii_mgmt_cmd);
   1286
   1287	/* set the registers we touched back to the state at which we entered
   1288	 * this function
   1289	 */
   1290	writel(mii_addr, &mac->mii_mgmt_addr);
   1291	writel(mii_cmd, &mac->mii_mgmt_cmd);
   1292
   1293	return status;
   1294}
   1295
   1296static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
   1297				    u16 regnum,
   1298				    u16 bitnum,
   1299				    u8 *value)
   1300{
   1301	u16 reg;
   1302	u16 mask = 1 << bitnum;
   1303
   1304	et131x_mii_read(adapter, regnum, &reg);
   1305
   1306	*value = (reg & mask) >> bitnum;
   1307}
   1308
   1309static void et1310_config_flow_control(struct et131x_adapter *adapter)
   1310{
   1311	struct phy_device *phydev = adapter->netdev->phydev;
   1312
   1313	if (phydev->duplex == DUPLEX_HALF) {
   1314		adapter->flow = FLOW_NONE;
   1315	} else {
   1316		char remote_pause, remote_async_pause;
   1317
   1318		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
   1319		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
   1320
   1321		if (remote_pause && remote_async_pause) {
   1322			adapter->flow = adapter->wanted_flow;
   1323		} else if (remote_pause && !remote_async_pause) {
   1324			if (adapter->wanted_flow == FLOW_BOTH)
   1325				adapter->flow = FLOW_BOTH;
   1326			else
   1327				adapter->flow = FLOW_NONE;
   1328		} else if (!remote_pause && !remote_async_pause) {
   1329			adapter->flow = FLOW_NONE;
   1330		} else {
   1331			if (adapter->wanted_flow == FLOW_BOTH)
   1332				adapter->flow = FLOW_RXONLY;
   1333			else
   1334				adapter->flow = FLOW_NONE;
   1335		}
   1336	}
   1337}
   1338
   1339/* et1310_update_macstat_host_counters - Update local copy of the statistics */
   1340static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
   1341{
   1342	struct ce_stats *stats = &adapter->stats;
   1343	struct macstat_regs __iomem *macstat =
   1344		&adapter->regs->macstat;
   1345
   1346	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
   1347	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
   1348	stats->tx_deferred	       += readl(&macstat->tx_deferred);
   1349	stats->tx_excessive_collisions +=
   1350				readl(&macstat->tx_multiple_collisions);
   1351	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
   1352	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
   1353	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
   1354
   1355	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
   1356	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
   1357	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
   1358	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
   1359	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
   1360	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
   1361	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
   1362}
   1363
   1364/* et1310_handle_macstat_interrupt
   1365 *
   1366 * One of the MACSTAT counters has wrapped.  Update the local copy of
   1367 * the statistics held in the adapter structure, checking the "wrap"
   1368 * bit for each counter.
   1369 */
   1370static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
   1371{
   1372	u32 carry_reg1;
   1373	u32 carry_reg2;
   1374
   1375	/* Read the interrupt bits from the register(s).  These are Clear On
   1376	 * Write.
   1377	 */
   1378	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
   1379	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
   1380
   1381	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
   1382	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
   1383
   1384	/* We need to do update the host copy of all the MAC_STAT counters.
   1385	 * For each counter, check it's overflow bit.  If the overflow bit is
   1386	 * set, then increment the host version of the count by one complete
   1387	 * revolution of the counter.  This routine is called when the counter
   1388	 * block indicates that one of the counters has wrapped.
   1389	 */
   1390	if (carry_reg1 & (1 << 14))
   1391		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
   1392	if (carry_reg1 & (1 << 8))
   1393		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
   1394	if (carry_reg1 & (1 << 7))
   1395		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
   1396	if (carry_reg1 & (1 << 2))
   1397		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
   1398	if (carry_reg1 & (1 << 6))
   1399		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
   1400	if (carry_reg1 & (1 << 3))
   1401		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
   1402	if (carry_reg1 & (1 << 0))
   1403		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
   1404	if (carry_reg2 & (1 << 16))
   1405		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
   1406	if (carry_reg2 & (1 << 15))
   1407		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
   1408	if (carry_reg2 & (1 << 6))
   1409		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
   1410	if (carry_reg2 & (1 << 8))
   1411		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
   1412	if (carry_reg2 & (1 << 5))
   1413		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
   1414	if (carry_reg2 & (1 << 4))
   1415		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
   1416	if (carry_reg2 & (1 << 2))
   1417		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
   1418}
   1419
   1420static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
   1421{
   1422	struct net_device *netdev = bus->priv;
   1423	struct et131x_adapter *adapter = netdev_priv(netdev);
   1424	u16 value;
   1425	int ret;
   1426
   1427	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
   1428
   1429	if (ret < 0)
   1430		return ret;
   1431
   1432	return value;
   1433}
   1434
   1435static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
   1436			     int reg, u16 value)
   1437{
   1438	struct net_device *netdev = bus->priv;
   1439	struct et131x_adapter *adapter = netdev_priv(netdev);
   1440
   1441	return et131x_mii_write(adapter, phy_addr, reg, value);
   1442}
   1443
   1444/*	et1310_phy_power_switch	-	PHY power control
   1445 *	@adapter: device to control
   1446 *	@down: true for off/false for back on
   1447 *
   1448 *	one hundred, ten, one thousand megs
   1449 *	How would you like to have your LAN accessed
   1450 *	Can't you see that this code processed
   1451 *	Phy power, phy power..
   1452 */
   1453static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
   1454{
   1455	u16 data;
   1456	struct  phy_device *phydev = adapter->netdev->phydev;
   1457
   1458	et131x_mii_read(adapter, MII_BMCR, &data);
   1459	data &= ~BMCR_PDOWN;
   1460	if (down)
   1461		data |= BMCR_PDOWN;
   1462	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
   1463}
   1464
   1465/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
   1466static void et131x_xcvr_init(struct et131x_adapter *adapter)
   1467{
   1468	u16 lcr2;
   1469	struct  phy_device *phydev = adapter->netdev->phydev;
   1470
   1471	/* Set the LED behavior such that LED 1 indicates speed (off =
   1472	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
   1473	 * link and activity (on for link, blink off for activity).
   1474	 *
   1475	 * NOTE: Some customizations have been added here for specific
   1476	 * vendors; The LED behavior is now determined by vendor data in the
   1477	 * EEPROM. However, the above description is the default.
   1478	 */
   1479	if ((adapter->eeprom_data[1] & 0x4) == 0) {
   1480		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
   1481
   1482		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
   1483		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
   1484
   1485		if ((adapter->eeprom_data[1] & 0x8) == 0)
   1486			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
   1487		else
   1488			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
   1489
   1490		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
   1491	}
   1492}
   1493
   1494/* et131x_configure_global_regs	- configure JAGCore global regs */
   1495static void et131x_configure_global_regs(struct et131x_adapter *adapter)
   1496{
   1497	struct global_regs __iomem *regs = &adapter->regs->global;
   1498
   1499	writel(0, &regs->rxq_start_addr);
   1500	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
   1501
   1502	if (adapter->registry_jumbo_packet < 2048) {
   1503		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
   1504		 * block of RAM that the driver can split between Tx
   1505		 * and Rx as it desires.  Our default is to split it
   1506		 * 50/50:
   1507		 */
   1508		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
   1509		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
   1510	} else if (adapter->registry_jumbo_packet < 8192) {
   1511		/* For jumbo packets > 2k but < 8k, split 50-50. */
   1512		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
   1513		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
   1514	} else {
   1515		/* 9216 is the only packet size greater than 8k that
   1516		 * is available. The Tx buffer has to be big enough
   1517		 * for one whole packet on the Tx side. We'll make
   1518		 * the Tx 9408, and give the rest to Rx
   1519		 */
   1520		writel(0x01b3, &regs->rxq_end_addr);
   1521		writel(0x01b4, &regs->txq_start_addr);
   1522	}
   1523
   1524	/* Initialize the loopback register. Disable all loopbacks. */
   1525	writel(0, &regs->loopback);
   1526
   1527	writel(0, &regs->msi_config);
   1528
   1529	/* By default, disable the watchdog timer.  It will be enabled when
   1530	 * a packet is queued.
   1531	 */
   1532	writel(0, &regs->watchdog_timer);
   1533}
   1534
   1535/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
   1536static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
   1537{
   1538	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
   1539	struct rx_ring *rx_local = &adapter->rx_ring;
   1540	struct fbr_desc *fbr_entry;
   1541	u32 entry;
   1542	u32 psr_num_des;
   1543	unsigned long flags;
   1544	u8 id;
   1545
   1546	et131x_rx_dma_disable(adapter);
   1547
   1548	/* Load the completion writeback physical address */
   1549	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
   1550	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
   1551
   1552	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
   1553
   1554	/* Set the address and parameters of the packet status ring */
   1555	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
   1556	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
   1557	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
   1558	writel(0, &rx_dma->psr_full_offset);
   1559
   1560	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
   1561	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
   1562	       &rx_dma->psr_min_des);
   1563
   1564	spin_lock_irqsave(&adapter->rcv_lock, flags);
   1565
   1566	/* These local variables track the PSR in the adapter structure */
   1567	rx_local->local_psr_full = 0;
   1568
   1569	for (id = 0; id < NUM_FBRS; id++) {
   1570		u32 __iomem *num_des;
   1571		u32 __iomem *full_offset;
   1572		u32 __iomem *min_des;
   1573		u32 __iomem *base_hi;
   1574		u32 __iomem *base_lo;
   1575		struct fbr_lookup *fbr = rx_local->fbr[id];
   1576
   1577		if (id == 0) {
   1578			num_des = &rx_dma->fbr0_num_des;
   1579			full_offset = &rx_dma->fbr0_full_offset;
   1580			min_des = &rx_dma->fbr0_min_des;
   1581			base_hi = &rx_dma->fbr0_base_hi;
   1582			base_lo = &rx_dma->fbr0_base_lo;
   1583		} else {
   1584			num_des = &rx_dma->fbr1_num_des;
   1585			full_offset = &rx_dma->fbr1_full_offset;
   1586			min_des = &rx_dma->fbr1_min_des;
   1587			base_hi = &rx_dma->fbr1_base_hi;
   1588			base_lo = &rx_dma->fbr1_base_lo;
   1589		}
   1590
   1591		/* Now's the best time to initialize FBR contents */
   1592		fbr_entry = fbr->ring_virtaddr;
   1593		for (entry = 0; entry < fbr->num_entries; entry++) {
   1594			fbr_entry->addr_hi = fbr->bus_high[entry];
   1595			fbr_entry->addr_lo = fbr->bus_low[entry];
   1596			fbr_entry->word2 = entry;
   1597			fbr_entry++;
   1598		}
   1599
   1600		/* Set the address and parameters of Free buffer ring 1 and 0 */
   1601		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
   1602		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
   1603		writel(fbr->num_entries - 1, num_des);
   1604		writel(ET_DMA10_WRAP, full_offset);
   1605
   1606		/* This variable tracks the free buffer ring 1 full position,
   1607		 * so it has to match the above.
   1608		 */
   1609		fbr->local_full = ET_DMA10_WRAP;
   1610		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
   1611		       min_des);
   1612	}
   1613
   1614	/* Program the number of packets we will receive before generating an
   1615	 * interrupt.
   1616	 * For version B silicon, this value gets updated once autoneg is
   1617	 *complete.
   1618	 */
   1619	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
   1620
   1621	/* The "time_done" is not working correctly to coalesce interrupts
   1622	 * after a given time period, but rather is giving us an interrupt
   1623	 * regardless of whether we have received packets.
   1624	 * This value gets updated once autoneg is complete.
   1625	 */
   1626	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
   1627
   1628	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
   1629}
   1630
   1631/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
   1632 *
   1633 * Configure the transmit engine with the ring buffers we have created
   1634 * and prepare it for use.
