cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nicvf_queues.c (52518B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2015 Cavium, Inc.
      4 */
      5
      6#include <linux/pci.h>
      7#include <linux/netdevice.h>
      8#include <linux/ip.h>
      9#include <linux/etherdevice.h>
     10#include <linux/iommu.h>
     11#include <net/ip.h>
     12#include <net/tso.h>
     13#include <uapi/linux/bpf.h>
     14
     15#include "nic_reg.h"
     16#include "nic.h"
     17#include "q_struct.h"
     18#include "nicvf_queues.h"
     19
     20static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
     21					       int size, u64 data);
     22static void nicvf_get_page(struct nicvf *nic)
     23{
     24	if (!nic->rb_pageref || !nic->rb_page)
     25		return;
     26
     27	page_ref_add(nic->rb_page, nic->rb_pageref);
     28	nic->rb_pageref = 0;
     29}
     30
     31/* Poll a register for a specific value */
     32static int nicvf_poll_reg(struct nicvf *nic, int qidx,
     33			  u64 reg, int bit_pos, int bits, int val)
     34{
     35	u64 bit_mask;
     36	u64 reg_val;
     37	int timeout = 10;
     38
     39	bit_mask = (1ULL << bits) - 1;
     40	bit_mask = (bit_mask << bit_pos);
     41
     42	while (timeout) {
     43		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
     44		if (((reg_val & bit_mask) >> bit_pos) == val)
     45			return 0;
     46		usleep_range(1000, 2000);
     47		timeout--;
     48	}
     49	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
     50	return 1;
     51}
     52
     53/* Allocate memory for a queue's descriptors */
     54static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
     55				  int q_len, int desc_size, int align_bytes)
     56{
     57	dmem->q_len = q_len;
     58	dmem->size = (desc_size * q_len) + align_bytes;
     59	/* Save address, need it while freeing */
     60	dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
     61						&dmem->dma, GFP_KERNEL);
     62	if (!dmem->unalign_base)
     63		return -ENOMEM;
     64
     65	/* Align memory address for 'align_bytes' */
     66	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
     67	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
     68	return 0;
     69}
     70
     71/* Free queue's descriptor memory */
     72static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
     73{
     74	if (!dmem)
     75		return;
     76
     77	dma_free_coherent(&nic->pdev->dev, dmem->size,
     78			  dmem->unalign_base, dmem->dma);
     79	dmem->unalign_base = NULL;
     80	dmem->base = NULL;
     81}
     82
     83#define XDP_PAGE_REFCNT_REFILL 256
     84
     85/* Allocate a new page or recycle one if possible
     86 *
     87 * We cannot optimize dma mapping here, since
     88 * 1. It's only one RBDR ring for 8 Rx queues.
     89 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
     90 *    and not idx into RBDR ring, so can't refer to saved info.
     91 * 3. There are multiple receive buffers per page
     92 */
     93static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
     94					       struct rbdr *rbdr, gfp_t gfp)
     95{
     96	int ref_count;
     97	struct page *page = NULL;
     98	struct pgcache *pgcache, *next;
     99
    100	/* Check if page is already allocated */
    101	pgcache = &rbdr->pgcache[rbdr->pgidx];
    102	page = pgcache->page;
    103	/* Check if page can be recycled */
    104	if (page) {
    105		ref_count = page_ref_count(page);
    106		/* This page can be recycled if internal ref_count and page's
    107		 * ref_count are equal, indicating that the page has been used
    108		 * once for packet transmission. For non-XDP mode, internal
    109		 * ref_count is always '1'.
    110		 */
    111		if (rbdr->is_xdp) {
    112			if (ref_count == pgcache->ref_count)
    113				pgcache->ref_count--;
    114			else
    115				page = NULL;
    116		} else if (ref_count != 1) {
    117			page = NULL;
    118		}
    119	}
    120
    121	if (!page) {
    122		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
    123		if (!page)
    124			return NULL;
    125
    126		this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
    127
    128		/* Check for space */
    129		if (rbdr->pgalloc >= rbdr->pgcnt) {
    130			/* Page can still be used */
    131			nic->rb_page = page;
    132			return NULL;
    133		}
    134
    135		/* Save the page in page cache */
    136		pgcache->page = page;
    137		pgcache->dma_addr = 0;
    138		pgcache->ref_count = 0;
    139		rbdr->pgalloc++;
    140	}
    141
    142	/* Take additional page references for recycling */
    143	if (rbdr->is_xdp) {
    144		/* Since there is single RBDR (i.e single core doing
    145		 * page recycling) per 8 Rx queues, in XDP mode adjusting
    146		 * page references atomically is the biggest bottleneck, so
    147		 * take bunch of references at a time.
    148		 *
    149		 * So here, below reference counts defer by '1'.
    150		 */
    151		if (!pgcache->ref_count) {
    152			pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
    153			page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
    154		}
    155	} else {
    156		/* In non-XDP case, single 64K page is divided across multiple
    157		 * receive buffers, so cost of recycling is less anyway.
    158		 * So we can do with just one extra reference.
    159		 */
    160		page_ref_add(page, 1);
    161	}
    162
    163	rbdr->pgidx++;
    164	rbdr->pgidx &= (rbdr->pgcnt - 1);
    165
    166	/* Prefetch refcount of next page in page cache */
    167	next = &rbdr->pgcache[rbdr->pgidx];
    168	page = next->page;
    169	if (page)
    170		prefetch(&page->_refcount);
    171
    172	return pgcache;
    173}
    174
    175/* Allocate buffer for packet reception */
    176static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
    177					 gfp_t gfp, u32 buf_len, u64 *rbuf)
    178{
    179	struct pgcache *pgcache = NULL;
    180
    181	/* Check if request can be accomodated in previous allocated page.
    182	 * But in XDP mode only one buffer per page is permitted.
    183	 */
    184	if (!rbdr->is_xdp && nic->rb_page &&
    185	    ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
    186		nic->rb_pageref++;
    187		goto ret;
    188	}
    189
    190	nicvf_get_page(nic);
    191	nic->rb_page = NULL;
    192
    193	/* Get new page, either recycled or new one */
    194	pgcache = nicvf_alloc_page(nic, rbdr, gfp);
    195	if (!pgcache && !nic->rb_page) {
    196		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
    197		return -ENOMEM;
    198	}
    199
    200	nic->rb_page_offset = 0;
    201
    202	/* Reserve space for header modifications by BPF program */
    203	if (rbdr->is_xdp)
    204		buf_len += XDP_PACKET_HEADROOM;
    205
    206	/* Check if it's recycled */
    207	if (pgcache)
    208		nic->rb_page = pgcache->page;
    209ret:
    210	if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
    211		*rbuf = pgcache->dma_addr;
    212	} else {
    213		/* HW will ensure data coherency, CPU sync not required */
    214		*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
    215						nic->rb_page_offset, buf_len,
    216						DMA_FROM_DEVICE,
    217						DMA_ATTR_SKIP_CPU_SYNC);
    218		if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
    219			if (!nic->rb_page_offset)
    220				__free_pages(nic->rb_page, 0);
    221			nic->rb_page = NULL;
    222			return -ENOMEM;
    223		}
    224		if (pgcache)
    225			pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
    226		nic->rb_page_offset += buf_len;
    227	}
    228
    229	return 0;
    230}
    231
    232/* Build skb around receive buffer */
    233static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
    234					   u64 rb_ptr, int len)
    235{
    236	void *data;
    237	struct sk_buff *skb;
    238
    239	data = phys_to_virt(rb_ptr);
    240
    241	/* Now build an skb to give to stack */
    242	skb = build_skb(data, RCV_FRAG_LEN);
    243	if (!skb) {
    244		put_page(virt_to_page(data));
    245		return NULL;
    246	}
    247
    248	prefetch(skb->data);
    249	return skb;
    250}
    251
    252/* Allocate RBDR ring and populate receive buffers */
    253static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
    254			    int ring_len, int buf_size)
    255{
    256	int idx;
    257	u64 rbuf;
    258	struct rbdr_entry_t *desc;
    259	int err;
    260
    261	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
    262				     sizeof(struct rbdr_entry_t),
    263				     NICVF_RCV_BUF_ALIGN_BYTES);
    264	if (err)
    265		return err;
    266
    267	rbdr->desc = rbdr->dmem.base;
    268	/* Buffer size has to be in multiples of 128 bytes */
    269	rbdr->dma_size = buf_size;
    270	rbdr->enable = true;
    271	rbdr->thresh = RBDR_THRESH;
    272	rbdr->head = 0;
    273	rbdr->tail = 0;
    274
    275	/* Initialize page recycling stuff.
