bnx2x.h (78786B)
1/* bnx2x.h: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 */ 15 16#ifndef BNX2X_H 17#define BNX2X_H 18 19#include <linux/pci.h> 20#include <linux/netdevice.h> 21#include <linux/dma-mapping.h> 22#include <linux/types.h> 23#include <linux/pci_regs.h> 24 25#include <linux/ptp_clock_kernel.h> 26#include <linux/net_tstamp.h> 27#include <linux/timecounter.h> 28 29/* compilation time flags */ 30 31/* define this to make the driver freeze on error to allow getting debug info 32 * (you will need to reboot afterwards) */ 33/* #define BNX2X_STOP_ON_ERROR */ 34 35/* FIXME: Delete the DRV_MODULE_VERSION below, but please be warned 36 * that it is not an easy task because such change has all chances 37 * to break this driver due to amount of abuse of in-kernel interfaces 38 * between modules and FW. 39 * 40 * DO NOT UPDATE DRV_MODULE_VERSION below. 41 */ 42#define DRV_MODULE_VERSION "1.713.36-0" 43#define BNX2X_BC_VER 0x040200 44 45#if defined(CONFIG_DCB) 46#define BCM_DCBNL 47#endif 48 49#include "bnx2x_hsi.h" 50 51#include "../cnic_if.h" 52 53#define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) 54 55#include <linux/mdio.h> 56 57#include "bnx2x_reg.h" 58#include "bnx2x_fw_defs.h" 59#include "bnx2x_mfw_req.h" 60#include "bnx2x_link.h" 61#include "bnx2x_sp.h" 62#include "bnx2x_dcb.h" 63#include "bnx2x_stats.h" 64#include "bnx2x_vfpf.h" 65 66enum bnx2x_int_mode { 67 BNX2X_INT_MODE_MSIX, 68 BNX2X_INT_MODE_INTX, 69 BNX2X_INT_MODE_MSI 70}; 71 72/* error/debug prints */ 73 74#define DRV_MODULE_NAME "bnx2x" 75 76/* for messages that are currently off */ 77#define BNX2X_MSG_OFF 0x0 78#define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ 79#define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ 80#define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ 81#define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ 82#define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ 83#define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ 84#define BNX2X_MSG_IOV 0x0800000 85#define BNX2X_MSG_PTP 0x1000000 86#define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ 87#define BNX2X_MSG_ETHTOOL 0x4000000 88#define BNX2X_MSG_DCB 0x8000000 89 90/* regular debug print */ 91#define DP_INNER(fmt, ...) \ 92 pr_notice("[%s:%d(%s)]" fmt, \ 93 __func__, __LINE__, \ 94 bp->dev ? (bp->dev->name) : "?", \ 95 ##__VA_ARGS__); 96 97#define DP(__mask, fmt, ...) \ 98do { \ 99 if (unlikely(bp->msg_enable & (__mask))) \ 100 DP_INNER(fmt, ##__VA_ARGS__); \ 101} while (0) 102 103#define DP_AND(__mask, fmt, ...) \ 104do { \ 105 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ 106 DP_INNER(fmt, ##__VA_ARGS__); \ 107} while (0) 108 109#define DP_CONT(__mask, fmt, ...) \ 110do { \ 111 if (unlikely(bp->msg_enable & (__mask))) \ 112 pr_cont(fmt, ##__VA_ARGS__); \ 113} while (0) 114 115/* errors debug print */ 116#define BNX2X_DBG_ERR(fmt, ...) \ 117do { \ 118 if (unlikely(netif_msg_probe(bp))) \ 119 pr_err("[%s:%d(%s)]" fmt, \ 120 __func__, __LINE__, \ 121 bp->dev ? (bp->dev->name) : "?", \ 122 ##__VA_ARGS__); \ 123} while (0) 124 125/* for errors (never masked) */ 126#define BNX2X_ERR(fmt, ...) \ 127do { \ 128 pr_err("[%s:%d(%s)]" fmt, \ 129 __func__, __LINE__, \ 130 bp->dev ? (bp->dev->name) : "?", \ 131 ##__VA_ARGS__); \ 132} while (0) 133 134#define BNX2X_ERROR(fmt, ...) \ 135 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) 136 137/* before we have a dev->name use dev_info() */ 138#define BNX2X_DEV_INFO(fmt, ...) \ 139do { \ 140 if (unlikely(netif_msg_probe(bp))) \ 141 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ 142} while (0) 143 144/* Error handling */ 145void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); 146#ifdef BNX2X_STOP_ON_ERROR 147#define bnx2x_panic() \ 148do { \ 149 bp->panic = 1; \ 150 BNX2X_ERR("driver assert\n"); \ 151 bnx2x_panic_dump(bp, true); \ 152} while (0) 153#else 154#define bnx2x_panic() \ 155do { \ 156 bp->panic = 1; \ 157 BNX2X_ERR("driver assert\n"); \ 158 bnx2x_panic_dump(bp, false); \ 159} while (0) 160#endif 161 162#define bnx2x_mc_addr(ha) ((ha)->addr) 163#define bnx2x_uc_addr(ha) ((ha)->addr) 164 165#define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) 166#define U64_HI(x) ((u32)(((u64)(x)) >> 32)) 167#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) 168 169#define REG_ADDR(bp, offset) ((bp->regview) + (offset)) 170 171#define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) 172#define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) 173#define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) 174 175#define REG_WR_RELAXED(bp, offset, val) \ 176 writel_relaxed((u32)val, REG_ADDR(bp, offset)) 177 178#define REG_WR16_RELAXED(bp, offset, val) \ 179 writew_relaxed((u16)val, REG_ADDR(bp, offset)) 180 181#define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) 182#define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) 183#define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) 184 185#define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) 186#define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) 187 188#define REG_RD_DMAE(bp, offset, valp, len32) \ 189 do { \ 190 bnx2x_read_dmae(bp, offset, len32);\ 191 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ 192 } while (0) 193 194#define REG_WR_DMAE(bp, offset, valp, len32) \ 195 do { \ 196 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ 197 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ 198 offset, len32); \ 199 } while (0) 200 201#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ 202 REG_WR_DMAE(bp, offset, valp, len32) 203 204#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ 205 do { \ 206 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ 207 bnx2x_write_big_buf_wb(bp, addr, len32); \ 208 } while (0) 209 210#define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ 211 offsetof(struct shmem_region, field)) 212#define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) 213#define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) 214 215#define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ 216 offsetof(struct shmem2_region, field)) 217#define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) 218#define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) 219#define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ 220 offsetof(struct mf_cfg, field)) 221#define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ 222 offsetof(struct mf2_cfg, field)) 223 224#define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) 225#define MF_CFG_WR(bp, field, val) REG_WR(bp,\ 226 MF_CFG_ADDR(bp, field), (val)) 227#define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) 228 229#define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ 230 (SHMEM2_RD((bp), size) > \ 231 offsetof(struct shmem2_region, field))) 232 233#define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) 234#define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) 235 236/* SP SB indices */ 237 238/* General SP events - stats query, cfc delete, etc */ 239#define HC_SP_INDEX_ETH_DEF_CONS 3 240 241/* EQ completions */ 242#define HC_SP_INDEX_EQ_CONS 7 243 244/* FCoE L2 connection completions */ 245#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 246#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 247/* iSCSI L2 */ 248#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 249#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 250 251/* Special clients parameters */ 252 253/* SB indices */ 254/* FCoE L2 */ 255#define BNX2X_FCOE_L2_RX_INDEX \ 256 (&bp->def_status_blk->sp_sb.\ 257 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) 258 259#define BNX2X_FCOE_L2_TX_INDEX \ 260 (&bp->def_status_blk->sp_sb.\ 261 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) 262 263/** 264 * CIDs and CLIDs: 265 * CLIDs below is a CLID for func 0, then the CLID for other 266 * functions will be calculated by the formula: 267 * 268 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X 269 * 270 */ 271enum { 272 BNX2X_ISCSI_ETH_CL_ID_IDX, 273 BNX2X_FCOE_ETH_CL_ID_IDX, 274 BNX2X_MAX_CNIC_ETH_CL_ID_IDX, 275}; 276 277/* use a value high enough to be above all the PFs, which has least significant 278 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to 279 * calculate doorbell address according to old doorbell configuration scheme 280 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number 281 * We must avoid coming up with cid 8 for iscsi since according to this method 282 * the designated UIO cid will come out 0 and it has a special handling for that 283 * case which doesn't suit us. Therefore will will cieling to closes cid which 284 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. 285 */ 286 287#define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ 288 (bp)->max_cos) 289/* amount of cids traversed by UIO's DPM addition to doorbell */ 290#define UIO_DPM 8 291/* roundup to DPM offset */ 292#define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ 293 UIO_DPM)) 294/* offset to nearest value which has lsb nibble matching DPM */ 295#define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ 296 (UIO_DPM * 2)) 297/* add offset to rounded-up cid to get a value which could be used with UIO */ 298#define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) 299/* but wait - avoid UIO special case for cid 0 */ 300#define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ 301 (UIO_DPM_ALIGN(bp) == UIO_DPM)) 302/* Properly DPM aligned CID dajusted to cid 0 secal case */ 303#define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ 304 (UIO_DPM_CID0_OFFSET(bp))) 305/* how many cids were wasted - need this value for cid allocation */ 306#define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ 307 BNX2X_1st_NON_L2_ETH_CID(bp)) 308 /* iSCSI L2 */ 309#define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) 310 /* FCoE L2 */ 311#define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) 312 313#define CNIC_SUPPORT(bp) ((bp)->cnic_support) 314#define CNIC_ENABLED(bp) ((bp)->cnic_enabled) 315#define CNIC_LOADED(bp) ((bp)->cnic_loaded) 316#define FCOE_INIT(bp) ((bp)->fcoe_init) 317 318#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 319 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 320 321#define SM_RX_ID 0 322#define SM_TX_ID 1 323 324/* defines for multiple tx priority indices */ 325#define FIRST_TX_ONLY_COS_INDEX 1 326#define FIRST_TX_COS_INDEX 0 327 328/* rules for calculating the cids of tx-only connections */ 329#define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) 330#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ 331 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 332 333/* fp index inside class of service range */ 334#define FP_COS_TO_TXQ(fp, cos, bp) \ 335 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 336 337/* Indexes for transmission queues array: 338 * txdata for RSS i CoS j is at location i + (j * num of RSS) 339 * txdata for FCoE (if exist) is at location max cos * num of RSS 340 * txdata for FWD (if exist) is one location after FCoE 341 * txdata for OOO (if exist) is one location after FWD 342 */ 343enum { 344 FCOE_TXQ_IDX_OFFSET, 345 FWD_TXQ_IDX_OFFSET, 346 OOO_TXQ_IDX_OFFSET, 347}; 348#define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) 349#define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) 350 351/* fast path */ 352/* 353 * This driver uses new build_skb() API : 354 * RX ring buffer contains pointer to kmalloc() data only, 355 * skb are built only after Hardware filled the frame. 