cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

subr.c (32130B)


      1/*****************************************************************************
      2 *                                                                           *
      3 * File: subr.c                                                              *
      4 * $Revision: 1.27 $                                                         *
      5 * $Date: 2005/06/22 01:08:36 $                                              *
      6 * Description:                                                              *
      7 *  Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
      8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
      9 *                                                                           *
     10 * This program is free software; you can redistribute it and/or modify      *
     11 * it under the terms of the GNU General Public License, version 2, as       *
     12 * published by the Free Software Foundation.                                *
     13 *                                                                           *
     14 * You should have received a copy of the GNU General Public License along   *
     15 * with this program; if not, see <http://www.gnu.org/licenses/>.            *
     16 *                                                                           *
     17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
     18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
     19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
     20 *                                                                           *
     21 * http://www.chelsio.com                                                    *
     22 *                                                                           *
     23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
     24 * All rights reserved.                                                      *
     25 *                                                                           *
     26 * Maintainers: maintainers@chelsio.com                                      *
     27 *                                                                           *
     28 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
     29 *          Tina Yang               <tainay@chelsio.com>                     *
     30 *          Felix Marti             <felix@chelsio.com>                      *
     31 *          Scott Bardone           <sbardone@chelsio.com>                   *
     32 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
     33 *          Frank DiMambro          <frank@chelsio.com>                      *
     34 *                                                                           *
     35 * History:                                                                  *
     36 *                                                                           *
     37 ****************************************************************************/
     38
     39#include "common.h"
     40#include "elmer0.h"
     41#include "regs.h"
     42#include "gmac.h"
     43#include "cphy.h"
     44#include "sge.h"
     45#include "tp.h"
     46#include "espi.h"
     47
     48/**
     49 *	t1_wait_op_done - wait until an operation is completed
     50 *	@adapter: the adapter performing the operation
     51 *	@reg: the register to check for completion
     52 *	@mask: a single-bit field within @reg that indicates completion
     53 *	@polarity: the value of the field when the operation is completed
     54 *	@attempts: number of check iterations
     55 *      @delay: delay in usecs between iterations
     56 *
     57 *	Wait until an operation is completed by checking a bit in a register
     58 *	up to @attempts times.  Returns %0 if the operation completes and %1
     59 *	otherwise.
     60 */
     61static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
     62			   int attempts, int delay)
     63{
     64	while (1) {
     65		u32 val = readl(adapter->regs + reg) & mask;
     66
     67		if (!!val == polarity)
     68			return 0;
     69		if (--attempts == 0)
     70			return 1;
     71		if (delay)
     72			udelay(delay);
     73	}
     74}
     75
     76#define TPI_ATTEMPTS 50
     77
     78/*
     79 * Write a register over the TPI interface (unlocked and locked versions).
     80 */
     81int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
     82{
     83	int tpi_busy;
     84
     85	writel(addr, adapter->regs + A_TPI_ADDR);
     86	writel(value, adapter->regs + A_TPI_WR_DATA);
     87	writel(F_TPIWR, adapter->regs + A_TPI_CSR);
     88
     89	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
     90				   TPI_ATTEMPTS, 3);
     91	if (tpi_busy)
     92		pr_alert("%s: TPI write to 0x%x failed\n",
     93			 adapter->name, addr);
     94	return tpi_busy;
     95}
     96
     97int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
     98{
     99	int ret;
    100
    101	spin_lock(&adapter->tpi_lock);
    102	ret = __t1_tpi_write(adapter, addr, value);
    103	spin_unlock(&adapter->tpi_lock);
    104	return ret;
    105}
    106
    107/*
    108 * Read a register over the TPI interface (unlocked and locked versions).
    109 */
    110int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
    111{
    112	int tpi_busy;
    113
    114	writel(addr, adapter->regs + A_TPI_ADDR);
    115	writel(0, adapter->regs + A_TPI_CSR);
    116
    117	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
    118				   TPI_ATTEMPTS, 3);
    119	if (tpi_busy)
    120		pr_alert("%s: TPI read from 0x%x failed\n",
    121			 adapter->name, addr);
    122	else
    123		*valp = readl(adapter->regs + A_TPI_RD_DATA);
    124	return tpi_busy;
    125}
    126
    127int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
    128{
    129	int ret;
    130
    131	spin_lock(&adapter->tpi_lock);
    132	ret = __t1_tpi_read(adapter, addr, valp);
    133	spin_unlock(&adapter->tpi_lock);
    134	return ret;
    135}
    136
    137/*
    138 * Set a TPI parameter.
    139 */
    140static void t1_tpi_par(adapter_t *adapter, u32 value)
    141{
    142	writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
    143}
    144
    145/*
    146 * Called when a port's link settings change to propagate the new values to the
    147 * associated PHY and MAC.  After performing the common tasks it invokes an
    148 * OS-specific handler.