   1635 */
   1636static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
   1637{
   1638	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
   1639	struct tx_ring *tx_ring = &adapter->tx_ring;
   1640
   1641	/* Load the hardware with the start of the transmit descriptor ring. */
   1642	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
   1643	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
   1644
   1645	/* Initialise the transmit DMA engine */
   1646	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
   1647
   1648	/* Load the completion writeback physical address */
   1649	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
   1650	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
   1651
   1652	*tx_ring->tx_status = 0;
   1653
   1654	writel(0, &txdma->service_request);
   1655	tx_ring->send_idx = 0;
   1656}
   1657
   1658/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
   1659static void et131x_adapter_setup(struct et131x_adapter *adapter)
   1660{
   1661	et131x_configure_global_regs(adapter);
   1662	et1310_config_mac_regs1(adapter);
   1663
   1664	/* Configure the MMC registers */
   1665	/* All we need to do is initialize the Memory Control Register */
   1666	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
   1667
   1668	et1310_config_rxmac_regs(adapter);
   1669	et1310_config_txmac_regs(adapter);
   1670
   1671	et131x_config_rx_dma_regs(adapter);
   1672	et131x_config_tx_dma_regs(adapter);
   1673
   1674	et1310_config_macstat_regs(adapter);
   1675
   1676	et1310_phy_power_switch(adapter, 0);
   1677	et131x_xcvr_init(adapter);
   1678}
   1679
   1680/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
   1681static void et131x_soft_reset(struct et131x_adapter *adapter)
   1682{
   1683	u32 reg;
   1684
   1685	/* Disable MAC Core */
   1686	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
   1687	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
   1688	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
   1689	writel(reg, &adapter->regs->mac.cfg1);
   1690
   1691	reg = ET_RESET_ALL;
   1692	writel(reg, &adapter->regs->global.sw_reset);
   1693
   1694	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
   1695	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
   1696	writel(reg, &adapter->regs->mac.cfg1);
   1697	writel(0, &adapter->regs->mac.cfg1);
   1698}
   1699
   1700static void et131x_enable_interrupts(struct et131x_adapter *adapter)
   1701{
   1702	u32 mask;
   1703
   1704	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
   1705		mask = INT_MASK_ENABLE;
   1706	else
   1707		mask = INT_MASK_ENABLE_NO_FLOW;
   1708
   1709	writel(mask, &adapter->regs->global.int_mask);
   1710}
   1711
   1712static void et131x_disable_interrupts(struct et131x_adapter *adapter)
   1713{
   1714	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
   1715}
   1716
   1717static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
   1718{
   1719	/* Setup the transmit dma configuration register */
   1720	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
   1721	       &adapter->regs->txdma.csr);
   1722}
   1723
   1724static void et131x_enable_txrx(struct net_device *netdev)
   1725{
   1726	struct et131x_adapter *adapter = netdev_priv(netdev);
   1727
   1728	et131x_rx_dma_enable(adapter);
   1729	et131x_tx_dma_enable(adapter);
   1730
   1731	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
   1732		et131x_enable_interrupts(adapter);
   1733
   1734	netif_start_queue(netdev);
   1735}
   1736
   1737static void et131x_disable_txrx(struct net_device *netdev)
   1738{
   1739	struct et131x_adapter *adapter = netdev_priv(netdev);
   1740
   1741	netif_stop_queue(netdev);
   1742
   1743	et131x_rx_dma_disable(adapter);
   1744	et131x_tx_dma_disable(adapter);
   1745
   1746	et131x_disable_interrupts(adapter);
   1747}
   1748
   1749static void et131x_init_send(struct et131x_adapter *adapter)
   1750{
   1751	int i;
   1752	struct tx_ring *tx_ring = &adapter->tx_ring;
   1753	struct tcb *tcb = tx_ring->tcb_ring;
   1754
   1755	tx_ring->tcb_qhead = tcb;
   1756
   1757	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
   1758
   1759	for (i = 0; i < NUM_TCB; i++) {
   1760		tcb->next = tcb + 1;
   1761		tcb++;
   1762	}
   1763
   1764	tcb--;
   1765	tx_ring->tcb_qtail = tcb;
   1766	tcb->next = NULL;
   1767	/* Curr send queue should now be empty */
   1768	tx_ring->send_head = NULL;
   1769	tx_ring->send_tail = NULL;
   1770}
   1771
   1772/* et1310_enable_phy_coma
   1773 *
   1774 * driver receive an phy status change interrupt while in D0 and check that
   1775 * phy_status is down.
   1776 *
   1777 *          -- gate off JAGCore;
   1778 *          -- set gigE PHY in Coma mode
   1779 *          -- wake on phy_interrupt; Perform software reset JAGCore,
   1780 *             re-initialize jagcore and gigE PHY
   1781 */
   1782static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
   1783{
   1784	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
   1785
   1786	/* Stop sending packets. */
   1787	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
   1788
   1789	/* Wait for outstanding Receive packets */
   1790	et131x_disable_txrx(adapter->netdev);
   1791
   1792	/* Gate off JAGCore 3 clock domains */
   1793	pmcsr &= ~ET_PMCSR_INIT;
   1794	writel(pmcsr, &adapter->regs->global.pm_csr);
   1795
   1796	/* Program gigE PHY in to Coma mode */
   1797	pmcsr |= ET_PM_PHY_SW_COMA;
   1798	writel(pmcsr, &adapter->regs->global.pm_csr);
   1799}
   1800
   1801static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
   1802{
   1803	u32 pmcsr;
   1804
   1805	pmcsr = readl(&adapter->regs->global.pm_csr);
   1806
   1807	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
   1808	pmcsr |= ET_PMCSR_INIT;
   1809	pmcsr &= ~ET_PM_PHY_SW_COMA;
   1810	writel(pmcsr, &adapter->regs->global.pm_csr);
   1811
   1812	/* Restore the GbE PHY speed and duplex modes;
   1813	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
   1814	 */
   1815
   1816	/* Re-initialize the send structures */
   1817	et131x_init_send(adapter);
   1818
   1819	/* Bring the device back to the state it was during init prior to
   1820	 * autonegotiation being complete.  This way, when we get the auto-neg
   1821	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
   1822	 */
   1823	et131x_soft_reset(adapter);
   1824
   1825	et131x_adapter_setup(adapter);
   1826
   1827	/* Allow Tx to restart */
   1828	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
   1829
   1830	et131x_enable_txrx(adapter->netdev);
   1831}
   1832
   1833static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
   1834{
   1835	u32 tmp_free_buff_ring = *free_buff_ring;
   1836
   1837	tmp_free_buff_ring++;
   1838	/* This works for all cases where limit < 1024. The 1023 case
   1839	 * works because 1023++ is 1024 which means the if condition is not
   1840	 * taken but the carry of the bit into the wrap bit toggles the wrap
   1841	 * value correctly
   1842	 */
   1843	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
   1844		tmp_free_buff_ring &= ~ET_DMA10_MASK;
   1845		tmp_free_buff_ring ^= ET_DMA10_WRAP;
   1846	}
   1847	/* For the 1023 case */
   1848	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
   1849	*free_buff_ring = tmp_free_buff_ring;
   1850	return tmp_free_buff_ring;
   1851}
   1852
   1853/* et131x_rx_dma_memory_alloc
   1854 *
   1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
   1856 * and the Packet Status Ring.
   1857 */
   1858static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
   1859{
   1860	u8 id;
   1861	u32 i, j;
   1862	u32 bufsize;
   1863	u32 psr_size;
   1864	u32 fbr_chunksize;
   1865	struct rx_ring *rx_ring = &adapter->rx_ring;
   1866	struct fbr_lookup *fbr;
   1867
   1868	/* Alloc memory for the lookup table */
   1869	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
   1870	if (rx_ring->fbr[0] == NULL)
   1871		return -ENOMEM;
   1872	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
   1873	if (rx_ring->fbr[1] == NULL)
   1874		return -ENOMEM;
   1875
   1876	/* The first thing we will do is configure the sizes of the buffer
   1877	 * rings. These will change based on jumbo packet support.  Larger
   1878	 * jumbo packets increases the size of each entry in FBR0, and the
   1879	 * number of entries in FBR0, while at the same time decreasing the
   1880	 * number of entries in FBR1.
   1881	 *
   1882	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
   1883	 * entries are huge in order to accommodate a "jumbo" frame, then it
   1884	 * will have less entries.  Conversely, FBR1 will now be relied upon
   1885	 * to carry more "normal" frames, thus it's entry size also increases
   1886	 * and the number of entries goes up too (since it now carries
   1887	 * "small" + "regular" packets.
   1888	 *
   1889	 * In this scheme, we try to maintain 512 entries between the two
   1890	 * rings. Also, FBR1 remains a constant size - when it's size doubles
   1891	 * the number of entries halves.  FBR0 increases in size, however.
   1892	 */
   1893	if (adapter->registry_jumbo_packet < 2048) {
   1894		rx_ring->fbr[0]->buffsize = 256;
   1895		rx_ring->fbr[0]->num_entries = 512;
   1896		rx_ring->fbr[1]->buffsize = 2048;
   1897		rx_ring->fbr[1]->num_entries = 512;
   1898	} else if (adapter->registry_jumbo_packet < 4096) {
   1899		rx_ring->fbr[0]->buffsize = 512;
   1900		rx_ring->fbr[0]->num_entries = 1024;
   1901		rx_ring->fbr[1]->buffsize = 4096;
   1902		rx_ring->fbr[1]->num_entries = 512;
   1903	} else {
   1904		rx_ring->fbr[0]->buffsize = 1024;
   1905		rx_ring->fbr[0]->num_entries = 768;
   1906		rx_ring->fbr[1]->buffsize = 16384;
   1907		rx_ring->fbr[1]->num_entries = 128;
   1908	}
   1909
   1910	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
   1911			       rx_ring->fbr[1]->num_entries;
   1912
   1913	for (id = 0; id < NUM_FBRS; id++) {
   1914		fbr = rx_ring->fbr[id];
   1915		/* Allocate an area of memory for Free Buffer Ring */
   1916		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
   1917		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
   1918							bufsize,
   1919							&fbr->ring_physaddr,
   1920							GFP_KERNEL);
   1921		if (!fbr->ring_virtaddr) {
   1922			dev_err(&adapter->pdev->dev,
   1923				"Cannot alloc memory for Free Buffer Ring %d\n",
   1924				id);
   1925			return -ENOMEM;
   1926		}
   1927	}
   1928
   1929	for (id = 0; id < NUM_FBRS; id++) {
   1930		fbr = rx_ring->fbr[id];
   1931		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
   1932
   1933		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
   1934			dma_addr_t fbr_physaddr;
   1935
   1936			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
   1937					&adapter->pdev->dev, fbr_chunksize,
   1938					&fbr->mem_physaddrs[i],
   1939					GFP_KERNEL);
   1940
   1941			if (!fbr->mem_virtaddrs[i]) {
   1942				dev_err(&adapter->pdev->dev,
   1943					"Could not alloc memory\n");
   1944				return -ENOMEM;
   1945			}
   1946
   1947			/* See NOTE in "Save Physical Address" comment above */
   1948			fbr_physaddr = fbr->mem_physaddrs[i];
   1949
   1950			for (j = 0; j < FBR_CHUNKS; j++) {
   1951				u32 k = (i * FBR_CHUNKS) + j;
   1952
   1953				/* Save the Virtual address of this index for
   1954				 * quick access later
   1955				 */
   1956				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
   1957						   (j * fbr->buffsize);
   1958
   1959				/* now store the physical address in the
   1960				 * descriptor so the device can access it
   1961				 */
   1962				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
   1963				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
   1964				fbr_physaddr += fbr->buffsize;
   1965			}
   1966		}
   1967	}
   1968
   1969	/* Allocate an area of memory for FIFO of Packet Status ring entries */
   1970	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
   1971
   1972	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
   1973						  psr_size,
   1974						  &rx_ring->ps_ring_physaddr,
   1975						  GFP_KERNEL);
   1976
   1977	if (!rx_ring->ps_ring_virtaddr) {
   1978		dev_err(&adapter->pdev->dev,
   1979			"Cannot alloc memory for Packet Status Ring\n");
   1980		return -ENOMEM;
   1981	}
   1982
   1983	/* Allocate an area of memory for writeback of status information */
   1984	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
   1985					    sizeof(struct rx_status_block),
   1986					    &rx_ring->rx_status_bus,
   1987					    GFP_KERNEL);
   1988	if (!rx_ring->rx_status_block) {
   1989		dev_err(&adapter->pdev->dev,
   1990			"Cannot alloc memory for Status Block\n");
   1991		return -ENOMEM;
   1992	}
   1993	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
   1994
   1995	/* The RFDs are going to be put on lists later on, so initialize the
   1996	 * lists now.