356 */ 357struct sw_rx_bd { 358 u8 *data; 359 DEFINE_DMA_UNMAP_ADDR(mapping); 360}; 361 362struct sw_tx_bd { 363 struct sk_buff *skb; 364 u16 first_bd; 365 u8 flags; 366/* Set on the first BD descriptor when there is a split BD */ 367#define BNX2X_TSO_SPLIT_BD (1<<0) 368#define BNX2X_HAS_SECOND_PBD (1<<1) 369}; 370 371struct sw_rx_page { 372 struct page *page; 373 DEFINE_DMA_UNMAP_ADDR(mapping); 374 unsigned int offset; 375}; 376 377union db_prod { 378 struct doorbell_set_prod data; 379 u32 raw; 380}; 381 382/* dropless fc FW/HW related params */ 383#define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) 384#define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ 385 ETH_MAX_AGGREGATION_QUEUES_E1 :\ 386 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 387#define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) 388#define FW_PREFETCH_CNT 16 389#define DROPLESS_FC_HEADROOM 100 390 391/* MC hsi */ 392#define BCM_PAGE_SHIFT 12 393#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 394#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 395#define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 396 397#define PAGES_PER_SGE_SHIFT 0 398#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 399#define SGE_PAGE_SHIFT 12 400#define SGE_PAGE_SIZE (1 << SGE_PAGE_SHIFT) 401#define SGE_PAGE_MASK (~(SGE_PAGE_SIZE - 1)) 402#define SGE_PAGE_ALIGN(addr) (((addr) + SGE_PAGE_SIZE - 1) & SGE_PAGE_MASK) 403#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 404#define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ 405 SGE_PAGES), 0xffff) 406 407/* SGE ring related macros */ 408#define NUM_RX_SGE_PAGES 2 409#define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 410#define NEXT_PAGE_SGE_DESC_CNT 2 411#define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) 412/* RX_SGE_CNT is promised to be a power of 2 */ 413#define RX_SGE_MASK (RX_SGE_CNT - 1) 414#define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) 415#define MAX_RX_SGE (NUM_RX_SGE - 1) 416#define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ 417 (MAX_RX_SGE_CNT - 1)) ? \ 418 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ 419 (x) + 1) 420#define RX_SGE(x) ((x) & MAX_RX_SGE) 421 422/* 423 * Number of required SGEs is the sum of two: 424 * 1. Number of possible opened aggregations (next packet for 425 * these aggregations will probably consume SGE immediately) 426 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 427 * after placement on BD for new TPA aggregation) 428 * 429 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page 430 */ 431#define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ 432 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) 433#define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ 434 MAX_RX_SGE_CNT) 435#define SGE_TH_LO(bp) (NUM_SGE_REQ + \ 436 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) 437#define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) 438 439/* Manipulate a bit vector defined as an array of u64 */ 440 441/* Number of bits in one sge_mask array element */ 442#define BIT_VEC64_ELEM_SZ 64 443#define BIT_VEC64_ELEM_SHIFT 6 444#define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) 445 446#define __BIT_VEC64_SET_BIT(el, bit) \ 447 do { \ 448 el = ((el) | ((u64)0x1 << (bit))); \ 449 } while (0) 450 451#define __BIT_VEC64_CLEAR_BIT(el, bit) \ 452 do { \ 453 el = ((el) & (~((u64)0x1 << (bit)))); \ 454 } while (0) 455 456#define BIT_VEC64_SET_BIT(vec64, idx) \ 457 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 458 (idx) & BIT_VEC64_ELEM_MASK) 459 460#define BIT_VEC64_CLEAR_BIT(vec64, idx) \ 461 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 462 (idx) & BIT_VEC64_ELEM_MASK) 463 464#define BIT_VEC64_TEST_BIT(vec64, idx) \ 465 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ 466 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) 467 468/* Creates a bitmask of all ones in less significant bits. 469 idx - index of the most significant bit in the created mask */ 470#define BIT_VEC64_ONES_MASK(idx) \ 471 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) 472#define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) 473 474/*******************************************************/ 475 476/* Number of u64 elements in SGE mask array */ 477#define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) 478#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 479#define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 480 481union host_hc_status_block { 482 /* pointer to fp status block e1x */ 483 struct host_hc_status_block_e1x *e1x_sb; 484 /* pointer to fp status block e2 */ 485 struct host_hc_status_block_e2 *e2_sb; 486}; 487 488struct bnx2x_agg_info { 489 /* 490 * First aggregation buffer is a data buffer, the following - are pages. 491 * We will preallocate the data buffer for each aggregation when 492 * we open the interface and will replace the BD at the consumer 493 * with this one when we receive the TPA_START CQE in order to 494 * keep the Rx BD ring consistent. 495 */ 496 struct sw_rx_bd first_buf; 497 u8 tpa_state; 498#define BNX2X_TPA_START 1 499#define BNX2X_TPA_STOP 2 500#define BNX2X_TPA_ERROR 3 501 u8 placement_offset; 502 u16 parsing_flags; 503 u16 vlan_tag; 504 u16 len_on_bd; 505 u32 rxhash; 506 enum pkt_hash_types rxhash_type; 507 u16 gro_size; 508 u16 full_page; 509}; 510 511#define Q_STATS_OFFSET32(stat_name) \ 512 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) 513 514struct bnx2x_fp_txdata { 515 516 struct sw_tx_bd *tx_buf_ring; 517 518 union eth_tx_bd_types *tx_desc_ring; 519 dma_addr_t tx_desc_mapping; 520 521 u32 cid; 522 523 union db_prod tx_db; 524 525 u16 tx_pkt_prod; 526 u16 tx_pkt_cons; 527 u16 tx_bd_prod; 528 u16 tx_bd_cons; 529 530 unsigned long tx_pkt; 531 532 __le16 *tx_cons_sb; 533 534 int txq_index; 535 struct bnx2x_fastpath *parent_fp; 536 int tx_ring_size; 537}; 538 539enum bnx2x_tpa_mode_t { 540 TPA_MODE_DISABLED, 541 TPA_MODE_LRO, 542 TPA_MODE_GRO 543}; 544 545struct bnx2x_alloc_pool { 546 struct page *page; 547 unsigned int offset; 548}; 549 550struct bnx2x_fastpath { 551 struct bnx2x *bp; /* parent */ 552 553 struct napi_struct napi; 554 555 union host_hc_status_block status_blk; 556 /* chip independent shortcuts into sb structure */ 557 __le16 *sb_index_values; 558 __le16 *sb_running_index; 559 /* chip independent shortcut into rx_prods_offset memory */ 560 u32 ustorm_rx_prods_offset; 561 562 u32 rx_buf_size; 563 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ 564 dma_addr_t status_blk_mapping; 565 566 enum bnx2x_tpa_mode_t mode; 567 568 u8 max_cos; /* actual number of active tx coses */ 569 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; 570 571 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ 572 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ 573 574 struct eth_rx_bd *rx_desc_ring; 575 dma_addr_t rx_desc_mapping; 576 577 union eth_rx_cqe *rx_comp_ring; 578 dma_addr_t rx_comp_mapping; 579 580 /* SGE ring */ 581 struct eth_rx_sge *rx_sge_ring; 582 dma_addr_t rx_sge_mapping; 583 584 u64 sge_mask[RX_SGE_MASK_LEN]; 585 586 u32 cid; 587 588 __le16 fp_hc_idx; 589 590 u8 index; /* number in fp array */ 591 u8 rx_queue; /* index for skb_record */ 592 u8 cl_id; /* eth client id */ 593 u8 cl_qzone_id; 594 u8 fw_sb_id; /* status block number in FW */ 595 u8 igu_sb_id; /* status block number in HW */ 596 597 u16 rx_bd_prod; 598 u16 rx_bd_cons; 599 u16 rx_comp_prod; 600 u16 rx_comp_cons; 601 u16 rx_sge_prod; 602 /* The last maximal completed SGE */ 603 u16 last_max_sge; 604 __le16 *rx_cons_sb; 605 606 /* TPA related */ 607 struct bnx2x_agg_info *tpa_info; 608#ifdef BNX2X_STOP_ON_ERROR 609 u64 tpa_queue_used; 610#endif 611 /* The size is calculated using the following: 612 sizeof name field from netdev structure + 613 4 ('-Xx-' string) + 614 4 (for the digits and to make it DWORD aligned) */ 615#define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) 616 char name[FP_NAME_SIZE]; 617 618 struct bnx2x_alloc_pool page_pool; 619}; 620 621#define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) 622#define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) 623#define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) 624#define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) 625 626/* Use 2500 as a mini-jumbo MTU for FCoE */ 627#define BNX2X_FCOE_MINI_JUMBO_MTU 2500 628 629#define FCOE_IDX_OFFSET 0 630 631#define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ 632 FCOE_IDX_OFFSET) 633#define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) 634#define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) 635#define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) 636#define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) 637#define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ 638 txdata_ptr[FIRST_TX_COS_INDEX] \ 639 ->var) 640 641#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) 642#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) 643#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) 644 645/* MC hsi */ 646#define MAX_FETCH_BD 13 /* HW max BDs per packet */ 647#define RX_COPY_THRESH 92 648 649#define NUM_TX_RINGS 16 650#define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 651#define NEXT_PAGE_TX_DESC_CNT 1 652#define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) 653#define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) 654#define MAX_TX_BD (NUM_TX_BD - 1) 655#define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) 656#define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ 657 (MAX_TX_DESC_CNT - 1)) ? \ 658 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ 659 (x) + 1) 660#define TX_BD(x) ((x) & MAX_TX_BD) 661#define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) 662 663/* number of NEXT_PAGE descriptors may be required during placement */ 664#define