    149 */
    150void t1_link_changed(adapter_t *adapter, int port_id)
    151{
    152	int link_ok, speed, duplex, fc;
    153	struct cphy *phy = adapter->port[port_id].phy;
    154	struct link_config *lc = &adapter->port[port_id].link_config;
    155
    156	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
    157
    158	lc->speed = speed < 0 ? SPEED_INVALID : speed;
    159	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
    160	if (!(lc->requested_fc & PAUSE_AUTONEG))
    161		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
    162
    163	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
    164		/* Set MAC speed, duplex, and flow control to match PHY. */
    165		struct cmac *mac = adapter->port[port_id].mac;
    166
    167		mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
    168		lc->fc = (unsigned char)fc;
    169	}
    170	t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
    171}
    172
    173static bool t1_pci_intr_handler(adapter_t *adapter)
    174{
    175	u32 pcix_cause;
    176
    177	pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
    178
    179	if (pcix_cause) {
    180		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
    181				       pcix_cause);
    182		/* PCI errors are fatal */
    183		t1_interrupts_disable(adapter);
    184		adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
    185		pr_alert("%s: PCI error encountered.\n", adapter->name);
    186		return true;
    187	}
    188	return false;
    189}
    190
    191#ifdef CONFIG_CHELSIO_T1_1G
    192#include "fpga_defs.h"
    193
    194/*
    195 * PHY interrupt handler for FPGA boards.
    196 */
    197static int fpga_phy_intr_handler(adapter_t *adapter)
    198{
    199	int p;
    200	u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
    201
    202	for_each_port(adapter, p)
    203		if (cause & (1 << p)) {
    204			struct cphy *phy = adapter->port[p].phy;
    205			int phy_cause = phy->ops->interrupt_handler(phy);
    206
    207			if (phy_cause & cphy_cause_link_change)
    208				t1_link_changed(adapter, p);
    209		}
    210	writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
    211	return 0;
    212}
    213
    214/*
    215 * Slow path interrupt handler for FPGAs.
    216 */
    217static irqreturn_t fpga_slow_intr(adapter_t *adapter)
    218{
    219	u32 cause = readl(adapter->regs + A_PL_CAUSE);
    220	irqreturn_t ret = IRQ_NONE;
    221
    222	cause &= ~F_PL_INTR_SGE_DATA;
    223	if (cause & F_PL_INTR_SGE_ERR) {
    224		if (t1_sge_intr_error_handler(adapter->sge))
    225			ret = IRQ_WAKE_THREAD;
    226	}
    227
    228	if (cause & FPGA_PCIX_INTERRUPT_GMAC)
    229		fpga_phy_intr_handler(adapter);
    230
    231	if (cause & FPGA_PCIX_INTERRUPT_TP) {
    232		/*
    233		 * FPGA doesn't support MC4 interrupts and it requires
    234		 * this odd layer of indirection for MC5.
    235		 */
    236		u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
    237
    238		/* Clear TP interrupt */
    239		writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
    240	}
    241	if (cause & FPGA_PCIX_INTERRUPT_PCIX) {
    242		if (t1_pci_intr_handler(adapter))
    243			ret = IRQ_WAKE_THREAD;
    244	}
    245
    246	/* Clear the interrupts just processed. */
    247	if (cause)
    248		writel(cause, adapter->regs + A_PL_CAUSE);
    249
    250	if (ret != IRQ_NONE)
    251		return ret;
    252
    253	return cause == 0 ? IRQ_NONE : IRQ_HANDLED;
    254}
    255#endif
    256
    257/*
    258 * Wait until Elmer's MI1 interface is ready for new operations.
    259 */
    260static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
    261{
    262	int attempts = 100, busy;
    263
    264	do {
    265		u32 val;
    266
    267		__t1_tpi_read(adapter, mi1_reg, &val);
    268		busy = val & F_MI1_OP_BUSY;
    269		if (busy)
    270			udelay(10);
    271	} while (busy && --attempts);
    272	if (busy)
    273		pr_alert("%s: MDIO operation timed out\n", adapter->name);
    274	return busy;
    275}
    276
    277/*
    278 * MI1 MDIO initialization.
    279 */
    280static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
    281{
    282	u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
    283	u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
    284		V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
    285
    286	if (!(bi->caps & SUPPORTED_10000baseT_Full))
    287		val |= V_MI1_SOF(1);
    288	t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
    289}
    290
    291#if defined(CONFIG_CHELSIO_T1_1G)
    292/*
    293 * Elmer MI1 MDIO read/write operations.
