cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cxgb4_main.c (196493B)


      1/*
      2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
      3 *
      4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
      5 *
      6 * This software is available to you under a choice of one of two
      7 * licenses.  You may choose to be licensed under the terms of the GNU
      8 * General Public License (GPL) Version 2, available from the file
      9 * COPYING in the main directory of this source tree, or the
     10 * OpenIB.org BSD license below:
     11 *
     12 *     Redistribution and use in source and binary forms, with or
     13 *     without modification, are permitted provided that the following
     14 *     conditions are met:
     15 *
     16 *      - Redistributions of source code must retain the above
     17 *        copyright notice, this list of conditions and the following
     18 *        disclaimer.
     19 *
     20 *      - Redistributions in binary form must reproduce the above
     21 *        copyright notice, this list of conditions and the following
     22 *        disclaimer in the documentation and/or other materials
     23 *        provided with the distribution.
     24 *
     25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     32 * SOFTWARE.
     33 */
     34
     35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     36
     37#include <linux/bitmap.h>
     38#include <linux/crc32.h>
     39#include <linux/ctype.h>
     40#include <linux/debugfs.h>
     41#include <linux/err.h>
     42#include <linux/etherdevice.h>
     43#include <linux/firmware.h>
     44#include <linux/if.h>
     45#include <linux/if_vlan.h>
     46#include <linux/init.h>
     47#include <linux/log2.h>
     48#include <linux/mdio.h>
     49#include <linux/module.h>
     50#include <linux/moduleparam.h>
     51#include <linux/mutex.h>
     52#include <linux/netdevice.h>
     53#include <linux/pci.h>
     54#include <linux/aer.h>
     55#include <linux/rtnetlink.h>
     56#include <linux/sched.h>
     57#include <linux/seq_file.h>
     58#include <linux/sockios.h>
     59#include <linux/vmalloc.h>
     60#include <linux/workqueue.h>
     61#include <net/neighbour.h>
     62#include <net/netevent.h>
     63#include <net/addrconf.h>
     64#include <net/bonding.h>
     65#include <linux/uaccess.h>
     66#include <linux/crash_dump.h>
     67#include <net/udp_tunnel.h>
     68#include <net/xfrm.h>
     69#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
     70#include <net/tls.h>
     71#endif
     72
     73#include "cxgb4.h"
     74#include "cxgb4_filter.h"
     75#include "t4_regs.h"
     76#include "t4_values.h"
     77#include "t4_msg.h"
     78#include "t4fw_api.h"
     79#include "t4fw_version.h"
     80#include "cxgb4_dcb.h"
     81#include "srq.h"
     82#include "cxgb4_debugfs.h"
     83#include "clip_tbl.h"
     84#include "l2t.h"
     85#include "smt.h"
     86#include "sched.h"
     87#include "cxgb4_tc_u32.h"
     88#include "cxgb4_tc_flower.h"
     89#include "cxgb4_tc_mqprio.h"
     90#include "cxgb4_tc_matchall.h"
     91#include "cxgb4_ptp.h"
     92#include "cxgb4_cudbg.h"
     93
     94char cxgb4_driver_name[] = KBUILD_MODNAME;
     95
     96#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
     97
     98#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
     99			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
    100			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
    101
    102/* Macros needed to support the PCI Device ID Table ...
    103 */
    104#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
    105	static const struct pci_device_id cxgb4_pci_tbl[] = {
    106#define CXGB4_UNIFIED_PF 0x4
    107
    108#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
    109
    110/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
    111 * called for both.
    112 */
    113#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
    114
    115#define CH_PCI_ID_TABLE_ENTRY(devid) \
    116		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
    117
    118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
    119		{ 0, } \
    120	}
    121
    122#include "t4_pci_id_tbl.h"
    123
    124#define FW4_FNAME "cxgb4/t4fw.bin"
    125#define FW5_FNAME "cxgb4/t5fw.bin"
    126#define FW6_FNAME "cxgb4/t6fw.bin"
    127#define FW4_CFNAME "cxgb4/t4-config.txt"
    128#define FW5_CFNAME "cxgb4/t5-config.txt"
    129#define FW6_CFNAME "cxgb4/t6-config.txt"
    130#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
    131#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
    132#define PHY_AQ1202_DEVICEID 0x4409
    133#define PHY_BCM84834_DEVICEID 0x4486
    134
    135MODULE_DESCRIPTION(DRV_DESC);
    136MODULE_AUTHOR("Chelsio Communications");
    137MODULE_LICENSE("Dual BSD/GPL");
    138MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
    139MODULE_FIRMWARE(FW4_FNAME);
    140MODULE_FIRMWARE(FW5_FNAME);
    141MODULE_FIRMWARE(FW6_FNAME);
    142
    143/*
    144 * The driver uses the best interrupt scheme available on a platform in the
    145 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
    146 * of these schemes the driver may consider as follows:
    147 *
    148 * msi = 2: choose from among all three options
    149 * msi = 1: only consider MSI and INTx interrupts
    150 * msi = 0: force INTx interrupts
    151 */
    152static int msi = 2;
    153
    154module_param(msi, int, 0644);
    155MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
    156
    157/*
    158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
    159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
    160 * boundaries.  This is a requirement for many architectures which will throw
    161 * a machine check fault if an attempt is made to access one of the 4-byte IP
    162 * header fields on a non-4-byte boundary.  And it's a major performance issue
    163 * even on some architectures which allow it like some implementations of the
    164 * x86 ISA.  However, some architectures don't mind this and for some very
    165 * edge-case performance sensitive applications (like forwarding large volumes
    166 * of small packets), setting this DMA offset to 0 will decrease the number of
    167 * PCI-E Bus transfers enough to measurably affect performance.
    168 */
    169static int rx_dma_offset = 2;
    170
    171/* TX Queue select used to determine what algorithm to use for selecting TX
    172 * queue. Select between the kernel provided function (select_queue=0) or user
    173 * cxgb_select_queue function (select_queue=1)
    174 *
    175 * Default: select_queue=0
    176 */
    177static int select_queue;
    178module_param(select_queue, int, 0644);
    179MODULE_PARM_DESC(select_queue,
    180		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
    181
    182static struct dentry *cxgb4_debugfs_root;
    183
    184LIST_HEAD(adapter_list);
    185DEFINE_MUTEX(uld_mutex);
    186LIST_HEAD(uld_list);
    187
    188static int cfg_queues(struct adapter *adap);
    189
    190static void link_report(struct net_device *dev)
    191{
    192	if (!netif_carrier_ok(dev))
    193		netdev_info(dev, "link down\n");
    194	else {
    195		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
    196
    197		const char *s;
    198		const struct port_info *p = netdev_priv(dev);
    199
    200		switch (p->link_cfg.speed) {
    201		case 100:
    202			s = "100Mbps";
    203			break;
    204		case 1000:
    205			s = "1Gbps";
    206			break;
    207		case 10000:
    208			s = "10Gbps";
    209			break;
    210		case 25000:
    211			s = "25Gbps";
    212			break;
    213		case 40000:
    214			s = "40Gbps";
    215			break;
    216		case 50000:
    217			s = "50Gbps";
    218			break;
    219		case 100000:
    220			s = "100Gbps";
    221			break;
    222		default:
    223			pr_info("%s: unsupported speed: %d\n",
    224				dev->name, p->link_cfg.speed);
    225			return;
    226		}
    227
    228		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
    229			    fc[p->link_cfg.fc]);
    230	}
    231}
    232
    233#ifdef CONFIG_CHELSIO_T4_DCB
    234/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
    235static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
    236{
    237	struct port_info *pi = netdev_priv(dev);
    238	struct adapter *adap = pi->adapter;
    239	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
    240	int i;
    241
    242	/* We use a simple mapping of Port TX Queue Index to DCB
    243	 * Priority when we're enabling DCB.