NEXT_CNT_PER_TX_PKT(bds) \ 665 (((bds) + MAX_TX_DESC_CNT - 1) / \ 666 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) 667/* max BDs per tx packet w/o next_pages: 668 * START_BD - describes packed 669 * START_BD(splitted) - includes unpaged data segment for GSO 670 * PARSING_BD - for TSO and CSUM data 671 * PARSING_BD2 - for encapsulation data 672 * Frag BDs - describes pages for frags 673 */ 674#define BDS_PER_TX_PKT 4 675#define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) 676/* max BDs per tx packet including next pages */ 677#define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ 678 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) 679 680/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ 681#define NUM_RX_RINGS 8 682#define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 683#define NEXT_PAGE_RX_DESC_CNT 2 684#define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) 685#define RX_DESC_MASK (RX_DESC_CNT - 1) 686#define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) 687#define MAX_RX_BD (NUM_RX_BD - 1) 688#define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) 689 690/* dropless fc calculations for BDs 691 * 692 * Number of BDs should as number of buffers in BRB: 693 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT 694 * "next" elements on each page 695 */ 696#define NUM_BD_REQ BRB_SIZE(bp) 697#define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ 698 MAX_RX_DESC_CNT) 699#define BD_TH_LO(bp) (NUM_BD_REQ + \ 700 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ 701 FW_DROP_LEVEL(bp)) 702#define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) 703 704#define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) 705 706#define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ 707 ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 708 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 709#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 710#define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) 711#define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ 712 MIN_RX_AVAIL)) 713 714#define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ 715 (MAX_RX_DESC_CNT - 1)) ? \ 716 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ 717 (x) + 1) 718#define RX_BD(x) ((x) & MAX_RX_BD) 719 720/* 721 * As long as CQE is X times bigger than BD entry we have to allocate X times 722 * more pages for CQ ring in order to keep it balanced with BD ring 723 */ 724#define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) 725#define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) 726#define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 727#define NEXT_PAGE_RCQ_DESC_CNT 1 728#define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) 729#define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) 730#define MAX_RCQ_BD (NUM_RCQ_BD - 1) 731#define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) 732#define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ 733 (MAX_RCQ_DESC_CNT - 1)) ? \ 734 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ 735 (x) + 1) 736#define RCQ_BD(x) ((x) & MAX_RCQ_BD) 737 738/* dropless fc calculations for RCQs 739 * 740 * Number of RCQs should be as number of buffers in BRB: 741 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT 742 * "next" elements on each page 743 */ 744#define NUM_RCQ_REQ BRB_SIZE(bp) 745#define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ 746 MAX_RCQ_DESC_CNT) 747#define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ 748 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ 749 FW_DROP_LEVEL(bp)) 750#define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) 751 752/* This is needed for determining of last_max */ 753#define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) 754#define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) 755 756#define BNX2X_SWCID_SHIFT 17 757#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) 758 759/* used on a CID received from the HW */ 760#define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) 761#define CQE_CMD(x) (le32_to_cpu(x) >> \ 762 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 763 764#define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ 765 le32_to_cpu((bd)->addr_lo)) 766#define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) 767 768#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ 769#define BNX2X_DB_SHIFT 3 /* 8 bytes*/ 770#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) 771#error "Min DB doorbell stride is 8" 772#endif 773#define DOORBELL_RELAXED(bp, cid, val) \ 774 writel_relaxed((u32)(val), (bp)->doorbells + ((bp)->db_size * (cid))) 775 776/* TX CSUM helpers */ 777#define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ 778 skb->csum_offset) 779#define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ 780 skb->csum_offset)) 781 782#define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) 783 784#define XMIT_PLAIN 0 785#define XMIT_CSUM_V4 (1 << 0) 786#define XMIT_CSUM_V6 (1 << 1) 787#define XMIT_CSUM_TCP (1 << 2) 788#define XMIT_GSO_V4 (1 << 3) 789#define XMIT_GSO_V6 (1 << 4) 790#define XMIT_CSUM_ENC_V4 (1 << 5) 791#define XMIT_CSUM_ENC_V6 (1 << 6) 792#define XMIT_GSO_ENC_V4 (1 << 7) 793#define XMIT_GSO_ENC_V6 (1 << 8) 794 795#define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) 796#define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) 797 798#define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) 799#define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) 800 801/* stuff added to make the code fit 80Col */ 802#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 803#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 804#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 805#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 806#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 807 808#define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG 809 810#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ 811 (((le16_to_cpu(flags) & \ 812 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ 813 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ 814 == PRS_FLAG_OVERETH_IPV4) 815#define BNX2X_RX_SUM_FIX(cqe) \ 816 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) 817 818#define FP_USB_FUNC_OFF \ 819 offsetof(struct cstorm_status_block_u, func) 820#define FP_CSB_FUNC_OFF \ 821 offsetof(struct cstorm_status_block_c, func) 822 823#define HC_INDEX_ETH_RX_CQ_CONS 1 824 825#define HC_INDEX_OOO_TX_CQ_CONS 4 826 827#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 828 829#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 830 831#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 832 833#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 834 835#define BNX2X_RX_SB_INDEX \ 836 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) 837 838#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 839 840#define BNX2X_TX_SB_INDEX_COS0 \ 841 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) 842 843/* end of fast path */ 844 845/* common */ 846 847struct bnx2x_common { 848 849 u32 chip_id; 850/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 851#define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) 852 853#define CHIP_NUM(bp) (bp->common.chip_id >> 16) 854#define CHIP_NUM_57710 0x164e 855#define CHIP_NUM_57711 0x164f 856#define CHIP_NUM_57711E 0x1650 857#define CHIP_NUM_57712 0x1662 858#define CHIP_NUM_57712_MF 0x1663 859#define CHIP_NUM_57712_VF 0x166f 860#define CHIP_NUM_57713 0x1651 861#define CHIP_NUM_57713E 0x1652 862#define CHIP_NUM_57800 0x168a 863#define CHIP_NUM_57800_MF 0x16a5 864#define CHIP_NUM_57800_VF 0x16a9 865#define CHIP_NUM_57810 0x168e 866#define CHIP_NUM_57810_MF 0x16ae 867#define CHIP_NUM_57810_VF 0x16af 868#define CHIP_NUM_57811 0x163d 869#define CHIP_NUM_57811_MF 0x163e 870#define CHIP_NUM_57811_VF 0x163f 871#define CHIP_NUM_57840_OBSOLETE 0x168d 872#define CHIP_NUM_57840_MF_OBSOLETE 0x16ab 873#define CHIP_NUM_57840_4_10 0x16a1 874#define CHIP_NUM_57840_2_20 0x16a2 875#define CHIP_NUM_57840_MF 0x16a4 876#define CHIP_NUM_57840_VF 0x16ad 877#define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) 878#define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) 879#define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) 880#define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) 881#define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) 882#define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) 883#define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) 884#define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) 885#define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) 886#define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) 887#define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) 888#define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) 889#define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) 890#define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) 891#define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) 892#define CHIP_IS_57840(bp) \ 893 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ 894 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ 895 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) 896#define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ 897 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) 898#define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) 899#define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ 900 CHIP_IS_57711E(bp)) 901#define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ 902 CHIP_IS_57811_MF(bp) || \ 903 CHIP_IS_57811_VF(bp)) 904#define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ 905 CHIP_IS_57712_MF(bp) || \ 906 CHIP_IS_57712_VF(bp)) 907#define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ 908 CHIP_IS_57800_MF(bp) || \ 909 CHIP_IS_57800_VF(bp) || \ 910 CHIP_IS_57810(bp) || \ 911 CHIP_IS_57810_MF(bp) || \ 912 CHIP_IS_57810_VF(bp) || \ 913 CHIP_IS_57811xx(bp) || \ 914 CHIP_IS_57840(bp) || \ 915 CHIP_IS_57840_MF(bp) || \ 916 CHIP_IS_57840_VF(bp)) 917#define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) 918#define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) 919#define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) 920 921#define CHIP_REV_SHIFT 12 922#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 923#define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) 924#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 925#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 926/* assume maximum 5 revisions */ 927#define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) 928/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ 929#define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 930 !