    294 */
    295static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
    296			 u16 reg_addr)
    297{
    298	struct adapter *adapter = dev->ml_priv;
    299	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
    300	unsigned int val;
    301
    302	spin_lock(&adapter->tpi_lock);
    303	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
    304	__t1_tpi_write(adapter,
    305			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
    306	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    307	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
    308	spin_unlock(&adapter->tpi_lock);
    309	return val;
    310}
    311
    312static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
    313			  u16 reg_addr, u16 val)
    314{
    315	struct adapter *adapter = dev->ml_priv;
    316	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
    317
    318	spin_lock(&adapter->tpi_lock);
    319	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
    320	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
    321	__t1_tpi_write(adapter,
    322			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
    323	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    324	spin_unlock(&adapter->tpi_lock);
    325	return 0;
    326}
    327
    328static const struct mdio_ops mi1_mdio_ops = {
    329	.init = mi1_mdio_init,
    330	.read = mi1_mdio_read,
    331	.write = mi1_mdio_write,
    332	.mode_support = MDIO_SUPPORTS_C22
    333};
    334
    335#endif
    336
    337static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
    338			     u16 reg_addr)
    339{
    340	struct adapter *adapter = dev->ml_priv;
    341	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
    342	unsigned int val;
    343
    344	spin_lock(&adapter->tpi_lock);
    345
    346	/* Write the address we want. */
    347	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
    348	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
    349	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
    350		       MI1_OP_INDIRECT_ADDRESS);
    351	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    352
    353	/* Write the operation we want. */
    354	__t1_tpi_write(adapter,
    355			A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
    356	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    357
    358	/* Read the data. */
    359	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
    360	spin_unlock(&adapter->tpi_lock);
    361	return val;
    362}
    363
    364static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
    365			      int mmd_addr, u16 reg_addr, u16 val)
    366{
    367	struct adapter *adapter = dev->ml_priv;
    368	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
    369
    370	spin_lock(&adapter->tpi_lock);
    371
    372	/* Write the address we want. */
    373	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
    374	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
    375	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
    376		       MI1_OP_INDIRECT_ADDRESS);
    377	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    378
    379	/* Write the data. */
    380	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
    381	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
    382	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
    383	spin_unlock(&adapter->tpi_lock);
    384	return 0;
    385}
    386
    387static const struct mdio_ops mi1_mdio_ext_ops = {
    388	.init = mi1_mdio_init,
    389	.read = mi1_mdio_ext_read,
    390	.write = mi1_mdio_ext_write,
    391	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
    392};
    393
    394enum {
    395	CH_BRD_T110_1CU,
    396	CH_BRD_N110_1F,
    397	CH_BRD_N210_1F,
    398	CH_BRD_T210_1F,
    399	CH_BRD_T210_1CU,
    400	CH_BRD_N204_4CU,
    401};
    402
    403static const struct board_info t1_board[] = {
    404	{
    405		.board		= CHBT_BOARD_CHT110,
    406		.port_number	= 1,
    407		.caps		= SUPPORTED_10000baseT_Full,
    408		.chip_term	= CHBT_TERM_T1,
    409		.chip_mac	= CHBT_MAC_PM3393,
    410		.chip_phy	= CHBT_PHY_MY3126,
    411		.clock_core	= 125000000,
    412		.clock_mc3	= 150000000,
    413		.clock_mc4	= 125000000,
    414		.espi_nports	= 1,
    415		.clock_elmer0	= 44,
    416		.mdio_mdien	= 1,
    417		.mdio_mdiinv	= 1,
    418		.mdio_mdc	= 1,
    419		.mdio_phybaseaddr = 1,
    420		.gmac		= &t1_pm3393_ops,
    421		.gphy		= &t1_my3126_ops,
    422		.mdio_ops	= &mi1_mdio_ext_ops,
    423		.desc		= "Chelsio T110 1x10GBase-CX4 TOE",
    424	},
    425
    426	{
    427		.board		= CHBT_BOARD_N110,
    428		.port_number	= 1,