    244	 */
    245	for (i = 0; i < pi->nqsets; i++, txq++) {
    246		u32 name, value;
    247		int err;
    248
    249		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
    250			FW_PARAMS_PARAM_X_V(
    251				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
    252			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
    253		value = enable ? i : 0xffffffff;
    254
    255		/* Since we can be called while atomic (from "interrupt
    256		 * level") we need to issue the Set Parameters Commannd
    257		 * without sleeping (timeout < 0).
    258		 */
    259		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
    260					    &name, &value,
    261					    -FW_CMD_MAX_TIMEOUT);
    262
    263		if (err)
    264			dev_err(adap->pdev_dev,
    265				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
    266				enable ? "set" : "unset", pi->port_id, i, -err);
    267		else
    268			txq->dcb_prio = enable ? value : 0;
    269	}
    270}
    271
    272int cxgb4_dcb_enabled(const struct net_device *dev)
    273{
    274	struct port_info *pi = netdev_priv(dev);
    275
    276	if (!pi->dcb.enabled)
    277		return 0;
    278
    279	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
    280		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
    281}
    282#endif /* CONFIG_CHELSIO_T4_DCB */
    283
    284void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
    285{
    286	struct net_device *dev = adapter->port[port_id];
    287
    288	/* Skip changes from disabled ports. */
    289	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
    290		if (link_stat)
    291			netif_carrier_on(dev);
    292		else {
    293#ifdef CONFIG_CHELSIO_T4_DCB
    294			if (cxgb4_dcb_enabled(dev)) {
    295				cxgb4_dcb_reset(dev);
    296				dcb_tx_queue_prio_enable(dev, false);
    297			}
    298#endif /* CONFIG_CHELSIO_T4_DCB */
    299			netif_carrier_off(dev);
    300		}
    301
    302		link_report(dev);
    303	}
    304}
    305
    306void t4_os_portmod_changed(struct adapter *adap, int port_id)
    307{
    308	static const char *mod_str[] = {
    309		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
    310	};
    311
    312	struct net_device *dev = adap->port[port_id];
    313	struct port_info *pi = netdev_priv(dev);
    314
    315	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
    316		netdev_info(dev, "port module unplugged\n");
    317	else if (pi->mod_type < ARRAY_SIZE(mod_str))
    318		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
    319	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
    320		netdev_info(dev, "%s: unsupported port module inserted\n",
    321			    dev->name);
    322	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
    323		netdev_info(dev, "%s: unknown port module inserted\n",
    324			    dev->name);
    325	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
    326		netdev_info(dev, "%s: transceiver module error\n", dev->name);
    327	else
    328		netdev_info(dev, "%s: unknown module type %d inserted\n",
    329			    dev->name, pi->mod_type);
    330
    331	/* If the interface is running, then we'll need any "sticky" Link
    332	 * Parameters redone with a new Transceiver Module.
    333	 */
    334	pi->link_cfg.redo_l1cfg = netif_running(dev);
    335}
    336
    337int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
    338module_param(dbfifo_int_thresh, int, 0644);
    339MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
    340
    341/*
    342 * usecs to sleep while draining the dbfifo
    343 */
    344static int dbfifo_drain_delay = 1000;
    345module_param(dbfifo_drain_delay, int, 0644);
    346MODULE_PARM_DESC(dbfifo_drain_delay,
    347		 "usecs to sleep while draining the dbfifo");
    348
    349static inline int cxgb4_set_addr_hash(struct port_info *pi)
    350{
    351	struct adapter *adap = pi->adapter;
    352	u64 vec = 0;
    353	bool ucast = false;
    354	struct hash_mac_addr *entry;
    355
    356	/* Calculate the hash vector for the updated list and program it */
    357	list_for_each_entry(entry, &adap->mac_hlist, list) {
    358		ucast |= is_unicast_ether_addr(entry->addr);
    359		vec |= (1ULL << hash_mac_addr(entry->addr));
    360	}
    361	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
    362				vec, false);
    363}
    364
    365static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
    366{
    367	struct port_info *pi = netdev_priv(netdev);
    368	struct adapter *adap = pi->adapter;
    369	int ret;
    370	u64 mhash = 0;
    371	u64 uhash = 0;
    372	/* idx stores the index of allocated filters,
    373	 * its size should be modified based on the number of
    374	 * MAC addresses that we allocate filters for
    375	 */
    376
    377	u16 idx[1] = {};
    378	bool free = false;
    379	bool ucast = is_unicast_ether_addr(mac_addr);
    380	const u8 *maclist[1] = {mac_addr};
    381	struct hash_mac_addr *new_entry;
    382
    383	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
    384				   idx, ucast ? &uhash : &mhash, false);
    385	if (ret < 0)
    386		goto out;
    387	/* if hash != 0, then add the addr to hash addr list
    388	 * so on the end we will calculate the hash for the
    389	 * list and program it
    390	 */
    391	if (uhash || mhash) {
    392		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
    393		if (!new_entry)
    394			return -ENOMEM;
    395		ether_addr_copy(new_entry->addr, mac_addr);
    396		list_add_tail(&new_entry->list, &adap->mac_hlist);
    397		ret = cxgb4_set_addr_hash(pi);
    398	}
    399out:
    400	return ret < 0 ? ret : 0;
    401}
    402
    403static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
    404{
    405	struct port_info *pi = netdev_priv(netdev);
    406	struct adapter *adap = pi->adapter;
    407	int ret;
    408	const u8 *maclist[1] = {mac_addr};
    409	struct hash_mac_addr *entry, *tmp;
    410
    411	/* If the MAC address to be removed is in the hash addr
    412	 * list, delete it from the list and update hash vector
    413	 */
    414	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
    415		if (ether_addr_equal(entry->addr, mac_addr)) {
    416			list_del(&entry->list);
    417			kfree(entry);
    418			return cxgb4_set_addr_hash(pi);
    419		}
    420	}
    421
    422	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
    423	return ret < 0 ? -EINVAL : 0;
    424}
    425
    426/*
    427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
    428 * If @mtu is -1 it is left unchanged.
    429 */
    430static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
    431{
    432	struct port_info *pi = netdev_priv(dev);
    433	struct adapter *adapter = pi->adapter;
    434
    435	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
    436	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
    437
    438	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
    439			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
    440			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
    441			     sleep_ok);
    442}
    443
    444/**
    445 *	cxgb4_change_mac - Update match filter for a MAC address.
    446 *	@pi: the port_info
    447 *	@viid: the VI id
    448 *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
    449 *		   or -1
    450 *	@addr: the new MAC address value
    451 *	@persist: whether a new MAC allocation should be persistent
    452 *	@smt_idx: the destination to store the new SMT index.
    453 *
    454 *	Modifies an MPS filter and sets it to the new MAC address if
    455 *	@tcam_idx >= 0, or adds the MAC address to a new filter if
    456 *	@tcam_idx < 0. In the latter case the address is added persistently
    457 *	if @persist is %true.
    458 *	Addresses are programmed to hash region, if tcam runs out of entries.
    459 *
    460 */
    461int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
    462		     int *tcam_idx, const u8 *addr, bool persist,
    463		     u8 *smt_idx)
    464{
    465	struct adapter *adapter = pi->adapter;
    466	struct hash_mac_addr *entry, *new_entry;
    467	int ret;
    468
    469	ret = t4_change_mac(adapter, adapter->mbox, viid,
    470			    *tcam_idx, addr, persist, smt_idx);
    471	/* We ran out of TCAM entries. try programming hash region. */
    472	if (ret == -ENOMEM) {
    473		/* If the MAC address to be updated is in the hash addr
    474		 * list, update it from the list
    475		 */
    476		list_for_each_entry(entry, &adapter->mac_hlist, list) {
    477			if (entry->iface_mac) {
    478				ether_addr_copy(entry->addr, addr);
    479				goto set_hash;
    480			}
    481		}
    482		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
    483		if (!new_entry)
    484			return -ENOMEM;
    485		ether_addr_copy(new_entry->addr, addr);
    486		new_entry->iface_mac = true;
    487		list_add_tail(&new_entry->list, &adapter->mac_hlist);
    488set_hash:
    489		ret = cxgb4_set_addr_hash(pi);
    490	} else if (ret >= 0) {
    491		*tcam_idx = ret;
    492		ret = 0;
    493	}
    494
    495	return ret;
    496}
    497
    498/*
    499 *	link_start - enable a port
    500 *	@dev: the port to enable
    501 *
    502 *	Performs the MAC and PHY actions needed to enable a port.