    276	 *
    277	 * Can't use single buffer per page especially with 64K pages.
    278	 * On embedded platforms i.e 81xx/83xx available memory itself
    279	 * is low and minimum ring size of RBDR is 8K, that takes away
    280	 * lots of memory.
    281	 *
    282	 * But for XDP it has to be a single buffer per page.
    283	 */
    284	if (!nic->pnicvf->xdp_prog) {
    285		rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
    286		rbdr->is_xdp = false;
    287	} else {
    288		rbdr->pgcnt = ring_len;
    289		rbdr->is_xdp = true;
    290	}
    291	rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
    292	rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
    293				GFP_KERNEL);
    294	if (!rbdr->pgcache)
    295		return -ENOMEM;
    296	rbdr->pgidx = 0;
    297	rbdr->pgalloc = 0;
    298
    299	nic->rb_page = NULL;
    300	for (idx = 0; idx < ring_len; idx++) {
    301		err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
    302					     RCV_FRAG_LEN, &rbuf);
    303		if (err) {
    304			/* To free already allocated and mapped ones */
    305			rbdr->tail = idx - 1;
    306			return err;
    307		}
    308
    309		desc = GET_RBDR_DESC(rbdr, idx);
    310		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
    311	}
    312
    313	nicvf_get_page(nic);
    314
    315	return 0;
    316}
    317
    318/* Free RBDR ring and its receive buffers */
    319static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
    320{
    321	int head, tail;
    322	u64 buf_addr, phys_addr;
    323	struct pgcache *pgcache;
    324	struct rbdr_entry_t *desc;
    325
    326	if (!rbdr)
    327		return;
    328
    329	rbdr->enable = false;
    330	if (!rbdr->dmem.base)
    331		return;
    332
    333	head = rbdr->head;
    334	tail = rbdr->tail;
    335
    336	/* Release page references */
    337	while (head != tail) {
    338		desc = GET_RBDR_DESC(rbdr, head);
    339		buf_addr = desc->buf_addr;
    340		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
    341		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
    342				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
    343		if (phys_addr)
    344			put_page(virt_to_page(phys_to_virt(phys_addr)));
    345		head++;
    346		head &= (rbdr->dmem.q_len - 1);
    347	}
    348	/* Release buffer of tail desc */
    349	desc = GET_RBDR_DESC(rbdr, tail);
    350	buf_addr = desc->buf_addr;
    351	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
    352	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
    353			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
    354	if (phys_addr)
    355		put_page(virt_to_page(phys_to_virt(phys_addr)));
    356
    357	/* Sync page cache info */
    358	smp_rmb();
    359
    360	/* Release additional page references held for recycling */
    361	head = 0;
    362	while (head < rbdr->pgcnt) {
    363		pgcache = &rbdr->pgcache[head];
    364		if (pgcache->page && page_ref_count(pgcache->page) != 0) {
    365			if (rbdr->is_xdp) {
    366				page_ref_sub(pgcache->page,
    367					     pgcache->ref_count - 1);
    368			}
    369			put_page(pgcache->page);
    370		}
    371		head++;
    372	}
    373
    374	/* Free RBDR ring */
    375	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
    376}
    377
    378/* Refill receive buffer descriptors with new buffers.
    379 */
    380static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
    381{
    382	struct queue_set *qs = nic->qs;
    383	int rbdr_idx = qs->rbdr_cnt;
    384	int tail, qcount;
    385	int refill_rb_cnt;
    386	struct rbdr *rbdr;
    387	struct rbdr_entry_t *desc;
    388	u64 rbuf;
    389	int new_rb = 0;
    390
    391refill:
    392	if (!rbdr_idx)
    393		return;
    394	rbdr_idx--;
    395	rbdr = &qs->rbdr[rbdr_idx];
    396	/* Check if it's enabled */
    397	if (!rbdr->enable)
    398		goto next_rbdr;
    399
    400	/* Get no of desc's to be refilled */
    401	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
    402	qcount &= 0x7FFFF;
    403	/* Doorbell can be ringed with a max of ring size minus 1 */
    404	if (qcount >= (qs->rbdr_len - 1))
    405		goto next_rbdr;
    406	else
    407		refill_rb_cnt = qs->rbdr_len - qcount - 1;
    408
    409	/* Sync page cache info */
    410	smp_rmb();
    411
    412	/* Start filling descs from tail */
    413	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
    414	while (refill_rb_cnt) {
    415		tail++;
    416		tail &= (rbdr->dmem.q_len - 1);
    417
    418		if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
    419			break;
    420
    421		desc = GET_RBDR_DESC(rbdr, tail);
    422		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
    423		refill_rb_cnt--;
    424		new_rb++;
    425	}
    426
    427	nicvf_get_page(nic);
    428
    429	/* make sure all memory stores are done before ringing doorbell */
    430	smp_wmb();
    431
    432	/* Check if buffer allocation failed */
    433	if (refill_rb_cnt)
    434		nic->rb_alloc_fail = true;
    435	else
    436		nic->rb_alloc_fail = false;
    437
    438	/* Notify HW */
    439	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
    440			      rbdr_idx, new_rb);
    441next_rbdr:
    442	/* Re-enable RBDR interrupts only if buffer allocation is success */
    443	if (!nic->rb_alloc_fail && rbdr->enable &&
    444	    netif_running(nic->pnicvf->netdev))
    445		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
    446
    447	if (rbdr_idx)
    448		goto refill;
    449}
    450
    451/* Alloc rcv buffers in non-atomic mode for better success */
    452void nicvf_rbdr_work(struct work_struct *work)
    453{
    454	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
    455
    456	nicvf_refill_rbdr(nic, GFP_KERNEL);
    457	if (nic->rb_alloc_fail)
    458		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
    459	else
    460		nic->rb_work_scheduled = false;
    461}
    462
    463/* In Softirq context, alloc rcv buffers in atomic mode */
    464void nicvf_rbdr_task(struct tasklet_struct *t)
    465{
    466	struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
    467
    468	nicvf_refill_rbdr(nic, GFP_ATOMIC);
    469	if (nic->rb_alloc_fail) {
    470		nic->rb_work_scheduled = true;
    471		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
    472	}
    473}
    474
    475/* Initialize completion queue */
    476static int nicvf_init_cmp_queue(struct nicvf *nic,