   1997	 */
   1998	INIT_LIST_HEAD(&rx_ring->recv_list);
   1999	return 0;
   2000}
   2001
   2002static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
   2003{
   2004	u8 id;
   2005	u32 ii;
   2006	u32 bufsize;
   2007	u32 psr_size;
   2008	struct rfd *rfd;
   2009	struct rx_ring *rx_ring = &adapter->rx_ring;
   2010	struct fbr_lookup *fbr;
   2011
   2012	/* Free RFDs and associated packet descriptors */
   2013	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
   2014
   2015	while (!list_empty(&rx_ring->recv_list)) {
   2016		rfd = list_entry(rx_ring->recv_list.next,
   2017				 struct rfd, list_node);
   2018
   2019		list_del(&rfd->list_node);
   2020		rfd->skb = NULL;
   2021		kfree(rfd);
   2022	}
   2023
   2024	/* Free Free Buffer Rings */
   2025	for (id = 0; id < NUM_FBRS; id++) {
   2026		fbr = rx_ring->fbr[id];
   2027
   2028		if (!fbr || !fbr->ring_virtaddr)
   2029			continue;
   2030
   2031		/* First the packet memory */
   2032		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
   2033			if (fbr->mem_virtaddrs[ii]) {
   2034				bufsize = fbr->buffsize * FBR_CHUNKS;
   2035
   2036				dma_free_coherent(&adapter->pdev->dev,
   2037						  bufsize,
   2038						  fbr->mem_virtaddrs[ii],
   2039						  fbr->mem_physaddrs[ii]);
   2040
   2041				fbr->mem_virtaddrs[ii] = NULL;
   2042			}
   2043		}
   2044
   2045		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
   2046
   2047		dma_free_coherent(&adapter->pdev->dev,
   2048				  bufsize,
   2049				  fbr->ring_virtaddr,
   2050				  fbr->ring_physaddr);
   2051
   2052		fbr->ring_virtaddr = NULL;
   2053	}
   2054
   2055	/* Free Packet Status Ring */
   2056	if (rx_ring->ps_ring_virtaddr) {
   2057		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
   2058
   2059		dma_free_coherent(&adapter->pdev->dev, psr_size,
   2060				  rx_ring->ps_ring_virtaddr,
   2061				  rx_ring->ps_ring_physaddr);
   2062
   2063		rx_ring->ps_ring_virtaddr = NULL;
   2064	}
   2065
   2066	/* Free area of memory for the writeback of status information */
   2067	if (rx_ring->rx_status_block) {
   2068		dma_free_coherent(&adapter->pdev->dev,
   2069				  sizeof(struct rx_status_block),
   2070				  rx_ring->rx_status_block,
   2071				  rx_ring->rx_status_bus);
   2072		rx_ring->rx_status_block = NULL;
   2073	}
   2074
   2075	/* Free the FBR Lookup Table */
   2076	kfree(rx_ring->fbr[0]);
   2077	kfree(rx_ring->fbr[1]);
   2078
   2079	/* Reset Counters */
   2080	rx_ring->num_ready_recv = 0;
   2081}
   2082
   2083/* et131x_init_recv - Initialize receive data structures */
   2084static int et131x_init_recv(struct et131x_adapter *adapter)
   2085{
   2086	struct rfd *rfd;
   2087	u32 rfdct;
   2088	struct rx_ring *rx_ring = &adapter->rx_ring;
   2089
   2090	/* Setup each RFD */
   2091	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
   2092		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
   2093		if (!rfd)
   2094			return -ENOMEM;
   2095
   2096		rfd->skb = NULL;
   2097
   2098		/* Add this RFD to the recv_list */
   2099		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
   2100
   2101		/* Increment the available RFD's */
   2102		rx_ring->num_ready_recv++;
   2103	}
   2104
   2105	return 0;
   2106}
   2107
   2108/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
   2109static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
   2110{
   2111	struct phy_device *phydev = adapter->netdev->phydev;
   2112
   2113	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
   2114	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
   2115	 */
   2116	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
   2117		writel(0, &adapter->regs->rxdma.max_pkt_time);
   2118		writel(1, &adapter->regs->rxdma.num_pkt_done);
   2119	}
   2120}
   2121
   2122/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
   2123static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
   2124{
   2125	struct rx_ring *rx_local = &adapter->rx_ring;
   2126	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
   2127	u16 buff_index = rfd->bufferindex;
   2128	u8 ring_index = rfd->ringindex;
   2129	unsigned long flags;
   2130	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
   2131
   2132	/* We don't use any of the OOB data besides status. Otherwise, we
   2133	 * need to clean up OOB data
   2134	 */
   2135	if (buff_index < fbr->num_entries) {
   2136		u32 free_buff_ring;
   2137		u32 __iomem *offset;
   2138		struct fbr_desc *next;
   2139
   2140		if (ring_index == 0)
   2141			offset = &rx_dma->fbr0_full_offset;
   2142		else
   2143			offset = &rx_dma->fbr1_full_offset;
   2144
   2145		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
   2146		       INDEX10(fbr->local_full);
   2147
   2148		/* Handle the Free Buffer Ring advancement here. Write
   2149		 * the PA / Buffer Index for the returned buffer into
   2150		 * the oldest (next to be freed)FBR entry
   2151		 */
   2152		next->addr_hi = fbr->bus_high[buff_index];
   2153		next->addr_lo = fbr->bus_low[buff_index];
   2154		next->word2 = buff_index;
   2155
   2156		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
   2157						     fbr->num_entries - 1);
   2158		writel(free_buff_ring, offset);
   2159	} else {
   2160		dev_err(&adapter->pdev->dev,
   2161			"%s illegal Buffer Index returned\n", __func__);
   2162	}
   2163
   2164	/* The processing on this RFD is done, so put it back on the tail of
   2165	 * our list
   2166	 */
   2167	spin_lock_irqsave(&adapter->rcv_lock, flags);
   2168	list_add_tail(&rfd->list_node, &rx_local->recv_list);
   2169	rx_local->num_ready_recv++;
   2170	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
   2171
   2172	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
   2173}
   2174
   2175/* nic_rx_pkts - Checks the hardware for available packets
   2176 *
   2177 * Checks the hardware for available packets, using completion ring
   2178 * If packets are available, it gets an RFD from the recv_list, attaches
   2179 * the packet to it, puts the RFD in the RecvPendList, and also returns
   2180 * the pointer to the RFD.
   2181 */
   2182static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
   2183{
   2184	struct rx_ring *rx_local = &adapter->rx_ring;
   2185	struct rx_status_block *status;
   2186	struct pkt_stat_desc *psr;
   2187	struct rfd *rfd;
   2188	unsigned long flags;
   2189	struct list_head *element;
   2190	u8 ring_index;
   2191	u16 buff_index;
   2192	u32 len;
   2193	u32 word0;
   2194	u32 word1;
   2195	struct sk_buff *skb;
   2196	struct fbr_lookup *fbr;
   2197
   2198	/* RX Status block is written by the DMA engine prior to every
   2199	 * interrupt. It contains the next to be used entry in the Packet
   2200	 * Status Ring, and also the two Free Buffer rings.
   2201	 */
   2202	status = rx_local->rx_status_block;
   2203	word1 = status->word1 >> 16;
   2204
   2205	/* Check the PSR and wrap bits do not match */
   2206	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
   2207		return NULL; /* Looks like this ring is not updated yet */
   2208
   2209	/* The packet status ring indicates that data is available. */
   2210	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
   2211			(rx_local->local_psr_full & 0xFFF);
   2212
   2213	/* Grab any information that is required once the PSR is advanced,
   2214	 * since we can no longer rely on the memory being accurate
   2215	 */
   2216	len = psr->word1 & 0xFFFF;
   2217	ring_index = (psr->word1 >> 26) & 0x03;
   2218	fbr = rx_local->fbr[ring_index];
   2219	buff_index = (psr->word1 >> 16) & 0x3FF;
   2220	word0 = psr->word0;
   2221
   2222	/* Indicate that we have used this PSR entry. */
   2223	/* FIXME wrap 12 */
   2224	add_12bit(&rx_local->local_psr_full, 1);
   2225	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
   2226		/* Clear psr full and toggle the wrap bit */
   2227		rx_local->local_psr_full &=  ~0xFFF;
   2228		rx_local->local_psr_full ^= 0x1000;
   2229	}
   2230
   2231	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
   2232
   2233	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
   2234		/* Illegal buffer or ring index cannot be used by S/W*/
   2235		dev_err(&adapter->pdev->dev,
   2236			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
   2237			rx_local->local_psr_full & 0xFFF, len, buff_index);
   2238		return NULL;
   2239	}
   2240
   2241	/* Get and fill the RFD. */
   2242	spin_lock_irqsave(&adapter->rcv_lock, flags);
   2243
   2244	element = rx_local->recv_list.next;
   2245	rfd = list_entry(element, struct rfd, list_node);
   2246
   2247	if (!rfd) {
   2248		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
   2249		return NULL;
   2250	}
   2251
   2252	list_del(&rfd->list_node);
   2253	rx_local->num_ready_recv--;
   2254
   2255	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
   2256
   2257	rfd->bufferindex = buff_index;
   2258	rfd->ringindex = ring_index;
   2259
   2260	/* In V1 silicon, there is a bug which screws up filtering of runt
   2261	 * packets. Therefore runt packet filtering is disabled in the MAC and
   2262	 * the packets are dropped here. They are also counted here.
   2263	 */
   2264	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
   2265		adapter->stats.rx_other_errs++;
   2266		rfd->len = 0;
   2267		goto out;
   2268	}
   2269
   2270	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
   2271		adapter->stats.multicast_pkts_rcvd++;
   2272
   2273	rfd->len = len;
   2274
   2275	skb = dev_alloc_skb(rfd->len + 2);
   2276	if (!skb)
   2277		return NULL;
   2278
   2279	adapter->netdev->stats.rx_bytes += rfd->len;
   2280
   2281	skb_put_data(skb, fbr->virt[buff_index], rfd->len);
   2282
   2283	skb->protocol = eth_type_trans(skb, adapter->netdev);
   2284	skb->ip_summed = CHECKSUM_NONE;
   2285	netif_receive_skb(skb);
   2286
   2287out:
   2288	nic_return_rfd(adapter, rfd);
   2289	return rfd;
   2290}
   2291
   2292static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
   2293{
   2294	struct rfd *rfd = NULL;
   2295	int count = 0;
   2296	int limit = budget;
   2297	bool done = true;
   2298	struct rx_ring *rx_ring = &adapter->rx_ring;
   2299
   2300	if (budget > MAX_PACKETS_HANDLED)
   2301		limit = MAX_PACKETS_HANDLED;
   2302
   2303	/* Process up to available RFD's */
   2304	while (count < limit) {
   2305		if (list_empty(&rx_ring->recv_list)) {
   2306			WARN_ON(rx_ring->num_ready_recv != 0);
   2307			done = false;
   2308			break;
   2309		}
   2310
   2311		rfd = nic_rx_pkts(adapter);
   2312
   2313		if (rfd == NULL)
   2314			break;
   2315
   2316		/* Do not receive any packets until a filter has been set.
   2317		 * Do not receive any packets until we have link.
   2318		 * If length is zero, return the RFD in order to advance the
   2319		 * Free buffer ring.
   2320		 */
   2321		if (!adapter->packet_filter ||
   2322		    !netif_carrier_ok(adapter->netdev) ||
   2323		    rfd->len == 0)
   2324			continue;
   2325
   2326		adapter->netdev->stats.rx_packets++;
   2327
   2328		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
   2329			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
   2330
   2331		count++;
   2332	}
   2333
   2334	if (count == limit || !done) {
   2335		rx_ring->unfinished_receives = true;
   2336		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
   2337		       &adapter->regs->global.watchdog_timer);
   2338	} else {
   2339		/* Watchdog timer will disable itself if appropriate. */
   2340		rx_ring->unfinished_receives = false;
   2341	}
   2342
   2343	return count;
   2344}
   2345
   2346/* et131x_tx_dma_memory_alloc
   2347 *
   2348 * Allocates memory that will be visible both to the device and to the CPU.