    429		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
    430		.chip_term	= CHBT_TERM_T1,
    431		.chip_mac	= CHBT_MAC_PM3393,
    432		.chip_phy	= CHBT_PHY_88X2010,
    433		.clock_core	= 125000000,
    434		.espi_nports	= 1,
    435		.clock_elmer0	= 44,
    436		.mdio_mdien	= 0,
    437		.mdio_mdiinv	= 0,
    438		.mdio_mdc	= 1,
    439		.mdio_phybaseaddr = 0,
    440		.gmac		= &t1_pm3393_ops,
    441		.gphy		= &t1_mv88x201x_ops,
    442		.mdio_ops	= &mi1_mdio_ext_ops,
    443		.desc		= "Chelsio N110 1x10GBaseX NIC",
    444	},
    445
    446	{
    447		.board		= CHBT_BOARD_N210,
    448		.port_number	= 1,
    449		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
    450		.chip_term	= CHBT_TERM_T2,
    451		.chip_mac	= CHBT_MAC_PM3393,
    452		.chip_phy	= CHBT_PHY_88X2010,
    453		.clock_core	= 125000000,
    454		.espi_nports	= 1,
    455		.clock_elmer0	= 44,
    456		.mdio_mdien	= 0,
    457		.mdio_mdiinv	= 0,
    458		.mdio_mdc	= 1,
    459		.mdio_phybaseaddr = 0,
    460		.gmac		= &t1_pm3393_ops,
    461		.gphy		= &t1_mv88x201x_ops,
    462		.mdio_ops	= &mi1_mdio_ext_ops,
    463		.desc		= "Chelsio N210 1x10GBaseX NIC",
    464	},
    465
    466	{
    467		.board		= CHBT_BOARD_CHT210,
    468		.port_number	= 1,
    469		.caps		= SUPPORTED_10000baseT_Full,
    470		.chip_term	= CHBT_TERM_T2,
    471		.chip_mac	= CHBT_MAC_PM3393,
    472		.chip_phy	= CHBT_PHY_88X2010,
    473		.clock_core	= 125000000,
    474		.clock_mc3	= 133000000,
    475		.clock_mc4	= 125000000,
    476		.espi_nports	= 1,
    477		.clock_elmer0	= 44,
    478		.mdio_mdien	= 0,
    479		.mdio_mdiinv	= 0,
    480		.mdio_mdc	= 1,
    481		.mdio_phybaseaddr = 0,
    482		.gmac		= &t1_pm3393_ops,
    483		.gphy		= &t1_mv88x201x_ops,
    484		.mdio_ops	= &mi1_mdio_ext_ops,
    485		.desc		= "Chelsio T210 1x10GBaseX TOE",
    486	},
    487
    488	{
    489		.board		= CHBT_BOARD_CHT210,
    490		.port_number	= 1,
    491		.caps		= SUPPORTED_10000baseT_Full,
    492		.chip_term	= CHBT_TERM_T2,
    493		.chip_mac	= CHBT_MAC_PM3393,
    494		.chip_phy	= CHBT_PHY_MY3126,
    495		.clock_core	= 125000000,
    496		.clock_mc3	= 133000000,
    497		.clock_mc4	= 125000000,
    498		.espi_nports	= 1,
    499		.clock_elmer0	= 44,
    500		.mdio_mdien	= 1,
    501		.mdio_mdiinv	= 1,
    502		.mdio_mdc	= 1,
    503		.mdio_phybaseaddr = 1,
    504		.gmac		= &t1_pm3393_ops,
    505		.gphy		= &t1_my3126_ops,
    506		.mdio_ops	= &mi1_mdio_ext_ops,
    507		.desc		= "Chelsio T210 1x10GBase-CX4 TOE",
    508	},
    509
    510#ifdef CONFIG_CHELSIO_T1_1G
    511	{
    512		.board		= CHBT_BOARD_CHN204,
    513		.port_number	= 4,
    514		.caps		= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
    515				| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
    516				| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
    517				  SUPPORTED_PAUSE | SUPPORTED_TP,
    518		.chip_term	= CHBT_TERM_T2,
    519		.chip_mac	= CHBT_MAC_VSC7321,
    520		.chip_phy	= CHBT_PHY_88E1111,
    521		.clock_core	= 100000000,
    522		.espi_nports	= 4,
    523		.clock_elmer0	= 44,
    524		.mdio_mdien	= 0,
    525		.mdio_mdiinv	= 0,
    526		.mdio_mdc	= 0,
    527		.mdio_phybaseaddr = 4,
    528		.gmac		= &t1_vsc7326_ops,
    529		.gphy		= &t1_mv88e1xxx_ops,
    530		.mdio_ops	= &mi1_mdio_ops,
    531		.desc		= "Chelsio N204 4x100/1000BaseT NIC",
    532	},
    533#endif
    534
    535};
    536
    537const struct pci_device_id t1_pci_tbl[] = {
    538	CH_DEVICE(8, 0, CH_BRD_T110_1CU),
    539	CH_DEVICE(8, 1, CH_BRD_T110_1CU),
    540	CH_DEVICE(7, 0, CH_BRD_N110_1F),
    541	CH_DEVICE(10, 1, CH_BRD_N210_1F),
    542	CH_DEVICE(11, 1, CH_BRD_T210_1F),
    543	CH_DEVICE(14, 1, CH_BRD_T210_1CU),
    544	CH_DEVICE(16, 1, CH_BRD_N204_4CU),
    545	{ 0 }
    546};
    547
    548MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
    549
    550/*
    551 * Return the board_info structure with a given index.  Out-of-range indices
    552 * return NULL.
    553 */
    554const struct board_info *t1_get_board_info(unsigned int board_id)
    555{
    556	return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
    557}
    558
    559struct chelsio_vpd_t {
    560	u32 format_version;
    561	u8 serial_number[16];
    562	u8 mac_base_address[6];
    563	u8 pad[2];           /* make multiple-of-4 size requirement explicit */
    564};
    565
    566#define EEPROMSIZE        (8 * 1024)
    567#define EEPROM_MAX_POLL   4
    568
    569/*
    570 * Read SEEPROM. A zero is written to the flag register when the address is
    571 * written to the Control register. The hardware device will set the flag to a
    572 * one when 4B have been transferred to the Data register.
