atl1e_hw.c (15775B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright(c) 2007 Atheros Corporation. All rights reserved. 4 * 5 * Derived from Intel e1000 driver 6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 7 */ 8#include <linux/pci.h> 9#include <linux/delay.h> 10#include <linux/mii.h> 11#include <linux/crc32.h> 12 13#include "atl1e.h" 14 15/* 16 * check_eeprom_exist 17 * return 0 if eeprom exist 18 */ 19int atl1e_check_eeprom_exist(struct atl1e_hw *hw) 20{ 21 u32 value; 22 23 value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL); 24 if (value & SPI_FLASH_CTRL_EN_VPD) { 25 value &= ~SPI_FLASH_CTRL_EN_VPD; 26 AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); 27 } 28 value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST); 29 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 30} 31 32void atl1e_hw_set_mac_addr(struct atl1e_hw *hw) 33{ 34 u32 value; 35 /* 36 * 00-0B-6A-F6-00-DC 37 * 0: 6AF600DC 1: 000B 38 * low dword 39 */ 40 value = (((u32)hw->mac_addr[2]) << 24) | 41 (((u32)hw->mac_addr[3]) << 16) | 42 (((u32)hw->mac_addr[4]) << 8) | 43 (((u32)hw->mac_addr[5])) ; 44 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); 45 /* hight dword */ 46 value = (((u32)hw->mac_addr[0]) << 8) | 47 (((u32)hw->mac_addr[1])) ; 48 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); 49} 50 51/* 52 * atl1e_get_permanent_address 53 * return 0 if get valid mac address, 54 */ 55static int atl1e_get_permanent_address(struct atl1e_hw *hw) 56{ 57 u32 addr[2]; 58 u32 i; 59 u32 twsi_ctrl_data; 60 u8 eth_addr[ETH_ALEN]; 61 62 if (is_valid_ether_addr(hw->perm_mac_addr)) 63 return 0; 64 65 /* init */ 66 addr[0] = addr[1] = 0; 67 68 if (!atl1e_check_eeprom_exist(hw)) { 69 /* eeprom exist */ 70 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); 71 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; 72 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); 73 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { 74 msleep(10); 75 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); 76 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) 77 break; 78 } 79 if (i >= AT_TWSI_EEPROM_TIMEOUT) 80 return AT_ERR_TIMEOUT; 81 } 82 83 /* maybe MAC-address is from BIOS */ 84 addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR); 85 addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4); 86 *(u32 *) ð_addr[2] = swab32(addr[0]); 87 *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); 88 89 if (is_valid_ether_addr(eth_addr)) { 90 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 91 return 0; 92 } 93 94 return AT_ERR_EEPROM; 95} 96 97bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value) 98{ 99 return true; 100} 101 102bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value) 103{ 104 int i; 105 u32 control; 106 107 if (offset & 3) 108 return false; /* address do not align */ 109 110 AT_WRITE_REG(hw, REG_VPD_DATA, 0); 111 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 112 AT_WRITE_REG(hw, REG_VPD_CAP, control); 113 114 for (i = 0; i < 10; i++) { 115 msleep(2); 116 control = AT_READ_REG(hw, REG_VPD_CAP); 117 if (control & VPD_CAP_VPD_FLAG) 118 break; 119 } 120 if (control & VPD_CAP_VPD_FLAG) { 121 *p_value = AT_READ_REG(hw, REG_VPD_DATA); 122 return true; 123 } 124 return false; /* timeout */ 125} 126 127void atl1e_force_ps(struct atl1e_hw *hw) 128{ 129 AT_WRITE_REGW(hw, REG_GPHY_CTRL, 130 GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); 131} 132 133/* 134 * Reads the adapter's MAC address from the EEPROM 135 * 136 * hw - Struct containing variables accessed by shared code 137 */ 138int atl1e_read_mac_addr(struct atl1e_hw *hw) 139{ 140 int err = 0; 141 142 err = atl1e_get_permanent_address(hw); 143 if (err) 144 return AT_ERR_EEPROM; 145 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); 146 return 0; 147} 148 149/* 150 * atl1e_hash_mc_addr 151 * purpose 152 * set hash value for a multicast address 153 */ 154u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr) 155{ 156 u32 crc32; 157 u32 value = 0; 158 int i; 159 160 crc32 = ether_crc_le(6, mc_addr); 161 for (i = 0; i < 32; i++) 162 value |= (((crc32 >> i) & 1) << (31 - i)); 163 164 return value; 165} 166 167/* 168 * Sets the bit in the multicast table corresponding to the hash value. 