    477				struct cmp_queue *cq, int q_len)
    478{
    479	int err;
    480
    481	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
    482				     NICVF_CQ_BASE_ALIGN_BYTES);
    483	if (err)
    484		return err;
    485
    486	cq->desc = cq->dmem.base;
    487	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
    488	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
    489
    490	return 0;
    491}
    492
    493static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
    494{
    495	if (!cq)
    496		return;
    497	if (!cq->dmem.base)
    498		return;
    499
    500	nicvf_free_q_desc_mem(nic, &cq->dmem);
    501}
    502
    503/* Initialize transmit queue */
    504static int nicvf_init_snd_queue(struct nicvf *nic,
    505				struct snd_queue *sq, int q_len, int qidx)
    506{
    507	int err;
    508
    509	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
    510				     NICVF_SQ_BASE_ALIGN_BYTES);
    511	if (err)
    512		return err;
    513
    514	sq->desc = sq->dmem.base;
    515	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
    516	if (!sq->skbuff)
    517		return -ENOMEM;
    518
    519	sq->head = 0;
    520	sq->tail = 0;
    521	sq->thresh = SND_QUEUE_THRESH;
    522
    523	/* Check if this SQ is a XDP TX queue */
    524	if (nic->sqs_mode)
    525		qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
    526	if (qidx < nic->pnicvf->xdp_tx_queues) {
    527		/* Alloc memory to save page pointers for XDP_TX */
    528		sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
    529		if (!sq->xdp_page)
    530			return -ENOMEM;
    531		sq->xdp_desc_cnt = 0;
    532		sq->xdp_free_cnt = q_len - 1;
    533		sq->is_xdp = true;
    534	} else {
    535		sq->xdp_page = NULL;
    536		sq->xdp_desc_cnt = 0;
    537		sq->xdp_free_cnt = 0;
    538		sq->is_xdp = false;
    539
    540		atomic_set(&sq->free_cnt, q_len - 1);
    541
    542		/* Preallocate memory for TSO segment's header */
    543		sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
    544						  q_len * TSO_HEADER_SIZE,
    545						  &sq->tso_hdrs_phys,
    546						  GFP_KERNEL);
    547		if (!sq->tso_hdrs)
    548			return -ENOMEM;
    549	}
    550
    551	return 0;
    552}
    553
    554void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
    555			      int hdr_sqe, u8 subdesc_cnt)
    556{
    557	u8 idx;
    558	struct sq_gather_subdesc *gather;
    559
    560	/* Unmap DMA mapped skb data buffers */
    561	for (idx = 0; idx < subdesc_cnt; idx++) {
    562		hdr_sqe++;
    563		hdr_sqe &= (sq->dmem.q_len - 1);
    564		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
    565		/* HW will ensure data coherency, CPU sync not required */
    566		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
    567				     gather->size, DMA_TO_DEVICE,
    568				     DMA_ATTR_SKIP_CPU_SYNC);
    569	}
    570}
    571
    572static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
    573{
    574	struct sk_buff *skb;
    575	struct page *page;
    576	struct sq_hdr_subdesc *hdr;
    577	struct sq_hdr_subdesc *tso_sqe;
    578
    579	if (!sq)
    580		return;
    581	if (!sq->dmem.base)
    582		return;
    583
    584	if (sq->tso_hdrs) {
    585		dma_free_coherent(&nic->pdev->dev,
    586				  sq->dmem.q_len * TSO_HEADER_SIZE,
    587				  sq->tso_hdrs, sq->tso_hdrs_phys);
    588		sq->tso_hdrs = NULL;
    589	}
    590
    591	/* Free pending skbs in the queue */
    592	smp_rmb();
    593	while (sq->head != sq->tail) {
    594		skb = (struct sk_buff *)sq->skbuff[sq->head];
    595		if (!skb || !sq->xdp_page)
    596			goto next;
    597
    598		page = (struct page *)sq->xdp_page[sq->head];
    599		if (!page)
    600			goto next;
    601		else
    602			put_page(page);
    603
    604		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
    605		/* Check for dummy descriptor used for HW TSO offload on 88xx */
    606		if (hdr->dont_send) {
    607			/* Get actual TSO descriptors and unmap them */
    608			tso_sqe =
    609			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
    610			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
    611						 tso_sqe->subdesc_cnt);
    612		} else {
    613			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
    614						 hdr->subdesc_cnt);
    615		}
    616		if (skb)
    617			dev_kfree_skb_any(skb);
    618next:
    619		sq->head++;
    620		sq->head &= (sq->dmem.q_len - 1);
    621	}
    622	kfree(sq->skbuff);
    623	kfree(sq->xdp_page);
    624	nicvf_free_q_desc_mem(nic, &sq->dmem);
    625}
    626
    627static void nicvf_reclaim_snd_queue(struct nicvf *nic,
    628				    struct queue_set *qs, int qidx)
    629{
    630	/* Disable send queue */
    631	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
    632	/* Check if SQ is stopped */
    633	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
    634		return;
    635	/* Reset send queue */
    636	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
    637}
    638
    639static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
    640				    struct queue_set *qs, int qidx)
    641{
    642	union nic_mbx mbx = {};
    643
    644	/* Make sure all packets in the pipeline are written back into mem */
    645	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
    646	nicvf_send_msg_to_pf(nic, &mbx);
    647}
    648
    649static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
    650				    struct queue_set *qs, int qidx)
    651{
    652	/* Disable timer threshold (doesn't get reset upon CQ reset */
    653	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
    654	/* Disable completion queue */
    655	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
    656	/* Reset completion queue */
    657	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
    658}
    659
    660static void nicvf_reclaim_rbdr(struct nicvf *nic,
    661			       struct rbdr *rbdr, int qidx)
    662{
    663	u64 tmp, fifo_state;
    664	int timeout = 10;
    665
    666	/* Save head and tail pointers for feeing up buffers */
    667	rbdr->head = nicvf_queue_reg_read(nic,
    668					  NIC_QSET_RBDR_0_1_HEAD,
    669					  qidx) >> 3;
    670	rbdr->tail = nicvf_queue_reg_read(nic,
    671					  NIC_QSET_RBDR_0_1_TAIL,
    672					  qidx) >> 3;
    673
    674	/* If RBDR FIFO is in 'FAIL' state then do a reset first
    675	 * before relaiming.