    573 */
    574int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
    575{
    576	int i = EEPROM_MAX_POLL;
    577	u16 val;
    578	u32 v;
    579
    580	if (addr >= EEPROMSIZE || (addr & 3))
    581		return -EINVAL;
    582
    583	pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
    584	do {
    585		udelay(50);
    586		pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
    587	} while (!(val & F_VPD_OP_FLAG) && --i);
    588
    589	if (!(val & F_VPD_OP_FLAG)) {
    590		pr_err("%s: reading EEPROM address 0x%x failed\n",
    591		       adapter->name, addr);
    592		return -EIO;
    593	}
    594	pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
    595	*data = cpu_to_le32(v);
    596	return 0;
    597}
    598
    599static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
    600{
    601	int addr, ret = 0;
    602
    603	for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
    604		ret = t1_seeprom_read(adapter, addr,
    605				      (__le32 *)((u8 *)vpd + addr));
    606
    607	return ret;
    608}
    609
    610/*
    611 * Read a port's MAC address from the VPD ROM.
    612 */
    613static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
    614{
    615	struct chelsio_vpd_t vpd;
    616
    617	if (t1_eeprom_vpd_get(adapter, &vpd))
    618		return 1;
    619	memcpy(mac_addr, vpd.mac_base_address, 5);
    620	mac_addr[5] = vpd.mac_base_address[5] + index;
    621	return 0;
    622}
    623
    624/*
    625 * Set up the MAC/PHY according to the requested link settings.
    626 *
    627 * If the PHY can auto-negotiate first decide what to advertise, then
    628 * enable/disable auto-negotiation as desired and reset.
    629 *
    630 * If the PHY does not auto-negotiate we just reset it.
    631 *
    632 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
    633 * otherwise do it later based on the outcome of auto-negotiation.
    634 */
    635int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
    636{
    637	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
    638
    639	if (lc->supported & SUPPORTED_Autoneg) {
    640		lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
    641		if (fc) {
    642			if (fc == ((PAUSE_RX | PAUSE_TX) &
    643				   (mac->adapter->params.nports < 2)))
    644				lc->advertising |= ADVERTISED_PAUSE;
    645			else {
    646				lc->advertising |= ADVERTISED_ASYM_PAUSE;
    647				if (fc == PAUSE_RX)
    648					lc->advertising |= ADVERTISED_PAUSE;
    649			}
    650		}
    651		phy->ops->advertise(phy, lc->advertising);
    652
    653		if (lc->autoneg == AUTONEG_DISABLE) {
    654			lc->speed = lc->requested_speed;
    655			lc->duplex = lc->requested_duplex;
    656			lc->fc = (unsigned char)fc;
    657			mac->ops->set_speed_duplex_fc(mac, lc->speed,
    658						      lc->duplex, fc);
    659			/* Also disables autoneg */
    660			phy->state = PHY_AUTONEG_RDY;
    661			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
    662			phy->ops->reset(phy, 0);
    663		} else {
    664			phy->state = PHY_AUTONEG_EN;
    665			phy->ops->autoneg_enable(phy); /* also resets PHY */
    666		}
    667	} else {
    668		phy->state = PHY_AUTONEG_RDY;
    669		mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
    670		lc->fc = (unsigned char)fc;
    671		phy->ops->reset(phy, 0);
    672	}
    673	return 0;
    674}
    675
    676/*
    677 * External interrupt handler for boards using elmer0.
    678 */
    679int t1_elmer0_ext_intr_handler(adapter_t *adapter)
    680{
    681	struct cphy *phy;
    682	int phy_cause;
    683	u32 cause;
    684
    685	t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
    686
    687	switch (board_info(adapter)->board) {
    688#ifdef CONFIG_CHELSIO_T1_1G
    689	case CHBT_BOARD_CHT204:
    690	case CHBT_BOARD_CHT204E:
    691	case CHBT_BOARD_CHN204:
    692	case CHBT_BOARD_CHT204V: {
    693		int i, port_bit;
    694		for_each_port(adapter, i) {
    695			port_bit = i + 1;
    696			if (!(cause & (1 << port_bit)))
    697				continue;
    698
    699			phy = adapter->port[i].phy;
    700			phy_cause = phy->ops->interrupt_handler(phy);
    701			if (phy_cause & cphy_cause_link_change)
    702				t1_link_changed(adapter, i);
    703		}
    704		break;
    705	}
    706	case CHBT_BOARD_CHT101:
    707		if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
    708			phy = adapter->port[0].phy;
    709			phy_cause = phy->ops->interrupt_handler(phy);
    710			if (phy_cause & cphy_cause_link_change)
    711				t1_link_changed(adapter, 0);
    712		}
    713		break;
    714	case CHBT_BOARD_7500: {
    715		int p;
    716		/*
    717		 * Elmer0's interrupt cause isn't useful here because there is
    718		 * only one bit that can be set for all 4 ports.  This means
    719		 * we are forced to check every PHY's interrupt status
    720		 * register to see who initiated the interrupt.