    503 */
    504static int link_start(struct net_device *dev)
    505{
    506	struct port_info *pi = netdev_priv(dev);
    507	unsigned int mb = pi->adapter->mbox;
    508	int ret;
    509
    510	/*
    511	 * We do not set address filters and promiscuity here, the stack does
    512	 * that step explicitly.
    513	 */
    514	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
    515			    dev->mtu, -1, -1, -1,
    516			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
    517	if (ret == 0)
    518		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
    519					    dev->dev_addr, true, &pi->smt_idx);
    520	if (ret == 0)
    521		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
    522				    &pi->link_cfg);
    523	if (ret == 0) {
    524		local_bh_disable();
    525		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
    526					  true, CXGB4_DCB_ENABLED);
    527		local_bh_enable();
    528	}
    529
    530	return ret;
    531}
    532
    533#ifdef CONFIG_CHELSIO_T4_DCB
    534/* Handle a Data Center Bridging update message from the firmware. */
    535static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
    536{
    537	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
    538	struct net_device *dev = adap->port[adap->chan_map[port]];
    539	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
    540	int new_dcb_enabled;
    541
    542	cxgb4_dcb_handle_fw_update(adap, pcmd);
    543	new_dcb_enabled = cxgb4_dcb_enabled(dev);
    544
    545	/* If the DCB has become enabled or disabled on the port then we're
    546	 * going to need to set up/tear down DCB Priority parameters for the
    547	 * TX Queues associated with the port.
    548	 */
    549	if (new_dcb_enabled != old_dcb_enabled)
    550		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
    551}
    552#endif /* CONFIG_CHELSIO_T4_DCB */
    553
    554/* Response queue handler for the FW event queue.
    555 */
    556static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
    557			  const struct pkt_gl *gl)
    558{
    559	u8 opcode = ((const struct rss_header *)rsp)->opcode;
    560
    561	rsp++;                                          /* skip RSS header */
    562
    563	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
    564	 */
    565	if (unlikely(opcode == CPL_FW4_MSG &&
    566	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
    567		rsp++;
    568		opcode = ((const struct rss_header *)rsp)->opcode;
    569		rsp++;
    570		if (opcode != CPL_SGE_EGR_UPDATE) {
    571			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
    572				, opcode);
    573			goto out;
    574		}
    575	}
    576
    577	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
    578		const struct cpl_sge_egr_update *p = (void *)rsp;
    579		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
    580		struct sge_txq *txq;
    581
    582		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
    583		txq->restarts++;
    584		if (txq->q_type == CXGB4_TXQ_ETH) {
    585			struct sge_eth_txq *eq;
    586
    587			eq = container_of(txq, struct sge_eth_txq, q);
    588			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
    589		} else {
    590			struct sge_uld_txq *oq;
    591
    592			oq = container_of(txq, struct sge_uld_txq, q);
    593			tasklet_schedule(&oq->qresume_tsk);
    594		}
    595	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
    596		const struct cpl_fw6_msg *p = (void *)rsp;
    597
    598#ifdef CONFIG_CHELSIO_T4_DCB
    599		const struct fw_port_cmd *pcmd = (const void *)p->data;
    600		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
    601		unsigned int action =
    602			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
    603
    604		if (cmd == FW_PORT_CMD &&
    605		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
    606		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
    607			int port = FW_PORT_CMD_PORTID_G(
    608					be32_to_cpu(pcmd->op_to_portid));
    609			struct net_device *dev;
    610			int dcbxdis, state_input;
    611
    612			dev = q->adap->port[q->adap->chan_map[port]];
    613			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
    614			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
    615			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
    616			       & FW_PORT_CMD_DCBXDIS32_F));
    617			state_input = (dcbxdis
    618				       ? CXGB4_DCB_INPUT_FW_DISABLED
    619				       : CXGB4_DCB_INPUT_FW_ENABLED);
    620
    621			cxgb4_dcb_state_fsm(dev, state_input);
    622		}
    623
    624		if (cmd == FW_PORT_CMD &&
    625		    action == FW_PORT_ACTION_L2_DCB_CFG)
    626			dcb_rpl(q->adap, pcmd);
    627		else
    628#endif
    629			if (p->type == 0)
    630				t4_handle_fw_rpl(q->adap, p->data);
    631	} else if (opcode == CPL_L2T_WRITE_RPL) {
    632		const struct cpl_l2t_write_rpl *p = (void *)rsp;
    633
    634		do_l2t_write_rpl(q->adap, p);
    635	} else if (opcode == CPL_SMT_WRITE_RPL) {
    636		const struct cpl_smt_write_rpl *p = (void *)rsp;
    637
    638		do_smt_write_rpl(q->adap, p);
    639	} else if (opcode == CPL_SET_TCB_RPL) {
    640		const struct cpl_set_tcb_rpl *p = (void *)rsp;
    641
    642		filter_rpl(q->adap, p);
    643	} else if (opcode == CPL_ACT_OPEN_RPL) {
    644		const struct cpl_act_open_rpl *p = (void *)rsp;
    645
    646		hash_filter_rpl(q->adap, p);
    647	} else if (opcode == CPL_ABORT_RPL_RSS) {
    648		const struct cpl_abort_rpl_rss *p = (void *)rsp;
    649
    650		hash_del_filter_rpl(q->adap, p);
    651	} else if (opcode == CPL_SRQ_TABLE_RPL) {
    652		const struct cpl_srq_table_rpl *p = (void *)rsp;
    653
    654		do_srq_table_rpl(q->adap, p);
    655	} else
    656		dev_err(q->adap->pdev_dev,
    657			"unexpected CPL %#x on FW event queue\n", opcode);
    658out:
    659	return 0;
    660}
    661
    662static void disable_msi(struct adapter *adapter)
    663{
    664	if (adapter->flags & CXGB4_USING_MSIX) {
    665		pci_disable_msix(adapter->pdev);
    666		adapter->flags &= ~CXGB4_USING_MSIX;
    667	} else if (adapter->flags & CXGB4_USING_MSI) {
    668		pci_disable_msi(adapter->pdev);
    669		adapter->flags &= ~CXGB4_USING_MSI;
    670	}
    671}
    672
    673/*
    674 * Interrupt handler for non-data events used with MSI-X.
