cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

atl1e_hw.c (15775B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
      4 *
      5 * Derived from Intel e1000 driver
      6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
      7 */
      8#include <linux/pci.h>
      9#include <linux/delay.h>
     10#include <linux/mii.h>
     11#include <linux/crc32.h>
     12
     13#include "atl1e.h"
     14
     15/*
     16 * check_eeprom_exist
     17 * return 0 if eeprom exist
     18 */
     19int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
     20{
     21	u32 value;
     22
     23	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
     24	if (value & SPI_FLASH_CTRL_EN_VPD) {
     25		value &= ~SPI_FLASH_CTRL_EN_VPD;
     26		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
     27	}
     28	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
     29	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
     30}
     31
     32void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
     33{
     34	u32 value;
     35	/*
     36	 * 00-0B-6A-F6-00-DC
     37	 * 0:  6AF600DC 1: 000B
     38	 * low dword
     39	 */
     40	value = (((u32)hw->mac_addr[2]) << 24) |
     41		(((u32)hw->mac_addr[3]) << 16) |
     42		(((u32)hw->mac_addr[4]) << 8)  |
     43		(((u32)hw->mac_addr[5])) ;
     44	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
     45	/* hight dword */
     46	value = (((u32)hw->mac_addr[0]) << 8) |
     47		(((u32)hw->mac_addr[1])) ;
     48	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
     49}
     50
     51/*
     52 * atl1e_get_permanent_address
     53 * return 0 if get valid mac address,
     54 */
     55static int atl1e_get_permanent_address(struct atl1e_hw *hw)
     56{
     57	u32 addr[2];
     58	u32 i;
     59	u32 twsi_ctrl_data;
     60	u8  eth_addr[ETH_ALEN];
     61
     62	if (is_valid_ether_addr(hw->perm_mac_addr))
     63		return 0;
     64
     65	/* init */
     66	addr[0] = addr[1] = 0;
     67
     68	if (!atl1e_check_eeprom_exist(hw)) {
     69		/* eeprom exist */
     70		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
     71		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
     72		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
     73		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
     74			msleep(10);
     75			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
     76			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
     77				break;
     78		}
     79		if (i >= AT_TWSI_EEPROM_TIMEOUT)
     80			return AT_ERR_TIMEOUT;
     81	}
     82
     83	/* maybe MAC-address is from BIOS */
     84	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
     85	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
     86	*(u32 *) &eth_addr[2] = swab32(addr[0]);
     87	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
     88
     89	if (is_valid_ether_addr(eth_addr)) {
     90		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
     91		return 0;
     92	}
     93
     94	return AT_ERR_EEPROM;
     95}
     96
     97bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
     98{
     99	return true;
    100}
    101
    102bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
    103{
    104	int i;
    105	u32 control;
    106
    107	if (offset & 3)
    108		return false; /* address do not align */
    109
    110	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
    111	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
    112	AT_WRITE_REG(hw, REG_VPD_CAP, control);
    113
    114	for (i = 0; i < 10; i++) {
    115		msleep(2);
    116		control = AT_READ_REG(hw, REG_VPD_CAP);
    117		if (control & VPD_CAP_VPD_FLAG)
    118			break;
    119	}
    120	if (control & VPD_CAP_VPD_FLAG) {
    121		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
    122		return true;
    123	}
    124	return false; /* timeout */
    125}
    126
    127void atl1e_force_ps(struct atl1e_hw *hw)
    128{
    129	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
    130			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
    131}
    132
    133/*
    134 * Reads the adapter's MAC address from the EEPROM
    135 *
    136 * hw - Struct containing variables accessed by shared code
    137 */
    138int atl1e_read_mac_addr(struct atl1e_hw *hw)
    139{
    140	int err = 0;
    141
    142	err = atl1e_get_permanent_address(hw);
    143	if (err)
    144		return AT_ERR_EEPROM;
    145	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
    146	return 0;
    147}
    148
    149/*
    150 * atl1e_hash_mc_addr
    151 *  purpose
    152 *      set hash value for a multicast address
    153 */
    154u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
    155{
    156	u32 crc32;
    157	u32 value = 0;
    158	int i;
    159
    160	crc32 = ether_crc_le(6, mc_addr);
    161	for (i = 0; i < 32; i++)
    162		value |= (((crc32 >> i) & 1) << (31 - i));
    163
    164	return value;
    165}
    166
    167/*
    168 * Sets the bit in the multicast table corresponding to the hash value.