    721		 */
    722		for_each_port(adapter, p) {
    723			phy = adapter->port[p].phy;
    724			phy_cause = phy->ops->interrupt_handler(phy);
    725			if (phy_cause & cphy_cause_link_change)
    726			    t1_link_changed(adapter, p);
    727		}
    728		break;
    729	}
    730#endif
    731	case CHBT_BOARD_CHT210:
    732	case CHBT_BOARD_N210:
    733	case CHBT_BOARD_N110:
    734		if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
    735			phy = adapter->port[0].phy;
    736			phy_cause = phy->ops->interrupt_handler(phy);
    737			if (phy_cause & cphy_cause_link_change)
    738				t1_link_changed(adapter, 0);
    739		}
    740		break;
    741	case CHBT_BOARD_8000:
    742	case CHBT_BOARD_CHT110:
    743		if (netif_msg_intr(adapter))
    744			dev_dbg(&adapter->pdev->dev,
    745				"External interrupt cause 0x%x\n", cause);
    746		if (cause & ELMER0_GP_BIT1) {        /* PMC3393 INTB */
    747			struct cmac *mac = adapter->port[0].mac;
    748
    749			mac->ops->interrupt_handler(mac);
    750		}
    751		if (cause & ELMER0_GP_BIT5) {        /* XPAK MOD_DETECT */
    752			u32 mod_detect;
    753
    754			t1_tpi_read(adapter,
    755					A_ELMER0_GPI_STAT, &mod_detect);
    756			if (netif_msg_link(adapter))
    757				dev_info(&adapter->pdev->dev, "XPAK %s\n",
    758					 mod_detect ? "removed" : "inserted");
    759		}
    760		break;
    761	}
    762	t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
    763	return 0;
    764}
    765
    766/* Enables all interrupts. */
    767void t1_interrupts_enable(adapter_t *adapter)
    768{
    769	unsigned int i;
    770
    771	adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
    772
    773	t1_sge_intr_enable(adapter->sge);
    774	t1_tp_intr_enable(adapter->tp);
    775	if (adapter->espi) {
    776		adapter->slow_intr_mask |= F_PL_INTR_ESPI;
    777		t1_espi_intr_enable(adapter->espi);
    778	}
    779
    780	/* Enable MAC/PHY interrupts for each port. */
    781	for_each_port(adapter, i) {
    782		adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
    783		adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
    784	}
    785
    786	/* Enable PCIX & external chip interrupts on ASIC boards. */
    787	if (t1_is_asic(adapter)) {
    788		u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
    789
    790		/* PCI-X interrupts */
    791		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
    792				       0xffffffff);
    793
    794		adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
    795		pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
    796		writel(pl_intr, adapter->regs + A_PL_ENABLE);
    797	}
    798}
    799
    800/* Disables all interrupts. */
    801void t1_interrupts_disable(adapter_t* adapter)
    802{
    803	unsigned int i;
    804
    805	t1_sge_intr_disable(adapter->sge);
    806	t1_tp_intr_disable(adapter->tp);
    807	if (adapter->espi)
    808		t1_espi_intr_disable(adapter->espi);
    809
    810	/* Disable MAC/PHY interrupts for each port. */
    811	for_each_port(adapter, i) {
    812		adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
    813		adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
    814	}
    815
    816	/* Disable PCIX & external chip interrupts. */
    817	if (t1_is_asic(adapter))
    818		writel(0, adapter->regs + A_PL_ENABLE);
    819
    820	/* PCI-X interrupts */
    821	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
    822
    823	adapter->slow_intr_mask = 0;
    824}
    825
    826/* Clears all interrupts */
    827void t1_interrupts_clear(adapter_t* adapter)
    828{
    829	unsigned int i;
    830
    831	t1_sge_intr_clear(adapter->sge);
    832	t1_tp_intr_clear(adapter->tp);
    833	if (adapter->espi)
    834		t1_espi_intr_clear(adapter->espi);
    835
    836	/* Clear MAC/PHY interrupts for each port. */
    837	for_each_port(adapter, i) {
    838		adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
    839		adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
    840	}
    841
    842	/* Enable interrupts for external devices. */
    843	if (t1_is_asic(adapter)) {
    844		u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
    845
    846		writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
    847		       adapter->regs + A_PL_CAUSE);
    848	}
    849
    850	/* PCI-X interrupts */
    851	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
    852}
    853
    854/*
    855 * Slow path interrupt handler for ASICs.