    675 */
    676static irqreturn_t t4_nondata_intr(int irq, void *cookie)
    677{
    678	struct adapter *adap = cookie;
    679	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
    680
    681	if (v & PFSW_F) {
    682		adap->swintr = 1;
    683		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
    684	}
    685	if (adap->flags & CXGB4_MASTER_PF)
    686		t4_slow_intr_handler(adap);
    687	return IRQ_HANDLED;
    688}
    689
    690int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
    691		       cpumask_var_t *aff_mask, int idx)
    692{
    693	int rv;
    694
    695	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
    696		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
    697		return -ENOMEM;
    698	}
    699
    700	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
    701			*aff_mask);
    702
    703	rv = irq_set_affinity_hint(vec, *aff_mask);
    704	if (rv)
    705		dev_warn(adap->pdev_dev,
    706			 "irq_set_affinity_hint %u failed %d\n",
    707			 vec, rv);
    708
    709	return 0;
    710}
    711
    712void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
    713{
    714	irq_set_affinity_hint(vec, NULL);
    715	free_cpumask_var(aff_mask);
    716}
    717
    718static int request_msix_queue_irqs(struct adapter *adap)
    719{
    720	struct sge *s = &adap->sge;
    721	struct msix_info *minfo;
    722	int err, ethqidx;
    723
    724	if (s->fwevtq_msix_idx < 0)
    725		return -ENOMEM;
    726
    727	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
    728			  t4_sge_intr_msix, 0,
    729			  adap->msix_info[s->fwevtq_msix_idx].desc,
    730			  &s->fw_evtq);
    731	if (err)
    732		return err;
    733
    734	for_each_ethrxq(s, ethqidx) {
    735		minfo = s->ethrxq[ethqidx].msix;
    736		err = request_irq(minfo->vec,
    737				  t4_sge_intr_msix, 0,
    738				  minfo->desc,
    739				  &s->ethrxq[ethqidx].rspq);
    740		if (err)
    741			goto unwind;
    742
    743		cxgb4_set_msix_aff(adap, minfo->vec,
    744				   &minfo->aff_mask, ethqidx);
    745	}
    746	return 0;
    747
    748unwind:
    749	while (--ethqidx >= 0) {
    750		minfo = s->ethrxq[ethqidx].msix;
    751		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
    752		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
    753	}
    754	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
    755	return err;
    756}
    757
    758static void free_msix_queue_irqs(struct adapter *adap)
    759{
    760	struct sge *s = &adap->sge;
    761	struct msix_info *minfo;
    762	int i;
    763
    764	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
    765	for_each_ethrxq(s, i) {
    766		minfo = s->ethrxq[i].msix;
    767		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
    768		free_irq(minfo->vec, &s->ethrxq[i].rspq);
    769	}
    770}
    771
    772static int setup_ppod_edram(struct adapter *adap)
    773{
    774	unsigned int param, val;
    775	int ret;
    776
    777	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
    778	 * if firmware supports ppod edram feature or not. If firmware
    779	 * returns 1, then driver can enable this feature by sending
    780	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
    781	 * enable ppod edram feature.
    782	 */
    783	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
    784		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
    785
    786	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
    787	if (ret < 0) {
    788		dev_warn(adap->pdev_dev,
    789			 "querying PPOD_EDRAM support failed: %d\n",
    790			 ret);
    791		return -1;
    792	}
    793
    794	if (val != 1)
    795		return -1;
    796
    797	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
    798	if (ret < 0) {
    799		dev_err(adap->pdev_dev,
    800			"setting PPOD_EDRAM failed: %d\n", ret);
    801		return -1;
    802	}
    803	return 0;
    804}
    805
    806static void adap_config_hpfilter(struct adapter *adapter)
    807{
    808	u32 param, val = 0;
    809	int ret;
    810
    811	/* Enable HP filter region. Older fw will fail this request and
    812	 * it is fine.
    813	 */
    814	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
    815	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
    816			    1, &param, &val);
    817
    818	/* An error means FW doesn't know about HP filter support,
    819	 * it's not a problem, don't return an error.
    820	 */
    821	if (ret < 0)
    822		dev_err(adapter->pdev_dev,
    823			"HP filter region isn't supported by FW\n");
    824}
    825
    826static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
    827			    u16 rss_size, u16 viid)
    828{
    829	struct adapter *adap = pi->adapter;
    830	int ret;
    831
    832	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
    833				  rss_size);
    834	if (ret)
    835		return ret;
    836
    837	/* If Tunnel All Lookup isn't specified in the global RSS
    838	 * Configuration, then we need to specify a default Ingress
    839	 * Queue for any ingress packets which aren't hashed.  We'll
    840	 * use our first ingress queue ...
    841	 */
    842	return t4_config_vi_rss(adap, adap->mbox, viid,
    843				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
    844				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
    845				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
    846				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
    847				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
    848				rss[0]);
    849}
    850
    851/**
    852 *	cxgb4_write_rss - write the RSS table for a given port
    853 *	@pi: the port
    854 *	@queues: array of queue indices for RSS
    855 *
    856 *	Sets up the portion of the HW RSS table for the port's VI to distribute
    857 *	packets to the Rx queues in @queues.
    858 *	Should never be called before setting up sge eth rx queues
    859 */
    860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
    861{
    862	struct adapter *adapter = pi->adapter;
    863	const struct sge_eth_rxq *rxq;
    864	int i, err;
    865	u16 *rss;
    866
    867	rxq = &adapter->sge.ethrxq[pi->first_qset];
    868	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
    869	if (!rss)
    870		return -ENOMEM;
    871
    872	/* map the queue indices to queue ids */
    873	for (i = 0; i < pi->rss_size; i++, queues++)
    874		rss[i] = rxq[*queues].rspq.abs_id;
    875
    876	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
    877	kfree(rss);
    878	return err;
    879}
    880
    881/**
    882 *	setup_rss - configure RSS
    883 *	@adap: the adapter
    884 *
    885 *	Sets up RSS for each port.
    886 */
    887static int setup_rss(struct adapter *adap)
    888{
    889	int i, j, err;
    890
    891	for_each_port(adap, i) {
    892		const struct port_info *pi = adap2pinfo(adap, i);
    893
    894		/* Fill default values with equal distribution */
    895		for (j = 0; j < pi->rss_size; j++)
    896			pi->rss[j] = j % pi->nqsets;
    897
    898		err = cxgb4_write_rss(pi, pi->rss);
    899		if (err)
    900			return err;
    901	}
    902	return 0;
    903}
    904
    905/*
    906 * Return the channel of the ingress queue with the given qid.
    907 */
    908static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
    909{
    910	qid -= p->ingr_start;
    911	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
    912}
    913
    914void cxgb4_quiesce_rx(struct sge_rspq *q)
    915{
    916	if (q->handler)
    917		napi_disable(&q->napi);
    918}
    919
    920/*
    921 * Wait until all NAPI handlers are descheduled.
    922 */
    923static void quiesce_rx(struct adapter *adap)
    924{
    925	int i;
    926
    927	for (i = 0; i < adap->sge.ingr_sz; i++) {
    928		struct sge_rspq *q = adap->sge.ingr_map[i];
    929
    930		if (!q)
    931			continue;
    932
    933		cxgb4_quiesce_rx(q);
    934	}
    935}
    936
    937/* Disable interrupt and napi handler */
    938static void disable_interrupts(struct adapter *adap)
    939{
    940	struct sge *s = &adap->sge;
    941
    942	if (adap->flags & CXGB4_FULL_INIT_DONE) {
    943		t4_intr_disable(adap);
    944		if (adap->flags & CXGB4_USING_MSIX) {
    945			free_msix_queue_irqs(adap);
    946			free_irq(adap->msix_info[s->nd_msix_idx].vec,
    947				 adap);
    948		} else {
    949			free_irq(adap->pdev->irq, adap);
    950		}
    951		quiesce_rx(adap);
    952	}
    953}
    954
    955void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
    956{
    957	if (q->handler)
    958		napi_enable(&q->napi);
    959
    960	/* 0-increment GTS to start the timer and enable interrupts */
    961	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
    962		     SEINTARM_V(q->intr_params) |
    963		     INGRESSQID_V(q->cntxt_id));
    964}
    965
    966/*
    967 * Enable NAPI scheduling and interrupt generation for all Rx queues.