   2349 * The OS will pass us packets, pointers to which we will insert in the Tx
   2350 * Descriptor queue. The device will read this queue to find the packets in
   2351 * memory. The device will update the "status" in memory each time it xmits a
   2352 * packet.
   2353 */
   2354static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
   2355{
   2356	int desc_size = 0;
   2357	struct tx_ring *tx_ring = &adapter->tx_ring;
   2358
   2359	/* Allocate memory for the TCB's (Transmit Control Block) */
   2360	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
   2361				    GFP_KERNEL | GFP_DMA);
   2362	if (!tx_ring->tcb_ring)
   2363		return -ENOMEM;
   2364
   2365	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
   2366	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
   2367						   desc_size,
   2368						   &tx_ring->tx_desc_ring_pa,
   2369						   GFP_KERNEL);
   2370	if (!tx_ring->tx_desc_ring) {
   2371		dev_err(&adapter->pdev->dev,
   2372			"Cannot alloc memory for Tx Ring\n");
   2373		return -ENOMEM;
   2374	}
   2375
   2376	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
   2377						    sizeof(u32),
   2378						    &tx_ring->tx_status_pa,
   2379						    GFP_KERNEL);
   2380	if (!tx_ring->tx_status) {
   2381		dev_err(&adapter->pdev->dev,
   2382			"Cannot alloc memory for Tx status block\n");
   2383		return -ENOMEM;
   2384	}
   2385	return 0;
   2386}
   2387
   2388static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
   2389{
   2390	int desc_size = 0;
   2391	struct tx_ring *tx_ring = &adapter->tx_ring;
   2392
   2393	if (tx_ring->tx_desc_ring) {
   2394		/* Free memory relating to Tx rings here */
   2395		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
   2396		dma_free_coherent(&adapter->pdev->dev,
   2397				  desc_size,
   2398				  tx_ring->tx_desc_ring,
   2399				  tx_ring->tx_desc_ring_pa);
   2400		tx_ring->tx_desc_ring = NULL;
   2401	}
   2402
   2403	/* Free memory for the Tx status block */
   2404	if (tx_ring->tx_status) {
   2405		dma_free_coherent(&adapter->pdev->dev,
   2406				  sizeof(u32),
   2407				  tx_ring->tx_status,
   2408				  tx_ring->tx_status_pa);
   2409
   2410		tx_ring->tx_status = NULL;
   2411	}
   2412	/* Free the memory for the tcb structures */
   2413	kfree(tx_ring->tcb_ring);
   2414}
   2415
   2416#define MAX_TX_DESC_PER_PKT 24
   2417
   2418/* nic_send_packet - NIC specific send handler for version B silicon. */
   2419static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
   2420{
   2421	u32 i;
   2422	struct tx_desc desc[MAX_TX_DESC_PER_PKT];
   2423	u32 frag = 0;
   2424	u32 thiscopy, remainder;
   2425	struct sk_buff *skb = tcb->skb;
   2426	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
   2427	skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
   2428	struct phy_device *phydev = adapter->netdev->phydev;
   2429	dma_addr_t dma_addr;
   2430	struct tx_ring *tx_ring = &adapter->tx_ring;
   2431
   2432	/* Part of the optimizations of this send routine restrict us to
   2433	 * sending 24 fragments at a pass.  In practice we should never see
   2434	 * more than 5 fragments.
   2435	 */
   2436
   2437	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
   2438
   2439	for (i = 0; i < nr_frags; i++) {
   2440		/* If there is something in this element, lets get a
   2441		 * descriptor from the ring and get the necessary data
   2442		 */
   2443		if (i == 0) {
   2444			/* If the fragments are smaller than a standard MTU,
   2445			 * then map them to a single descriptor in the Tx
   2446			 * Desc ring. However, if they're larger, as is
   2447			 * possible with support for jumbo packets, then
   2448			 * split them each across 2 descriptors.
   2449			 *
   2450			 * This will work until we determine why the hardware
   2451			 * doesn't seem to like large fragments.
   2452			 */
   2453			if (skb_headlen(skb) <= 1514) {
   2454				/* Low 16bits are length, high is vlan and
   2455				 * unused currently so zero
   2456				 */
   2457				desc[frag].len_vlan = skb_headlen(skb);
   2458				dma_addr = dma_map_single(&adapter->pdev->dev,
   2459							  skb->data,
   2460							  skb_headlen(skb),
   2461							  DMA_TO_DEVICE);
   2462				desc[frag].addr_lo = lower_32_bits(dma_addr);
   2463				desc[frag].addr_hi = upper_32_bits(dma_addr);
   2464				frag++;
   2465			} else {
   2466				desc[frag].len_vlan = skb_headlen(skb) / 2;
   2467				dma_addr = dma_map_single(&adapter->pdev->dev,
   2468							  skb->data,
   2469							  skb_headlen(skb) / 2,
   2470							  DMA_TO_DEVICE);
   2471				desc[frag].addr_lo = lower_32_bits(dma_addr);
   2472				desc[frag].addr_hi = upper_32_bits(dma_addr);
   2473				frag++;
   2474
   2475				desc[frag].len_vlan = skb_headlen(skb) / 2;
   2476				dma_addr = dma_map_single(&adapter->pdev->dev,
   2477							  skb->data +
   2478							  skb_headlen(skb) / 2,
   2479							  skb_headlen(skb) / 2,
   2480							  DMA_TO_DEVICE);
   2481				desc[frag].addr_lo = lower_32_bits(dma_addr);
   2482				desc[frag].addr_hi = upper_32_bits(dma_addr);
   2483				frag++;
   2484			}
   2485		} else {
   2486			desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
   2487			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
   2488						    &frags[i - 1],
   2489						    0,
   2490						    desc[frag].len_vlan,
   2491						    DMA_TO_DEVICE);
   2492			desc[frag].addr_lo = lower_32_bits(dma_addr);
   2493			desc[frag].addr_hi = upper_32_bits(dma_addr);
   2494			frag++;
   2495		}
   2496	}
   2497
   2498	if (phydev && phydev->speed == SPEED_1000) {
   2499		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
   2500			/* Last element & Interrupt flag */
   2501			desc[frag - 1].flags =
   2502				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
   2503			tx_ring->since_irq = 0;
   2504		} else { /* Last element */
   2505			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
   2506		}
   2507	} else {
   2508		desc[frag - 1].flags =
   2509				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
   2510	}
   2511
   2512	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
   2513
   2514	tcb->index_start = tx_ring->send_idx;
   2515	tcb->stale = 0;
   2516
   2517	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
   2518
   2519	if (thiscopy >= frag) {
   2520		remainder = 0;
   2521		thiscopy = frag;
   2522	} else {
   2523		remainder = frag - thiscopy;
   2524	}
   2525
   2526	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
   2527	       desc,
   2528	       sizeof(struct tx_desc) * thiscopy);
   2529
   2530	add_10bit(&tx_ring->send_idx, thiscopy);
   2531
   2532	if (INDEX10(tx_ring->send_idx) == 0 ||
   2533	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
   2534		tx_ring->send_idx &= ~ET_DMA10_MASK;
   2535		tx_ring->send_idx ^= ET_DMA10_WRAP;
   2536	}
   2537
   2538	if (remainder) {
   2539		memcpy(tx_ring->tx_desc_ring,
   2540		       desc + thiscopy,
   2541		       sizeof(struct tx_desc) * remainder);
   2542
   2543		add_10bit(&tx_ring->send_idx, remainder);
   2544	}
   2545
   2546	if (INDEX10(tx_ring->send_idx) == 0) {
   2547		if (tx_ring->send_idx)
   2548			tcb->index = NUM_DESC_PER_RING_TX - 1;
   2549		else
   2550			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
   2551	} else {
   2552		tcb->index = tx_ring->send_idx - 1;
   2553	}
   2554
   2555	spin_lock(&adapter->tcb_send_qlock);
   2556
   2557	if (tx_ring->send_tail)
   2558		tx_ring->send_tail->next = tcb;
   2559	else
   2560		tx_ring->send_head = tcb;
   2561
   2562	tx_ring->send_tail = tcb;
   2563
   2564	WARN_ON(tcb->next != NULL);
   2565
   2566	tx_ring->used++;
   2567
   2568	spin_unlock(&adapter->tcb_send_qlock);
   2569
   2570	/* Write the new write pointer back to the device. */
   2571	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
   2572
   2573	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
   2574	 * timer to wake us up if this packet isn't followed by N more.
   2575	 */
   2576	if (phydev && phydev->speed == SPEED_1000) {
   2577		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
   2578		       &adapter->regs->global.watchdog_timer);
   2579	}
   2580	return 0;
   2581}
   2582
   2583static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
   2584{
   2585	int status;
   2586	struct tcb *tcb;
   2587	unsigned long flags;
   2588	struct tx_ring *tx_ring = &adapter->tx_ring;
   2589
   2590	/* All packets must have at least a MAC address and a protocol type */
   2591	if (skb->len < ETH_HLEN)
   2592		return -EIO;
   2593
   2594	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
   2595
   2596	tcb = tx_ring->tcb_qhead;
   2597
   2598	if (tcb == NULL) {
   2599		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
   2600		return -ENOMEM;
   2601	}
   2602
   2603	tx_ring->tcb_qhead = tcb->next;
   2604
   2605	if (tx_ring->tcb_qhead == NULL)
   2606		tx_ring->tcb_qtail = NULL;
   2607
   2608	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
   2609
   2610	tcb->skb = skb;
   2611	tcb->next = NULL;
   2612
   2613	status = nic_send_packet(adapter, tcb);
   2614
   2615	if (status != 0) {
   2616		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
   2617
   2618		if (tx_ring->tcb_qtail)
   2619			tx_ring->tcb_qtail->next = tcb;
   2620		else
   2621			/* Apparently ready Q is empty. */
   2622			tx_ring->tcb_qhead = tcb;
   2623
   2624		tx_ring->tcb_qtail = tcb;
   2625		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
   2626		return status;
   2627	}
   2628	WARN_ON(tx_ring->used > NUM_TCB);
   2629	return 0;
   2630}
   2631
   2632/* free_send_packet - Recycle a struct tcb */
   2633static inline void free_send_packet(struct et131x_adapter *adapter,
   2634				    struct tcb *tcb)
   2635{
   2636	unsigned long flags;
   2637	struct tx_desc *desc = NULL;
   2638	struct net_device_stats *stats = &adapter->netdev->stats;
   2639	struct tx_ring *tx_ring = &adapter->tx_ring;
   2640	u64  dma_addr;
   2641
   2642	if (tcb->skb) {
   2643		stats->tx_bytes += tcb->skb->len;
   2644
   2645		/* Iterate through the TX descriptors on the ring
   2646		 * corresponding to this packet and umap the fragments
   2647		 * they point to
   2648		 */
   2649		do {
   2650			desc = tx_ring->tx_desc_ring +
   2651			       INDEX10(tcb->index_start);
   2652
   2653			dma_addr = desc->addr_lo;
   2654			dma_addr |= (u64)desc->addr_hi << 32;
   2655
   2656			dma_unmap_single(&adapter->pdev->dev,
   2657					 dma_addr,
   2658					 desc->len_vlan, DMA_TO_DEVICE);
   2659
   2660			add_10bit(&tcb->index_start, 1);
   2661			if (INDEX10(tcb->index_start) >=
   2662							NUM_DESC_PER_RING_TX) {
   2663				tcb->index_start &= ~ET_DMA10_MASK;
   2664				tcb->index_start ^= ET_DMA10_WRAP;
   2665			}
   2666		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
   2667
   2668		dev_kfree_skb_any(tcb->skb);
   2669	}
   2670
   2671	memset(tcb, 0, sizeof(struct tcb));
   2672
   2673	/* Add the TCB to the Ready Q */
   2674	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
   2675
   2676	stats->tx_packets++;
   2677
   2678	if (tx_ring->tcb_qtail)
   2679		tx_ring->tcb_qtail->next = tcb;
   2680	else /* Apparently ready Q is empty. */
   2681		tx_ring->tcb_qhead = tcb;
   2682
   2683	tx_ring->tcb_qtail = tcb;
   2684
   2685	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
   2686	WARN_ON(tx_ring->used < 0);
   2687}
   2688
   2689/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
   2690static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
   2691{
   2692	struct tcb *tcb;
   2693	unsigned long flags;
   2694	u32 freed = 0;
   2695	struct tx_ring *tx_ring = &adapter->tx_ring;
   2696
   2697	/* Any packets being sent? Check the first TCB on the send list */
   2698	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   2699
   2700	tcb = tx_ring->send_head;
   2701
   2702	while (tcb != NULL && freed < NUM_TCB) {
   2703		struct tcb *next = tcb->next;
   2704
   2705		tx_ring->send_head = next;
   2706
   2707		if (next == NULL)
   2708			tx_ring->send_tail = NULL;
   2709
   2710		tx_ring->used--;
   2711
   2712		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   2713
   2714		freed++;
   2715		free_send_packet(adapter, tcb);
   2716
   2717		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   2718
   2719		tcb = tx_ring->send_head;
   2720	}
   2721
   2722	WARN_ON(freed == NUM_TCB);
   2723
   2724	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   2725
   2726	tx_ring->used = 0;
   2727}
   2728
   2729/* et131x_handle_send_pkts
   2730 *
   2731 * Re-claim the send resources, complete sends and get more to send from
   2732 * the send wait queue.