    676	 */
    677	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
    678	if (((fifo_state >> 62) & 0x03) == 0x3)
    679		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
    680				      qidx, NICVF_RBDR_RESET);
    681
    682	/* Disable RBDR */
    683	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
    684	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
    685		return;
    686	while (1) {
    687		tmp = nicvf_queue_reg_read(nic,
    688					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
    689					   qidx);
    690		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
    691			break;
    692		usleep_range(1000, 2000);
    693		timeout--;
    694		if (!timeout) {
    695			netdev_err(nic->netdev,
    696				   "Failed polling on prefetch status\n");
    697			return;
    698		}
    699	}
    700	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
    701			      qidx, NICVF_RBDR_RESET);
    702
    703	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
    704		return;
    705	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
    706	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
    707		return;
    708}
    709
    710void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
    711{
    712	u64 rq_cfg;
    713	int sqs;
    714
    715	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
    716
    717	/* Enable first VLAN stripping */
    718	if (features & NETIF_F_HW_VLAN_CTAG_RX)
    719		rq_cfg |= (1ULL << 25);
    720	else
    721		rq_cfg &= ~(1ULL << 25);
    722	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
    723
    724	/* Configure Secondary Qsets, if any */
    725	for (sqs = 0; sqs < nic->sqs_count; sqs++)
    726		if (nic->snicvf[sqs])
    727			nicvf_queue_reg_write(nic->snicvf[sqs],
    728					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
    729}
    730
    731static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
    732{
    733	union nic_mbx mbx = {};
    734
    735	/* Reset all RQ/SQ and VF stats */
    736	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
    737	mbx.reset_stat.rx_stat_mask = 0x3FFF;
    738	mbx.reset_stat.tx_stat_mask = 0x1F;
    739	mbx.reset_stat.rq_stat_mask = 0xFFFF;
    740	mbx.reset_stat.sq_stat_mask = 0xFFFF;
    741	nicvf_send_msg_to_pf(nic, &mbx);
    742}
    743
    744/* Configures receive queue */
    745static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
    746				   int qidx, bool enable)
    747{
    748	union nic_mbx mbx = {};
    749	struct rcv_queue *rq;
    750	struct rq_cfg rq_cfg;
    751
    752	rq = &qs->rq[qidx];
    753	rq->enable = enable;
    754
    755	/* Disable receive queue */
    756	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
    757
    758	if (!rq->enable) {
    759		nicvf_reclaim_rcv_queue(nic, qs, qidx);
    760		xdp_rxq_info_unreg(&rq->xdp_rxq);
    761		return;
    762	}
    763
    764	rq->cq_qs = qs->vnic_id;
    765	rq->cq_idx = qidx;
    766	rq->start_rbdr_qs = qs->vnic_id;
    767	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
    768	rq->cont_rbdr_qs = qs->vnic_id;
    769	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
    770	/* all writes of RBDR data to be loaded into L2 Cache as well*/
    771	rq->caching = 1;
    772
    773	/* Driver have no proper error path for failed XDP RX-queue info reg */
    774	WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
    775
    776	/* Send a mailbox msg to PF to config RQ */
    777	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
    778	mbx.rq.qs_num = qs->vnic_id;
    779	mbx.rq.rq_num = qidx;
    780	mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
    781			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
    782			  (rq->cont_qs_rbdr_idx << 8) |
    783			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
    784	nicvf_send_msg_to_pf(nic, &mbx);
    785
    786	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
    787	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
    788		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
    789		     (qs->vnic_id << 0);
    790	nicvf_send_msg_to_pf(nic, &mbx);
    791
    792	/* RQ drop config
    793	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
    794	 */
    795	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
    796	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
    797		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
    798		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
    799	nicvf_send_msg_to_pf(nic, &mbx);
    800
    801	if (!nic->sqs_mode && (qidx == 0)) {
    802		/* Enable checking L3/L4 length and TCP/UDP checksums
    803		 * Also allow IPv6 pkts with zero UDP checksum.
    804		 */
    805		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
    806				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
    807		nicvf_config_vlan_stripping(nic, nic->netdev->features);
    808	}
    809
    810	/* Enable Receive queue */
    811	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
    812	rq_cfg.ena = 1;
    813	rq_cfg.tcp_ena = 0;
    814	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
    815}
    816
    817/* Configures completion queue */
    818void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
    819			    int qidx, bool enable)
    820{
    821	struct cmp_queue *cq;
    822	struct cq_cfg cq_cfg;
    823
    824	cq = &qs->cq[qidx];
    825	cq->enable = enable;
    826
    827	if (!cq->enable) {
    828		nicvf_reclaim_cmp_queue(nic, qs, qidx);
    829		return;
    830	}
    831
    832	/* Reset completion queue */
    833	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
    834
    835	if (!cq->enable)
    836		return;
    837
    838	spin_lock_init(&cq->lock);
    839	/* Set completion queue base address */
    840	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
    841			      qidx, (u64)(cq->dmem.phys_base));
    842
    843	/* Enable Completion queue */
    844	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
    845	cq_cfg.ena = 1;
    846	cq_cfg.reset = 0;
    847	cq_cfg.caching = 0;
    848	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
    849	cq_cfg.avg_con = 0;
    850	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
    851
    852	/* Set threshold value for interrupt generation */
    853	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
    854	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
    855			      qidx, CMP_QUEUE_TIMER_THRESH);
    856}
    857
    858/* Configures transmit queue */
    859static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
    860				   int qidx, bool enable)
    861{
    862	union nic_mbx mbx = {};
    863	struct snd_queue *sq;
    864	struct sq_cfg sq_cfg;
    865
    866	sq = &qs->sq[qidx];
    867	sq->enable = enable;
    868
    869	if (!sq->enable) {
    870		nicvf_reclaim_snd_queue(nic, qs, qidx);
    871		return;
    872	}
    873
    874	/* Reset send queue */
    875	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
    876
    877	sq->cq_qs = qs->vnic_id;
    878	sq->cq_idx = qidx;
    879
    880	/* Send a mailbox msg to PF to config SQ */
    881	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
    882	mbx.sq.qs_num = qs->vnic_id;
    883	mbx.sq.sq_num = qidx;
    884	mbx.sq.sqs_mode = nic->sqs_mode;
    885	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
    886	nicvf_send_msg_to_pf(nic, &mbx);
    887
    888	/* Set queue base address */
    889	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
    890			      qidx, (u64)(sq->dmem.phys_base));
    891
    892	/* Enable send queue  & set queue size */
    893	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
    894	sq_cfg.ena = 1;
    895	sq_cfg.reset = 0;
    896	sq_cfg.ldwb = 0;
    897	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
    898	sq_cfg.tstmp_bgx_intf = 0;
    899	/* CQ's level at which HW will stop processing SQEs to avoid
    900	 * transmitting a pkt with no space in CQ to post CQE_TX.
    901	 */
    902	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
    903	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
    904
    905	/* Set threshold value for interrupt generation */
    906	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
    907
    908	/* Set queue:cpu affinity for better load distribution */
    909	if (cpu_online(qidx)) {
    910		cpumask_set_cpu(qidx, &sq->affinity_mask);
    911		netif_set_xps_queue(nic->netdev,
    912				    &sq->affinity_mask, qidx);
    913	}
    914}
    915
    916/* Configures receive buffer descriptor ring */
    917static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
    918			      int qidx, bool enable)
    919{
    920	struct rbdr *rbdr;
    921	struct rbdr_cfg rbdr_cfg;
    922
    923	rbdr = &qs->rbdr[qidx];
    924	nicvf_reclaim_rbdr(nic, rbdr, qidx);
    925	if (!enable)
    926		return;
    927
    928	/* Set descriptor base address */
    929	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
    930			      qidx, (u64)(rbdr->dmem.phys_base));
    931
    932	/* Enable RBDR  & set queue size */
    933	/* Buffer size should be in multiples of 128 bytes */
    934	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
    935	rbdr_cfg.ena = 1;
    936	rbdr_cfg.reset = 0;
    937	rbdr_cfg.ldwb = 0;
    938	rbdr_cfg.qsize = RBDR_SIZE;
    939	rbdr_cfg.avg_con = 0;
    940	rbdr_cfg.lines = rbdr->dma_size / 128;
    941	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
    942			      qidx, *(u64 *)&rbdr_cfg);
    943
    944	/* Notify HW */
    945	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
    946			      qidx, qs->rbdr_len - 1);
    947
    948	/* Set threshold value for interrupt generation */
    949	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
    950			      qidx, rbdr->thresh - 1);
    951}
    952
    953/* Requests PF to assign and enable Qset */