(CHIP_REV_VAL(bp) & 0x00001000)) 931/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ 932#define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 933 (CHIP_REV_VAL(bp) & 0x00001000)) 934 935#define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ 936 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) 937 938#define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) 939#define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) 940#define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ 941 (CHIP_REV_SHIFT + 1)) \ 942 << CHIP_REV_SHIFT) 943#define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ 944 CHIP_REV_SIM(bp) :\ 945 CHIP_REV_VAL(bp)) 946#define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ 947 (CHIP_REV(bp) == CHIP_REV_Bx)) 948#define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ 949 (CHIP_REV(bp) == CHIP_REV_Ax)) 950/* This define is used in two main places: 951 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher 952 * to nic-only mode or to offload mode. Offload mode is configured if either the 953 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already 954 * registered for this port (which means that the user wants storage services). 955 * 2. During cnic-related load, to know if offload mode is already configured in 956 * the HW or needs to be configured. 957 * Since the transition from nic-mode to offload-mode in HW causes traffic 958 * corruption, nic-mode is configured only in ports on which storage services 959 * where never requested. 960 */ 961#define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) 962 963 int flash_size; 964#define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ 965#define BNX2X_NVRAM_TIMEOUT_COUNT 30000 966#define BNX2X_NVRAM_PAGE_SIZE 256 967 968 u32 shmem_base; 969 u32 shmem2_base; 970 u32 mf_cfg_base; 971 u32 mf2_cfg_base; 972 973 u32 hw_config; 974 975 u32 bc_ver; 976 977 u8 int_block; 978#define INT_BLOCK_HC 0 979#define INT_BLOCK_IGU 1 980#define INT_BLOCK_MODE_NORMAL 0 981#define INT_BLOCK_MODE_BW_COMP 2 982#define CHIP_INT_MODE_IS_NBC(bp) \ 983 (!CHIP_IS_E1x(bp) && \ 984 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) 985#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) 986 987 u8 chip_port_mode; 988#define CHIP_4_PORT_MODE 0x0 989#define CHIP_2_PORT_MODE 0x1 990#define CHIP_PORT_MODE_NONE 0x2 991#define CHIP_MODE(bp) (bp->common.chip_port_mode) 992#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) 993 994 u32 boot_mode; 995}; 996 997/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 998#define BNX2X_IGU_STAS_MSG_VF_CNT 64 999#define BNX2X_IGU_STAS_MSG_PF_CNT 4 1000 1001#define MAX_IGU_ATTN_ACK_TO 100 1002/* end of common */ 1003 1004/* port */ 1005 1006struct bnx2x_port { 1007 u32 pmf; 1008 1009 u32 link_config[LINK_CONFIG_SIZE]; 1010 1011 u32 supported[LINK_CONFIG_SIZE]; 1012 1013 u32 advertising[LINK_CONFIG_SIZE]; 1014 1015 u32 phy_addr; 1016 1017 /* used to synchronize phy accesses */ 1018 struct mutex phy_mutex; 1019 1020 u32 port_stx; 1021 1022 struct nig_stats old_nig_stats; 1023}; 1024 1025/* end of port */ 1026 1027#define STATS_OFFSET32(stat_name) \ 1028 (offsetof(struct bnx2x_eth_stats, stat_name) / 4) 1029 1030/* slow path */ 1031#define BNX2X_MAX_NUM_OF_VFS 64 1032#define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ 1033#define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) 1034 1035/* We need to reserve doorbell addresses for all VF and queue combinations */ 1036#define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) 1037 1038/* The doorbell is configured to have the same number of CIDs for PFs and for 1039 * VFs. For this reason the PF CID zone is as large as the VF zone. 1040 */ 1041#define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS 1042#define BNX2X_MAX_NUM_VF_QUEUES 64 1043#define BNX2X_VF_ID_INVALID 0xFF 1044 1045/* the number of VF CIDS multiplied by the amount of bytes reserved for each 1046 * cid must not exceed the size of the VF doorbell 1047 */ 1048#define BNX2X_VF_BAR_SIZE 512 1049#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) 1050#error "VF doorbell bar size is 512" 1051#endif 1052 1053/* 1054 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 1055 * control by the number of fast-path status blocks supported by the 1056 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 1057 * status block represents an independent interrupts context that can 1058 * serve a regular L2 networking queue. However special L2 queues such 1059 * as the FCoE queue do not require a FP-SB and other components like 1060 * the CNIC may consume FP-SB reducing the number of possible L2 queues 1061 * 1062 * If the maximum number of FP-SB available is X then: 1063 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 1064 * regular L2 queues is Y=X-1 1065 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 1066 * c. If the FCoE L2 queue is supported the actual number of L2 queues 1067 * is Y+1 1068 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 1069 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 1070 * FP interrupt context for the CNIC). 1071 * e. The number of HW context (CID count) is always X or X+1 if FCoE 1072 * L2 queue is supported. The cid for the FCoE L2 queue is always X. 1073 */ 1074 1075/* fast-path interrupt contexts E1x */ 1076#define FP_SB_MAX_E1x 16 1077/* fast-path interrupt contexts E2 */ 1078#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 1079 1080union cdu_context { 1081 struct eth_context eth; 1082 char pad[1024]; 1083}; 1084 1085/* CDU host DB constants */ 1086#define CDU_ILT_PAGE_SZ_HW 2 1087#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 1088#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 1089 1090#define CNIC_ISCSI_CID_MAX 256 1091#define CNIC_FCOE_CID_MAX 2048 1092#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 1093#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 1094 1095#define QM_ILT_PAGE_SZ_HW 0 1096#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 1097#define QM_CID_ROUND 1024 1098 1099/* TM (timers) host DB constants */ 1100#define TM_ILT_PAGE_SZ_HW 0 1101#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 1102#define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ 1103 BNX2X_VF_CIDS + \ 1104 CNIC_ISCSI_CID_MAX) 1105#define TM_ILT_SZ (8 * TM_CONN_NUM) 1106#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 1107 1108/* SRC (Searcher) host DB constants */ 1109#define SRC_ILT_PAGE_SZ_HW 0 1110#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 1111#define SRC_HASH_BITS 10 1112#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 1113#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 1114#define SRC_T2_SZ SRC_ILT_SZ 1115#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 1116 1117#define MAX_DMAE_C 8 1118 1119/* DMA memory not used in fastpath */ 1120struct bnx2x_slowpath { 1121 union { 1122 struct mac_configuration_cmd e1x; 1123 struct eth_classify_rules_ramrod_data e2; 1124 } mac_rdata; 1125 1126 union { 1127 struct eth_classify_rules_ramrod_data e2; 1128 } vlan_rdata; 1129 1130 union { 1131 struct tstorm_eth_mac_filter_config e1x; 1132 struct eth_filter_rules_ramrod_data e2; 1133 } rx_mode_rdata; 1134 1135 union { 1136 struct mac_configuration_cmd e1; 1137 struct eth_multicast_rules_ramrod_data e2; 1138 } mcast_rdata; 1139 1140 struct eth_rss_update_ramrod_data rss_rdata; 1141 1142 /* Queue State related ramrods are always sent under rtnl_lock */ 1143 union { 1144 struct client_init_ramrod_data init_data; 1145 struct client_update_ramrod_data update_data; 1146 struct tpa_update_ramrod_data tpa_data; 1147 } q_rdata; 1148 1149 union { 1150 struct function_start_data func_start; 1151 /* pfc configuration for DCBX ramrod */ 1152 struct flow_control_configuration pfc_config; 1153 } func_rdata; 1154 1155 /* afex ramrod can not be a part of func_rdata union because these 1156 * events might arrive in parallel to other events from func_rdata. 1157 * Therefore, if they would have been defined in the same union, 1158 * data can get corrupted. 1159 */ 1160 union { 1161 struct afex_vif_list_ramrod_data viflist_data; 1162 struct function_update_data func_update; 1163 } func_afex_rdata; 1164 1165 /* used by dmae command executer */ 1166 struct dmae_command dmae[MAX_DMAE_C]; 1167 1168 u32 stats_comp; 1169 union mac_stats mac_stats; 1170 struct nig_stats nig_stats; 1171 struct host_port_stats port_stats; 1172 struct host_func_stats func_stats; 1173 1174 u32 wb_comp; 1175 u32 wb_data[4]; 1176 1177 union drv_info_to_mcp drv_info_to_mcp; 1178}; 1179 1180#define bnx2x_sp(bp, var) (&bp->slowpath->var) 1181#define bnx2x_sp_mapping(bp, var) \ 1182 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) 1183 1184/* attn group wiring */ 1185#define MAX_DYNAMIC_ATTN_GRPS 8 1186 1187struct attn_route { 1188 u32 sig[5]; 1189}; 1190 1191struct iro { 1192 u32 base; 1193 u16 m1; 1194 u16 m2; 1195 u16 m3; 1196 u16 size; 1197}; 1198 1199struct hw_context { 1200 union cdu_context *vcxt; 1201 dma_addr_t cxt_mapping; 1202 size_t size; 1203}; 1204 1205/* forward */ 1206struct bnx2x_ilt; 1207 1208struct bnx2x_vfdb; 1209 1210enum bnx2x_recovery_state { 1211 BNX2X_RECOVERY_DONE, 1212 BNX2X_RECOVERY_INIT, 1213 BNX2X_RECOVERY_WAIT, 1214 BNX2X_RECOVERY_FAILED, 1215 BNX2X_RECOVERY_NIC_LOADING 1216}; 1217 1218/* 1219 * Event queue (EQ or event ring) MC hsi 1220 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 1221 */ 1222#define NUM_EQ_PAGES 1 1223#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1224#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1225#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1226#define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1227#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1228 1229/* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1230#define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ 1231 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) 1232 1233/* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1234#define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1235 1236#define BNX2X_EQ_INDEX \ 1237 (&bp->def_status_blk->sp_sb.\ 1238 index_values[HC_SP_INDEX_EQ_CONS]) 1239 1240/* This is a data that will be used to create a link report message. 1241 * We will keep the data used for the last link report in order 1242 * to prevent reporting the same link parameters twice. 