   2733 */
   2734static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
   2735{
   2736	unsigned long flags;
   2737	u32 serviced;
   2738	struct tcb *tcb;
   2739	u32 index;
   2740	struct tx_ring *tx_ring = &adapter->tx_ring;
   2741
   2742	serviced = readl(&adapter->regs->txdma.new_service_complete);
   2743	index = INDEX10(serviced);
   2744
   2745	/* Has the ring wrapped?  Process any descriptors that do not have
   2746	 * the same "wrap" indicator as the current completion indicator
   2747	 */
   2748	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   2749
   2750	tcb = tx_ring->send_head;
   2751
   2752	while (tcb &&
   2753	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
   2754	       index < INDEX10(tcb->index)) {
   2755		tx_ring->used--;
   2756		tx_ring->send_head = tcb->next;
   2757		if (tcb->next == NULL)
   2758			tx_ring->send_tail = NULL;
   2759
   2760		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   2761		free_send_packet(adapter, tcb);
   2762		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   2763
   2764		/* Goto the next packet */
   2765		tcb = tx_ring->send_head;
   2766	}
   2767	while (tcb &&
   2768	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
   2769	       index > (tcb->index & ET_DMA10_MASK)) {
   2770		tx_ring->used--;
   2771		tx_ring->send_head = tcb->next;
   2772		if (tcb->next == NULL)
   2773			tx_ring->send_tail = NULL;
   2774
   2775		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   2776		free_send_packet(adapter, tcb);
   2777		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   2778
   2779		/* Goto the next packet */
   2780		tcb = tx_ring->send_head;
   2781	}
   2782
   2783	/* Wake up the queue when we hit a low-water mark */
   2784	if (tx_ring->used <= NUM_TCB / 3)
   2785		netif_wake_queue(adapter->netdev);
   2786
   2787	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   2788}
   2789
   2790static int et131x_get_regs_len(struct net_device *netdev)
   2791{
   2792#define ET131X_REGS_LEN 256
   2793	return ET131X_REGS_LEN * sizeof(u32);
   2794}
   2795
   2796static void et131x_get_regs(struct net_device *netdev,
   2797			    struct ethtool_regs *regs, void *regs_data)
   2798{
   2799	struct et131x_adapter *adapter = netdev_priv(netdev);
   2800	struct address_map __iomem *aregs = adapter->regs;
   2801	u32 *regs_buff = regs_data;
   2802	u32 num = 0;
   2803	u16 tmp;
   2804
   2805	memset(regs_data, 0, et131x_get_regs_len(netdev));
   2806
   2807	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
   2808			adapter->pdev->device;
   2809
   2810	/* PHY regs */
   2811	et131x_mii_read(adapter, MII_BMCR, &tmp);
   2812	regs_buff[num++] = tmp;
   2813	et131x_mii_read(adapter, MII_BMSR, &tmp);
   2814	regs_buff[num++] = tmp;
   2815	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
   2816	regs_buff[num++] = tmp;
   2817	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
   2818	regs_buff[num++] = tmp;
   2819	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
   2820	regs_buff[num++] = tmp;
   2821	et131x_mii_read(adapter, MII_LPA, &tmp);
   2822	regs_buff[num++] = tmp;
   2823	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
   2824	regs_buff[num++] = tmp;
   2825	/* Autoneg next page transmit reg */
   2826	et131x_mii_read(adapter, 0x07, &tmp);
   2827	regs_buff[num++] = tmp;
   2828	/* Link partner next page reg */
   2829	et131x_mii_read(adapter, 0x08, &tmp);
   2830	regs_buff[num++] = tmp;
   2831	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
   2832	regs_buff[num++] = tmp;
   2833	et131x_mii_read(adapter, MII_STAT1000, &tmp);
   2834	regs_buff[num++] = tmp;
   2835	et131x_mii_read(adapter, 0x0b, &tmp);
   2836	regs_buff[num++] = tmp;
   2837	et131x_mii_read(adapter, 0x0c, &tmp);
   2838	regs_buff[num++] = tmp;
   2839	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
   2840	regs_buff[num++] = tmp;
   2841	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
   2842	regs_buff[num++] = tmp;
   2843	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
   2844	regs_buff[num++] = tmp;
   2845
   2846	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
   2847	regs_buff[num++] = tmp;
   2848	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
   2849	regs_buff[num++] = tmp;
   2850	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
   2851	regs_buff[num++] = tmp;
   2852	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
   2853	regs_buff[num++] = tmp;
   2854	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
   2855	regs_buff[num++] = tmp;
   2856
   2857	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
   2858	regs_buff[num++] = tmp;
   2859	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
   2860	regs_buff[num++] = tmp;
   2861	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
   2862	regs_buff[num++] = tmp;
   2863	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
   2864	regs_buff[num++] = tmp;
   2865	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
   2866	regs_buff[num++] = tmp;
   2867	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
   2868	regs_buff[num++] = tmp;
   2869	et131x_mii_read(adapter, PHY_LED_1, &tmp);
   2870	regs_buff[num++] = tmp;
   2871	et131x_mii_read(adapter, PHY_LED_2, &tmp);
   2872	regs_buff[num++] = tmp;
   2873
   2874	/* Global regs */
   2875	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
   2876	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
   2877	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
   2878	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
   2879	regs_buff[num++] = readl(&aregs->global.pm_csr);
   2880	regs_buff[num++] = adapter->stats.interrupt_status;
   2881	regs_buff[num++] = readl(&aregs->global.int_mask);
   2882	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
   2883	regs_buff[num++] = readl(&aregs->global.int_status_alias);
   2884	regs_buff[num++] = readl(&aregs->global.sw_reset);
   2885	regs_buff[num++] = readl(&aregs->global.slv_timer);
   2886	regs_buff[num++] = readl(&aregs->global.msi_config);
   2887	regs_buff[num++] = readl(&aregs->global.loopback);
   2888	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
   2889
   2890	/* TXDMA regs */
   2891	regs_buff[num++] = readl(&aregs->txdma.csr);
   2892	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
   2893	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
   2894	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
   2895	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
   2896	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
   2897	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
   2898	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
   2899	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
   2900	regs_buff[num++] = readl(&aregs->txdma.service_request);
   2901	regs_buff[num++] = readl(&aregs->txdma.service_complete);
   2902	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
   2903	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
   2904	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
   2905	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
   2906	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
   2907	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
   2908	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
   2909	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
   2910	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
   2911	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
   2912	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
   2913	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
   2914	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
   2915	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
   2916	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
   2917
   2918	/* RXDMA regs */
   2919	regs_buff[num++] = readl(&aregs->rxdma.csr);
   2920	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
   2921	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
   2922	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
   2923	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
   2924	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
   2925	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
   2926	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
   2927	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
   2928	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
   2929	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
   2930	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
   2931	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
   2932	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
   2933	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
   2934	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
   2935	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
   2936	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
   2937	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
   2938	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
   2939	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
   2940	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
   2941	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
   2942	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
   2943	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
   2944	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
   2945	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
   2946	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
   2947	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
   2948}
   2949
   2950static void et131x_get_drvinfo(struct net_device *netdev,
   2951			       struct ethtool_drvinfo *info)
   2952{
   2953	struct et131x_adapter *adapter = netdev_priv(netdev);
   2954
   2955	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
   2956	strlcpy(info->bus_info, pci_name(adapter->pdev),
   2957		sizeof(info->bus_info));
   2958}
   2959
   2960static const struct ethtool_ops et131x_ethtool_ops = {
   2961	.get_drvinfo	= et131x_get_drvinfo,
   2962	.get_regs_len	= et131x_get_regs_len,
   2963	.get_regs	= et131x_get_regs,
   2964	.get_link	= ethtool_op_get_link,
   2965	.get_link_ksettings = phy_ethtool_get_link_ksettings,
   2966	.set_link_ksettings = phy_ethtool_set_link_ksettings,
   2967};
   2968
   2969/* et131x_hwaddr_init - set up the MAC Address */
   2970static void et131x_hwaddr_init(struct et131x_adapter *adapter)
   2971{
   2972	/* If have our default mac from init and no mac address from
   2973	 * EEPROM then we need to generate the last octet and set it on the
   2974	 * device
   2975	 */
   2976	if (is_zero_ether_addr(adapter->rom_addr)) {
   2977		/* We need to randomly generate the last octet so we
   2978		 * decrease our chances of setting the mac address to
   2979		 * same as another one of our cards in the system
   2980		 */
   2981		get_random_bytes(&adapter->addr[5], 1);
   2982		/* We have the default value in the register we are
   2983		 * working with so we need to copy the current
   2984		 * address into the permanent address
   2985		 */
   2986		ether_addr_copy(adapter->rom_addr, adapter->addr);
   2987	} else {
   2988		/* We do not have an override address, so set the
   2989		 * current address to the permanent address and add
   2990		 * it to the device
   2991		 */
   2992		ether_addr_copy(adapter->addr, adapter->rom_addr);
   2993	}
   2994}
   2995
   2996static int et131x_pci_init(struct et131x_adapter *adapter,
   2997			   struct pci_dev *pdev)
   2998{
   2999	u16 max_payload;
   3000	int i, rc;
   3001
   3002	rc = et131x_init_eeprom(adapter);
   3003	if (rc < 0)
   3004		goto out;
   3005
   3006	if (!pci_is_pcie(pdev)) {
   3007		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
   3008		goto err_out;
   3009	}
   3010
   3011	/* Program the Ack/Nak latency and replay timers */
   3012	max_payload = pdev->pcie_mpss;
   3013
   3014	if (max_payload < 2) {
   3015		static const u16 acknak[2] = { 0x76, 0xD0 };
   3016		static const u16 replay[2] = { 0x1E0, 0x2ED };
   3017
   3018		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
   3019					  acknak[max_payload])) {
   3020			dev_err(&pdev->dev,
   3021				"Could not write PCI config space for ACK/NAK\n");
   3022			goto err_out;
   3023		}
   3024		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
   3025					  replay[max_payload])) {
   3026			dev_err(&pdev->dev,
   3027				"Could not write PCI config space for Replay Timer\n");
   3028			goto err_out;
   3029		}
   3030	}
   3031
   3032	/* l0s and l1 latency timers.  We are using default values.
   3033	 * Representing 001 for L0s and 010 for L1
   3034	 */
   3035	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
   3036		dev_err(&pdev->dev,
   3037			"Could not write PCI config space for Latency Timers\n");
   3038		goto err_out;
   3039	}
   3040
   3041	/* Change the max read size to 2k */
   3042	if (pcie_set_readrq(pdev, 2048)) {
   3043		dev_err(&pdev->dev,
   3044			"Couldn't change PCI config space for Max read size\n");
   3045		goto err_out;
   3046	}
   3047
   3048	/* Get MAC address from config space if an eeprom exists, otherwise
   3049	 * the MAC address there will not be valid
   3050	 */
   3051	if (!adapter->has_eeprom) {
   3052		et131x_hwaddr_init(adapter);
   3053		return 0;
   3054	}
   3055
   3056	for (i = 0; i < ETH_ALEN; i++) {
   3057		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
   3058					 adapter->rom_addr + i)) {
   3059			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
   3060			goto err_out;
   3061		}
   3062	}
   3063	ether_addr_copy(adapter->addr, adapter->rom_addr);
   3064out:
   3065	return rc;
   3066err_out:
   3067	rc = -EIO;
   3068	goto out;
   3069}
   3070
   3071/* et131x_error_timer_handler
   3072 * @data: timer-specific variable; here a pointer to our adapter structure
   3073 *
   3074 * The routine called when the error timer expires, to track the number of
   3075 * recurring errors.
