bnxt_hwrm.c (26536B)
1/* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2020 Broadcom Limited 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10#include <asm/byteorder.h> 11#include <linux/dma-mapping.h> 12#include <linux/dmapool.h> 13#include <linux/errno.h> 14#include <linux/ethtool.h> 15#include <linux/if_ether.h> 16#include <linux/io.h> 17#include <linux/irq.h> 18#include <linux/kernel.h> 19#include <linux/list.h> 20#include <linux/netdevice.h> 21#include <linux/pci.h> 22#include <linux/skbuff.h> 23 24#include "bnxt_hsi.h" 25#include "bnxt.h" 26#include "bnxt_hwrm.h" 27 28static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type) 29{ 30 return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL; 31} 32 33/** 34 * __hwrm_req_init() - Initialize an HWRM request. 35 * @bp: The driver context. 36 * @req: A pointer to the request pointer to initialize. 37 * @req_type: The request type. This will be converted to the little endian 38 * before being written to the req_type field of the returned request. 39 * @req_len: The length of the request to be allocated. 40 * 41 * Allocate DMA resources and initialize a new HWRM request object of the 42 * given type. The response address field in the request is configured with 43 * the DMA bus address that has been mapped for the response and the passed 44 * request is pointed to kernel virtual memory mapped for the request (such 45 * that short_input indirection can be accomplished without copying). The 46 * request’s target and completion ring are initialized to default values and 47 * can be overridden by writing to the returned request object directly. 48 * 49 * The initialized request can be further customized by writing to its fields 50 * directly, taking care to covert such fields to little endian. The request 51 * object will be consumed (and all its associated resources release) upon 52 * passing it to hwrm_req_send() unless ownership of the request has been 53 * claimed by the caller via a call to hwrm_req_hold(). If the request is not 54 * consumed, either because it is never sent or because ownership has been 55 * claimed, then it must be released by a call to hwrm_req_drop(). 56 * 57 * Return: zero on success, negative error code otherwise: 58 * E2BIG: the type of request pointer is too large to fit. 59 * ENOMEM: an allocation failure occurred. 60 */ 61int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len) 62{ 63 struct bnxt_hwrm_ctx *ctx; 64 dma_addr_t dma_handle; 65 u8 *req_addr; 66 67 if (req_len > BNXT_HWRM_CTX_OFFSET) 68 return -E2BIG; 69 70 req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO, 71 &dma_handle); 72 if (!req_addr) 73 return -ENOMEM; 74 75 ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET); 76 /* safety first, sentinel used to check for invalid requests */ 77 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); 78 ctx->req_len = req_len; 79 ctx->req = (struct input *)req_addr; 80 ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET); 81 ctx->dma_handle = dma_handle; 82 ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */ 83 ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT; 84 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; 85 ctx->gfp = GFP_KERNEL; 86 ctx->slice_addr = NULL; 87 88 /* initialize common request fields */ 89 ctx->req->req_type = cpu_to_le16(req_type); 90 ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET); 91 ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING); 92 ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET); 93 *req = ctx->req; 94 95 return 0; 96} 97 98static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr) 99{ 100 void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET; 101 struct input *req = (struct input *)req_addr; 102 struct bnxt_hwrm_ctx *ctx = ctx_addr; 103 u64 sentinel; 104 105 if (!req) { 106 /* can only be due to software bug, be loud */ 107 netdev_err(bp->dev, "null HWRM request"); 108 dump_stack(); 109 return NULL; 110 } 111 112 /* HWRM API has no type safety, verify sentinel to validate address */ 113 sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type)); 114 if (ctx->sentinel != sentinel) { 115 /* can only be due to software bug, be loud */ 116 netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n", 117 (u32)le16_to_cpu(req->req_type)); 118 dump_stack(); 119 return NULL; 120 } 121 122 return ctx; 123} 124 125/** 126 * hwrm_req_timeout() - Set the completion timeout for the request. 127 * @bp: The driver context. 128 * @req: The request to set the timeout. 129 * @timeout: The timeout in milliseconds. 130 * 131 * Set the timeout associated with the request for subsequent calls to 132 * hwrm_req_send(). Some requests are long running and require a different 133 * timeout than the default. 