1243 */ 1244struct bnx2x_link_report_data { 1245 u16 line_speed; /* Effective line speed */ 1246 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ 1247}; 1248 1249enum { 1250 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ 1251 BNX2X_LINK_REPORT_LINK_DOWN, 1252 BNX2X_LINK_REPORT_RX_FC_ON, 1253 BNX2X_LINK_REPORT_TX_FC_ON, 1254}; 1255 1256enum { 1257 BNX2X_PORT_QUERY_IDX, 1258 BNX2X_PF_QUERY_IDX, 1259 BNX2X_FCOE_QUERY_IDX, 1260 BNX2X_FIRST_QUEUE_QUERY_IDX, 1261}; 1262 1263struct bnx2x_fw_stats_req { 1264 struct stats_query_header hdr; 1265 struct stats_query_entry query[FP_SB_MAX_E1x+ 1266 BNX2X_FIRST_QUEUE_QUERY_IDX]; 1267}; 1268 1269struct bnx2x_fw_stats_data { 1270 struct stats_counter storm_counters; 1271 struct per_port_stats port; 1272 struct per_pf_stats pf; 1273 struct fcoe_statistics_params fcoe; 1274 struct per_queue_stats queue_stats[]; 1275}; 1276 1277/* Public slow path states */ 1278enum sp_rtnl_flag { 1279 BNX2X_SP_RTNL_SETUP_TC, 1280 BNX2X_SP_RTNL_TX_TIMEOUT, 1281 BNX2X_SP_RTNL_FAN_FAILURE, 1282 BNX2X_SP_RTNL_AFEX_F_UPDATE, 1283 BNX2X_SP_RTNL_ENABLE_SRIOV, 1284 BNX2X_SP_RTNL_VFPF_MCAST, 1285 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 1286 BNX2X_SP_RTNL_RX_MODE, 1287 BNX2X_SP_RTNL_HYPERVISOR_VLAN, 1288 BNX2X_SP_RTNL_TX_STOP, 1289 BNX2X_SP_RTNL_GET_DRV_VERSION, 1290 BNX2X_SP_RTNL_UPDATE_SVID, 1291}; 1292 1293enum bnx2x_iov_flag { 1294 BNX2X_IOV_HANDLE_VF_MSG, 1295 BNX2X_IOV_HANDLE_FLR, 1296}; 1297 1298struct bnx2x_prev_path_list { 1299 struct list_head list; 1300 u8 bus; 1301 u8 slot; 1302 u8 path; 1303 u8 aer; 1304 u8 undi; 1305}; 1306 1307struct bnx2x_sp_objs { 1308 /* MACs object */ 1309 struct bnx2x_vlan_mac_obj mac_obj; 1310 1311 /* Queue State object */ 1312 struct bnx2x_queue_sp_obj q_obj; 1313 1314 /* VLANs object */ 1315 struct bnx2x_vlan_mac_obj vlan_obj; 1316}; 1317 1318struct bnx2x_fp_stats { 1319 struct tstorm_per_queue_stats old_tclient; 1320 struct ustorm_per_queue_stats old_uclient; 1321 struct xstorm_per_queue_stats old_xclient; 1322 struct bnx2x_eth_q_stats eth_q_stats; 1323 struct bnx2x_eth_q_stats_old eth_q_stats_old; 1324}; 1325 1326enum { 1327 SUB_MF_MODE_UNKNOWN = 0, 1328 SUB_MF_MODE_UFP, 1329 SUB_MF_MODE_NPAR1_DOT_5, 1330 SUB_MF_MODE_BD, 1331}; 1332 1333struct bnx2x_vlan_entry { 1334 struct list_head link; 1335 u16 vid; 1336 bool hw; 1337}; 1338 1339enum bnx2x_udp_port_type { 1340 BNX2X_UDP_PORT_VXLAN, 1341 BNX2X_UDP_PORT_GENEVE, 1342 BNX2X_UDP_PORT_MAX, 1343}; 1344 1345struct bnx2x { 1346 /* Fields used in the tx and intr/napi performance paths 1347 * are grouped together in the beginning of the structure 1348 */ 1349 struct bnx2x_fastpath *fp; 1350 struct bnx2x_sp_objs *sp_objs; 1351 struct bnx2x_fp_stats *fp_stats; 1352 struct bnx2x_fp_txdata *bnx2x_txq; 1353 void __iomem *regview; 1354 void __iomem *doorbells; 1355 u16 db_size; 1356 1357 u8 pf_num; /* absolute PF number */ 1358 u8 pfid; /* per-path PF number */ 1359 int base_fw_ndsb; /**/ 1360#define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) 1361#define BP_PORT(bp) (bp->pfid & 1) 1362#define BP_FUNC(bp) (bp->pfid) 1363#define BP_ABS_FUNC(bp) (bp->pf_num) 1364#define BP_VN(bp) ((bp)->pfid >> 1) 1365#define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) 1366#define BP_L_ID(bp) (BP_VN(bp) << 2) 1367#define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ 1368 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) 1369#define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) 1370 1371#ifdef CONFIG_BNX2X_SRIOV 1372 /* protects vf2pf mailbox from simultaneous access */ 1373 struct mutex vf2pf_mutex; 1374 /* vf pf channel mailbox contains request and response buffers */ 1375 struct bnx2x_vf_mbx_msg *vf2pf_mbox; 1376 dma_addr_t vf2pf_mbox_mapping; 1377 1378 /* we set aside a copy of the acquire response */ 1379 struct pfvf_acquire_resp_tlv acquire_resp; 1380 1381 /* bulletin board for messages from pf to vf */ 1382 union pf_vf_bulletin *pf2vf_bulletin; 1383 dma_addr_t pf2vf_bulletin_mapping; 1384 1385 union pf_vf_bulletin shadow_bulletin; 1386 struct pf_vf_bulletin_content old_bulletin; 1387 1388 u16 requested_nr_virtfn; 1389#endif /* CONFIG_BNX2X_SRIOV */ 1390 1391 struct net_device *dev; 1392 struct pci_dev *pdev; 1393 1394 const struct iro *iro_arr; 1395#define IRO (bp->iro_arr) 1396 1397 enum bnx2x_recovery_state recovery_state; 1398 int is_leader; 1399 struct msix_entry *msix_table; 1400 1401 int tx_ring_size; 1402 1403/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 1404#define ETH_OVERHEAD (ETH_HLEN + 8 + 8) 1405#define ETH_MIN_PACKET_SIZE (ETH_ZLEN - ETH_HLEN) 1406#define ETH_MAX_PACKET_SIZE ETH_DATA_LEN 1407#define ETH_MAX_JUMBO_PACKET_SIZE 9600 1408/* TCP with Timestamp Option (32) + IPv6 (40) */ 1409#define ETH_MAX_TPA_HEADER_SIZE 72 1410 1411 /* Max supported alignment is 256 (8 shift) 1412 * minimal alignment shift 6 is optimal for 57xxx HW performance 1413 */ 1414#define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT)) 1415 1416 /* FW uses 2 Cache lines Alignment for start packet and size 1417 * 1418 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes 1419 * at the end of skb->data, to avoid wasting a full cache line. 1420 * This reduces memory use (skb->truesize). 1421 */ 1422#define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) 1423 1424#define BNX2X_FW_RX_ALIGN_END \ 1425 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ 1426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 1427 1428#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) 1429 1430 struct host_sp_status_block *def_status_blk; 1431#define DEF_SB_IGU_ID 16 1432#define DEF_SB_ID HC_SP_SB_ID 1433 __le16 def_idx; 1434 __le16 def_att_idx; 1435 u32 attn_state; 1436 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1437 1438 /* slow path ring */ 1439 struct eth_spe *spq; 1440 dma_addr_t spq_mapping; 1441 u16 spq_prod_idx; 1442 struct eth_spe *spq_prod_bd; 1443 struct eth_spe *spq_last_bd; 1444 __le16 *dsb_sp_prod; 1445 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ 1446 /* used to synchronize spq accesses */ 1447 spinlock_t spq_lock; 1448 1449 /* event queue */ 1450 union event_ring_elem *eq_ring; 1451 dma_addr_t eq_mapping; 1452 u16 eq_prod; 1453 u16 eq_cons; 1454 __le16 *eq_cons_sb; 1455 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ 1456 1457 /* Counter for marking that there is a STAT_QUERY ramrod pending */ 1458 u16 stats_pending; 1459 /* Counter for completed statistics ramrods */ 1460 u16 stats_comp; 1461 1462 /* End of fields used in the performance code paths */ 1463 1464 int panic; 1465 int msg_enable; 1466 1467 u32 flags; 1468#define PCIX_FLAG (1 << 0) 1469#define PCI_32BIT_FLAG (1 << 1) 1470#define ONE_PORT_FLAG (1 << 2) 1471#define NO_WOL_FLAG (1 << 3) 1472#define USING_MSIX_FLAG (1 << 5) 1473#define USING_MSI_FLAG (1 << 6) 1474#define DISABLE_MSI_FLAG (1 << 7) 1475#define NO_MCP_FLAG (1 << 9) 1476#define MF_FUNC_DIS (1 << 11) 1477#define OWN_CNIC_IRQ (1 << 12) 1478#define NO_ISCSI_OOO_FLAG (1 << 13) 1479#define NO_ISCSI_FLAG (1 << 14) 1480#define NO_FCOE_FLAG (1 << 15) 1481#define BC_SUPPORTS_PFC_STATS (1 << 17) 1482#define TX_SWITCHING (1 << 18) 1483#define BC_SUPPORTS_FCOE_FEATURES (1 << 19) 1484#define USING_SINGLE_MSIX_FLAG (1 << 20) 1485#define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) 1486#define IS_VF_FLAG (1 << 22) 1487#define BC_SUPPORTS_RMMOD_CMD (1 << 23) 1488#define HAS_PHYS_PORT_ID (1 << 24) 1489#define AER_ENABLED (1 << 25) 1490#define PTP_SUPPORTED (1 << 26) 1491#define TX_TIMESTAMPING_EN (1 << 27) 1492 1493#define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) 1494 1495#ifdef CONFIG_BNX2X_SRIOV 1496#define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) 1497#define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) 1498#else 1499#define IS_VF(bp) false 1500#define IS_PF(bp) true 1501#endif 1502 1503#define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) 1504#define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) 1505#define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) 1506 1507 u8 cnic_support; 1508 bool cnic_enabled; 1509 bool cnic_loaded; 1510 struct cnic_eth_dev *(*cnic_probe)(struct net_device *); 1511 1512 /* Flag that indicates that we can start looking for FCoE L2 queue 1513 * completions in the default status block. 1514 */ 1515 bool fcoe_init; 1516 1517 int mrrs; 1518 1519 struct delayed_work sp_task; 1520 struct delayed_work iov_task; 1521 1522 atomic_t interrupt_occurred; 1523 struct delayed_work sp_rtnl_task; 1524 1525 struct delayed_work period_task; 1526 struct timer_list timer; 1527 int current_interval; 1528 1529 u16 fw_seq; 1530 u16 fw_drv_pulse_wr_seq; 1531 u32 func_stx; 1532 1533 struct link_params link_params; 1534 struct link_vars link_vars; 1535 u32 link_cnt; 1536 struct bnx2x_link_report_data last_reported_link; 1537 bool force_link_down; 1538 1539 struct mdio_if_info mdio; 1540 1541 struct bnx2x_common common; 1542 struct bnx2x_port port; 1543 1544 struct cmng_init cmng; 1545 1546 u32 mf_config[E1HVN_MAX]; 1547 u32 mf_ext_config; 1548 u32 path_has_ovlan; /* E3 */ 1549 u16 mf_ov; 1550 u8 mf_mode; 1551#define IS_MF(bp) (bp->mf_mode != 0) 1552#define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) 1553#define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) 1554#define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) 1555 u8 mf_sub_mode; 1556#define IS_MF_UFP(bp) (IS_MF_SD(bp) && \ 1557 bp->mf_sub_mode == SUB_MF_MODE_UFP) 1558#define IS_MF_BD(bp) (IS_MF_SD(bp) && \ 1559 bp->mf_sub_mode == SUB_MF_MODE_BD) 1560 1561 u8 wol; 1562 1563 int rx_ring_size; 1564 1565 u16 tx_quick_cons_trip_int; 1566 u16 tx_quick_cons_trip; 1567 u16 tx_ticks_int; 1568 u16 tx_ticks; 1569 1570 u16 rx_quick_cons_trip_int; 1571 u16 rx_quick_cons_trip; 1572 u16 rx_ticks_int; 1573 u16 rx_ticks; 1574/* Maximal coalescing timeout in us */ 1575#define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) 1576 1577 u32 lin_cnt; 1578 1579 u16 state; 1580#define BNX2X_STATE_CLOSED 0 1581#define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 1582#define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 1583#define BNX2X_STATE_OPEN 0x3000 1584#define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 1585#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 1586 1587#define BNX2X_STATE_DIAG 0xe000 1588#define BNX2X_STATE_ERROR 0xf000 1589 1590#define BNX2X_MAX_PRIORITY 8 1591 int num_queues; 1592 uint num_ethernet_queues; 1593 uint num_cnic_queues; 1594 int disable_tpa; 1595 1596 u32 rx_mode; 1597#define BNX2X_RX_MODE_NONE 0 1598#define BNX2X_RX_MODE_NORMAL 1 1599#define BNX2X_RX_MODE_ALLMULTI 2 1600#define BNX2X_RX_MODE_PROMISC 3 1601#define BNX2X_MAX_MULTICAST 64 1602 1603 u8 igu_dsb_id; 1604 u8 igu_base_sb; 1605 u8 igu_sb_cnt; 1606 u8 min_msix_vec_cnt; 1607 1608 u32 igu_base_addr; 1609 dma_addr_t def_status_blk_mapping; 1610 1611 struct bnx2x_slowpath *slowpath; 1612 dma_addr_t slowpath_mapping; 1613 1614 /* Mechanism protecting the drv_info_to_mcp */ 1615 struct mutex drv_info_mutex; 1616 bool drv_info_mng_owner; 1617 1618 /* Total number of FW statistics requests */ 1619 u8 fw_stats_num; 1620 1621 /* 1622 * This is a memory buffer that will contain both statistics 1623 * ramrod request and data. 1624 */ 1625 void *fw_stats; 1626 dma_addr_t fw_stats_mapping; 1627 1628 /* 1629 * FW statistics request shortcut (points at the 1630 * beginning of fw_stats buffer). 