   3076 */
   3077static void et131x_error_timer_handler(struct timer_list *t)
   3078{
   3079	struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
   3080	struct phy_device *phydev = adapter->netdev->phydev;
   3081
   3082	if (et1310_in_phy_coma(adapter)) {
   3083		/* Bring the device immediately out of coma, to
   3084		 * prevent it from sleeping indefinitely, this
   3085		 * mechanism could be improved!
   3086		 */
   3087		et1310_disable_phy_coma(adapter);
   3088		adapter->boot_coma = 20;
   3089	} else {
   3090		et1310_update_macstat_host_counters(adapter);
   3091	}
   3092
   3093	if (!phydev->link && adapter->boot_coma < 11)
   3094		adapter->boot_coma++;
   3095
   3096	if (adapter->boot_coma == 10) {
   3097		if (!phydev->link) {
   3098			if (!et1310_in_phy_coma(adapter)) {
   3099				/* NOTE - This was originally a 'sync with
   3100				 *  interrupt'. How to do that under Linux?
   3101				 */
   3102				et131x_enable_interrupts(adapter);
   3103				et1310_enable_phy_coma(adapter);
   3104			}
   3105		}
   3106	}
   3107
   3108	/* This is a periodic timer, so reschedule */
   3109	mod_timer(&adapter->error_timer, jiffies +
   3110		  msecs_to_jiffies(TX_ERROR_PERIOD));
   3111}
   3112
   3113static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
   3114{
   3115	et131x_tx_dma_memory_free(adapter);
   3116	et131x_rx_dma_memory_free(adapter);
   3117}
   3118
   3119static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
   3120{
   3121	int status;
   3122
   3123	status = et131x_tx_dma_memory_alloc(adapter);
   3124	if (status) {
   3125		dev_err(&adapter->pdev->dev,
   3126			"et131x_tx_dma_memory_alloc FAILED\n");
   3127		et131x_tx_dma_memory_free(adapter);
   3128		return status;
   3129	}
   3130
   3131	status = et131x_rx_dma_memory_alloc(adapter);
   3132	if (status) {
   3133		dev_err(&adapter->pdev->dev,
   3134			"et131x_rx_dma_memory_alloc FAILED\n");
   3135		et131x_adapter_memory_free(adapter);
   3136		return status;
   3137	}
   3138
   3139	status = et131x_init_recv(adapter);
   3140	if (status) {
   3141		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
   3142		et131x_adapter_memory_free(adapter);
   3143	}
   3144	return status;
   3145}
   3146
   3147static void et131x_adjust_link(struct net_device *netdev)
   3148{
   3149	struct et131x_adapter *adapter = netdev_priv(netdev);
   3150	struct  phy_device *phydev = netdev->phydev;
   3151
   3152	if (!phydev)
   3153		return;
   3154	if (phydev->link == adapter->link)
   3155		return;
   3156
   3157	/* Check to see if we are in coma mode and if
   3158	 * so, disable it because we will not be able
   3159	 * to read PHY values until we are out.
   3160	 */
   3161	if (et1310_in_phy_coma(adapter))
   3162		et1310_disable_phy_coma(adapter);
   3163
   3164	adapter->link = phydev->link;
   3165	phy_print_status(phydev);
   3166
   3167	if (phydev->link) {
   3168		adapter->boot_coma = 20;
   3169		if (phydev->speed == SPEED_10) {
   3170			u16 register18;
   3171
   3172			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
   3173					&register18);
   3174			et131x_mii_write(adapter, phydev->mdio.addr,
   3175					 PHY_MPHY_CONTROL_REG,
   3176					 register18 | 0x4);
   3177			et131x_mii_write(adapter, phydev->mdio.addr,
   3178					 PHY_INDEX_REG, register18 | 0x8402);
   3179			et131x_mii_write(adapter, phydev->mdio.addr,
   3180					 PHY_DATA_REG, register18 | 511);
   3181			et131x_mii_write(adapter, phydev->mdio.addr,
   3182					 PHY_MPHY_CONTROL_REG, register18);
   3183		}
   3184
   3185		et1310_config_flow_control(adapter);
   3186
   3187		if (phydev->speed == SPEED_1000 &&
   3188		    adapter->registry_jumbo_packet > 2048) {
   3189			u16 reg;
   3190
   3191			et131x_mii_read(adapter, PHY_CONFIG, &reg);
   3192			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
   3193			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
   3194			et131x_mii_write(adapter, phydev->mdio.addr,
   3195					 PHY_CONFIG, reg);
   3196		}
   3197
   3198		et131x_set_rx_dma_timer(adapter);
   3199		et1310_config_mac_regs2(adapter);
   3200	} else {
   3201		adapter->boot_coma = 0;
   3202
   3203		if (phydev->speed == SPEED_10) {
   3204			u16 register18;
   3205
   3206			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
   3207					&register18);
   3208			et131x_mii_write(adapter, phydev->mdio.addr,
   3209					 PHY_MPHY_CONTROL_REG,
   3210					 register18 | 0x4);
   3211			et131x_mii_write(adapter, phydev->mdio.addr,
   3212					 PHY_INDEX_REG, register18 | 0x8402);
   3213			et131x_mii_write(adapter, phydev->mdio.addr,
   3214					 PHY_DATA_REG, register18 | 511);
   3215			et131x_mii_write(adapter, phydev->mdio.addr,
   3216					 PHY_MPHY_CONTROL_REG, register18);
   3217		}
   3218
   3219		et131x_free_busy_send_packets(adapter);
   3220		et131x_init_send(adapter);
   3221
   3222		/* Bring the device back to the state it was during
   3223		 * init prior to autonegotiation being complete. This
   3224		 * way, when we get the auto-neg complete interrupt,
   3225		 * we can complete init by calling config_mac_regs2.
   3226		 */
   3227		et131x_soft_reset(adapter);
   3228
   3229		et131x_adapter_setup(adapter);
   3230
   3231		et131x_disable_txrx(netdev);
   3232		et131x_enable_txrx(netdev);
   3233	}
   3234}
   3235
   3236static int et131x_mii_probe(struct net_device *netdev)
   3237{
   3238	struct et131x_adapter *adapter = netdev_priv(netdev);
   3239	struct  phy_device *phydev = NULL;
   3240
   3241	phydev = phy_find_first(adapter->mii_bus);
   3242	if (!phydev) {
   3243		dev_err(&adapter->pdev->dev, "no PHY found\n");
   3244		return -ENODEV;
   3245	}
   3246
   3247	phydev = phy_connect(netdev, phydev_name(phydev),
   3248			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
   3249
   3250	if (IS_ERR(phydev)) {
   3251		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
   3252		return PTR_ERR(phydev);
   3253	}
   3254
   3255	phy_set_max_speed(phydev, SPEED_100);
   3256
   3257	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
   3258		phy_set_max_speed(phydev, SPEED_1000);
   3259
   3260	phydev->autoneg = AUTONEG_ENABLE;
   3261
   3262	phy_attached_info(phydev);
   3263
   3264	return 0;
   3265}
   3266
   3267static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
   3268						  struct pci_dev *pdev)
   3269{
   3270	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
   3271
   3272	struct et131x_adapter *adapter;
   3273
   3274	adapter = netdev_priv(netdev);
   3275	adapter->pdev = pci_dev_get(pdev);
   3276	adapter->netdev = netdev;
   3277
   3278	spin_lock_init(&adapter->tcb_send_qlock);
   3279	spin_lock_init(&adapter->tcb_ready_qlock);
   3280	spin_lock_init(&adapter->rcv_lock);
   3281
   3282	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
   3283
   3284	ether_addr_copy(adapter->addr, default_mac);
   3285
   3286	return adapter;
   3287}
   3288
   3289static void et131x_pci_remove(struct pci_dev *pdev)
   3290{
   3291	struct net_device *netdev = pci_get_drvdata(pdev);
   3292	struct et131x_adapter *adapter = netdev_priv(netdev);
   3293
   3294	unregister_netdev(netdev);
   3295	netif_napi_del(&adapter->napi);
   3296	phy_disconnect(netdev->phydev);
   3297	mdiobus_unregister(adapter->mii_bus);
   3298	mdiobus_free(adapter->mii_bus);
   3299
   3300	et131x_adapter_memory_free(adapter);
   3301	iounmap(adapter->regs);
   3302	pci_dev_put(pdev);
   3303
   3304	free_netdev(netdev);
   3305	pci_release_regions(pdev);
   3306	pci_disable_device(pdev);
   3307}
   3308
   3309static void et131x_up(struct net_device *netdev)
   3310{
   3311	et131x_enable_txrx(netdev);
   3312	phy_start(netdev->phydev);
   3313}
   3314
   3315static void et131x_down(struct net_device *netdev)
   3316{
   3317	/* Save the timestamp for the TX watchdog, prevent a timeout */
   3318	netif_trans_update(netdev);
   3319
   3320	phy_stop(netdev->phydev);
   3321	et131x_disable_txrx(netdev);
   3322}
   3323
   3324#ifdef CONFIG_PM_SLEEP
   3325static int et131x_suspend(struct device *dev)
   3326{
   3327	struct pci_dev *pdev = to_pci_dev(dev);
   3328	struct net_device *netdev = pci_get_drvdata(pdev);
   3329
   3330	if (netif_running(netdev)) {
   3331		netif_device_detach(netdev);
   3332		et131x_down(netdev);
   3333		pci_save_state(pdev);
   3334	}
   3335
   3336	return 0;
   3337}
   3338
   3339static int et131x_resume(struct device *dev)
   3340{
   3341	struct pci_dev *pdev = to_pci_dev(dev);
   3342	struct net_device *netdev = pci_get_drvdata(pdev);
   3343
   3344	if (netif_running(netdev)) {
   3345		pci_restore_state(pdev);
   3346		et131x_up(netdev);
   3347		netif_device_attach(netdev);
   3348	}
   3349
   3350	return 0;
   3351}
   3352#endif
   3353
   3354static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
   3355
   3356static irqreturn_t et131x_isr(int irq, void *dev_id)
   3357{
   3358	bool handled = true;
   3359	bool enable_interrupts = true;
   3360	struct net_device *netdev = dev_id;
   3361	struct et131x_adapter *adapter = netdev_priv(netdev);
   3362	struct address_map __iomem *iomem = adapter->regs;
   3363	struct rx_ring *rx_ring = &adapter->rx_ring;
   3364	struct tx_ring *tx_ring = &adapter->tx_ring;
   3365	u32 status;
   3366
   3367	if (!netif_device_present(netdev)) {
   3368		handled = false;
   3369		enable_interrupts = false;
   3370		goto out;
   3371	}
   3372
   3373	et131x_disable_interrupts(adapter);
   3374
   3375	status = readl(&adapter->regs->global.int_status);
   3376
   3377	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
   3378		status &= ~INT_MASK_ENABLE;
   3379	else
   3380		status &= ~INT_MASK_ENABLE_NO_FLOW;
   3381
   3382	/* Make sure this is our interrupt */
   3383	if (!status) {
   3384		handled = false;
   3385		et131x_enable_interrupts(adapter);
   3386		goto out;
   3387	}
   3388
   3389	/* This is our interrupt, so process accordingly */
   3390	if (status & ET_INTR_WATCHDOG) {
   3391		struct tcb *tcb = tx_ring->send_head;
   3392
   3393		if (tcb)
   3394			if (++tcb->stale > 1)
   3395				status |= ET_INTR_TXDMA_ISR;
   3396
   3397		if (rx_ring->unfinished_receives)
   3398			status |= ET_INTR_RXDMA_XFR_DONE;
   3399		else if (tcb == NULL)
   3400			writel(0, &adapter->regs->global.watchdog_timer);
   3401
   3402		status &= ~ET_INTR_WATCHDOG;
   3403	}
   3404
   3405	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
   3406		enable_interrupts = false;
   3407		napi_schedule(&adapter->napi);
   3408	}
   3409
   3410	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
   3411
   3412	if (!status)
   3413		goto out;
   3414
   3415	if (status & ET_INTR_TXDMA_ERR) {
   3416		/* Following read also clears the register (COR) */
   3417		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
   3418
   3419		dev_warn(&adapter->pdev->dev,
   3420			 "TXDMA_ERR interrupt, error = %d\n",
   3421			 txdma_err);
   3422	}
   3423
   3424	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
   3425		/* This indicates the number of unused buffers in RXDMA free
   3426		 * buffer ring 0 is <= the limit you programmed. Free buffer
   3427		 * resources need to be returned.  Free buffers are consumed as
   3428		 * packets are passed from the network to the host. The host
   3429		 * becomes aware of the packets from the contents of the packet
   3430		 * status ring. This ring is queried when the packet done
   3431		 * interrupt occurs. Packets are then passed to the OS. When
   3432		 * the OS is done with the packets the resources can be
   3433		 * returned to the ET1310 for re-use. This interrupt is one
   3434		 * method of returning resources.