169 * hw - Struct containing variables accessed by shared code 170 * hash_value - Multicast address hash value 171 */ 172void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value) 173{ 174 u32 hash_bit, hash_reg; 175 u32 mta; 176 177 /* 178 * The HASH Table is a register array of 2 32-bit registers. 179 * It is treated like an array of 64 bits. We want to set 180 * bit BitArray[hash_value]. So we figure out what register 181 * the bit is in, read it, OR in the new bit, then write 182 * back the new value. The register is determined by the 183 * upper 7 bits of the hash value and the bit within that 184 * register are determined by the lower 5 bits of the value. 185 */ 186 hash_reg = (hash_value >> 31) & 0x1; 187 hash_bit = (hash_value >> 26) & 0x1F; 188 189 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); 190 191 mta |= (1 << hash_bit); 192 193 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); 194} 195/* 196 * Reads the value from a PHY register 197 * hw - Struct containing variables accessed by shared code 198 * reg_addr - address of the PHY register to read 199 */ 200int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data) 201{ 202 u32 val; 203 int i; 204 205 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 206 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | 207 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 208 209 AT_WRITE_REG(hw, REG_MDIO_CTRL, val); 210 211 wmb(); 212 213 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 214 udelay(2); 215 val = AT_READ_REG(hw, REG_MDIO_CTRL); 216 if (!(val & (MDIO_START | MDIO_BUSY))) 217 break; 218 wmb(); 219 } 220 if (!(val & (MDIO_START | MDIO_BUSY))) { 221 *phy_data = (u16)val; 222 return 0; 223 } 224 225 return AT_ERR_PHY; 226} 227 228/* 229 * Writes a value to a PHY register 230 * hw - Struct containing variables accessed by shared code 231 * reg_addr - address of the PHY register to write 232 * data - data to write to the PHY 233 */ 234int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data) 235{ 236 int i; 237 u32 val; 238 239 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 240 (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 241 MDIO_SUP_PREAMBLE | 242 MDIO_START | 243 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 244 245 AT_WRITE_REG(hw, REG_MDIO_CTRL, val); 246 wmb(); 247 248 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 249 udelay(2); 250 val = AT_READ_REG(hw, REG_MDIO_CTRL); 251 if (!(val & (MDIO_START | MDIO_BUSY))) 252 break; 253 wmb(); 254 } 255 256 if (!(val & (MDIO_START | MDIO_BUSY))) 257 return 0; 258 259 return AT_ERR_PHY; 260} 261 262/* 263 * atl1e_init_pcie - init PCIE module 264 */ 265static void atl1e_init_pcie(struct atl1e_hw *hw) 266{ 267 u32 value; 268 /* comment 2lines below to save more power when sususpend 269 value = LTSSM_TEST_MODE_DEF; 270 AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); 271 */ 272 273 /* pcie flow control mode change */ 274 value = AT_READ_REG(hw, 0x1008); 275 value |= 0x8000; 276 AT_WRITE_REG(hw, 0x1008, value); 277} 278/* 279 * Configures PHY autoneg and flow control advertisement settings 280 * 281 * hw - Struct containing variables accessed by shared code 282 */ 283static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw) 284{ 285 s32 ret_val; 286 u16 mii_autoneg_adv_reg; 287 u16 mii_1000t_ctrl_reg; 288 289 if (0 != hw->mii_autoneg_adv_reg) 290 return 0; 291 /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */ 292 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 293 mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK; 294 295 /* 296 * Need to parse autoneg_advertised and set up 297 * the appropriate PHY registers. First we will parse for 298 * autoneg_advertised software override. Since we can advertise 299 * a plethora of combinations, we need to check each bit 300 * individually. 301 */ 302 303 /* 304 * First we clear all the 10/100 mb speed bits in the Auto-Neg 305 * Advertisement Register (Address 4) and the 1000 mb speed bits in 306 * the 1000Base-T control Register (Address 9). 307 */ 308 mii_autoneg_adv_reg &= ~ADVERTISE_ALL; 309 mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK; 310 311 /* 312 * Need to parse MediaType and setup the 313 * appropriate PHY registers. 