    954void nicvf_qset_config(struct nicvf *nic, bool enable)
    955{
    956	union nic_mbx mbx = {};
    957	struct queue_set *qs = nic->qs;
    958	struct qs_cfg *qs_cfg;
    959
    960	if (!qs) {
    961		netdev_warn(nic->netdev,
    962			    "Qset is still not allocated, don't init queues\n");
    963		return;
    964	}
    965
    966	qs->enable = enable;
    967	qs->vnic_id = nic->vf_id;
    968
    969	/* Send a mailbox msg to PF to config Qset */
    970	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
    971	mbx.qs.num = qs->vnic_id;
    972	mbx.qs.sqs_count = nic->sqs_count;
    973
    974	mbx.qs.cfg = 0;
    975	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
    976	if (qs->enable) {
    977		qs_cfg->ena = 1;
    978#ifdef __BIG_ENDIAN
    979		qs_cfg->be = 1;
    980#endif
    981		qs_cfg->vnic = qs->vnic_id;
    982		/* Enable Tx timestamping capability */
    983		if (nic->ptp_clock)
    984			qs_cfg->send_tstmp_ena = 1;
    985	}
    986	nicvf_send_msg_to_pf(nic, &mbx);
    987}
    988
    989static void nicvf_free_resources(struct nicvf *nic)
    990{
    991	int qidx;
    992	struct queue_set *qs = nic->qs;
    993
    994	/* Free receive buffer descriptor ring */
    995	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
    996		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
    997
    998	/* Free completion queue */
    999	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
   1000		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
   1001
   1002	/* Free send queue */
   1003	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
   1004		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
   1005}
   1006
   1007static int nicvf_alloc_resources(struct nicvf *nic)
   1008{
   1009	int qidx;
   1010	struct queue_set *qs = nic->qs;
   1011
   1012	/* Alloc receive buffer descriptor ring */
   1013	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
   1014		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
   1015				    DMA_BUFFER_LEN))
   1016			goto alloc_fail;
   1017	}
   1018
   1019	/* Alloc send queue */
   1020	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
   1021		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
   1022			goto alloc_fail;
   1023	}
   1024
   1025	/* Alloc completion queue */
   1026	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
   1027		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
   1028			goto alloc_fail;
   1029	}
   1030
   1031	return 0;
   1032alloc_fail:
   1033	nicvf_free_resources(nic);
   1034	return -ENOMEM;
   1035}
   1036
   1037int nicvf_set_qset_resources(struct nicvf *nic)
   1038{
   1039	struct queue_set *qs;
   1040
   1041	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
   1042	if (!qs)
   1043		return -ENOMEM;
   1044	nic->qs = qs;
   1045
   1046	/* Set count of each queue */
   1047	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
   1048	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
   1049	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
   1050	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
   1051
   1052	/* Set queue lengths */
   1053	qs->rbdr_len = RCV_BUF_COUNT;
   1054	qs->sq_len = SND_QUEUE_LEN;
   1055	qs->cq_len = CMP_QUEUE_LEN;
   1056
   1057	nic->rx_queues = qs->rq_cnt;
   1058	nic->tx_queues = qs->sq_cnt;
   1059	nic->xdp_tx_queues = 0;
   1060
   1061	return 0;
   1062}
   1063
   1064int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
   1065{
   1066	bool disable = false;
   1067	struct queue_set *qs = nic->qs;
   1068	struct queue_set *pqs = nic->pnicvf->qs;
   1069	int qidx;
   1070
   1071	if (!qs)
   1072		return 0;
   1073
   1074	/* Take primary VF's queue lengths.
   1075	 * This is needed to take queue lengths set from ethtool
   1076	 * into consideration.
   1077	 */
   1078	if (nic->sqs_mode && pqs) {
   1079		qs->cq_len = pqs->cq_len;
   1080		qs->sq_len = pqs->sq_len;
   1081	}
   1082
   1083	if (enable) {
   1084		if (nicvf_alloc_resources(nic))
   1085			return -ENOMEM;
   1086
   1087		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
   1088			nicvf_snd_queue_config(nic, qs, qidx, enable);
   1089		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
   1090			nicvf_cmp_queue_config(nic, qs, qidx, enable);
   1091		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
   1092			nicvf_rbdr_config(nic, qs, qidx, enable);
   1093		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
   1094			nicvf_rcv_queue_config(nic, qs, qidx, enable);
   1095	} else {
   1096		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
   1097			nicvf_rcv_queue_config(nic, qs, qidx, disable);
   1098		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
   1099			nicvf_rbdr_config(nic, qs, qidx, disable);
   1100		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
   1101			nicvf_snd_queue_config(nic, qs, qidx, disable);
   1102		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
   1103			nicvf_cmp_queue_config(nic, qs, qidx, disable);
   1104
   1105		nicvf_free_resources(nic);
   1106	}
   1107
   1108	/* Reset RXQ's stats.
   1109	 * SQ's stats will get reset automatically once SQ is reset.
   1110	 */
   1111	nicvf_reset_rcv_queue_stats(nic);
   1112
   1113	return 0;
   1114}
   1115
   1116/* Get a free desc from SQ
   1117 * returns descriptor ponter & descriptor number
   1118 */
   1119static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
   1120{
   1121	int qentry;
   1122
   1123	qentry = sq->tail;
   1124	if (!sq->is_xdp)
   1125		atomic_sub(desc_cnt, &sq->free_cnt);
   1126	else
   1127		sq->xdp_free_cnt -= desc_cnt;
   1128	sq->tail += desc_cnt;
   1129	sq->tail &= (sq->dmem.q_len - 1);
   1130
   1131	return qentry;
   1132}
   1133
   1134/* Rollback to previous tail pointer when descriptors not used */
   1135static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
   1136					  int qentry, int desc_cnt)
   1137{
   1138	sq->tail = qentry;
   1139	atomic_add(desc_cnt, &sq->free_cnt);
   1140}
   1141
   1142/* Free descriptor back to SQ for future use */
   1143void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
   1144{
   1145	if (!sq->is_xdp)
   1146		atomic_add(desc_cnt, &sq->free_cnt);
   1147	else
   1148		sq->xdp_free_cnt += desc_cnt;
   1149	sq->head += desc_cnt;
   1150	sq->head &= (sq->dmem.q_len - 1);
   1151}
   1152
   1153static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
   1154{
   1155	qentry++;
   1156	qentry &= (sq->dmem.q_len - 1);
   1157	return qentry;
   1158}
   1159
   1160void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
   1161{
   1162	u64 sq_cfg;
   1163
   1164	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
   1165	sq_cfg |= NICVF_SQ_EN;
   1166	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
   1167	/* Ring doorbell so that H/W restarts processing SQEs */
   1168	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
   1169}
   1170
   1171void nicvf_sq_disable(struct nicvf *nic, int qidx)
   1172{
   1173	u64 sq_cfg;
   1174
   1175	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
   1176	sq_cfg &= ~NICVF_SQ_EN;
   1177	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
   1178}
   1179
   1180void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
   1181			      int qidx)
   1182{
   1183	u64 head;
   1184	struct sk_buff *skb;
   1185	struct nicvf *nic = netdev_priv(netdev);
   1186	struct sq_hdr_subdesc *hdr;
   1187
   1188	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
   1189	while (sq->head != head) {
   1190		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
   1191		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
   1192			nicvf_put_sq_desc(sq, 1);
   1193			continue;
   1194		}
   1195		skb = (struct sk_buff *)sq->skbuff[sq->head];
   1196		if (skb)
   1197			dev_kfree_skb_any(skb);
   1198		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
   1199		atomic64_add(hdr->tot_len,
   1200			     (atomic64_t *)&netdev->stats.tx_bytes);
   1201		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
   1202	}
   1203}
   1204
   1205/* XDP Transmit APIs */
   1206void nicvf_xdp_sq_doorbell(struct nicvf *nic,
   1207			   struct snd_queue *sq, int sq_num)
   1208{
   1209	if (!sq->xdp_desc_cnt)
   1210		return;
   1211
   1212	/* make sure all memory stores are done before ringing doorbell */
   1213	wmb();
   1214
   1215	/* Inform HW to xmit all TSO segments */
   1216	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
   1217			      sq_num, sq->xdp_desc_cnt);
   1218	sq->xdp_desc_cnt = 0;
   1219}
   1220
   1221static inline void
   1222nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
   1223			     int subdesc_cnt, u64 data, int len)
   1224{
   1225	struct sq_hdr_subdesc *hdr;
   1226
   1227	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
   1228	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
   1229	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
   1230	hdr->subdesc_cnt = subdesc_cnt;
   1231	hdr->tot_len = len;
   1232	hdr->post_cqe = 1;
   1233	sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
   1234}
   1235
   1236int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
   1237			    u64 bufaddr, u64 dma_addr, u16 len)
   1238{
   1239	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
   1240	int qentry;
   1241
   1242	if (subdesc_cnt > sq->xdp_free_cnt)
   1243		return 0;
   1244
   1245	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
   1246
   1247	nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
   1248
   1249	qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1250	nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
   1251
   1252	sq->xdp_desc_cnt += subdesc_cnt;
   1253
   1254	return 1;
   1255}
   1256
   1257/* Calculate no of SQ subdescriptors needed to transmit all
   1258 * segments of this TSO packet.