1631 */ 1632 struct bnx2x_fw_stats_req *fw_stats_req; 1633 dma_addr_t fw_stats_req_mapping; 1634 int fw_stats_req_sz; 1635 1636 /* 1637 * FW statistics data shortcut (points at the beginning of 1638 * fw_stats buffer + fw_stats_req_sz). 1639 */ 1640 struct bnx2x_fw_stats_data *fw_stats_data; 1641 dma_addr_t fw_stats_data_mapping; 1642 int fw_stats_data_sz; 1643 1644 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB 1645 * context size we need 8 ILT entries. 1646 */ 1647#define ILT_MAX_L2_LINES 32 1648 struct hw_context context[ILT_MAX_L2_LINES]; 1649 1650 struct bnx2x_ilt *ilt; 1651#define BP_ILT(bp) ((bp)->ilt) 1652#define ILT_MAX_LINES 256 1653/* 1654 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes 1655 * to CNIC. 1656 */ 1657#define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) 1658 1659/* 1660 * Maximum CID count that might be required by the bnx2x: 1661 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI 1662 */ 1663 1664#define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ 1665 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1666#define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ 1667 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1668#define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ 1669 ILT_PAGE_CIDS)) 1670 1671 int qm_cid_count; 1672 1673 bool dropless_fc; 1674 1675 void *t2; 1676 dma_addr_t t2_mapping; 1677 struct cnic_ops __rcu *cnic_ops; 1678 void *cnic_data; 1679 u32 cnic_tag; 1680 struct cnic_eth_dev cnic_eth_dev; 1681 union host_hc_status_block cnic_sb; 1682 dma_addr_t cnic_sb_mapping; 1683 struct eth_spe *cnic_kwq; 1684 struct eth_spe *cnic_kwq_prod; 1685 struct eth_spe *cnic_kwq_cons; 1686 struct eth_spe *cnic_kwq_last; 1687 u16 cnic_kwq_pending; 1688 u16 cnic_spq_pending; 1689 u8 fip_mac[ETH_ALEN]; 1690 struct mutex cnic_mutex; 1691 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; 1692 1693 /* Start index of the "special" (CNIC related) L2 clients */ 1694 u8 cnic_base_cl_id; 1695 1696 int dmae_ready; 1697 /* used to synchronize dmae accesses */ 1698 spinlock_t dmae_lock; 1699 1700 /* used to protect the FW mail box */ 1701 struct mutex fw_mb_mutex; 1702 1703 /* used to synchronize stats collecting */ 1704 int stats_state; 1705 1706 /* used for synchronization of concurrent threads statistics handling */ 1707 struct semaphore stats_lock; 1708 1709 /* used by dmae command loader */ 1710 struct dmae_command stats_dmae; 1711 int executer_idx; 1712 1713 u16 stats_counter; 1714 struct bnx2x_eth_stats eth_stats; 1715 struct host_func_stats func_stats; 1716 struct bnx2x_eth_stats_old eth_stats_old; 1717 struct bnx2x_net_stats_old net_stats_old; 1718 struct bnx2x_fw_port_stats_old fw_stats_old; 1719 bool stats_init; 1720 1721 struct z_stream_s *strm; 1722 void *gunzip_buf; 1723 dma_addr_t gunzip_mapping; 1724 int gunzip_outlen; 1725#define FW_BUF_SIZE 0x8000 1726#define GUNZIP_BUF(bp) (bp->gunzip_buf) 1727#define GUNZIP_PHYS(bp) (bp->gunzip_mapping) 1728#define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) 1729 1730 struct raw_op *init_ops; 1731 /* Init blocks offsets inside init_ops */ 1732 u16 *init_ops_offsets; 1733 /* Data blob - has 32 bit granularity */ 1734 u32 *init_data; 1735 u32 init_mode_flags; 1736#define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) 1737 /* Zipped PRAM blobs - raw data */ 1738 const u8 *tsem_int_table_data; 1739 const u8 *tsem_pram_data; 1740 const u8 *usem_int_table_data; 1741 const u8 *usem_pram_data; 1742 const u8 *xsem_int_table_data; 1743 const u8 *xsem_pram_data; 1744 const u8 *csem_int_table_data; 1745 const u8 *csem_pram_data; 1746#define INIT_OPS(bp) (bp->init_ops) 1747#define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) 1748#define INIT_DATA(bp) (bp->init_data) 1749#define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) 1750#define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) 1751#define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) 1752#define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) 1753#define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) 1754#define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) 1755#define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) 1756#define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) 1757 1758#define PHY_FW_VER_LEN 20 1759 char fw_ver[32]; 1760 const struct firmware *firmware; 1761 1762 struct bnx2x_vfdb *vfdb; 1763#define IS_SRIOV(bp) ((bp)->vfdb) 1764 1765 /* DCB support on/off */ 1766 u16 dcb_state; 1767#define BNX2X_DCB_STATE_OFF 0 1768#define BNX2X_DCB_STATE_ON 1 1769 1770 /* DCBX engine mode */ 1771 int dcbx_enabled; 1772#define BNX2X_DCBX_ENABLED_OFF 0 1773#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 1774#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 1775#define BNX2X_DCBX_ENABLED_INVALID (-1) 1776 1777 bool dcbx_mode_uset; 1778 1779 struct bnx2x_config_dcbx_params dcbx_config_params; 1780 struct bnx2x_dcbx_port_params dcbx_port_params; 1781 int dcb_version; 1782 1783 /* CAM credit pools */ 1784 struct bnx2x_credit_pool_obj vlans_pool; 1785 1786 struct bnx2x_credit_pool_obj macs_pool; 1787 1788 /* RX_MODE object */ 1789 struct bnx2x_rx_mode_obj rx_mode_obj; 1790 1791 /* MCAST object */ 1792 struct bnx2x_mcast_obj mcast_obj; 1793 1794 /* RSS configuration object */ 1795 struct bnx2x_rss_config_obj rss_conf_obj; 1796 1797 /* Function State controlling object */ 1798 struct bnx2x_func_sp_obj func_obj; 1799 1800 unsigned long sp_state; 1801 1802 /* operation indication for the sp_rtnl task */ 1803 unsigned long sp_rtnl_state; 1804 1805 /* Indication of the IOV tasks */ 1806 unsigned long iov_task_state; 1807 1808 /* DCBX Negotiation results */ 1809 struct dcbx_features dcbx_local_feat; 1810 u32 dcbx_error; 1811 1812#ifdef BCM_DCBNL 1813 struct dcbx_features dcbx_remote_feat; 1814 u32 dcbx_remote_flags; 1815#endif 1816 /* AFEX: store default vlan used */ 1817 int afex_def_vlan_tag; 1818 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1819 u32 pending_max; 1820 1821 /* multiple tx classes of service */ 1822 u8 max_cos; 1823 1824 /* priority to cos mapping */ 1825 u8 prio_to_cos[8]; 1826 1827 int fp_array_size; 1828 u32 dump_preset_idx; 1829 1830 u8 phys_port_id[ETH_ALEN]; 1831 1832 /* PTP related context */ 1833 struct ptp_clock *ptp_clock; 1834 struct ptp_clock_info ptp_clock_info; 1835 struct work_struct ptp_task; 1836 struct cyclecounter cyclecounter; 1837 struct timecounter timecounter; 1838 bool timecounter_init_done; 1839 struct sk_buff *ptp_tx_skb; 1840 unsigned long ptp_tx_start; 1841 bool hwtstamp_ioctl_called; 1842 u16 tx_type; 1843 u16 rx_filter; 1844 1845 struct bnx2x_link_report_data vf_link_vars; 1846 struct list_head vlan_reg; 1847 u16 vlan_cnt; 1848 u16 vlan_credit; 1849 bool accept_any_vlan; 1850 1851 /* Vxlan/Geneve related information */ 1852 u16 udp_tunnel_ports[BNX2X_UDP_PORT_MAX]; 1853 1854#define FW_CAP_INVALIDATE_VF_FP_HSI BIT(0) 1855 u32 fw_cap; 1856 1857 u32 fw_major; 1858 u32 fw_minor; 1859 u32 fw_rev; 1860 u32 fw_eng; 1861}; 1862 1863/* Tx queues may be less or equal to Rx queues */ 1864extern int num_queues; 1865#define BNX2X_NUM_QUEUES(bp) (bp->num_queues) 1866#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) 1867#define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ 1868 (bp)->num_cnic_queues) 1869#define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) 1870 1871#define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) 1872 1873#define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) 1874/* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ 1875 1876#define RSS_IPV4_CAP_MASK \ 1877 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY 1878 1879#define RSS_IPV4_TCP_CAP_MASK \ 1880 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY 1881 1882#define RSS_IPV6_CAP_MASK \ 1883 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY 1884 1885#define RSS_IPV6_TCP_CAP_MASK \ 1886 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY 1887 1888struct bnx2x_func_init_params { 1889 /* dma */ 1890 bool spq_active; 1891 dma_addr_t spq_map; 1892 u16 spq_prod; 1893 1894 u16 func_id; /* abs fid */ 1895 u16 pf_id; 1896}; 1897 1898#define for_each_cnic_queue(bp, var) \ 1899 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1900 (var)++) \ 1901 if (skip_queue(bp, var)) \ 1902 continue; \ 1903 else 1904 1905#define for_each_eth_queue(bp, var) \ 1906 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1907 1908#define for_each_nondefault_eth_queue(bp, var) \ 1909 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 1910 1911#define for_each_queue(bp, var) \ 1912 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1913 if (skip_queue(bp, var)) \ 1914 continue; \ 1915 else 1916 1917/* Skip forwarding FP */ 1918#define for_each_valid_rx_queue(bp, var) \ 1919 for ((var) = 0; \ 1920 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1921 BNX2X_NUM_ETH_QUEUES(bp)); \ 1922 (var)++) \ 1923 if (skip_rx_queue(bp, var)) \ 1924 continue; \ 1925 else 1926 1927#define for_each_rx_queue_cnic(bp, var) \ 1928 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1929 (var)++) \ 1930 if (skip_rx_queue(bp, var)) \ 1931 continue; \ 1932 else 1933 1934#define for_each_rx_queue(bp, var) \ 1935 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1936 if (skip_rx_queue(bp, var)) \ 1937 continue; \ 1938 else 1939 1940/* Skip OOO FP */ 1941#define for_each_valid_tx_queue(bp, var) \ 1942 for ((var) = 0; \ 1943 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 1944 BNX2X_NUM_ETH_QUEUES(bp)); \ 1945 (var)++) \ 1946 if (skip_tx_queue(bp, var)) \ 1947 continue; \ 1948 else 1949 1950#define for_each_tx_queue_cnic(bp, var) \ 1951 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 1952 (var)++) \ 1953 if (skip_tx_queue(bp, var)) \ 1954 continue; \ 1955 else 1956 1957#define for_each_tx_queue(bp, var) \ 1958 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1959 if (skip_tx_queue(bp, var)) \ 1960 continue; \ 1961 else 1962 1963#define for_each_nondefault_queue(bp, var) \ 1964 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 1965 if (skip_queue(bp, var)) \ 1966 continue; \ 1967 else 1968 1969#define for_each_cos_in_tx_queue(fp, var) \ 1970 for ((var) = 0; (var) < (fp)->max_cos; (var)++) 1971 1972/* skip rx queue 1973 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1974 */ 1975#define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1976 1977/* skip tx queue 1978 * if FCOE l2 support is disabled and this is the fcoe L2 queue 1979 */ 1980#define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1981 1982#define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 1983 1984/*self test*/ 1985int bnx2x_idle_chk(struct bnx2x *bp); 1986 1987/** 1988 * bnx2x_set_mac_one - configure a single MAC address 1989 * 1990 * @bp: driver handle 1991 * @mac: MAC to configure 1992 * @obj: MAC object handle 1993 * @set: if 'true' add a new MAC, otherwise - delete 1994 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) 1995 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) 1996 * 1997 * Configures one MAC according to provided parameters or continues the 1998 * execution of previously scheduled commands if RAMROD_CONT is set in 1999 * ramrod_flags. 