314 */ 315 switch (hw->media_type) { 316 case MEDIA_TYPE_AUTO_SENSOR: 317 mii_autoneg_adv_reg |= ADVERTISE_ALL; 318 hw->autoneg_advertised = ADVERTISE_ALL; 319 if (hw->nic_type == athr_l1e) { 320 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 321 hw->autoneg_advertised |= ADVERTISE_1000_FULL; 322 } 323 break; 324 325 case MEDIA_TYPE_100M_FULL: 326 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 327 hw->autoneg_advertised = ADVERTISE_100_FULL; 328 break; 329 330 case MEDIA_TYPE_100M_HALF: 331 mii_autoneg_adv_reg |= ADVERTISE_100_HALF; 332 hw->autoneg_advertised = ADVERTISE_100_HALF; 333 break; 334 335 case MEDIA_TYPE_10M_FULL: 336 mii_autoneg_adv_reg |= ADVERTISE_10_FULL; 337 hw->autoneg_advertised = ADVERTISE_10_FULL; 338 break; 339 340 default: 341 mii_autoneg_adv_reg |= ADVERTISE_10_HALF; 342 hw->autoneg_advertised = ADVERTISE_10_HALF; 343 break; 344 } 345 346 /* flow control fixed to enable all */ 347 mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 348 349 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 350 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; 351 352 ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 353 if (ret_val) 354 return ret_val; 355 356 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { 357 ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000, 358 mii_1000t_ctrl_reg); 359 if (ret_val) 360 return ret_val; 361 } 362 363 return 0; 364} 365 366 367/* 368 * Resets the PHY and make all config validate 369 * 370 * hw - Struct containing variables accessed by shared code 371 * 372 * Sets bit 15 and 12 of the MII control regiser (for F001 bug) 373 */ 374int atl1e_phy_commit(struct atl1e_hw *hw) 375{ 376 struct atl1e_adapter *adapter = hw->adapter; 377 int ret_val; 378 u16 phy_data; 379 380 phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART; 381 382 ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data); 383 if (ret_val) { 384 u32 val; 385 int i; 386 /************************************** 387 * pcie serdes link may be down ! 388 **************************************/ 389 for (i = 0; i < 25; i++) { 390 msleep(1); 391 val = AT_READ_REG(hw, REG_MDIO_CTRL); 392 if (!(val & (MDIO_START | MDIO_BUSY))) 393 break; 394 } 395 396 if (0 != (val & (MDIO_START | MDIO_BUSY))) { 397 netdev_err(adapter->netdev, 398 "pcie linkdown at least for 25ms\n"); 399 return ret_val; 400 } 401 402 netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i); 403 } 404 return 0; 405} 406 407int atl1e_phy_init(struct atl1e_hw *hw) 408{ 409 struct atl1e_adapter *adapter = hw->adapter; 410 s32 ret_val; 411 u16 phy_val; 412 413 if (hw->phy_configured) { 414 if (hw->re_autoneg) { 415 hw->re_autoneg = false; 416 return atl1e_restart_autoneg(hw); 417 } 418 return 0; 419 } 420 421 /* RESET GPHY Core */ 422 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); 423 msleep(2); 424 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | 425 GPHY_CTRL_EXT_RESET); 426 msleep(2); 427 428 /* patches */ 429 /* p1. eable hibernation mode */ 430 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB); 431 if (ret_val) 432 return ret_val; 433 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00); 434 if (ret_val) 435 return ret_val; 436 /* p2. set Class A/B for all modes */ 437 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0); 438 if (ret_val) 439 return ret_val; 440 phy_val = 0x02ef; 441 /* remove Class AB */ 442 /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */ 443 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val); 444 if (ret_val) 445 return ret_val; 446 /* p3. 10B ??? */ 447 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12); 448 if (ret_val) 449 return ret_val; 450 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04); 451 if (ret_val) 452 return ret_val; 453 /* p4. 1000T power */ 454 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4); 455 if (ret_val) 456 return ret_val; 457 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB); 458 if (ret_val) 459 return ret_val; 460 461 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5); 462 if (ret_val) 463 return ret_val; 464 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46); 465 if (ret_val) 466 return ret_val; 467 468 msleep(1); 469 470 /*Enable PHY LinkChange Interrupt */ 471 ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00); 472 if (ret_val) { 473 netdev_err(adapter->netdev, 474 "Error enable PHY linkChange Interrupt\n"); 475 return ret_val; 476 } 477 /* setup AutoNeg parameters */ 478 ret_val = atl1e_phy_setup_autoneg_adv(hw); 479 if (ret_val) { 480 netdev_err(adapter->netdev, 481 "Error Setting up Auto-Negotiation\n"); 482 return ret_val; 483 } 484 /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/ 485 netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n"); 486 ret_val = atl1e_phy_commit(hw); 487 if (ret_val) { 488 netdev_err(adapter->netdev, "Error resetting the phy\n"); 489 return ret_val; 490 } 491 492 hw->phy_configured = true; 493 494 return 0; 495} 496 497/* 498 * Reset the transmit and receive units; mask and clear all interrupts. 