   1259 * Taken from 'Tilera network driver' with a minor modification.
   1260 */
   1261static int nicvf_tso_count_subdescs(struct sk_buff *skb)
   1262{
   1263	struct skb_shared_info *sh = skb_shinfo(skb);
   1264	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
   1265	unsigned int data_len = skb->len - sh_len;
   1266	unsigned int p_len = sh->gso_size;
   1267	long f_id = -1;    /* id of the current fragment */
   1268	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
   1269	long f_used = 0;  /* bytes used from the current fragment */
   1270	long n;            /* size of the current piece of payload */
   1271	int num_edescs = 0;
   1272	int segment;
   1273
   1274	for (segment = 0; segment < sh->gso_segs; segment++) {
   1275		unsigned int p_used = 0;
   1276
   1277		/* One edesc for header and for each piece of the payload. */
   1278		for (num_edescs++; p_used < p_len; num_edescs++) {
   1279			/* Advance as needed. */
   1280			while (f_used >= f_size) {
   1281				f_id++;
   1282				f_size = skb_frag_size(&sh->frags[f_id]);
   1283				f_used = 0;
   1284			}
   1285
   1286			/* Use bytes from the current fragment. */
   1287			n = p_len - p_used;
   1288			if (n > f_size - f_used)
   1289				n = f_size - f_used;
   1290			f_used += n;
   1291			p_used += n;
   1292		}
   1293
   1294		/* The last segment may be less than gso_size. */
   1295		data_len -= p_len;
   1296		if (data_len < p_len)
   1297			p_len = data_len;
   1298	}
   1299
   1300	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
   1301	return num_edescs + sh->gso_segs;
   1302}
   1303
   1304#define POST_CQE_DESC_COUNT 2
   1305
   1306/* Get the number of SQ descriptors needed to xmit this skb */
   1307static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
   1308{
   1309	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
   1310
   1311	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
   1312		subdesc_cnt = nicvf_tso_count_subdescs(skb);
   1313		return subdesc_cnt;
   1314	}
   1315
   1316	/* Dummy descriptors to get TSO pkt completion notification */
   1317	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
   1318		subdesc_cnt += POST_CQE_DESC_COUNT;
   1319
   1320	if (skb_shinfo(skb)->nr_frags)
   1321		subdesc_cnt += skb_shinfo(skb)->nr_frags;
   1322
   1323	return subdesc_cnt;
   1324}
   1325
   1326/* Add SQ HEADER subdescriptor.
   1327 * First subdescriptor for every send descriptor.
   1328 */
   1329static inline void
   1330nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
   1331			 int subdesc_cnt, struct sk_buff *skb, int len)
   1332{
   1333	int proto;
   1334	struct sq_hdr_subdesc *hdr;
   1335	union {
   1336		struct iphdr *v4;
   1337		struct ipv6hdr *v6;
   1338		unsigned char *hdr;
   1339	} ip;
   1340
   1341	ip.hdr = skb_network_header(skb);
   1342	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
   1343	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
   1344	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
   1345
   1346	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
   1347		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
   1348		 * segment transmitted on 88xx.
   1349		 */
   1350		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
   1351	} else {
   1352		sq->skbuff[qentry] = (u64)skb;
   1353		/* Enable notification via CQE after processing SQE */
   1354		hdr->post_cqe = 1;
   1355		/* No of subdescriptors following this */
   1356		hdr->subdesc_cnt = subdesc_cnt;
   1357	}
   1358	hdr->tot_len = len;
   1359
   1360	/* Offload checksum calculation to HW */
   1361	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1362		if (ip.v4->version == 4)
   1363			hdr->csum_l3 = 1; /* Enable IP csum calculation */
   1364		hdr->l3_offset = skb_network_offset(skb);
   1365		hdr->l4_offset = skb_transport_offset(skb);
   1366
   1367		proto = (ip.v4->version == 4) ? ip.v4->protocol :
   1368			ip.v6->nexthdr;
   1369
   1370		switch (proto) {
   1371		case IPPROTO_TCP:
   1372			hdr->csum_l4 = SEND_L4_CSUM_TCP;
   1373			break;
   1374		case IPPROTO_UDP:
   1375			hdr->csum_l4 = SEND_L4_CSUM_UDP;
   1376			break;
   1377		case IPPROTO_SCTP:
   1378			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
   1379			break;
   1380		}
   1381	}
   1382
   1383	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
   1384		hdr->tso = 1;
   1385		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
   1386		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
   1387		/* For non-tunneled pkts, point this to L2 ethertype */
   1388		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
   1389		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
   1390	}
   1391
   1392	/* Check if timestamp is requested */
   1393	if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
   1394		skb_tx_timestamp(skb);
   1395		return;
   1396	}
   1397
   1398	/* Tx timestamping not supported along with TSO, so ignore request */
   1399	if (skb_shinfo(skb)->gso_size)
   1400		return;
   1401
   1402	/* HW supports only a single outstanding packet to timestamp */
   1403	if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
   1404		return;
   1405
   1406	/* Mark the SKB for later reference */
   1407	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
   1408
   1409	/* Finally enable timestamp generation
   1410	 * Since 'post_cqe' is also set, two CQEs will be posted
   1411	 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
   1412	 */
   1413	hdr->tstmp = 1;
   1414}
   1415
   1416/* SQ GATHER subdescriptor
   1417 * Must follow HDR descriptor
   1418 */
   1419static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
   1420					       int size, u64 data)
   1421{
   1422	struct sq_gather_subdesc *gather;
   1423
   1424	qentry &= (sq->dmem.q_len - 1);
   1425	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
   1426
   1427	memset(gather, 0, SND_QUEUE_DESC_SIZE);
   1428	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
   1429	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
   1430	gather->size = size;
   1431	gather->addr = data;
   1432}
   1433
   1434/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
   1435 * packet so that a CQE is posted as a notifation for transmission of
   1436 * TSO packet.