134 */ 135void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout) 136{ 137 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 138 139 if (ctx) 140 ctx->timeout = timeout; 141} 142 143/** 144 * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices. 145 * @bp: The driver context. 146 * @req: The request for which calls to hwrm_req_dma_slice() will have altered 147 * allocation flags. 148 * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent() 149 * whenever it is used to allocate backing memory for slices. Note that 150 * calls to hwrm_req_dma_slice() will not always result in new allocations, 151 * however, memory suballocated from the request buffer is already 152 * __GFP_ZERO. 153 * 154 * Sets the GFP allocation flags associated with the request for subsequent 155 * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO 156 * for slice allocations. 157 */ 158void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp) 159{ 160 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 161 162 if (ctx) 163 ctx->gfp = gfp; 164} 165 166/** 167 * hwrm_req_replace() - Replace request data. 168 * @bp: The driver context. 169 * @req: The request to modify. A call to hwrm_req_replace() is conceptually 170 * an assignment of new_req to req. Subsequent calls to HWRM API functions, 171 * such as hwrm_req_send(), should thus use req and not new_req (in fact, 172 * calls to HWRM API functions will fail if non-managed request objects 173 * are passed). 174 * @len: The length of new_req. 175 * @new_req: The pre-built request to copy or reference. 176 * 177 * Replaces the request data in req with that of new_req. This is useful in 178 * scenarios where a request object has already been constructed by a third 179 * party prior to creating a resource managed request using hwrm_req_init(). 180 * Depending on the length, hwrm_req_replace() will either copy the new 181 * request data into the DMA memory allocated for req, or it will simply 182 * reference the new request and use it in lieu of req during subsequent 183 * calls to hwrm_req_send(). The resource management is associated with 184 * req and is independent of and does not apply to new_req. The caller must 185 * ensure that the lifetime of new_req is least as long as req. Any slices 186 * that may have been associated with the original request are released. 187 * 188 * Return: zero on success, negative error code otherwise: 189 * E2BIG: Request is too large. 190 * EINVAL: Invalid request to modify. 191 */ 192int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len) 193{ 194 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 195 struct input *internal_req = req; 196 u16 req_type; 197 198 if (!ctx) 199 return -EINVAL; 200 201 if (len > BNXT_HWRM_CTX_OFFSET) 202 return -E2BIG; 203 204 /* free any existing slices */ 205 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; 206 if (ctx->slice_addr) { 207 dma_free_coherent(&bp->pdev->dev, ctx->slice_size, 208 ctx->slice_addr, ctx->slice_handle); 209 ctx->slice_addr = NULL; 210 } 211 ctx->gfp = GFP_KERNEL; 212 213 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) { 214 memcpy(internal_req, new_req, len); 215 } else { 216 internal_req->req_type = ((struct input *)new_req)->req_type; 217 ctx->req = new_req; 218 } 219 220 ctx->req_len = len; 221 ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle + 222 BNXT_HWRM_RESP_OFFSET); 223 224 /* update sentinel for potentially new request type */ 225 req_type = le16_to_cpu(internal_req->req_type); 226 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); 227 228 return 0; 229} 230 231/** 232 * hwrm_req_flags() - Set non internal flags of the ctx 233 * @bp: The driver context. 234 * @req: The request containing the HWRM command 235 * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set 236 * 237 * ctx flags can be used by the callers to instruct how the subsequent 238 * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags 239 * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send() 240 * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout 241 * even if FW is not responding. 242 * This generic function can be used to set any flag that is not an internal flag 243 * of the HWRM module. 244 */ 245void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags) 246{ 247 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 248 249 if (ctx) 250 ctx->flags |= (flags & HWRM_API_FLAGS); 251} 252 253/** 254 * hwrm_req_hold() - Claim ownership of the request's resources. 255 * @bp: The driver context. 256 * @req: A pointer to the request to own. The request will no longer be 257 * consumed by calls to hwrm_req_send(). 