    169 * hw - Struct containing variables accessed by shared code
    170 * hash_value - Multicast address hash value
    171 */
    172void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
    173{
    174	u32 hash_bit, hash_reg;
    175	u32 mta;
    176
    177	/*
    178	 * The HASH Table  is a register array of 2 32-bit registers.
    179	 * It is treated like an array of 64 bits.  We want to set
    180	 * bit BitArray[hash_value]. So we figure out what register
    181	 * the bit is in, read it, OR in the new bit, then write
    182	 * back the new value.  The register is determined by the
    183	 * upper 7 bits of the hash value and the bit within that
    184	 * register are determined by the lower 5 bits of the value.
    185	 */
    186	hash_reg = (hash_value >> 31) & 0x1;
    187	hash_bit = (hash_value >> 26) & 0x1F;
    188
    189	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
    190
    191	mta |= (1 << hash_bit);
    192
    193	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
    194}
    195/*
    196 * Reads the value from a PHY register
    197 * hw - Struct containing variables accessed by shared code
    198 * reg_addr - address of the PHY register to read
    199 */
    200int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
    201{
    202	u32 val;
    203	int i;
    204
    205	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
    206		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
    207		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
    208
    209	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
    210
    211	wmb();
    212
    213	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
    214		udelay(2);
    215		val = AT_READ_REG(hw, REG_MDIO_CTRL);
    216		if (!(val & (MDIO_START | MDIO_BUSY)))
    217			break;
    218		wmb();
    219	}
    220	if (!(val & (MDIO_START | MDIO_BUSY))) {
    221		*phy_data = (u16)val;
    222		return 0;
    223	}
    224
    225	return AT_ERR_PHY;
    226}
    227
    228/*
    229 * Writes a value to a PHY register
    230 * hw - Struct containing variables accessed by shared code
    231 * reg_addr - address of the PHY register to write
    232 * data - data to write to the PHY
    233 */
    234int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
    235{
    236	int i;
    237	u32 val;
    238
    239	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
    240	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
    241	       MDIO_SUP_PREAMBLE |
    242	       MDIO_START |
    243	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
    244
    245	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
    246	wmb();
    247
    248	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
    249		udelay(2);
    250		val = AT_READ_REG(hw, REG_MDIO_CTRL);
    251		if (!(val & (MDIO_START | MDIO_BUSY)))
    252			break;
    253		wmb();
    254	}
    255
    256	if (!(val & (MDIO_START | MDIO_BUSY)))
    257		return 0;
    258
    259	return AT_ERR_PHY;
    260}
    261
    262/*
    263 * atl1e_init_pcie - init PCIE module
    264 */
    265static void atl1e_init_pcie(struct atl1e_hw *hw)
    266{
    267	u32 value;
    268	/* comment 2lines below to save more power when sususpend
    269	   value = LTSSM_TEST_MODE_DEF;
    270	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
    271	 */
    272
    273	/* pcie flow control mode change */
    274	value = AT_READ_REG(hw, 0x1008);
    275	value |= 0x8000;
    276	AT_WRITE_REG(hw, 0x1008, value);
    277}
    278/*
    279 * Configures PHY autoneg and flow control advertisement settings
    280 *
    281 * hw - Struct containing variables accessed by shared code
    282 */
    283static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
    284{
    285	s32 ret_val;
    286	u16 mii_autoneg_adv_reg;
    287	u16 mii_1000t_ctrl_reg;
    288
    289	if (0 != hw->mii_autoneg_adv_reg)
    290		return 0;
    291	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
    292	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
    293	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
    294
    295	/*
    296	 * Need to parse autoneg_advertised  and set up
    297	 * the appropriate PHY registers.  First we will parse for
    298	 * autoneg_advertised software override.  Since we can advertise
    299	 * a plethora of combinations, we need to check each bit
    300	 * individually.
    301	 */
    302
    303	/*
    304	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
    305	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
    306	 * the  1000Base-T control Register (Address 9).
    307	 */
    308	mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
    309	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
    310
    311	/*
    312	 * Need to parse MediaType and setup the
    313	 * appropriate PHY registers.