    856 */
    857static irqreturn_t asic_slow_intr(adapter_t *adapter)
    858{
    859	u32 cause = readl(adapter->regs + A_PL_CAUSE);
    860	irqreturn_t ret = IRQ_HANDLED;
    861
    862	cause &= adapter->slow_intr_mask;
    863	if (!cause)
    864		return IRQ_NONE;
    865	if (cause & F_PL_INTR_SGE_ERR) {
    866		if (t1_sge_intr_error_handler(adapter->sge))
    867			ret = IRQ_WAKE_THREAD;
    868	}
    869	if (cause & F_PL_INTR_TP)
    870		t1_tp_intr_handler(adapter->tp);
    871	if (cause & F_PL_INTR_ESPI)
    872		t1_espi_intr_handler(adapter->espi);
    873	if (cause & F_PL_INTR_PCIX) {
    874		if (t1_pci_intr_handler(adapter))
    875			ret = IRQ_WAKE_THREAD;
    876	}
    877	if (cause & F_PL_INTR_EXT) {
    878		/* Wake the threaded interrupt to handle external interrupts as
    879		 * we require a process context. We disable EXT interrupts in
    880		 * the interim and let the thread reenable them when it's done.
    881		 */
    882		adapter->pending_thread_intr |= F_PL_INTR_EXT;
    883		adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
    884		writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
    885		       adapter->regs + A_PL_ENABLE);
    886		ret = IRQ_WAKE_THREAD;
    887	}
    888
    889	/* Clear the interrupts just processed. */
    890	writel(cause, adapter->regs + A_PL_CAUSE);
    891	readl(adapter->regs + A_PL_CAUSE); /* flush writes */
    892	return ret;
    893}
    894
    895irqreturn_t t1_slow_intr_handler(adapter_t *adapter)
    896{
    897#ifdef CONFIG_CHELSIO_T1_1G
    898	if (!t1_is_asic(adapter))
    899		return fpga_slow_intr(adapter);
    900#endif
    901	return asic_slow_intr(adapter);
    902}
    903
    904/* Power sequencing is a work-around for Intel's XPAKs. */
    905static void power_sequence_xpak(adapter_t* adapter)
    906{
    907	u32 mod_detect;
    908	u32 gpo;
    909
    910	/* Check for XPAK */
    911	t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
    912	if (!(ELMER0_GP_BIT5 & mod_detect)) {
    913		/* XPAK is present */
    914		t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
    915		gpo |= ELMER0_GP_BIT18;
    916		t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
    917	}
    918}
    919
    920int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
    921		     struct adapter_params *p)
    922{
    923	p->chip_version = bi->chip_term;
    924	p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
    925	if (p->chip_version == CHBT_TERM_T1 ||
    926	    p->chip_version == CHBT_TERM_T2 ||
    927	    p->chip_version == CHBT_TERM_FPGA) {
    928		u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
    929
    930		val = G_TP_PC_REV(val);
    931		if (val == 2)
    932			p->chip_revision = TERM_T1B;
    933		else if (val == 3)
    934			p->chip_revision = TERM_T2;
    935		else
    936			return -1;
    937	} else
    938		return -1;
    939	return 0;
    940}
    941
    942/*
    943 * Enable board components other than the Chelsio chip, such as external MAC
    944 * and PHY.
    945 */
    946static int board_init(adapter_t *adapter, const struct board_info *bi)
    947{
    948	switch (bi->board) {
    949	case CHBT_BOARD_8000:
    950	case CHBT_BOARD_N110:
    951	case CHBT_BOARD_N210:
    952	case CHBT_BOARD_CHT210:
    953		t1_tpi_par(adapter, 0xf);
    954		t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
    955		break;
    956	case CHBT_BOARD_CHT110:
    957		t1_tpi_par(adapter, 0xf);
    958		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
    959
    960		/* TBD XXX Might not need.  This fixes a problem
    961		 *         described in the Intel SR XPAK errata.
    962		 */
    963		power_sequence_xpak(adapter);
    964		break;
    965#ifdef CONFIG_CHELSIO_T1_1G
    966	case CHBT_BOARD_CHT204E:
    967		/* add config space write here */
    968	case CHBT_BOARD_CHT204:
    969	case CHBT_BOARD_CHT204V:
    970	case CHBT_BOARD_CHN204:
    971		t1_tpi_par(adapter, 0xf);
    972		t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
    973		break;
    974	case CHBT_BOARD_CHT101:
    975	case CHBT_BOARD_7500:
    976		t1_tpi_par(adapter, 0xf);
    977		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
    978		break;
    979#endif
    980	}
    981	return 0;
    982}
    983
    984/*
    985 * Initialize and configure the Terminator HW modules.  Note that external
    986 * MAC and PHYs are initialized separately.
    987 */
    988int t1_init_hw_modules(adapter_t *adapter)
    989{
    990	int err = -EIO;
    991	const struct board_info *bi = board_info(adapter);
    992
    993	if (!bi->clock_mc4) {
    994		u32 val = readl(adapter->regs + A_MC4_CFG);
    995
    996		writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
    997		writel(F_M_BUS_ENABLE | F_TCAM_RESET,
    998		       adapter->regs + A_MC5_CONFIG);
    999	}
   1000
   1001	if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
   1002					  bi->espi_nports))
   1003		goto out_err;
   1004
   1005	if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
   1006		goto out_err;
   1007
   1008	err = t1_sge_configure(adapter->sge, &adapter->params.sge);
   1009	if (err)
   1010		goto out_err;
   1011
   1012	err = 0;
   1013out_err:
   1014	return err;
   1015}
   1016
   1017/*
   1018 * Determine a card's PCI mode.