2000 * 2001 * Returns zero if operation has successfully completed, a positive value if the 2002 * operation has been successfully scheduled and a negative - if a requested 2003 * operations has failed. 2004 */ 2005int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac, 2006 struct bnx2x_vlan_mac_obj *obj, bool set, 2007 int mac_type, unsigned long *ramrod_flags); 2008 2009int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 2010 struct bnx2x_vlan_mac_obj *obj, bool set, 2011 unsigned long *ramrod_flags); 2012 2013/** 2014 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object 2015 * 2016 * @bp: driver handle 2017 * @mac_obj: MAC object handle 2018 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) 2019 * @wait_for_comp: if 'true' block until completion 2020 * 2021 * Deletes all MACs of the specific type (e.g. ETH, UC list). 2022 * 2023 * Returns zero if operation has successfully completed, a positive value if the 2024 * operation has been successfully scheduled and a negative - if a requested 2025 * operations has failed. 2026 */ 2027int bnx2x_del_all_macs(struct bnx2x *bp, 2028 struct bnx2x_vlan_mac_obj *mac_obj, 2029 int mac_type, bool wait_for_comp); 2030 2031/* Init Function API */ 2032void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); 2033void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 2034 u8 vf_valid, int fw_sb_id, int igu_sb_id); 2035int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); 2036int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2037int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); 2038int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2039void bnx2x_read_mf_cfg(struct bnx2x *bp); 2040 2041int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); 2042 2043/* dmae */ 2044void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); 2045void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 2046 u32 len32); 2047void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); 2048u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); 2049u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); 2050u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 2051 bool with_comp, u8 comp_type); 2052 2053void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2054 u8 src_type, u8 dst_type); 2055int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2056 u32 *comp); 2057 2058/* FLR related routines */ 2059u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); 2060void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); 2061int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); 2062u8 bnx2x_is_pcie_pending(struct pci_dev *dev); 2063int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 2064 char *msg, u32 poll_cnt); 2065 2066void bnx2x_calc_fc_adv(struct bnx2x *bp); 2067int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 2068 u32 data_hi, u32 data_lo, int cmd_type); 2069void bnx2x_update_coalesce(struct bnx2x *bp); 2070int bnx2x_get_cur_phy_idx(struct bnx2x *bp); 2071 2072bool bnx2x_port_after_undi(struct bnx2x *bp); 2073 2074static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, 2075 int wait) 2076{ 2077 u32 val; 2078 2079 do { 2080 val = REG_RD(bp, reg); 2081 if (val == expected) 2082 break; 2083 ms -= wait; 2084 msleep(wait); 2085 2086 } while (ms > 0); 2087 2088 return val; 2089} 2090 2091void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, 2092 bool is_pf); 2093 2094#define BNX2X_ILT_ZALLOC(x, y, size) \ 2095 x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) 2096 2097#define BNX2X_ILT_FREE(x, y, size) \ 2098 do { \ 2099 if (x) { \ 2100 dma_free_coherent(&bp->pdev->dev, size, x, y); \ 2101 x = NULL; \ 2102 y = 0; \ 2103 } \ 2104 } while (0) 2105 2106#define ILOG2(x) (ilog2((x))) 2107 2108#define ILT_NUM_PAGE_ENTRIES (3072) 2109/* In 57710/11 we use whole table since we have 8 func 2110 * In 57712 we have only 4 func, but use same size per func, then only half of 2111 * the table in use 2112 */ 2113#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) 2114 2115#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 2116/* 2117 * the phys address is shifted right 12 bits and has an added 2118 * 1=valid bit added to the 53rd bit 2119 * then since this is a wide register(TM) 2120 * we split it into two 32 bit writes 2121 */ 2122#define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 2123#define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 2124 2125/* load/unload mode */ 2126#define LOAD_NORMAL 0 2127#define LOAD_OPEN 1 2128#define LOAD_DIAG 2 2129#define LOAD_LOOPBACK_EXT 3 2130#define UNLOAD_NORMAL 0 2131#define UNLOAD_CLOSE 1 2132#define UNLOAD_RECOVERY 2 2133 2134/* DMAE command defines */ 2135#define DMAE_TIMEOUT -1 2136#define DMAE_PCI_ERROR -2 /* E2 and onward */ 2137#define DMAE_NOT_RDY -3 2138#define DMAE_PCI_ERR_FLAG 0x80000000 2139 2140#define DMAE_SRC_PCI 0 2141#define DMAE_SRC_GRC 1 2142 2143#define DMAE_DST_NONE 0 2144#define DMAE_DST_PCI 1 2145#define DMAE_DST_GRC 2 2146 2147#define DMAE_COMP_PCI 0 2148#define DMAE_COMP_GRC 1 2149 2150/* E2 and onward - PCI error handling in the completion */ 2151 2152#define DMAE_COMP_REGULAR 0 2153#define DMAE_COM_SET_ERR 1 2154 2155#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ 2156 DMAE_COMMAND_SRC_SHIFT) 2157#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ 2158 DMAE_COMMAND_SRC_SHIFT) 2159 2160#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ 2161 DMAE_COMMAND_DST_SHIFT) 2162#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ 2163 DMAE_COMMAND_DST_SHIFT) 2164 2165#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ 2166 DMAE_COMMAND_C_DST_SHIFT) 2167#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ 2168 DMAE_COMMAND_C_DST_SHIFT) 2169 2170#define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE 2171 2172#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2173#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2174#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2175#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2176 2177#define DMAE_CMD_PORT_0 0 2178#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2179 2180#define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET 2181#define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET 2182#define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT 2183 2184#define DMAE_SRC_PF 0 2185#define DMAE_SRC_VF 1 2186 2187#define DMAE_DST_PF 0 2188#define DMAE_DST_VF 1 2189 2190#define DMAE_C_SRC 0 2191#define DMAE_C_DST 1 2192 2193#define DMAE_LEN32_RD_MAX 0x80 2194#define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) 2195 2196#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit 2197 * indicates error 2198 */ 2199 2200#define MAX_DMAE_C_PER_PORT 8 2201#define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2202 BP_VN(bp)) 2203#define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2204 E1HVN_MAX) 2205 2206/* Following is the DMAE channel number allocation for the clients. 2207 * MFW: OCBB/OCSD implementations use DMAE channels 14/15 respectively. 2208 * Driver: 0-3 and 8-11 (for PF dmae operations) 2209 * 4 and 12 (for stats requests) 2210 */ 2211#define BNX2X_FW_DMAE_C 13 /* Channel for FW DMAE operations */ 2212 2213/* PCIE link and speed */ 2214#define PCICFG_LINK_WIDTH 0x1f00000 2215#define PCICFG_LINK_WIDTH_SHIFT 20 2216#define PCICFG_LINK_SPEED 0xf0000 2217#define PCICFG_LINK_SPEED_SHIFT 16 2218 2219#define BNX2X_NUM_TESTS_SF 7 2220#define BNX2X_NUM_TESTS_MF 3 2221#define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ 2222 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) 2223 2224#define BNX2X_PHY_LOOPBACK 0 2225#define BNX2X_MAC_LOOPBACK 1 2226#define BNX2X_EXT_LOOPBACK 2 2227#define BNX2X_PHY_LOOPBACK_FAILED 1 2228#define BNX2X_MAC_LOOPBACK_FAILED 2 2229#define BNX2X_EXT_LOOPBACK_FAILED 3 2230#define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ 2231 BNX2X_PHY_LOOPBACK_FAILED) 2232 2233#define STROM_ASSERT_ARRAY_SIZE 50 2234 2235/* must be used on a CID before placing it on a HW ring */ 2236#define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ 2237 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ 2238 (x)) 2239 2240#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 2241#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 2242 2243#define BNX2X_BTR 4 2244#define MAX_SPQ_PENDING 8 2245 2246/* CMNG constants, as derived from system spec calculations */ 2247/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 2248#define DEF_MIN_RATE 100 2249/* resolution of the rate shaping timer - 400 usec */ 2250#define RS_PERIODIC_TIMEOUT_USEC 400 2251/* number of bytes in single QM arbitration cycle - 2252 * coefficient for calculating the fairness timer */ 2253#define QM_ARB_BYTES 160000 2254/* resolution of Min algorithm 1:100 */ 2255#define MIN_RES 100 2256/* how many bytes above threshold for the minimal credit of Min algorithm*/ 2257#define MIN_ABOVE_THRESH 32768 2258/* Fairness algorithm integration time coefficient - 2259 * for calculating the actual Tfair */ 2260#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 2261/* Memory of fairness algorithm . 