    314	 */
    315	switch (hw->media_type) {
    316	case MEDIA_TYPE_AUTO_SENSOR:
    317		mii_autoneg_adv_reg |= ADVERTISE_ALL;
    318		hw->autoneg_advertised = ADVERTISE_ALL;
    319		if (hw->nic_type == athr_l1e) {
    320			mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
    321			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
    322		}
    323		break;
    324
    325	case MEDIA_TYPE_100M_FULL:
    326		mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
    327		hw->autoneg_advertised = ADVERTISE_100_FULL;
    328		break;
    329
    330	case MEDIA_TYPE_100M_HALF:
    331		mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
    332		hw->autoneg_advertised = ADVERTISE_100_HALF;
    333		break;
    334
    335	case MEDIA_TYPE_10M_FULL:
    336		mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
    337		hw->autoneg_advertised = ADVERTISE_10_FULL;
    338		break;
    339
    340	default:
    341		mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
    342		hw->autoneg_advertised = ADVERTISE_10_HALF;
    343		break;
    344	}
    345
    346	/* flow control fixed to enable all */
    347	mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
    348
    349	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
    350	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
    351
    352	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
    353	if (ret_val)
    354		return ret_val;
    355
    356	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
    357		ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
    358					   mii_1000t_ctrl_reg);
    359		if (ret_val)
    360			return ret_val;
    361	}
    362
    363	return 0;
    364}
    365
    366
    367/*
    368 * Resets the PHY and make all config validate
    369 *
    370 * hw - Struct containing variables accessed by shared code
    371 *
    372 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
    373 */
    374int atl1e_phy_commit(struct atl1e_hw *hw)
    375{
    376	struct atl1e_adapter *adapter = hw->adapter;
    377	int ret_val;
    378	u16 phy_data;
    379
    380	phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
    381
    382	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
    383	if (ret_val) {
    384		u32 val;
    385		int i;
    386		/**************************************
    387		 * pcie serdes link may be down !
    388		 **************************************/
    389		for (i = 0; i < 25; i++) {
    390			msleep(1);
    391			val = AT_READ_REG(hw, REG_MDIO_CTRL);
    392			if (!(val & (MDIO_START | MDIO_BUSY)))
    393				break;
    394		}
    395
    396		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
    397			netdev_err(adapter->netdev,
    398				   "pcie linkdown at least for 25ms\n");
    399			return ret_val;
    400		}
    401
    402		netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
    403	}
    404	return 0;
    405}
    406
    407int atl1e_phy_init(struct atl1e_hw *hw)
    408{
    409	struct atl1e_adapter *adapter = hw->adapter;
    410	s32 ret_val;
    411	u16 phy_val;
    412
    413	if (hw->phy_configured) {
    414		if (hw->re_autoneg) {
    415			hw->re_autoneg = false;
    416			return atl1e_restart_autoneg(hw);
    417		}
    418		return 0;
    419	}
    420
    421	/* RESET GPHY Core */
    422	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
    423	msleep(2);
    424	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
    425		      GPHY_CTRL_EXT_RESET);
    426	msleep(2);
    427
    428	/* patches */
    429	/* p1. eable hibernation mode */
    430	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
    431	if (ret_val)
    432		return ret_val;
    433	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
    434	if (ret_val)
    435		return ret_val;
    436	/* p2. set Class A/B for all modes */
    437	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
    438	if (ret_val)
    439		return ret_val;
    440	phy_val = 0x02ef;
    441	/* remove Class AB */
    442	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
    443	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
    444	if (ret_val)
    445		return ret_val;
    446	/* p3. 10B ??? */
    447	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
    448	if (ret_val)
    449		return ret_val;
    450	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
    451	if (ret_val)
    452		return ret_val;
    453	/* p4. 1000T power */
    454	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
    455	if (ret_val)
    456		return ret_val;
    457	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
    458	if (ret_val)
    459		return ret_val;
    460
    461	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
    462	if (ret_val)
    463		return ret_val;
    464	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
    465	if (ret_val)
    466		return ret_val;
    467
    468	msleep(1);
    469
    470	/*Enable PHY LinkChange Interrupt */
    471	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
    472	if (ret_val) {
    473		netdev_err(adapter->netdev,
    474			   "Error enable PHY linkChange Interrupt\n");
    475		return ret_val;
    476	}
    477	/* setup AutoNeg parameters */
    478	ret_val = atl1e_phy_setup_autoneg_adv(hw);
    479	if (ret_val) {
    480		netdev_err(adapter->netdev,
    481			   "Error Setting up Auto-Negotiation\n");
    482		return ret_val;
    483	}
    484	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
    485	netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
    486	ret_val = atl1e_phy_commit(hw);
    487	if (ret_val) {
    488		netdev_err(adapter->netdev, "Error resetting the phy\n");
    489		return ret_val;
    490	}
    491
    492	hw->phy_configured = true;
    493
    494	return 0;
    495}
    496
    497/*
    498 * Reset the transmit and receive units; mask and clear all interrupts.