   1437 */
   1438static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
   1439					    int tso_sqe, struct sk_buff *skb)
   1440{
   1441	struct sq_imm_subdesc *imm;
   1442	struct sq_hdr_subdesc *hdr;
   1443
   1444	sq->skbuff[qentry] = (u64)skb;
   1445
   1446	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
   1447	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
   1448	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
   1449	/* Enable notification via CQE after processing SQE */
   1450	hdr->post_cqe = 1;
   1451	/* There is no packet to transmit here */
   1452	hdr->dont_send = 1;
   1453	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
   1454	hdr->tot_len = 1;
   1455	/* Actual TSO header SQE index, needed for cleanup */
   1456	hdr->rsvd2 = tso_sqe;
   1457
   1458	qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1459	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
   1460	memset(imm, 0, SND_QUEUE_DESC_SIZE);
   1461	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
   1462	imm->len = 1;
   1463}
   1464
   1465static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
   1466				     int sq_num, int desc_cnt)
   1467{
   1468	struct netdev_queue *txq;
   1469
   1470	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
   1471				  skb_get_queue_mapping(skb));
   1472
   1473	netdev_tx_sent_queue(txq, skb->len);
   1474
   1475	/* make sure all memory stores are done before ringing doorbell */
   1476	smp_wmb();
   1477
   1478	/* Inform HW to xmit all TSO segments */
   1479	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
   1480			      sq_num, desc_cnt);
   1481}
   1482
   1483/* Segment a TSO packet into 'gso_size' segments and append
   1484 * them to SQ for transfer
   1485 */
   1486static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
   1487			       int sq_num, int qentry, struct sk_buff *skb)
   1488{
   1489	struct tso_t tso;
   1490	int seg_subdescs = 0, desc_cnt = 0;
   1491	int seg_len, total_len, data_left;
   1492	int hdr_qentry = qentry;
   1493	int hdr_len;
   1494
   1495	hdr_len = tso_start(skb, &tso);
   1496
   1497	total_len = skb->len - hdr_len;
   1498	while (total_len > 0) {
   1499		char *hdr;
   1500
   1501		/* Save Qentry for adding HDR_SUBDESC at the end */
   1502		hdr_qentry = qentry;
   1503
   1504		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
   1505		total_len -= data_left;
   1506
   1507		/* Add segment's header */
   1508		qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1509		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
   1510		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
   1511		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
   1512					    sq->tso_hdrs_phys +
   1513					    qentry * TSO_HEADER_SIZE);
   1514		/* HDR_SUDESC + GATHER */
   1515		seg_subdescs = 2;
   1516		seg_len = hdr_len;
   1517
   1518		/* Add segment's payload fragments */
   1519		while (data_left > 0) {
   1520			int size;
   1521
   1522			size = min_t(int, tso.size, data_left);
   1523
   1524			qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1525			nicvf_sq_add_gather_subdesc(sq, qentry, size,
   1526						    virt_to_phys(tso.data));
   1527			seg_subdescs++;
   1528			seg_len += size;
   1529
   1530			data_left -= size;
   1531			tso_build_data(skb, &tso, size);
   1532		}
   1533		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
   1534					 seg_subdescs - 1, skb, seg_len);
   1535		sq->skbuff[hdr_qentry] = (u64)NULL;
   1536		qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1537
   1538		desc_cnt += seg_subdescs;
   1539	}
   1540	/* Save SKB in the last segment for freeing */
   1541	sq->skbuff[hdr_qentry] = (u64)skb;
   1542
   1543	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
   1544
   1545	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
   1546	return 1;
   1547}
   1548
   1549/* Append an skb to a SQ for packet transfer. */
   1550int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
   1551			struct sk_buff *skb, u8 sq_num)
   1552{
   1553	int i, size;
   1554	int subdesc_cnt, hdr_sqe = 0;
   1555	int qentry;
   1556	u64 dma_addr;
   1557
   1558	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
   1559	if (subdesc_cnt > atomic_read(&sq->free_cnt))
   1560		goto append_fail;
   1561
   1562	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
   1563
   1564	/* Check if its a TSO packet */
   1565	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
   1566		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
   1567
   1568	/* Add SQ header subdesc */
   1569	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
   1570				 skb, skb->len);
   1571	hdr_sqe = qentry;
   1572
   1573	/* Add SQ gather subdescs */
   1574	qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1575	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
   1576	/* HW will ensure data coherency, CPU sync not required */
   1577	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
   1578				      offset_in_page(skb->data), size,
   1579				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
   1580	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
   1581		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
   1582		return 0;
   1583	}
   1584
   1585	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
   1586
   1587	/* Check for scattered buffer */
   1588	if (!skb_is_nonlinear(skb))
   1589		goto doorbell;
   1590
   1591	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
   1592		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
   1593
   1594		qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1595		size = skb_frag_size(frag);
   1596		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
   1597					      skb_frag_page(frag),
   1598					      skb_frag_off(frag), size,
   1599					      DMA_TO_DEVICE,
   1600					      DMA_ATTR_SKIP_CPU_SYNC);
   1601		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
   1602			/* Free entire chain of mapped buffers
   1603			 * here 'i' = frags mapped + above mapped skb->data
   1604			 */
   1605			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
   1606			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
   1607			return 0;
   1608		}
   1609		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
   1610	}
   1611
   1612doorbell:
   1613	if (nic->t88 && skb_shinfo(skb)->gso_size) {
   1614		qentry = nicvf_get_nxt_sqentry(sq, qentry);
   1615		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
   1616	}
   1617
   1618	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
   1619
   1620	return 1;
   1621
   1622append_fail:
   1623	/* Use original PCI dev for debug log */
   1624	nic = nic->pnicvf;
   1625	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
   1626	return 0;
   1627}
   1628
   1629static inline unsigned frag_num(unsigned i)
   1630{
   1631#ifdef __BIG_ENDIAN
   1632	return (i & ~3) + 3 - (i & 3);
   1633#else
   1634	return i;
   1635#endif
   1636}
   1637
   1638static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
   1639				   u64 buf_addr, bool xdp)
   1640{
   1641	struct page *page = NULL;
   1642	int len = RCV_FRAG_LEN;
   1643
   1644	if (xdp) {
   1645		page = virt_to_page(phys_to_virt(buf_addr));
   1646		/* Check if it's a recycled page, if not
   1647		 * unmap the DMA mapping.
   1648		 *
   1649		 * Recycled page holds an extra reference.
   1650		 */
   1651		if (page_ref_count(page) != 1)
   1652			return;
   1653
   1654		len += XDP_PACKET_HEADROOM;
   1655		/* Receive buffers in XDP mode are mapped from page start */
   1656		dma_addr &= PAGE_MASK;
   1657	}
   1658	dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
   1659			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
   1660}
   1661
   1662/* Returns SKB for a received packet */
   1663struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
   1664				  struct cqe_rx_t *cqe_rx, bool xdp)
   1665{
   1666	int frag;
   1667	int payload_len = 0;
   1668	struct sk_buff *skb = NULL;
   1669	struct page *page;
   1670	int offset;
   1671	u16 *rb_lens = NULL;
   1672	u64 *rb_ptrs = NULL;
   1673	u64 phys_addr;
   1674
   1675	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
   1676	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
   1677	 * CQE_RX at word6, hence buffer pointers move by word
   1678	 *
   1679	 * Use existing 'hw_tso' flag which will be set for all chips
   1680	 * except 88xx pass1 instead of a additional cache line
   1681	 * access (or miss) by using pci dev's revision.