258 * 259 * Take ownership of the request. Ownership places responsibility on the 260 * caller to free the resources associated with the request via a call to 261 * hwrm_req_drop(). The caller taking ownership implies that a subsequent 262 * call to hwrm_req_send() will not consume the request (ie. sending will 263 * not free the associated resources if the request is owned by the caller). 264 * Taking ownership returns a reference to the response. Retaining and 265 * accessing the response data is the most common reason to take ownership 266 * of the request. Ownership can also be acquired in order to reuse the same 267 * request object across multiple invocations of hwrm_req_send(). 268 * 269 * Return: A pointer to the response object. 270 * 271 * The resources associated with the response will remain available to the 272 * caller until ownership of the request is relinquished via a call to 273 * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if 274 * a valid request is provided. A returned NULL value would imply a driver 275 * bug and the implementation will complain loudly in the logs to aid in 276 * detection. It should not be necessary to check the result for NULL. 277 */ 278void *hwrm_req_hold(struct bnxt *bp, void *req) 279{ 280 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 281 struct input *input = (struct input *)req; 282 283 if (!ctx) 284 return NULL; 285 286 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) { 287 /* can only be due to software bug, be loud */ 288 netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n", 289 (u32)le16_to_cpu(input->req_type)); 290 dump_stack(); 291 return NULL; 292 } 293 294 ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED; 295 return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET; 296} 297 298static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) 299{ 300 void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET; 301 dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */ 302 303 /* unmap any auxiliary DMA slice */ 304 if (ctx->slice_addr) 305 dma_free_coherent(&bp->pdev->dev, ctx->slice_size, 306 ctx->slice_addr, ctx->slice_handle); 307 308 /* invalidate, ensure ownership, sentinel and dma_handle are cleared */ 309 memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx)); 310 311 /* return the buffer to the DMA pool */ 312 if (dma_handle) 313 dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle); 314} 315 316/** 317 * hwrm_req_drop() - Release all resources associated with the request. 318 * @bp: The driver context. 319 * @req: The request to consume, releasing the associated resources. The 320 * request object, any slices, and its associated response are no 321 * longer valid. 322 * 323 * It is legal to call hwrm_req_drop() on an unowned request, provided it 324 * has not already been consumed by hwrm_req_send() (for example, to release 325 * an aborted request). A given request should not be dropped more than once, 326 * nor should it be dropped after having been consumed by hwrm_req_send(). To 327 * do so is an error (the context will not be found and a stack trace will be 328 * rendered in the kernel log). 329 */ 330void hwrm_req_drop(struct bnxt *bp, void *req) 331{ 332 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 333 334 if (ctx) 335 __hwrm_ctx_drop(bp, ctx); 336} 337 338static int __hwrm_to_stderr(u32 hwrm_err) 339{ 340 switch (hwrm_err) { 341 case HWRM_ERR_CODE_SUCCESS: 342 return 0; 343 case HWRM_ERR_CODE_RESOURCE_LOCKED: 344 return -EROFS; 345 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 346 return -EACCES; 347 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 348 return -ENOSPC; 349 case HWRM_ERR_CODE_INVALID_PARAMS: 350 case HWRM_ERR_CODE_INVALID_FLAGS: 351 case HWRM_ERR_CODE_INVALID_ENABLES: 352 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 353 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 354 return -EINVAL; 355 case HWRM_ERR_CODE_NO_BUFFER: 356 return -ENOMEM; 357 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 358 case HWRM_ERR_CODE_BUSY: 359 return -EAGAIN; 360 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 361 return -EOPNOTSUPP; 362 case HWRM_ERR_CODE_PF_UNAVAILABLE: 363 return -ENODEV; 364 default: 365 return -EIO; 366 } 367} 368 369static struct bnxt_hwrm_wait_token * 370__hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst) 371{ 372 struct bnxt_hwrm_wait_token *token; 373 374 token = kzalloc(sizeof(*token), GFP_KERNEL); 375 if (!token) 376 return NULL; 377 378 mutex_lock(&bp->hwrm_cmd_lock); 379 380 token->dst = dst; 381 token->state = BNXT_HWRM_PENDING; 382 if (dst == BNXT_HWRM_CHNL_CHIMP) { 383 token->seq_id = bp->hwrm_cmd_seq++; 384 hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list); 385 } else { 386 token->seq_id = bp->hwrm_cmd_kong_seq++; 387 } 388 389 return token; 390} 391 392static void 393__hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token) 394{ 395 if (token->dst == BNXT_HWRM_CHNL_CHIMP) { 396 hlist_del_rcu(&token->node); 397 kfree_rcu(token, rcu); 398 } else { 399 kfree(token); 400 } 401 mutex_unlock(&bp->hwrm_cmd_lock); 402} 403 404void 405hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state) 406{ 407 struct bnxt_hwrm_wait_token *token; 408 409 rcu_read_lock(); 410 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) { 411 if (token->seq_id == seq_id) { 412 WRITE_ONCE(token->state, state); 413 rcu_read_unlock(); 414 return; 415 } 416 } 417 rcu_read_unlock(); 418 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 419} 420 421static void hwrm_req_dbg(struct bnxt *bp, struct input *req) 422{ 423 u32 ring = le16_to_cpu(req->cmpl_ring); 424 u32 type = le16_to_cpu(req->req_type); 425 u32 tgt = le16_to_cpu(req->target_id); 426 u32 seq = le16_to_cpu(req->seq_id); 427 char opt[32] = "\n"; 428 429 if (unlikely(ring != (u16)BNXT_HWRM_NO_CMPL_RING)) 430 snprintf(opt, 16, " ring %d\n", ring); 431 432 if (unlikely(tgt != BNXT_HWRM_TARGET)) 433 snprintf(opt + strlen(opt) - 1, 16, " tgt 0x%x\n", tgt); 434 435 netdev_dbg(bp->dev, "sent hwrm req_type 0x%x seq id 0x%x%s", 436 type, seq, opt); 437} 438 439#define hwrm_err(bp, ctx, fmt, ...) \ 440 do { \ 441 if ((ctx)->flags & BNXT_HWRM_CTX_SILENT) \ 442 netdev_dbg((bp)->dev, fmt, __VA_ARGS__); \ 443 else \ 444 netdev_err((bp)->dev, fmt, __VA_ARGS__); \ 445 } while (0) 446 447static bool hwrm_wait_must_abort(struct bnxt *bp, u32 req_type, u32 *fw_status) 448{ 449 if (req_type == HWRM_VER_GET) 450 return false; 451 452 if (!bp->fw_health || !bp->fw_health->status_reliable) 453 return false; 454 455 *fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 456 return *fw_status && !BNXT_FW_IS_HEALTHY(*fw_status); 457} 458 459static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) 460{ 461 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 462 enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP; 463 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 464 struct bnxt_hwrm_wait_token *token = NULL; 465 struct hwrm_short_input short_input = {0}; 466 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 467 unsigned int i, timeout, tmo_count; 468 u32 *data = (u32 *)ctx->req; 469 u32 msg_len = ctx->req_len; 470 u32 req_type, sts; 471 int rc = -EBUSY; 472 u16 len = 0; 473 u8 *valid; 474 475 if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY) 476 memset(ctx->resp, 0, PAGE_SIZE); 477 478 req_type = le16_to_cpu(ctx->req->req_type); 479 if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET) { 480 netdev_dbg(bp->dev, "hwrm req_type 0x%x skipped, FW channel down\n", 481 req_type); 482 goto exit; 483 } 484 485 if (msg_len > BNXT_HWRM_MAX_REQ_LEN && 486 msg_len > bp->hwrm_max_ext_req_len) { 487 rc = -E2BIG; 488 goto exit; 489 } 490 491 if (bnxt_kong_hwrm_message(bp, ctx->req)) { 492 dst = BNXT_HWRM_CHNL_KONG; 493 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 494 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 495 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { 496 netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n", 497 req_type); 498 rc = -EINVAL; 499 goto exit; 500 } 501 } 502 503 token = __hwrm_acquire_token(bp, dst); 504 if (!token) { 505 rc = -ENOMEM; 506 goto exit; 507 } 508 ctx->req->seq_id = cpu_to_le16(token->seq_id); 509 510 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 511 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 512 short_input.req_type = ctx->req->req_type; 513 short_input.signature = 514 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 515 short_input.size = cpu_to_le16(msg_len); 516 short_input.req_addr = cpu_to_le64(ctx->dma_handle); 517 518 data = (u32 *)&short_input; 519 msg_len = sizeof(short_input); 520 521 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 522 } 523 524 /* Ensure any associated DMA buffers are written before doorbell */ 525 wmb(); 526 527 /* Write request msg to hwrm channel */ 528 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 529 530 for (i = msg_len; i < max_req_len; i += 4) 531 writel(0, bp->bar0 + bar_offset + i); 532 533 /* Ring channel doorbell */ 534 writel(1, bp->bar0 + doorbell_offset); 535 536 hwrm_req_dbg(bp, ctx->req); 537 538 if (!pci_is_enabled(bp->pdev)) { 539 rc = -ENODEV; 540 goto exit; 541 } 542 543 /* Limit timeout to an upper limit */ 544 timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT); 545 /* convert timeout to usec */ 546 timeout *= 1000; 547 548 i = 0; 549 /* Short timeout for the first few iterations: 550 * number of loops = number of loops for short timeout + 551 * number of loops for standard timeout. 