   3435		 */
   3436
   3437		/*  If the user has flow control on, then we will
   3438		 * send a pause packet, otherwise just exit
   3439		 */
   3440		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
   3441			/* Tell the device to send a pause packet via the back
   3442			 * pressure register (bp req and bp xon/xoff)
   3443			 */
   3444			if (!et1310_in_phy_coma(adapter))
   3445				writel(3, &iomem->txmac.bp_ctrl);
   3446		}
   3447	}
   3448
   3449	/* Handle Packet Status Ring Low Interrupt */
   3450	if (status & ET_INTR_RXDMA_STAT_LOW) {
   3451		/* Same idea as with the two Free Buffer Rings. Packets going
   3452		 * from the network to the host each consume a free buffer
   3453		 * resource and a packet status resource. These resources are
   3454		 * passed to the OS. When the OS is done with the resources,
   3455		 * they need to be returned to the ET1310. This is one method
   3456		 * of returning the resources.
   3457		 */
   3458	}
   3459
   3460	if (status & ET_INTR_RXDMA_ERR) {
   3461		/* The rxdma_error interrupt is sent when a time-out on a
   3462		 * request issued by the JAGCore has occurred or a completion is
   3463		 * returned with an un-successful status. In both cases the
   3464		 * request is considered complete. The JAGCore will
   3465		 * automatically re-try the request in question. Normally
   3466		 * information on events like these are sent to the host using
   3467		 * the "Advanced Error Reporting" capability. This interrupt is
   3468		 * another way of getting similar information. The only thing
   3469		 * required is to clear the interrupt by reading the ISR in the
   3470		 * global resources. The JAGCore will do a re-try on the
   3471		 * request. Normally you should never see this interrupt. If
   3472		 * you start to see this interrupt occurring frequently then
   3473		 * something bad has occurred. A reset might be the thing to do.
   3474		 */
   3475		/* TRAP();*/
   3476
   3477		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
   3478			 readl(&iomem->txmac.tx_test));
   3479	}
   3480
   3481	/* Handle the Wake on LAN Event */
   3482	if (status & ET_INTR_WOL) {
   3483		/* This is a secondary interrupt for wake on LAN. The driver
   3484		 * should never see this, if it does, something serious is
   3485		 * wrong.
   3486		 */
   3487		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
   3488	}
   3489
   3490	if (status & ET_INTR_TXMAC) {
   3491		u32 err = readl(&iomem->txmac.err);
   3492
   3493		/* When any of the errors occur and TXMAC generates an
   3494		 * interrupt to report these errors, it usually means that
   3495		 * TXMAC has detected an error in the data stream retrieved
   3496		 * from the on-chip Tx Q. All of these errors are catastrophic
   3497		 * and TXMAC won't be able to recover data when these errors
   3498		 * occur. In a nutshell, the whole Tx path will have to be reset
   3499		 * and re-configured afterwards.
   3500		 */
   3501		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
   3502			 err);
   3503
   3504		/* If we are debugging, we want to see this error, otherwise we
   3505		 * just want the device to be reset and continue
   3506		 */
   3507	}
   3508
   3509	if (status & ET_INTR_RXMAC) {
   3510		/* These interrupts are catastrophic to the device, what we need
   3511		 * to do is disable the interrupts and set the flag to cause us
   3512		 * to reset so we can solve this issue.
   3513		 */
   3514		dev_warn(&adapter->pdev->dev,
   3515			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
   3516			 readl(&iomem->rxmac.err_reg));
   3517
   3518		dev_warn(&adapter->pdev->dev,
   3519			 "Enable 0x%08x, Diag 0x%08x\n",
   3520			 readl(&iomem->rxmac.ctrl),
   3521			 readl(&iomem->rxmac.rxq_diag));
   3522
   3523		/* If we are debugging, we want to see this error, otherwise we
   3524		 * just want the device to be reset and continue
   3525		 */
   3526	}
   3527
   3528	if (status & ET_INTR_MAC_STAT) {
   3529		/* This means at least one of the un-masked counters in the
   3530		 * MAC_STAT block has rolled over. Use this to maintain the top,
   3531		 * software managed bits of the counter(s).
   3532		 */
   3533		et1310_handle_macstat_interrupt(adapter);
   3534	}
   3535
   3536	if (status & ET_INTR_SLV_TIMEOUT) {
   3537		/* This means a timeout has occurred on a read or write request
   3538		 * to one of the JAGCore registers. The Global Resources block
   3539		 * has terminated the request and on a read request, returned a
   3540		 * "fake" value. The most likely reasons are: Bad Address or the
   3541		 * addressed module is in a power-down state and can't respond.
   3542		 */
   3543	}
   3544
   3545out:
   3546	if (enable_interrupts)
   3547		et131x_enable_interrupts(adapter);
   3548
   3549	return IRQ_RETVAL(handled);
   3550}
   3551
   3552static int et131x_poll(struct napi_struct *napi, int budget)
   3553{
   3554	struct et131x_adapter *adapter =
   3555		container_of(napi, struct et131x_adapter, napi);
   3556	int work_done = et131x_handle_recv_pkts(adapter, budget);
   3557
   3558	et131x_handle_send_pkts(adapter);
   3559
   3560	if (work_done < budget) {
   3561		napi_complete_done(&adapter->napi, work_done);
   3562		et131x_enable_interrupts(adapter);
   3563	}
   3564
   3565	return work_done;
   3566}
   3567
   3568/* et131x_stats - Return the current device statistics  */
   3569static struct net_device_stats *et131x_stats(struct net_device *netdev)
   3570{
   3571	struct et131x_adapter *adapter = netdev_priv(netdev);
   3572	struct net_device_stats *stats = &adapter->netdev->stats;
   3573	struct ce_stats *devstat = &adapter->stats;
   3574
   3575	stats->rx_errors = devstat->rx_length_errs +
   3576			   devstat->rx_align_errs +
   3577			   devstat->rx_crc_errs +
   3578			   devstat->rx_code_violations +
   3579			   devstat->rx_other_errs;
   3580	stats->tx_errors = devstat->tx_max_pkt_errs;
   3581	stats->multicast = devstat->multicast_pkts_rcvd;
   3582	stats->collisions = devstat->tx_collisions;
   3583
   3584	stats->rx_length_errors = devstat->rx_length_errs;
   3585	stats->rx_over_errors = devstat->rx_overflows;
   3586	stats->rx_crc_errors = devstat->rx_crc_errs;
   3587	stats->rx_dropped = devstat->rcvd_pkts_dropped;
   3588
   3589	/* NOTE: Not used, can't find analogous statistics */
   3590	/* stats->rx_frame_errors     = devstat->; */
   3591	/* stats->rx_fifo_errors      = devstat->; */
   3592	/* stats->rx_missed_errors    = devstat->; */
   3593
   3594	/* stats->tx_aborted_errors   = devstat->; */
   3595	/* stats->tx_carrier_errors   = devstat->; */
   3596	/* stats->tx_fifo_errors      = devstat->; */
   3597	/* stats->tx_heartbeat_errors = devstat->; */
   3598	/* stats->tx_window_errors    = devstat->; */
   3599	return stats;
   3600}
   3601
   3602static int et131x_open(struct net_device *netdev)
   3603{
   3604	struct et131x_adapter *adapter = netdev_priv(netdev);
   3605	struct pci_dev *pdev = adapter->pdev;
   3606	unsigned int irq = pdev->irq;
   3607	int result;
   3608
   3609	/* Start the timer to track NIC errors */
   3610	timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
   3611	adapter->error_timer.expires = jiffies +
   3612		msecs_to_jiffies(TX_ERROR_PERIOD);
   3613	add_timer(&adapter->error_timer);
   3614
   3615	result = request_irq(irq, et131x_isr,
   3616			     IRQF_SHARED, netdev->name, netdev);
   3617	if (result) {
   3618		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
   3619		return result;
   3620	}
   3621
   3622	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
   3623
   3624	napi_enable(&adapter->napi);
   3625
   3626	et131x_up(netdev);
   3627
   3628	return result;
   3629}
   3630
   3631static int et131x_close(struct net_device *netdev)
   3632{
   3633	struct et131x_adapter *adapter = netdev_priv(netdev);
   3634
   3635	et131x_down(netdev);
   3636	napi_disable(&adapter->napi);
   3637
   3638	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
   3639	free_irq(adapter->pdev->irq, netdev);
   3640
   3641	/* Stop the error timer */
   3642	return del_timer_sync(&adapter->error_timer);
   3643}
   3644
   3645/* et131x_set_packet_filter - Configures the Rx Packet filtering */
   3646static int et131x_set_packet_filter(struct et131x_adapter *adapter)
   3647{
   3648	int filter = adapter->packet_filter;
   3649	u32 ctrl;
   3650	u32 pf_ctrl;
   3651
   3652	ctrl = readl(&adapter->regs->rxmac.ctrl);
   3653	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
   3654
   3655	/* Default to disabled packet filtering */
   3656	ctrl |= 0x04;
   3657
   3658	/* Set us to be in promiscuous mode so we receive everything, this
   3659	 * is also true when we get a packet filter of 0
   3660	 */
   3661	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
   3662		pf_ctrl &= ~7;	/* Clear filter bits */
   3663	else {
   3664		/* Set us up with Multicast packet filtering.  Three cases are
   3665		 * possible - (1) we have a multi-cast list, (2) we receive ALL
   3666		 * multicast entries or (3) we receive none.
   3667		 */
   3668		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
   3669			pf_ctrl &= ~2;	/* Multicast filter bit */
   3670		else {
   3671			et1310_setup_device_for_multicast(adapter);
   3672			pf_ctrl |= 2;
   3673			ctrl &= ~0x04;
   3674		}
   3675
   3676		/* Set us up with Unicast packet filtering */
   3677		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
   3678			et1310_setup_device_for_unicast(adapter);
   3679			pf_ctrl |= 4;
   3680			ctrl &= ~0x04;
   3681		}
   3682
   3683		/* Set us up with Broadcast packet filtering */
   3684		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
   3685			pf_ctrl |= 1;	/* Broadcast filter bit */
   3686			ctrl &= ~0x04;
   3687		} else {
   3688			pf_ctrl &= ~1;
   3689		}
   3690
   3691		/* Setup the receive mac configuration registers - Packet
   3692		 * Filter control + the enable / disable for packet filter
   3693		 * in the control reg.
   3694		 */
   3695		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
   3696		writel(ctrl, &adapter->regs->rxmac.ctrl);
   3697	}
   3698	return 0;
   3699}
   3700
   3701static void et131x_multicast(struct net_device *netdev)
   3702{
   3703	struct et131x_adapter *adapter = netdev_priv(netdev);
   3704	int packet_filter;
   3705	struct netdev_hw_addr *ha;
   3706	int i;
   3707
   3708	/* Before we modify the platform-independent filter flags, store them
   3709	 * locally. This allows us to determine if anything's changed and if
   3710	 * we even need to bother the hardware
   3711	 */
   3712	packet_filter = adapter->packet_filter;
   3713
   3714	/* Clear the 'multicast' flag locally; because we only have a single
   3715	 * flag to check multicast, and multiple multicast addresses can be
   3716	 * set, this is the easiest way to determine if more than one
   3717	 * multicast address is being set.