   1682	 */
   1683	if (!nic->hw_tso)
   1684		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
   1685	else
   1686		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
   1687
   1688	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
   1689		payload_len = rb_lens[frag_num(frag)];
   1690		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
   1691		if (!phys_addr) {
   1692			if (skb)
   1693				dev_kfree_skb_any(skb);
   1694			return NULL;
   1695		}
   1696
   1697		if (!frag) {
   1698			/* First fragment */
   1699			nicvf_unmap_rcv_buffer(nic,
   1700					       *rb_ptrs - cqe_rx->align_pad,
   1701					       phys_addr, xdp);
   1702			skb = nicvf_rb_ptr_to_skb(nic,
   1703						  phys_addr - cqe_rx->align_pad,
   1704						  payload_len);
   1705			if (!skb)
   1706				return NULL;
   1707			skb_reserve(skb, cqe_rx->align_pad);
   1708			skb_put(skb, payload_len);
   1709		} else {
   1710			/* Add fragments */
   1711			nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
   1712			page = virt_to_page(phys_to_virt(phys_addr));
   1713			offset = phys_to_virt(phys_addr) - page_address(page);
   1714			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
   1715					offset, payload_len, RCV_FRAG_LEN);
   1716		}
   1717		/* Next buffer pointer */
   1718		rb_ptrs++;
   1719	}
   1720	return skb;
   1721}
   1722
   1723static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
   1724{
   1725	u64 reg_val;
   1726
   1727	switch (int_type) {
   1728	case NICVF_INTR_CQ:
   1729		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
   1730		break;
   1731	case NICVF_INTR_SQ:
   1732		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
   1733		break;
   1734	case NICVF_INTR_RBDR:
   1735		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
   1736		break;
   1737	case NICVF_INTR_PKT_DROP:
   1738		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
   1739		break;
   1740	case NICVF_INTR_TCP_TIMER:
   1741		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
   1742		break;
   1743	case NICVF_INTR_MBOX:
   1744		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
   1745		break;
   1746	case NICVF_INTR_QS_ERR:
   1747		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
   1748		break;
   1749	default:
   1750		reg_val = 0;
   1751	}
   1752
   1753	return reg_val;
   1754}
   1755
   1756/* Enable interrupt */
   1757void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
   1758{
   1759	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
   1760
   1761	if (!mask) {
   1762		netdev_dbg(nic->netdev,
   1763			   "Failed to enable interrupt: unknown type\n");
   1764		return;
   1765	}
   1766	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
   1767			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
   1768}
   1769
   1770/* Disable interrupt */
   1771void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
   1772{
   1773	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
   1774
   1775	if (!mask) {
   1776		netdev_dbg(nic->netdev,
   1777			   "Failed to disable interrupt: unknown type\n");
   1778		return;
   1779	}
   1780
   1781	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
   1782}
   1783
   1784/* Clear interrupt */
   1785void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
   1786{
   1787	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
   1788
   1789	if (!mask) {
   1790		netdev_dbg(nic->netdev,
   1791			   "Failed to clear interrupt: unknown type\n");
   1792		return;
   1793	}
   1794
   1795	nicvf_reg_write(nic, NIC_VF_INT, mask);
   1796}
   1797
   1798/* Check if interrupt is enabled */
   1799int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
   1800{
   1801	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
   1802	/* If interrupt type is unknown, we treat it disabled. */
   1803	if (!mask) {
   1804		netdev_dbg(nic->netdev,
   1805			   "Failed to check interrupt enable: unknown type\n");
   1806		return 0;
   1807	}
   1808
   1809	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
   1810}
   1811
   1812void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
   1813{
   1814	struct rcv_queue *rq;
   1815
   1816#define GET_RQ_STATS(reg) \
   1817	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
   1818			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
   1819
   1820	rq = &nic->qs->rq[rq_idx];
   1821	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
   1822	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
   1823}
   1824
   1825void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
   1826{
   1827	struct snd_queue *sq;
   1828
   1829#define GET_SQ_STATS(reg) \
   1830	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
   1831			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
   1832
   1833	sq = &nic->qs->sq[sq_idx];
   1834	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
   1835	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
   1836}
   1837
   1838/* Check for errors in the receive cmp.queue entry */
   1839int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
   1840{
   1841	netif_err(nic, rx_err, nic->netdev,
   1842		  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
   1843		  cqe_rx->err_level, cqe_rx->err_opcode);
   1844
   1845	switch (cqe_rx->err_opcode) {
   1846	case CQ_RX_ERROP_RE_PARTIAL:
   1847		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
   1848		break;
   1849	case CQ_RX_ERROP_RE_JABBER:
   1850		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
   1851		break;
   1852	case CQ_RX_ERROP_RE_FCS:
   1853		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
   1854		break;
   1855	case CQ_RX_ERROP_RE_RX_CTL:
   1856		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
   1857		break;
   1858	case CQ_RX_ERROP_PREL2_ERR:
   1859		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
   1860		break;
   1861	case CQ_RX_ERROP_L2_MAL:
   1862		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
   1863		break;
   1864	case CQ_RX_ERROP_L2_OVERSIZE:
   1865		this_cpu_inc(nic->drv_stats->rx_oversize);
   1866		break;
   1867	case CQ_RX_ERROP_L2_UNDERSIZE:
   1868		this_cpu_inc(nic->drv_stats->rx_undersize);
   1869		break;
   1870	case CQ_RX_ERROP_L2_LENMISM:
   1871		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
   1872		break;
   1873	case CQ_RX_ERROP_L2_PCLP:
   1874		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
   1875		break;
   1876	case CQ_RX_ERROP_IP_NOT:
   1877		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
   1878		break;
   1879	case CQ_RX_ERROP_IP_CSUM_ERR:
   1880		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
   1881		break;
   1882	case CQ_RX_ERROP_IP_MAL:
   1883		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
   1884		break;
   1885	case CQ_RX_ERROP_IP_MALD:
   1886		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
   1887		break;
   1888	case CQ_RX_ERROP_IP_HOP:
   1889		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
   1890		break;
   1891	case CQ_RX_ERROP_L3_PCLP:
   1892		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
   1893		break;
   1894	case CQ_RX_ERROP_L4_MAL:
   1895		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
   1896		break;
   1897	case CQ_RX_ERROP_L4_CHK:
   1898		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
   1899		break;
   1900	case CQ_RX_ERROP_UDP_LEN:
   1901		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
   1902		break;
   1903	case CQ_RX_ERROP_L4_PORT:
   1904		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
   1905		break;
   1906	case CQ_RX_ERROP_TCP_FLAG:
   1907		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
   1908		break;
   1909	case CQ_RX_ERROP_TCP_OFFSET:
   1910		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
   1911		break;
   1912	case CQ_RX_ERROP_L4_PCLP:
   1913		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
   1914		break;
   1915	case CQ_RX_ERROP_RBDR_TRUNC:
   1916		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
   1917		break;
   1918	}
   1919
   1920	return 1;
   1921}
   1922
   1923/* Check for errors in the send cmp.queue entry */
   1924int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
   1925{
   1926	switch (cqe_tx->send_status) {
   1927	case CQ_TX_ERROP_DESC_FAULT:
   1928		this_cpu_inc(nic->drv_stats->tx_desc_fault);
   1929		break;
   1930	case CQ_TX_ERROP_HDR_CONS_ERR:
   1931		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
   1932		break;
   1933	case CQ_TX_ERROP_SUBDC_ERR:
   1934		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
   1935		break;
   1936	case CQ_TX_ERROP_MAX_SIZE_VIOL:
   1937		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
   1938		break;
   1939	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
   1940		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
   1941		break;
   1942	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
   1943		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
   1944		break;
   1945	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
   1946		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
   1947		break;
   1948	case CQ_TX_ERROP_LOCK_VIOL:
   1949		this_cpu_inc(nic->drv_stats->tx_lock_viol);
   1950		break;
   1951	case CQ_TX_ERROP_DATA_FAULT:
   1952		this_cpu_inc(nic->drv_stats->tx_data_fault);
   1953		break;
   1954	case CQ_TX_ERROP_TSTMP_CONFLICT:
   1955		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
   1956		break;
   1957	case CQ_TX_ERROP_TSTMP_TIMEOUT:
   1958		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
   1959		break;
   1960	case CQ_TX_ERROP_MEM_FAULT:
   1961		this_cpu_inc(nic->drv_stats->tx_mem_fault);
   1962		break;
   1963	case CQ_TX_ERROP_CK_OVERLAP:
   1964		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
   1965		break;
   1966	case CQ_TX_ERROP_CK_OFLOW:
   1967		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
   1968		break;
   1969	}
   1970
   1971	return 1;
   1972}