552 */ 553 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 554 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 555 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 556 557 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { 558 /* Wait until hwrm response cmpl interrupt is processed */ 559 while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE && 560 i++ < tmo_count) { 561 /* Abort the wait for completion if the FW health 562 * check has failed. 563 */ 564 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 565 goto exit; 566 /* on first few passes, just barely sleep */ 567 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 568 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 569 HWRM_SHORT_MAX_TIMEOUT); 570 } else { 571 if (hwrm_wait_must_abort(bp, req_type, &sts)) { 572 hwrm_err(bp, ctx, "Resp cmpl intr abandoning msg: 0x%x due to firmware status: 0x%x\n", 573 req_type, sts); 574 goto exit; 575 } 576 usleep_range(HWRM_MIN_TIMEOUT, 577 HWRM_MAX_TIMEOUT); 578 } 579 } 580 581 if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) { 582 hwrm_err(bp, ctx, "Resp cmpl intr err msg: 0x%x\n", 583 req_type); 584 goto exit; 585 } 586 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); 587 valid = ((u8 *)ctx->resp) + len - 1; 588 } else { 589 __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */ 590 int j; 591 592 /* Check if response len is updated */ 593 for (i = 0; i < tmo_count; i++) { 594 /* Abort the wait for completion if the FW health 595 * check has failed. 596 */ 597 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 598 goto exit; 599 600 if (token && 601 READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) { 602 __hwrm_release_token(bp, token); 603 token = NULL; 604 } 605 606 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); 607 if (len) { 608 __le16 resp_seq = READ_ONCE(ctx->resp->seq_id); 609 610 if (resp_seq == ctx->req->seq_id) 611 break; 612 if (resp_seq != seen_out_of_seq) { 613 netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n", 614 le16_to_cpu(resp_seq), 615 req_type, 616 le16_to_cpu(ctx->req->seq_id)); 617 seen_out_of_seq = resp_seq; 618 } 619 } 620 621 /* on first few passes, just barely sleep */ 622 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 623 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 624 HWRM_SHORT_MAX_TIMEOUT); 625 } else { 626 if (hwrm_wait_must_abort(bp, req_type, &sts)) { 627 hwrm_err(bp, ctx, "Abandoning msg {0x%x 0x%x} len: %d due to firmware status: 0x%x\n", 628 req_type, 629 le16_to_cpu(ctx->req->seq_id), 630 len, sts); 631 goto exit; 632 } 633 usleep_range(HWRM_MIN_TIMEOUT, 634 HWRM_MAX_TIMEOUT); 635 } 636 } 637 638 if (i >= tmo_count) { 639 hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n", 640 hwrm_total_timeout(i), req_type, 641 le16_to_cpu(ctx->req->seq_id), len); 642 goto exit; 643 } 644 645 /* Last byte of resp contains valid bit */ 646 valid = ((u8 *)ctx->resp) + len - 1; 647 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) { 648 /* make sure we read from updated DMA memory */ 649 dma_rmb(); 650 if (*valid) 651 break; 652 if (j < 10) { 653 udelay(1); 654 j++; 655 } else { 656 usleep_range(20, 30); 657 j += 20; 658 } 659 } 660 661 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 662 hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n", 663 hwrm_total_timeout(i) + j, req_type, 664 le16_to_cpu(ctx->req->seq_id), len, *valid); 665 goto exit; 666 } 667 } 668 669 /* Zero valid bit for compatibility. Valid bit in an older spec 670 * may become a new field in a newer spec. We must make sure that 671 * a new field not implemented by old spec will read zero. 672 */ 673 *valid = 0; 674 rc = le16_to_cpu(ctx->resp->error_code); 675 if (rc == HWRM_ERR_CODE_BUSY && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) 676 netdev_warn(bp->dev, "FW returned busy, hwrm req_type 0x%x\n", 677 req_type); 678 else if (rc && rc != HWRM_ERR_CODE_PF_UNAVAILABLE) 679 hwrm_err(bp, ctx, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 680 req_type, token->seq_id, rc); 681 rc = __hwrm_to_stderr(rc); 682exit: 683 if (token) 684 __hwrm_release_token(bp, token); 685 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) 686 ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY; 687 else 688 __hwrm_ctx_drop(bp, ctx); 689 return rc; 690} 691 692/** 693 * hwrm_req_send() - Execute an HWRM command. 694 * @bp: The driver context. 