499 * hw - Struct containing variables accessed by shared code 500 * return : 0 or idle status (if error) 501 */ 502int atl1e_reset_hw(struct atl1e_hw *hw) 503{ 504 struct atl1e_adapter *adapter = hw->adapter; 505 struct pci_dev *pdev = adapter->pdev; 506 507 u32 idle_status_data = 0; 508 u16 pci_cfg_cmd_word = 0; 509 int timeout = 0; 510 511 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ 512 pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word); 513 if ((pci_cfg_cmd_word & (CMD_IO_SPACE | 514 CMD_MEMORY_SPACE | CMD_BUS_MASTER)) 515 != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) { 516 pci_cfg_cmd_word |= (CMD_IO_SPACE | 517 CMD_MEMORY_SPACE | CMD_BUS_MASTER); 518 pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word); 519 } 520 521 /* 522 * Issue Soft Reset to the MAC. This will reset the chip's 523 * transmit, receive, DMA. It will not effect 524 * the current PCI configuration. The global reset bit is self- 525 * clearing, and should clear within a microsecond. 526 */ 527 AT_WRITE_REG(hw, REG_MASTER_CTRL, 528 MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST); 529 wmb(); 530 msleep(1); 531 532 /* Wait at least 10ms for All module to be Idle */ 533 for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { 534 idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS); 535 if (idle_status_data == 0) 536 break; 537 msleep(1); 538 cpu_relax(); 539 } 540 541 if (timeout >= AT_HW_MAX_IDLE_DELAY) { 542 netdev_err(adapter->netdev, 543 "MAC state machine can't be idle since disabled for 10ms second\n"); 544 return AT_ERR_TIMEOUT; 545 } 546 547 return 0; 548} 549 550 551/* 552 * Performs basic configuration of the adapter. 553 * 554 * hw - Struct containing variables accessed by shared code 555 * Assumes that the controller has previously been reset and is in a 556 * post-reset uninitialized state. Initializes multicast table, 557 * and Calls routines to setup link 558 * Leaves the transmit and receive units disabled and uninitialized. 559 */ 560int atl1e_init_hw(struct atl1e_hw *hw) 561{ 562 s32 ret_val = 0; 563 564 atl1e_init_pcie(hw); 565 566 /* Zero out the Multicast HASH table */ 567 /* clear the old settings from the multicast hash table */ 568 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); 569 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); 570 571 ret_val = atl1e_phy_init(hw); 572 573 return ret_val; 574} 575 576/* 577 * Detects the current speed and duplex settings of the hardware. 578 * 579 * hw - Struct containing variables accessed by shared code 580 * speed - Speed of the connection 581 * duplex - Duplex setting of the connection 582 */ 583int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex) 584{ 585 int err; 586 u16 phy_data; 587 588 /* Read PHY Specific Status Register (17) */ 589 err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data); 590 if (err) 591 return err; 592 593 if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED)) 594 return AT_ERR_PHY_RES; 595 596 switch (phy_data & MII_AT001_PSSR_SPEED) { 597 case MII_AT001_PSSR_1000MBS: 598 *speed = SPEED_1000; 599 break; 600 case MII_AT001_PSSR_100MBS: 601 *speed = SPEED_100; 602 break; 603 case MII_AT001_PSSR_10MBS: 604 *speed = SPEED_10; 605 break; 606 default: 607 return AT_ERR_PHY_SPEED; 608 } 609 610 if (phy_data & MII_AT001_PSSR_DPLX) 611 *duplex = FULL_DUPLEX; 612 else 613 *duplex = HALF_DUPLEX; 614 615 return 0; 616} 617 618int atl1e_restart_autoneg(struct atl1e_hw *hw) 619{ 620 int err = 0; 621 622 err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 623 if (err) 624 return err; 625 626 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { 627 err = atl1e_write_phy_reg(hw, MII_CTRL1000, 628 hw->mii_1000t_ctrl_reg); 629 if (err) 630 return err; 631 } 632 633 err = atl1e_write_phy_reg(hw, MII_BMCR, 634 BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART); 635 return err; 636} 637