   3718	 */
   3719	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
   3720
   3721	/* Check the net_device flags and set the device independent flags
   3722	 * accordingly
   3723	 */
   3724	if (netdev->flags & IFF_PROMISC)
   3725		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
   3726	else
   3727		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
   3728
   3729	if ((netdev->flags & IFF_ALLMULTI) ||
   3730	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
   3731		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
   3732
   3733	if (netdev_mc_count(netdev) < 1) {
   3734		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
   3735		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
   3736	} else {
   3737		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
   3738	}
   3739
   3740	/* Set values in the private adapter struct */
   3741	i = 0;
   3742	netdev_for_each_mc_addr(ha, netdev) {
   3743		if (i == NIC_MAX_MCAST_LIST)
   3744			break;
   3745		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
   3746	}
   3747	adapter->multicast_addr_count = i;
   3748
   3749	/* Are the new flags different from the previous ones? If not, then no
   3750	 * action is required
   3751	 *
   3752	 * NOTE - This block will always update the multicast_list with the
   3753	 *        hardware, even if the addresses aren't the same.
   3754	 */
   3755	if (packet_filter != adapter->packet_filter)
   3756		et131x_set_packet_filter(adapter);
   3757}
   3758
   3759static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
   3760{
   3761	struct et131x_adapter *adapter = netdev_priv(netdev);
   3762	struct tx_ring *tx_ring = &adapter->tx_ring;
   3763
   3764	/* This driver does not support TSO, it is very unlikely
   3765	 * this condition is true.
   3766	 */
   3767	if (unlikely(skb_shinfo(skb)->nr_frags > MAX_TX_DESC_PER_PKT - 2)) {
   3768		if (skb_linearize(skb))
   3769			goto drop_err;
   3770	}
   3771	/* stop the queue if it's getting full */
   3772	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
   3773		netif_stop_queue(netdev);
   3774
   3775	/* Save the timestamp for the TX timeout watchdog */
   3776	netif_trans_update(netdev);
   3777
   3778	/* TCB is not available */
   3779	if (tx_ring->used >= NUM_TCB)
   3780		goto drop_err;
   3781
   3782	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
   3783	    !netif_carrier_ok(netdev))
   3784		goto drop_err;
   3785
   3786	if (send_packet(skb, adapter))
   3787		goto drop_err;
   3788
   3789	return NETDEV_TX_OK;
   3790
   3791drop_err:
   3792	dev_kfree_skb_any(skb);
   3793	adapter->netdev->stats.tx_dropped++;
   3794	return NETDEV_TX_OK;
   3795}
   3796
   3797/* et131x_tx_timeout - Timeout handler
   3798 *
   3799 * The handler called when a Tx request times out. The timeout period is
   3800 * specified by the 'tx_timeo" element in the net_device structure (see
   3801 * et131x_alloc_device() to see how this value is set).
   3802 */
   3803static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
   3804{
   3805	struct et131x_adapter *adapter = netdev_priv(netdev);
   3806	struct tx_ring *tx_ring = &adapter->tx_ring;
   3807	struct tcb *tcb;
   3808	unsigned long flags;
   3809
   3810	/* If the device is closed, ignore the timeout */
   3811	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
   3812		return;
   3813
   3814	/* Any nonrecoverable hardware error?
   3815	 * Checks adapter->flags for any failure in phy reading
   3816	 */
   3817	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
   3818		return;
   3819
   3820	/* Hardware failure? */
   3821	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
   3822		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
   3823		return;
   3824	}
   3825
   3826	/* Is send stuck? */
   3827	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
   3828	tcb = tx_ring->send_head;
   3829	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
   3830
   3831	if (tcb) {
   3832		tcb->count++;
   3833
   3834		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
   3835			dev_warn(&adapter->pdev->dev,
   3836				 "Send stuck - reset. tcb->WrIndex %x\n",
   3837				 tcb->index);
   3838
   3839			adapter->netdev->stats.tx_errors++;
   3840
   3841			/* perform reset of tx/rx */
   3842			et131x_disable_txrx(netdev);
   3843			et131x_enable_txrx(netdev);
   3844		}
   3845	}
   3846}
   3847
   3848static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
   3849{
   3850	int result = 0;
   3851	struct et131x_adapter *adapter = netdev_priv(netdev);
   3852
   3853	et131x_disable_txrx(netdev);
   3854
   3855	netdev->mtu = new_mtu;
   3856
   3857	et131x_adapter_memory_free(adapter);
   3858
   3859	/* Set the config parameter for Jumbo Packet support */
   3860	adapter->registry_jumbo_packet = new_mtu + 14;
   3861	et131x_soft_reset(adapter);
   3862
   3863	result = et131x_adapter_memory_alloc(adapter);
   3864	if (result != 0) {
   3865		dev_warn(&adapter->pdev->dev,
   3866			 "Change MTU failed; couldn't re-alloc DMA memory\n");
   3867		return result;
   3868	}
   3869
   3870	et131x_init_send(adapter);
   3871	et131x_hwaddr_init(adapter);
   3872	eth_hw_addr_set(netdev, adapter->addr);
   3873
   3874	/* Init the device with the new settings */
   3875	et131x_adapter_setup(adapter);
   3876	et131x_enable_txrx(netdev);
   3877
   3878	return result;
   3879}
   3880
   3881static const struct net_device_ops et131x_netdev_ops = {
   3882	.ndo_open		= et131x_open,
   3883	.ndo_stop		= et131x_close,
   3884	.ndo_start_xmit		= et131x_tx,
   3885	.ndo_set_rx_mode	= et131x_multicast,
   3886	.ndo_tx_timeout		= et131x_tx_timeout,
   3887	.ndo_change_mtu		= et131x_change_mtu,
   3888	.ndo_set_mac_address	= eth_mac_addr,
   3889	.ndo_validate_addr	= eth_validate_addr,
   3890	.ndo_get_stats		= et131x_stats,
   3891	.ndo_eth_ioctl		= phy_do_ioctl,
   3892};
   3893
   3894static int et131x_pci_setup(struct pci_dev *pdev,
   3895			    const struct pci_device_id *ent)
   3896{
   3897	struct net_device *netdev;
   3898	struct et131x_adapter *adapter;
   3899	int rc;
   3900
   3901	rc = pci_enable_device(pdev);
   3902	if (rc < 0) {
   3903		dev_err(&pdev->dev, "pci_enable_device() failed\n");
   3904		goto out;
   3905	}
   3906
   3907	/* Perform some basic PCI checks */
   3908	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
   3909		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
   3910		rc = -ENODEV;
   3911		goto err_disable;
   3912	}
   3913
   3914	rc = pci_request_regions(pdev, DRIVER_NAME);
   3915	if (rc < 0) {
   3916		dev_err(&pdev->dev, "Can't get PCI resources\n");
   3917		goto err_disable;
   3918	}
   3919
   3920	pci_set_master(pdev);
   3921
   3922	/* Check the DMA addressing support of this device */
   3923	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
   3924	if (rc) {
   3925		dev_err(&pdev->dev, "No usable DMA addressing method\n");
   3926		goto err_release_res;
   3927	}
   3928
   3929	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
   3930	if (!netdev) {
   3931		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
   3932		rc = -ENOMEM;
   3933		goto err_release_res;
   3934	}
   3935
   3936	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
   3937	netdev->netdev_ops     = &et131x_netdev_ops;
   3938	netdev->min_mtu        = ET131X_MIN_MTU;
   3939	netdev->max_mtu        = ET131X_MAX_MTU;
   3940
   3941	SET_NETDEV_DEV(netdev, &pdev->dev);
   3942	netdev->ethtool_ops = &et131x_ethtool_ops;
   3943
   3944	adapter = et131x_adapter_init(netdev, pdev);
   3945
   3946	rc = et131x_pci_init(adapter, pdev);
   3947	if (rc < 0)
   3948		goto err_free_dev;
   3949
   3950	/* Map the bus-relative registers to system virtual memory */
   3951	adapter->regs = pci_ioremap_bar(pdev, 0);
   3952	if (!adapter->regs) {
   3953		dev_err(&pdev->dev, "Cannot map device registers\n");
   3954		rc = -ENOMEM;
   3955		goto err_free_dev;
   3956	}
   3957
   3958	/* If Phy COMA mode was enabled when we went down, disable it here. */
   3959	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
   3960
   3961	et131x_soft_reset(adapter);
   3962	et131x_disable_interrupts(adapter);
   3963
   3964	rc = et131x_adapter_memory_alloc(adapter);
   3965	if (rc < 0) {
   3966		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
   3967		goto err_iounmap;
   3968	}
   3969
   3970	et131x_init_send(adapter);
   3971
   3972	netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
   3973
   3974	eth_hw_addr_set(netdev, adapter->addr);
   3975
   3976	rc = -ENOMEM;
   3977
   3978	adapter->mii_bus = mdiobus_alloc();
   3979	if (!adapter->mii_bus) {
   3980		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
   3981		goto err_mem_free;
   3982	}
   3983
   3984	adapter->mii_bus->name = "et131x_eth_mii";
   3985	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
   3986		 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
   3987	adapter->mii_bus->priv = netdev;
   3988	adapter->mii_bus->read = et131x_mdio_read;
   3989	adapter->mii_bus->write = et131x_mdio_write;
   3990
   3991	rc = mdiobus_register(adapter->mii_bus);
   3992	if (rc < 0) {
   3993		dev_err(&pdev->dev, "failed to register MII bus\n");
   3994		goto err_mdio_free;
   3995	}
   3996
   3997	rc = et131x_mii_probe(netdev);
   3998	if (rc < 0) {
   3999		dev_err(&pdev->dev, "failed to probe MII bus\n");
   4000		goto err_mdio_unregister;
   4001	}
   4002
   4003	et131x_adapter_setup(adapter);
   4004
   4005	/* Init variable for counting how long we do not have link status */
   4006	adapter->boot_coma = 0;
   4007	et1310_disable_phy_coma(adapter);
   4008
   4009	/* We can enable interrupts now
   4010	 *
   4011	 *  NOTE - Because registration of interrupt handler is done in the
   4012	 *         device's open(), defer enabling device interrupts to that
   4013	 *         point
   4014	 */
   4015
   4016	rc = register_netdev(netdev);
   4017	if (rc < 0) {
   4018		dev_err(&pdev->dev, "register_netdev() failed\n");
   4019		goto err_phy_disconnect;
   4020	}
   4021
   4022	/* Register the net_device struct with the PCI subsystem. Save a copy
   4023	 * of the PCI config space for this device now that the device has
   4024	 * been initialized, just in case it needs to be quickly restored.
   4025	 */
   4026	pci_set_drvdata(pdev, netdev);
   4027out:
   4028	return rc;
   4029
   4030err_phy_disconnect:
   4031	phy_disconnect(netdev->phydev);
   4032err_mdio_unregister:
   4033	mdiobus_unregister(adapter->mii_bus);
   4034err_mdio_free:
   4035	mdiobus_free(adapter->mii_bus);
   4036err_mem_free:
   4037	et131x_adapter_memory_free(adapter);
   4038err_iounmap:
   4039	iounmap(adapter->regs);
   4040err_free_dev:
   4041	pci_dev_put(pdev);
   4042	free_netdev(netdev);
   4043err_release_res:
   4044	pci_release_regions(pdev);
   4045err_disable:
   4046	pci_disable_device(pdev);
   4047	goto out;
   4048}
   4049
   4050static const struct pci_device_id et131x_pci_table[] = {
   4051	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
   4052	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
   4053	{ 0,}
   4054};
   4055MODULE_DEVICE_TABLE(pci, et131x_pci_table);
   4056
   4057static struct pci_driver et131x_driver = {
   4058	.name		= DRIVER_NAME,
   4059	.id_table	= et131x_pci_table,
   4060	.probe		= et131x_pci_setup,
   4061	.remove		= et131x_pci_remove,
   4062	.driver.pm	= &et131x_pm_ops,
   4063};
   4064
   4065module_pci_driver(et131x_driver);