    499 * hw - Struct containing variables accessed by shared code
    500 * return : 0  or  idle status (if error)
    501 */
    502int atl1e_reset_hw(struct atl1e_hw *hw)
    503{
    504	struct atl1e_adapter *adapter = hw->adapter;
    505	struct pci_dev *pdev = adapter->pdev;
    506
    507	u32 idle_status_data = 0;
    508	u16 pci_cfg_cmd_word = 0;
    509	int timeout = 0;
    510
    511	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
    512	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
    513	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
    514				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
    515			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
    516		pci_cfg_cmd_word |= (CMD_IO_SPACE |
    517				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
    518		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
    519	}
    520
    521	/*
    522	 * Issue Soft Reset to the MAC.  This will reset the chip's
    523	 * transmit, receive, DMA.  It will not effect
    524	 * the current PCI configuration.  The global reset bit is self-
    525	 * clearing, and should clear within a microsecond.
    526	 */
    527	AT_WRITE_REG(hw, REG_MASTER_CTRL,
    528			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
    529	wmb();
    530	msleep(1);
    531
    532	/* Wait at least 10ms for All module to be Idle */
    533	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
    534		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
    535		if (idle_status_data == 0)
    536			break;
    537		msleep(1);
    538		cpu_relax();
    539	}
    540
    541	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
    542		netdev_err(adapter->netdev,
    543			   "MAC state machine can't be idle since disabled for 10ms second\n");
    544		return AT_ERR_TIMEOUT;
    545	}
    546
    547	return 0;
    548}
    549
    550
    551/*
    552 * Performs basic configuration of the adapter.
    553 *
    554 * hw - Struct containing variables accessed by shared code
    555 * Assumes that the controller has previously been reset and is in a
    556 * post-reset uninitialized state. Initializes multicast table,
    557 * and  Calls routines to setup link
    558 * Leaves the transmit and receive units disabled and uninitialized.
    559 */
    560int atl1e_init_hw(struct atl1e_hw *hw)
    561{
    562	s32 ret_val = 0;
    563
    564	atl1e_init_pcie(hw);
    565
    566	/* Zero out the Multicast HASH table */
    567	/* clear the old settings from the multicast hash table */
    568	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
    569	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
    570
    571	ret_val = atl1e_phy_init(hw);
    572
    573	return ret_val;
    574}
    575
    576/*
    577 * Detects the current speed and duplex settings of the hardware.
    578 *
    579 * hw - Struct containing variables accessed by shared code
    580 * speed - Speed of the connection
    581 * duplex - Duplex setting of the connection
    582 */
    583int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
    584{
    585	int err;
    586	u16 phy_data;
    587
    588	/* Read   PHY Specific Status Register (17) */
    589	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
    590	if (err)
    591		return err;
    592
    593	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
    594		return AT_ERR_PHY_RES;
    595
    596	switch (phy_data & MII_AT001_PSSR_SPEED) {
    597	case MII_AT001_PSSR_1000MBS:
    598		*speed = SPEED_1000;
    599		break;
    600	case MII_AT001_PSSR_100MBS:
    601		*speed = SPEED_100;
    602		break;
    603	case MII_AT001_PSSR_10MBS:
    604		*speed = SPEED_10;
    605		break;
    606	default:
    607		return AT_ERR_PHY_SPEED;
    608	}
    609
    610	if (phy_data & MII_AT001_PSSR_DPLX)
    611		*duplex = FULL_DUPLEX;
    612	else
    613		*duplex = HALF_DUPLEX;
    614
    615	return 0;
    616}
    617
    618int atl1e_restart_autoneg(struct atl1e_hw *hw)
    619{
    620	int err = 0;
    621
    622	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
    623	if (err)
    624		return err;
    625
    626	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
    627		err = atl1e_write_phy_reg(hw, MII_CTRL1000,
    628				       hw->mii_1000t_ctrl_reg);
    629		if (err)
    630			return err;
    631	}
    632
    633	err = atl1e_write_phy_reg(hw, MII_BMCR,
    634			BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
    635	return err;
    636}
    637