2 cycles */ 2262#define FAIR_MEM 2 2263 2264#define ATTN_NIG_FOR_FUNC (1L << 8) 2265#define ATTN_SW_TIMER_4_FUNC (1L << 9) 2266#define GPIO_2_FUNC (1L << 10) 2267#define GPIO_3_FUNC (1L << 11) 2268#define GPIO_4_FUNC (1L << 12) 2269#define ATTN_GENERAL_ATTN_1 (1L << 13) 2270#define ATTN_GENERAL_ATTN_2 (1L << 14) 2271#define ATTN_GENERAL_ATTN_3 (1L << 15) 2272#define ATTN_GENERAL_ATTN_4 (1L << 13) 2273#define ATTN_GENERAL_ATTN_5 (1L << 14) 2274#define ATTN_GENERAL_ATTN_6 (1L << 15) 2275 2276#define ATTN_HARD_WIRED_MASK 0xff00 2277#define ATTENTION_ID 4 2278 2279#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \ 2280 IS_MF_FCOE_AFEX(bp)) 2281 2282/* stuff added to make the code fit 80Col */ 2283 2284#define BNX2X_PMF_LINK_ASSERT \ 2285 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) 2286 2287#define BNX2X_MC_ASSERT_BITS \ 2288 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2289 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2290 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2291 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2292 2293#define BNX2X_MCP_ASSERT \ 2294 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2295 2296#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2297#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2298 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2299 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2300 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2301 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2302 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2303 2304#define HW_INTERRUPT_ASSERT_SET_0 \ 2305 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ 2306 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ 2307 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ 2308 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ 2309 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) 2310#define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ 2311 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ 2312 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ 2313 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ 2314 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ 2315 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ 2316 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) 2317#define HW_INTERRUPT_ASSERT_SET_1 \ 2318 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ 2319 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ 2320 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ 2321 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ 2322 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ 2323 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ 2324 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ 2325 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ 2326 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ 2327 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ 2328 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) 2329#define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ 2330 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ 2331 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ 2332 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ 2333 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ 2334 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ 2335 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ 2336 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ 2337 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ 2338 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ 2339 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ 2340 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ 2341 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ 2342 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ 2343 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ 2344 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) 2345#define HW_INTERRUPT_ASSERT_SET_2 \ 2346 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ 2347 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ 2348 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ 2349 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ 2350 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) 2351#define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ 2352 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ 2353 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ 2354 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ 2355 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ 2356 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ 2357 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ 2358 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) 2359 2360#define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \ 2361 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 2362 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 2363 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) 2364 2365#define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \ 2366 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 2367 2368#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ 2369 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) 2370 2371#define MULTI_MASK 0x7f 2372 2373#define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) 2374#define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) 2375#define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) 2376#define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) 2377 2378#define DEF_USB_IGU_INDEX_OFF \ 2379 offsetof(struct cstorm_def_status_block_u, igu_index) 2380#define DEF_CSB_IGU_INDEX_OFF \ 2381 offsetof(struct cstorm_def_status_block_c, igu_index) 2382#define DEF_XSB_IGU_INDEX_OFF \ 2383 offsetof(struct xstorm_def_status_block, igu_index) 2384#define DEF_TSB_IGU_INDEX_OFF \ 2385 offsetof(struct tstorm_def_status_block, igu_index) 2386 2387#define DEF_USB_SEGMENT_OFF \ 2388 offsetof(struct cstorm_def_status_block_u, segment) 2389#define DEF_CSB_SEGMENT_OFF \ 2390 offsetof(struct cstorm_def_status_block_c, segment) 2391#define DEF_XSB_SEGMENT_OFF \ 2392 offsetof(struct xstorm_def_status_block, segment) 2393#define DEF_TSB_SEGMENT_OFF \ 2394 offsetof(struct tstorm_def_status_block, segment) 2395 2396#define BNX2X_SP_DSB_INDEX \ 2397 (&bp->def_status_blk->sp_sb.\ 2398 index_values[HC_SP_INDEX_ETH_DEF_CONS]) 2399 2400#define CAM_IS_INVALID(x) \ 2401 (GET_FLAG(x.flags, \ 2402 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ 2403 (T_ETH_MAC_COMMAND_INVALIDATE)) 2404 2405/* Number of u32 elements in MC hash array */ 2406#define MC_HASH_SIZE 8 2407#define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ 2408 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) 2409 2410#ifndef PXP2_REG_PXP2_INT_STS 2411#define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 2412#endif 2413 2414#ifndef ETH_MAX_RX_CLIENTS_E2 2415#define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H 2416#endif 2417 2418#define VENDOR_ID_LEN 4 2419 2420#define VF_ACQUIRE_THRESH 3 2421#define VF_ACQUIRE_MAC_FILTERS 1 2422#define VF_ACQUIRE_MC_FILTERS 10 2423#define VF_ACQUIRE_VLAN_FILTERS 2 /* VLAN0 + 'real' VLAN */ 2424 2425#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ 2426 (!((me_reg) & ME_REG_VF_ERR))) 2427int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); 2428 2429/* Congestion management fairness mode */ 2430#define CMNG_FNS_NONE 0 2431#define CMNG_FNS_MINMAX 1 2432 2433#define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ 2434#define HC_SEG_ACCESS_ATTN 4 2435#define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ 2436 2437void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); 2438void bnx2x_notify_link_changed(struct bnx2x *bp); 2439 2440#define BNX2X_MF_SD_PROTOCOL(bp) \ 2441 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) 2442 2443#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ 2444 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) 2445 2446#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ 2447 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) 2448 2449#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) 2450#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) 2451#define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp)) 2452 2453#define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp)) 2454 2455#define BNX2X_MF_EXT_PROTOCOL_MASK \ 2456 (MACP_FUNC_CFG_FLAGS_ETHERNET | \ 2457 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \ 2458 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2459 2460#define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \ 2461 BNX2X_MF_EXT_PROTOCOL_MASK) 2462 2463#define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \ 2464 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2465 2466#define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \ 2467 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2468 2469#define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \ 2470 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) 2471 2472#define IS_MF_FCOE_AFEX(bp) \ 2473 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)) 2474 2475#define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \ 2476 (IS_MF_SD(bp) && \ 2477 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ 2478 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 2479 2480#define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \ 2481 (IS_MF_SI(bp) && \ 2482 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \ 2483 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))) 2484 2485#define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \ 2486 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \ 2487 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp)) 2488 2489/* Determines whether BW configuration arrives in 100Mb units or in 2490 * percentages from actual physical link speed. 2491 */ 2492#define IS_MF_PERCENT_BW(bp) (IS_MF_SI(bp) || IS_MF_UFP(bp) || IS_MF_BD(bp)) 2493 2494#define SET_FLAG(value, mask, flag) \ 2495 do {\ 2496 (value) &= ~(mask);\ 2497 (value) |= ((flag) << (mask##_SHIFT));\ 2498 } while (0) 2499 2500#define GET_FLAG(value, mask) \ 2501 (((value) & (mask)) >> (mask##_SHIFT)) 2502 2503#define GET_FIELD(value, fname) \ 2504 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 2505 2506enum { 2507 SWITCH_UPDATE, 2508 AFEX_UPDATE, 2509}; 2510 2511#define NUM_MACS 8 2512 2513void bnx2x_set_local_cmng(struct bnx2x *bp); 2514 2515void bnx2x_update_mng_version(struct bnx2x *bp); 2516 2517void bnx2x_update_mfw_dump(struct bnx2x *bp); 2518 2519#define MCPR_SCRATCH_BASE(bp) \ 2520 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 2521 2522#define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) 2523 2524void bnx2x_init_ptp(struct bnx2x *bp); 2525int bnx2x_configure_ptp_filters(struct bnx2x *bp); 2526void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb); 2527void bnx2x_register_phc(struct bnx2x *bp); 2528 2529#define BNX2X_MAX_PHC_DRIFT 31000000 2530#define BNX2X_PTP_TX_TIMEOUT 2531 2532/* Re-configure all previously configured vlan filters. 2533 * Meant for implicit re-load flows. 2534 */ 2535int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp); 2536#endif /* bnx2x.h */