695 * @req: A pointer to the request to send. The DMA resources associated with 696 * the request will be released (ie. the request will be consumed) unless 697 * ownership of the request has been assumed by the caller via a call to 698 * hwrm_req_hold(). 699 * 700 * Send an HWRM request to the device and wait for a response. The request is 701 * consumed if it is not owned by the caller. This function will block until 702 * the request has either completed or times out due to an error. 703 * 704 * Return: A result code. 705 * 706 * The result is zero on success, otherwise the negative error code indicates 707 * one of the following errors: 708 * E2BIG: The request was too large. 709 * EBUSY: The firmware is in a fatal state or the request timed out 710 * EACCESS: HWRM access denied. 711 * ENOSPC: HWRM resource allocation error. 712 * EINVAL: Request parameters are invalid. 713 * ENOMEM: HWRM has no buffers. 714 * EAGAIN: HWRM busy or reset in progress. 715 * EOPNOTSUPP: Invalid request type. 716 * EIO: Any other error. 717 * Error handling is orthogonal to request ownership. An unowned request will 718 * still be consumed on error. If the caller owns the request, then the caller 719 * is responsible for releasing the resources. Otherwise, hwrm_req_send() will 720 * always consume the request. 721 */ 722int hwrm_req_send(struct bnxt *bp, void *req) 723{ 724 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 725 726 if (!ctx) 727 return -EINVAL; 728 729 return __hwrm_send(bp, ctx); 730} 731 732/** 733 * hwrm_req_send_silent() - A silent version of hwrm_req_send(). 734 * @bp: The driver context. 735 * @req: The request to send without logging. 736 * 737 * The same as hwrm_req_send(), except that the request is silenced using 738 * hwrm_req_silence() prior the call. This version of the function is 739 * provided solely to preserve the legacy API’s flavor for this functionality. 740 * 741 * Return: A result code, see hwrm_req_send(). 742 */ 743int hwrm_req_send_silent(struct bnxt *bp, void *req) 744{ 745 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); 746 return hwrm_req_send(bp, req); 747} 748 749/** 750 * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory. 751 * @bp: The driver context. 752 * @req: The request for which indirect data will be associated. 753 * @size: The size of the allocation. 754 * @dma_handle: The bus address associated with the allocation. The HWRM API has 755 * no knowledge about the type of the request and so cannot infer how the 756 * caller intends to use the indirect data. Thus, the caller is 757 * responsible for configuring the request object appropriately to 758 * point to the associated indirect memory. Note, DMA handle has the 759 * same definition as it does in dma_alloc_coherent(), the caller is 760 * responsible for endian conversions via cpu_to_le64() before assigning 761 * this address. 762 * 763 * Allocates DMA mapped memory for indirect data related to a request. The 764 * lifetime of the DMA resources will be bound to that of the request (ie. 765 * they will be automatically released when the request is either consumed by 766 * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are 767 * efficiently suballocated out of the request buffer space, hence the name 768 * slice, while larger requests are satisfied via an underlying call to 769 * dma_alloc_coherent(). Multiple suballocations are supported, however, only 770 * one externally mapped region is. 771 * 772 * Return: The kernel virtual address of the DMA mapping. 773 */ 774void * 775hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle) 776{ 777 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 778 u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE; 779 struct input *input = req; 780 u8 *addr, *req_addr = req; 781 u32 max_offset, offset; 782 783 if (!ctx) 784 return NULL; 785 786 max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated; 787 offset = max_offset - size; 788 offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN); 789 addr = req_addr + offset; 790 791 if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) { 792 ctx->allocated = end - addr; 793 *dma_handle = ctx->dma_handle + offset; 794 return addr; 795 } 796 797 /* could not suballocate from ctx buffer, try create a new mapping */ 798 if (ctx->slice_addr) { 799 /* if one exists, can only be due to software bug, be loud */ 800 netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n", 801 (u32)le16_to_cpu(input->req_type)); 802 dump_stack(); 803 return NULL; 804 } 805 806 addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp); 807 808 if (!addr) 809 return NULL; 810 811 ctx->slice_addr = addr; 812 ctx->slice_size = size; 813 ctx->slice_handle = *dma_handle; 814 815 return addr; 816}