    968 */
    969static void enable_rx(struct adapter *adap)
    970{
    971	int i;
    972
    973	for (i = 0; i < adap->sge.ingr_sz; i++) {
    974		struct sge_rspq *q = adap->sge.ingr_map[i];
    975
    976		if (!q)
    977			continue;
    978
    979		cxgb4_enable_rx(adap, q);
    980	}
    981}
    982
    983static int setup_non_data_intr(struct adapter *adap)
    984{
    985	int msix;
    986
    987	adap->sge.nd_msix_idx = -1;
    988	if (!(adap->flags & CXGB4_USING_MSIX))
    989		return 0;
    990
    991	/* Request MSI-X vector for non-data interrupt */
    992	msix = cxgb4_get_msix_idx_from_bmap(adap);
    993	if (msix < 0)
    994		return -ENOMEM;
    995
    996	snprintf(adap->msix_info[msix].desc,
    997		 sizeof(adap->msix_info[msix].desc),
    998		 "%s", adap->port[0]->name);
    999
   1000	adap->sge.nd_msix_idx = msix;
   1001	return 0;
   1002}
   1003
   1004static int setup_fw_sge_queues(struct adapter *adap)
   1005{
   1006	struct sge *s = &adap->sge;
   1007	int msix, err = 0;
   1008
   1009	bitmap_zero(s->starving_fl, s->egr_sz);
   1010	bitmap_zero(s->txq_maperr, s->egr_sz);
   1011
   1012	if (adap->flags & CXGB4_USING_MSIX) {
   1013		s->fwevtq_msix_idx = -1;
   1014		msix = cxgb4_get_msix_idx_from_bmap(adap);
   1015		if (msix < 0)
   1016			return -ENOMEM;
   1017
   1018		snprintf(adap->msix_info[msix].desc,
   1019			 sizeof(adap->msix_info[msix].desc),
   1020			 "%s-FWeventq", adap->port[0]->name);
   1021	} else {
   1022		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
   1023				       NULL, NULL, NULL, -1);
   1024		if (err)
   1025			return err;
   1026		msix = -((int)s->intrq.abs_id + 1);
   1027	}
   1028
   1029	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
   1030			       msix, NULL, fwevtq_handler, NULL, -1);
   1031	if (err && msix >= 0)
   1032		cxgb4_free_msix_idx_in_bmap(adap, msix);
   1033
   1034	s->fwevtq_msix_idx = msix;
   1035	return err;
   1036}
   1037
   1038/**
   1039 *	setup_sge_queues - configure SGE Tx/Rx/response queues
   1040 *	@adap: the adapter
   1041 *
   1042 *	Determines how many sets of SGE queues to use and initializes them.
   1043 *	We support multiple queue sets per port if we have MSI-X, otherwise
   1044 *	just one queue set per port.
   1045 */
   1046static int setup_sge_queues(struct adapter *adap)
   1047{
   1048	struct sge_uld_rxq_info *rxq_info = NULL;
   1049	struct sge *s = &adap->sge;
   1050	unsigned int cmplqid = 0;
   1051	int err, i, j, msix = 0;
   1052
   1053	if (is_uld(adap))
   1054		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
   1055
   1056	if (!(adap->flags & CXGB4_USING_MSIX))
   1057		msix = -((int)s->intrq.abs_id + 1);
   1058
   1059	for_each_port(adap, i) {
   1060		struct net_device *dev = adap->port[i];
   1061		struct port_info *pi = netdev_priv(dev);
   1062		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
   1063		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
   1064
   1065		for (j = 0; j < pi->nqsets; j++, q++) {
   1066			if (msix >= 0) {
   1067				msix = cxgb4_get_msix_idx_from_bmap(adap);
   1068				if (msix < 0) {
   1069					err = msix;
   1070					goto freeout;
   1071				}
   1072
   1073				snprintf(adap->msix_info[msix].desc,
   1074					 sizeof(adap->msix_info[msix].desc),
   1075					 "%s-Rx%d", dev->name, j);
   1076				q->msix = &adap->msix_info[msix];
   1077			}
   1078
   1079			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
   1080					       msix, &q->fl,
   1081					       t4_ethrx_handler,
   1082					       NULL,
   1083					       t4_get_tp_ch_map(adap,
   1084								pi->tx_chan));
   1085			if (err)
   1086				goto freeout;
   1087			q->rspq.idx = j;
   1088			memset(&q->stats, 0, sizeof(q->stats));
   1089		}
   1090
   1091		q = &s->ethrxq[pi->first_qset];
   1092		for (j = 0; j < pi->nqsets; j++, t++, q++) {
   1093			err = t4_sge_alloc_eth_txq(adap, t, dev,
   1094					netdev_get_tx_queue(dev, j),
   1095					q->rspq.cntxt_id,
   1096					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
   1097			if (err)
   1098				goto freeout;
   1099		}
   1100	}
   1101
   1102	for_each_port(adap, i) {
   1103		/* Note that cmplqid below is 0 if we don't
   1104		 * have RDMA queues, and that's the right value.
   1105		 */
   1106		if (rxq_info)
   1107			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
   1108
   1109		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
   1110					    s->fw_evtq.cntxt_id, cmplqid);
   1111		if (err)
   1112			goto freeout;
   1113	}
   1114
   1115	if (!is_t4(adap->params.chip)) {
   1116		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
   1117					   netdev_get_tx_queue(adap->port[0], 0)
   1118					   , s->fw_evtq.cntxt_id, false);
   1119		if (err)
   1120			goto freeout;
   1121	}
   1122
   1123	t4_write_reg(adap, is_t4(adap->params.chip) ?
   1124				MPS_TRC_RSS_CONTROL_A :
   1125				MPS_T5_TRC_RSS_CONTROL_A,
   1126		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
   1127		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
   1128	return 0;
   1129freeout:
   1130	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
   1131	t4_free_sge_resources(adap);
   1132	return err;
   1133}
   1134
   1135static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
   1136			     struct net_device *sb_dev)
   1137{
   1138	int txq;
   1139
   1140#ifdef CONFIG_CHELSIO_T4_DCB
   1141	/* If a Data Center Bridging has been successfully negotiated on this
   1142	 * link then we'll use the skb's priority to map it to a TX Queue.
   1143	 * The skb's priority is determined via the VLAN Tag Priority Code
   1144	 * Point field.
   1145	 */
   1146	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
   1147		u16 vlan_tci;
   1148		int err;
   1149
   1150		err = vlan_get_tag(skb, &vlan_tci);
   1151		if (unlikely(err)) {
   1152			if (net_ratelimit())
   1153				netdev_warn(dev,
   1154					    "TX Packet without VLAN Tag on DCB Link\n");
   1155			txq = 0;
   1156		} else {
   1157			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
   1158#ifdef CONFIG_CHELSIO_T4_FCOE
   1159			if (skb->protocol == htons(ETH_P_FCOE))
   1160				txq = skb->priority & 0x7;
   1161#endif /* CONFIG_CHELSIO_T4_FCOE */
   1162		}
   1163		return txq;
   1164	}
   1165#endif /* CONFIG_CHELSIO_T4_DCB */
   1166
   1167	if (dev->num_tc) {
   1168		struct port_info *pi = netdev2pinfo(dev);
   1169		u8 ver, proto;
   1170
   1171		ver = ip_hdr(skb)->version;
   1172		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
   1173				     ip_hdr(skb)->protocol;
   1174
   1175		/* Send unsupported traffic pattern to normal NIC queues. */
   1176		txq = netdev_pick_tx(dev, skb, sb_dev);
   1177		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
   1178		    skb->encapsulation ||
   1179		    cxgb4_is_ktls_skb(skb) ||
   1180		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
   1181			txq = txq % pi->nqsets;
   1182
   1183		return txq;
   1184	}
   1185
   1186	if (select_queue) {
   1187		txq = (skb_rx_queue_recorded(skb)
   1188			? skb_get_rx_queue(skb)
   1189			: smp_processor_id());
   1190
   1191		while (unlikely(txq >= dev->real_num_tx_queues))
   1192			txq -= dev->real_num_tx_queues;
   1193
   1194		return txq;
   1195	}
   1196
   1197	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
   1198}
   1199
   1200static int closest_timer(const struct sge *s, int time)
   1201{
   1202	int i, delta, match = 0, min_delta = INT_MAX;
   1203
   1204	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
   1205		delta = time - s->timer_val[i];
   1206		if (delta < 0)
   1207			delta = -delta;
   1208		if (delta < min_delta) {
   1209			min_delta = delta;
   1210			match = i;
   1211		}
   1212	}
   1213	return match;
   1214}
   1215
   1216static int closest_thres(const struct sge *s, int thres)
   1217{
   1218	int i, delta, match = 0, min_delta = INT_MAX;
   1219
   1220	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
   1221		delta = thres - s->counter_val[i];
   1222		if (delta < 0)
   1223			delta = -delta;
   1224		if (delta < min_delta) {
   1225			min_delta = delta;
   1226			match = i;
   1227		}
   1228	}
   1229	return match;
   1230}
   1231
   1232/**
   1233 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
   1234 *	@q: the Rx queue
   1235 *	@us: the hold-off time in us, or 0 to disable timer
   1236 *	@cnt: the hold-off packet count, or 0 to disable counter
   1237 *
   1238 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
   1239 *	one of the two needs to be enabled for the queue to generate interrupts.