   1019 */
   1020static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
   1021{
   1022	static const unsigned short speed_map[] = { 33, 66, 100, 133 };
   1023	u32 pci_mode;
   1024
   1025	pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
   1026	p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
   1027	p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
   1028	p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
   1029}
   1030
   1031/*
   1032 * Release the structures holding the SW per-Terminator-HW-module state.
   1033 */
   1034void t1_free_sw_modules(adapter_t *adapter)
   1035{
   1036	unsigned int i;
   1037
   1038	for_each_port(adapter, i) {
   1039		struct cmac *mac = adapter->port[i].mac;
   1040		struct cphy *phy = adapter->port[i].phy;
   1041
   1042		if (mac)
   1043			mac->ops->destroy(mac);
   1044		if (phy)
   1045			phy->ops->destroy(phy);
   1046	}
   1047
   1048	if (adapter->sge)
   1049		t1_sge_destroy(adapter->sge);
   1050	if (adapter->tp)
   1051		t1_tp_destroy(adapter->tp);
   1052	if (adapter->espi)
   1053		t1_espi_destroy(adapter->espi);
   1054}
   1055
   1056static void init_link_config(struct link_config *lc,
   1057			     const struct board_info *bi)
   1058{
   1059	lc->supported = bi->caps;
   1060	lc->requested_speed = lc->speed = SPEED_INVALID;
   1061	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
   1062	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
   1063	if (lc->supported & SUPPORTED_Autoneg) {
   1064		lc->advertising = lc->supported;
   1065		lc->autoneg = AUTONEG_ENABLE;
   1066		lc->requested_fc |= PAUSE_AUTONEG;
   1067	} else {
   1068		lc->advertising = 0;
   1069		lc->autoneg = AUTONEG_DISABLE;
   1070	}
   1071}
   1072
   1073/*
   1074 * Allocate and initialize the data structures that hold the SW state of
   1075 * the Terminator HW modules.
   1076 */
   1077int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
   1078{
   1079	unsigned int i;
   1080
   1081	adapter->params.brd_info = bi;
   1082	adapter->params.nports = bi->port_number;
   1083	adapter->params.stats_update_period = bi->gmac->stats_update_period;
   1084
   1085	adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
   1086	if (!adapter->sge) {
   1087		pr_err("%s: SGE initialization failed\n",
   1088		       adapter->name);
   1089		goto error;
   1090	}
   1091
   1092	if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
   1093		pr_err("%s: ESPI initialization failed\n",
   1094		       adapter->name);
   1095		goto error;
   1096	}
   1097
   1098	adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
   1099	if (!adapter->tp) {
   1100		pr_err("%s: TP initialization failed\n",
   1101		       adapter->name);
   1102		goto error;
   1103	}
   1104
   1105	board_init(adapter, bi);
   1106	bi->mdio_ops->init(adapter, bi);
   1107	if (bi->gphy->reset)
   1108		bi->gphy->reset(adapter);
   1109	if (bi->gmac->reset)
   1110		bi->gmac->reset(adapter);
   1111
   1112	for_each_port(adapter, i) {
   1113		u8 hw_addr[6];
   1114		struct cmac *mac;
   1115		int phy_addr = bi->mdio_phybaseaddr + i;
   1116
   1117		adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
   1118							phy_addr, bi->mdio_ops);
   1119		if (!adapter->port[i].phy) {
   1120			pr_err("%s: PHY %d initialization failed\n",
   1121			       adapter->name, i);
   1122			goto error;
   1123		}
   1124
   1125		adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
   1126		if (!mac) {
   1127			pr_err("%s: MAC %d initialization failed\n",
   1128			       adapter->name, i);
   1129			goto error;
   1130		}
   1131
   1132		/*
   1133		 * Get the port's MAC addresses either from the EEPROM if one
   1134		 * exists or the one hardcoded in the MAC.
   1135		 */
   1136		if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
   1137			mac->ops->macaddress_get(mac, hw_addr);
   1138		else if (vpd_macaddress_get(adapter, i, hw_addr)) {
   1139			pr_err("%s: could not read MAC address from VPD ROM\n",
   1140			       adapter->port[i].dev->name);
   1141			goto error;
   1142		}
   1143		eth_hw_addr_set(adapter->port[i].dev, hw_addr);
   1144		init_link_config(&adapter->port[i].link_config, bi);
   1145	}
   1146
   1147	get_pci_mode(adapter, &adapter->params.pci);
   1148	t1_interrupts_clear(adapter);
   1149	return 0;
   1150
   1151error:
   1152	t1_free_sw_modules(adapter);
   1153	return -1;
   1154}