   1240 */
   1241int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
   1242			       unsigned int us, unsigned int cnt)
   1243{
   1244	struct adapter *adap = q->adap;
   1245
   1246	if ((us | cnt) == 0)
   1247		cnt = 1;
   1248
   1249	if (cnt) {
   1250		int err;
   1251		u32 v, new_idx;
   1252
   1253		new_idx = closest_thres(&adap->sge, cnt);
   1254		if (q->desc && q->pktcnt_idx != new_idx) {
   1255			/* the queue has already been created, update it */
   1256			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
   1257			    FW_PARAMS_PARAM_X_V(
   1258					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
   1259			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
   1260			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
   1261					    &v, &new_idx);
   1262			if (err)
   1263				return err;
   1264		}
   1265		q->pktcnt_idx = new_idx;
   1266	}
   1267
   1268	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
   1269	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
   1270	return 0;
   1271}
   1272
   1273static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
   1274{
   1275	netdev_features_t changed = dev->features ^ features;
   1276	const struct port_info *pi = netdev_priv(dev);
   1277	int err;
   1278
   1279	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
   1280		return 0;
   1281
   1282	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
   1283			    pi->viid_mirror, -1, -1, -1, -1,
   1284			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
   1285	if (unlikely(err))
   1286		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
   1287	return err;
   1288}
   1289
   1290static int setup_debugfs(struct adapter *adap)
   1291{
   1292	if (IS_ERR_OR_NULL(adap->debugfs_root))
   1293		return -1;
   1294
   1295#ifdef CONFIG_DEBUG_FS
   1296	t4_setup_debugfs(adap);
   1297#endif
   1298	return 0;
   1299}
   1300
   1301static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
   1302				       struct sge_eth_rxq *mirror_rxq)
   1303{
   1304	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
   1305	    !(adap->flags & CXGB4_SHUTTING_DOWN))
   1306		cxgb4_quiesce_rx(&mirror_rxq->rspq);
   1307
   1308	if (adap->flags & CXGB4_USING_MSIX) {
   1309		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
   1310				     mirror_rxq->msix->aff_mask);
   1311		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
   1312		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
   1313	}
   1314
   1315	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
   1316}
   1317
   1318static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
   1319{
   1320	struct port_info *pi = netdev2pinfo(dev);
   1321	struct adapter *adap = netdev2adap(dev);
   1322	struct sge_eth_rxq *mirror_rxq;
   1323	struct sge *s = &adap->sge;
   1324	int ret = 0, msix = 0;
   1325	u16 i, rxqid;
   1326	u16 *rss;
   1327
   1328	if (!pi->vi_mirror_count)
   1329		return 0;
   1330
   1331	if (s->mirror_rxq[pi->port_id])
   1332		return 0;
   1333
   1334	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
   1335	if (!mirror_rxq)
   1336		return -ENOMEM;
   1337
   1338	s->mirror_rxq[pi->port_id] = mirror_rxq;
   1339
   1340	if (!(adap->flags & CXGB4_USING_MSIX))
   1341		msix = -((int)adap->sge.intrq.abs_id + 1);
   1342
   1343	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
   1344		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
   1345
   1346		/* Allocate Mirror Rxqs */
   1347		if (msix >= 0) {
   1348			msix = cxgb4_get_msix_idx_from_bmap(adap);
   1349			if (msix < 0) {
   1350				ret = msix;
   1351				goto out_free_queues;
   1352			}
   1353
   1354			mirror_rxq->msix = &adap->msix_info[msix];
   1355			snprintf(mirror_rxq->msix->desc,
   1356				 sizeof(mirror_rxq->msix->desc),
   1357				 "%s-mirrorrxq%d", dev->name, i);
   1358		}
   1359
   1360		init_rspq(adap, &mirror_rxq->rspq,
   1361			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
   1362			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
   1363			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
   1364			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
   1365
   1366		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
   1367
   1368		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
   1369				       dev, msix, &mirror_rxq->fl,
   1370				       t4_ethrx_handler, NULL, 0);
   1371		if (ret)
   1372			goto out_free_msix_idx;
   1373
   1374		/* Setup MSI-X vectors for Mirror Rxqs */
   1375		if (adap->flags & CXGB4_USING_MSIX) {
   1376			ret = request_irq(mirror_rxq->msix->vec,
   1377					  t4_sge_intr_msix, 0,
   1378					  mirror_rxq->msix->desc,
   1379					  &mirror_rxq->rspq);
   1380			if (ret)
   1381				goto out_free_rxq;
   1382
   1383			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
   1384					   &mirror_rxq->msix->aff_mask, i);
   1385		}
   1386
   1387		/* Start NAPI for Mirror Rxqs */
   1388		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
   1389	}
   1390
   1391	/* Setup RSS for Mirror Rxqs */
   1392	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
   1393	if (!rss) {
   1394		ret = -ENOMEM;
   1395		goto out_free_queues;
   1396	}
   1397
   1398	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
   1399	for (i = 0; i < pi->rss_size; i++)
   1400		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
   1401
   1402	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
   1403	kfree(rss);
   1404	if (ret)
   1405		goto out_free_queues;
   1406
   1407	return 0;
   1408
   1409out_free_rxq:
   1410	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
   1411
   1412out_free_msix_idx:
   1413	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
   1414
   1415out_free_queues:
   1416	while (rxqid-- > 0)
   1417		cxgb4_port_mirror_free_rxq(adap,
   1418					   &s->mirror_rxq[pi->port_id][rxqid]);
   1419
   1420	kfree(s->mirror_rxq[pi->port_id]);
   1421	s->mirror_rxq[pi->port_id] = NULL;
   1422	return ret;
   1423}
   1424
   1425static void cxgb4_port_mirror_free_queues(struct net_device *dev)
   1426{
   1427	struct port_info *pi = netdev2pinfo(dev);
   1428	struct adapter *adap = netdev2adap(dev);
   1429	struct sge *s = &adap->sge;
   1430	u16 i;
   1431
   1432	if (!pi->vi_mirror_count)
   1433		return;
   1434
   1435	if (!s->mirror_rxq[pi->port_id])
   1436		return;
   1437
   1438	for (i = 0; i < pi->nmirrorqsets; i++)
   1439		cxgb4_port_mirror_free_rxq(adap,
   1440					   &s->mirror_rxq[pi->port_id][i]);
   1441
   1442	kfree(s->mirror_rxq[pi->port_id]);
   1443	s->mirror_rxq[pi->port_id] = NULL;
   1444}
   1445
   1446static int cxgb4_port_mirror_start(struct net_device *dev)
   1447{
   1448	struct port_info *pi = netdev2pinfo(dev);
   1449	struct adapter *adap = netdev2adap(dev);
   1450	int ret, idx = -1;
   1451
   1452	if (!pi->vi_mirror_count)
   1453		return 0;
   1454
   1455	/* Mirror VIs can be created dynamically after stack had
   1456	 * already setup Rx modes like MTU, promisc, allmulti, etc.
   1457	 * on main VI. So, parse what the stack had setup on the
   1458	 * main VI and update the same on the mirror VI.
   1459	 */
   1460	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
   1461			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
   1462			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
   1463			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
   1464	if (ret) {
   1465		dev_err(adap->pdev_dev,
   1466			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
   1467			pi->viid_mirror, ret);
   1468		return ret;
   1469	}
   1470
   1471	/* Enable replication bit for the device's MAC address
   1472	 * in MPS TCAM, so that the packets for the main VI are
   1473	 * replicated to mirror VI.
   1474	 */
   1475	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
   1476				    dev->dev_addr, true, NULL);
   1477	if (ret) {
   1478		dev_err(adap->pdev_dev,
   1479			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
   1480			pi->viid_mirror, ret);
   1481		return ret;
   1482	}
   1483
   1484	/* Enabling a Virtual Interface can result in an interrupt
   1485	 * during the processing of the VI Enable command and, in some
   1486	 * paths, result in an attempt to issue another command in the
   1487	 * interrupt context. Thus, we disable interrupts during the
   1488	 * course of the VI Enable command ...
   1489	 */
   1490	local_bh_disable();
   1491	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
   1492				  false);
   1493	local_bh_enable();
   1494	if (ret)
   1495		dev_err(adap->pdev_dev,
   1496			"Failed starting Mirror VI 0x%x, ret: %d\n",
   1497			pi->viid_mirror, ret);
   1498
   1499	return ret;
   1500}
   1501
   1502static void cxgb4_port_mirror_stop(struct net_device *dev)
   1503{
   1504	struct port_info *pi = netdev2pinfo(dev);
   1505	struct adapter *adap = netdev2adap(dev);
   1506
   1507	if (!pi->vi_mirror_count)
   1508		return;
   1509
   1510	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
   1511			    false);
   1512}
   1513
   1514int cxgb4_port_mirror_alloc(struct net_device *dev)
   1515{
   1516	struct port_info *pi = netdev2pinfo(dev);
   1517	struct adapter *adap = netdev2adap(dev);
   1518	int ret = 0;
   1519
   1520	if (!pi->nmirrorqsets)
   1521		return -EOPNOTSUPP;
   1522
   1523	mutex_lock(&pi->vi_mirror_mutex);
   1524	if (pi->viid_mirror) {
   1525		pi->vi_mirror_count++;
   1526		goto out_unlock;
   1527	}
   1528
   1529	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
   1530				  &pi->viid_mirror);
   1531	if (ret)
   1532		goto out_unlock;
   1533
   1534	pi->vi_mirror_count = 1;
   1535
   1536	if (adap->flags & CXGB4_FULL_INIT_DONE) {
   1537		ret = cxgb4_port_mirror_alloc_queues(dev);
   1538		if (ret)
   1539			goto out_free_vi;
   1540
   1541		ret = cxgb4_port_mirror_start(dev);
   1542		if (ret)
   1543			goto out_free_queues;
   1544	}
   1545
   1546	mutex_unlock(&pi->vi_mirror_mutex);
   1547	return 0;
   1548
   1549out_free_queues:
   1550	cxgb4_port_mirror_free_queues(dev);
   1551
   1552out_free_vi:
   1553	pi->vi_mirror_count = 0;
   1554	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
   1555	pi->viid_mirror = 0;
   1556
   1557out_unlock:
   1558	mutex_unlock(&pi->vi_mirror_mutex);
   1559	return ret;
   1560}
   1561
   1562void cxgb4_port_mirror_free(struct net_device *dev)
   1563{
   1564	struct port_info *pi = netdev2pinfo(dev);
   1565	struct adapter *adap = netdev2adap(dev);
   1566
   1567	mutex_lock(&pi->vi_mirror_mutex);
   1568	if (!pi->viid_mirror)
   1569		goto out_unlock;
   1570
   1571	if (pi->vi_mirror_count > 1) {
   1572		pi->vi_mirror_count--;
   1573		goto out_unlock;
   1574	}
   1575
   1576	cxgb4_port_mirror_stop(dev);
   1577	cxgb4_port_mirror_free_queues(dev);
   1578
   1579	pi->vi_mirror_count = 0;
   1580	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
   1581	pi->viid_mirror = 0;
   1582
   1583out_unlock:
   1584	mutex_unlock(&pi->vi_mirror_mutex);
   1585}
   1586
   1587/*
   1588 * upper-layer driver support
   1589 */
   1590
   1591/*
   1592 * Allocate an active-open TID and set it to the supplied value.
   1593 */
   1594int cxgb4_alloc_atid(struct tid_info *t, void *data)
   1595{
   1596	int atid = -1;
   1597
   1598	spin_lock_bh(&t->atid_lock);
   1599	if (t->afree) {
   1600		union aopen_entry *p = t->afree;
   1601
   1602		atid = (p - t->atid_tab) + t->atid_base;
   1603		t->afree = p->next;
   1604		p->data = data;
   1605		t->atids_in_use++;
   1606	}
   1607	spin_unlock_bh(&t->atid_lock);
   1608	return atid;
   1609}
   1610EXPORT_SYMBOL(cxgb4_alloc_atid);
   1611
   1612/*
   1613 * Release an active-open TID.
   1614 */
   1615void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
   1616{
   1617	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
   1618
   1619	spin_lock_bh(&t->atid_lock);
   1620	p->next = t->afree;
   1621	t->afree = p;
   1622	t->atids_in_use--;
   1623	spin_unlock_bh(&t->atid_lock);
   1624}
   1625EXPORT_SYMBOL(cxgb4_free_atid);
   1626
   1627/*
   1628 * Allocate a server TID and set it to the supplied value.
   1629 */
   1630int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
   1631{
   1632	int stid;
   1633
   1634	spin_lock_bh(&t->stid_lock);
   1635	if (family == PF_INET) {
   1636		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
   1637		if (stid < t->nstids)
   1638			__set_bit(stid, t->stid_bmap);
   1639		else
   1640			stid = -1;
   1641	} else {
   1642		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
   1643		if (stid < 0)
   1644			stid = -1;
   1645	}
   1646	if (stid >= 0) {
   1647		t->stid_tab[stid].data = data;
   1648		stid += t->stid_base;
   1649		/* IPv6 requires max of 520 bits or 16 cells in TCAM
   1650		 * This is equivalent to 4 TIDs. With CLIP enabled it
   1651		 * needs 2 TIDs.
   1652		 */
   1653		if (family == PF_INET6) {
   1654			t->stids_in_use += 2;
   1655			t->v6_stids_in_use += 2;
   1656		} else {
   1657			t->stids_in_use++;
   1658		}
   1659	}
   1660	spin_unlock_bh(&t->stid_lock);
   1661	return stid;
   1662}
   1663EXPORT_SYMBOL(cxgb4_alloc_stid);
   1664
   1665/* Allocate a server filter TID and set it to the supplied value.
   1666 */
   1667int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
   1668{
   1669	int stid;
   1670
   1671	spin_lock_bh(&t->stid_lock);
   1672	if (family == PF_INET) {
   1673		stid = find_next_zero_bit(t->stid_bmap,
   1674				t->nstids + t->nsftids, t->nstids);
   1675		if (stid < (t->nstids + t->nsftids))
   1676			__set_bit(stid, t->stid_bmap);
   1677		else
   1678			stid = -1;
   1679	} else {
   1680		stid = -1;
   1681	}
   1682	if (stid >= 0) {
   1683		t->stid_tab[stid].data = data;
   1684		stid -= t->nstids;
   1685		stid += t->sftid_base;
   1686		t->sftids_in_use++;
   1687	}
   1688	spin_unlock_bh(&t->stid_lock);
   1689	return stid;
   1690}
   1691EXPORT_SYMBOL(cxgb4_alloc_sftid);
   1692
   1693/* Release a server TID.
   1694 */
   1695void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
   1696{
   1697	/* Is it a server filter TID? */
   1698	if (t->nsftids && (stid >= t->sftid_base)) {
   1699		stid -= t->sftid_base;
   1700		stid += t->nstids;
   1701	} else {
   1702		stid -= t->stid_base;
   1703	}
   1704
   1705	spin_lock_bh(&t->stid_lock);
   1706	if (family == PF_INET)
   1707		__clear_bit(stid, t->stid_bmap);
   1708	else
   1709		bitmap_release_region(t->stid_bmap, stid, 1);
   1710	t->stid_tab[stid].data = NULL;
   1711	if (stid < t->nstids) {
   1712		if (family == PF_INET6) {
   1713			t->stids_in_use -= 2;
   1714			t->v6_stids_in_use -= 2;
   1715		} else {
   1716			t->stids_in_use--;
   1717		}
   1718	} else {
   1719		t->sftids_in_use--;
   1720	}
   1721
   1722	spin_unlock_bh(&t->stid_lock);
   1723}
   1724EXPORT_SYMBOL(cxgb4_free_stid);
   1725
   1726/*
   1727 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
   1728 */
   1729static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
   1730			   unsigned int tid)
   1731{
   1732	struct cpl_tid_release *req;
   1733
   1734	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
   1735	req = __skb_put(skb, sizeof(*req));
   1736	INIT_TP_WR(req, tid);
   1737	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
   1738}
   1739
   1740/*
   1741 * Queue a TID release request and if necessary schedule a work queue to
   1742 * process it.
   1743 */
   1744static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
   1745				    unsigned int tid)
   1746{
   1747	struct adapter *adap = container_of(t, struct adapter, tids);
   1748	void **p = &t->tid_tab[tid - t->tid_base];
   1749
   1750	spin_lock_bh(&adap->tid_release_lock);
   1751	*p = adap->tid_release_head;
   1752	/* Low 2 bits encode the Tx channel number */
   1753	adap->tid_release_head = (void **)((uintptr_t)p | chan);
   1754	if (!adap->tid_release_task_busy) {
   1755		adap->tid_release_task_busy = true;
   1756		queue_work(adap->workq, &adap->tid_release_task);
   1757	}
   1758	spin_unlock_bh(&adap->tid_release_lock);
   1759}
   1760
   1761/*
   1762 * Process the list of pending TID release requests.
   1763 */
   1764static void process_tid_release_list(struct work_struct *work)
   1765{
   1766	struct sk_buff *skb;
   1767	struct adapter *adap;
   1768
   1769	adap = container_of(work, struct adapter, tid_release_task);
   1770
   1771	spin_lock_bh(&adap->tid_release_lock);
   1772	while (adap->tid_release_head) {
   1773		void **p = adap->tid_release_head;
   1774		unsigned int chan = (uintptr_t)p & 3;
   1775		p = (void *)p - chan;
   1776
   1777		adap->tid_release_head = *p;
   1778		*p = NULL;
   1779		spin_unlock_bh(&adap->tid_release_lock);
   1780
   1781		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
   1782					 GFP_KERNEL)))
   1783			schedule_timeout_uninterruptible(1);
   1784
   1785		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
   1786		t4_ofld_send(adap, skb);
   1787		spin_lock_bh(&adap->tid_release_lock);
   1788	}
   1789	adap->tid_release_task_busy = false;
   1790	spin_unlock_bh(&adap->tid_release_lock);
   1791}
   1792
   1793/*
   1794 * Release a TID and inform HW.  If we are unable to allocate the release
   1795 * message we defer to a work queue.
   1796 */
   1797void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
   1798		      unsigned short family)
   1799{
   1800	struct adapter *adap = container_of(t, struct adapter, tids);
   1801	struct sk_buff *skb;
   1802
   1803	WARN_ON(tid_out_of_range(&adap->tids, tid));
   1804
   1805	if (t->tid_tab[tid - adap->tids.tid_base]) {
   1806		t->tid_tab[tid - adap->tids.tid_base] = NULL;
   1807		atomic_dec(&t->conns_in_use);
   1808		if (t->hash_base && (tid >= t->hash_base)) {
   1809			if (family == AF_INET6)
   1810				atomic_sub(2, &t->hash_tids_in_use);
   1811			else
   1812				atomic_dec(&t->hash_tids_in_use);
   1813		} else {
   1814			if (family == AF_INET6)
   1815				atomic_sub(2, &t->tids_in_use);
   1816			else
   1817				atomic_dec(&t->tids_in_use);
   1818		}
   1819	}
   1820
   1821	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
   1822	if (likely(skb)) {
   1823		mk_tid_release(skb, chan, tid);
   1824		t4_ofld_send(adap, skb);
   1825	} else
   1826		cxgb4_queue_tid_release(t, chan, tid);
   1827}
   1828EXPORT_SYMBOL(cxgb4_remove_tid);
   1829
   1830/*
   1831 * Allocate and initialize the TID tables.  Returns 0 on success.
   1832 */
   1833static int tid_init(struct tid_info *t)
   1834{
   1835	struct adapter *adap = container_of(t, struct adapter, tids);
   1836	unsigned int max_ftids = t->nftids + t->nsftids;
   1837	unsigned int natids = t->natids;
   1838	unsigned int hpftid_bmap_size;
   1839	unsigned int eotid_bmap_size;
   1840	unsigned int stid_bmap_size;
   1841	unsigned int ftid_bmap_size;
   1842	size_t size;
   1843
   1844	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
   1845	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
   1846	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
   1847	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
   1848	size = t->ntids * sizeof(*t->tid_tab) +
   1849	       natids * sizeof(*t->atid_tab) +
   1850	       t->nstids * sizeof(*t->stid_tab) +
   1851	       t->nsftids * sizeof(*t->stid_tab) +
   1852	       stid_bmap_size * sizeof(long) +
   1853	       t->nhpftids * sizeof(*t->hpftid_tab) +
   1854	       hpftid_bmap_size * sizeof(long) +
   1855	       max_ftids * sizeof(*t->ftid_tab) +
   1856	       ftid_bmap_size * sizeof(long) +
   1857	       t->neotids * sizeof(*t->eotid_tab) +
   1858	       eotid_bmap_size * sizeof(long);
   1859
   1860	t->tid_tab = kvzalloc(size, GFP_KERNEL);
   1861	if (!t->tid_tab)
   1862		return -ENOMEM;
   1863
   1864	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
   1865	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
   1866	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
   1867	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
   1868	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
   1869	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
   1870	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
   1871	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
   1872	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
   1873	spin_lock_init(&t->stid_lock);
   1874	spin_lock_init(&t->atid_lock);
   1875	spin_lock_init(&t->ftid_lock);
   1876
   1877	t->stids_in_use = 0;
   1878	t->v6_stids_in_use = 0;
   1879	t->sftids_in_use = 0;
   1880	t->afree = NULL;
   1881	t->atids_in_use = 0;
   1882	atomic_set(&t->tids_in_use, 0);
   1883	atomic_set(&t->conns_in_use, 0);
   1884	atomic_set(&t->hash_tids_in_use, 0);
   1885	atomic_set(&t->eotids_in_use, 0);
   1886
   1887	/* Setup the free list for atid_tab and clear the stid bitmap. */
   1888	if (natids) {
   1889		while (--natids)
   1890			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
   1891		t->afree = t->atid_tab;
   1892	}
   1893
   1894	if (is_offload(adap)) {
   1895		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
   1896		/* Reserve stid 0 for T4/T5 adapters */
   1897		if (!t->stid_base &&
   1898		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
   1899			__set_bit(0, t->stid_bmap);
   1900
   1901		if (t->neotids)
   1902			bitmap_zero(t->eotid_bmap, t->neotids);
   1903	}
   1904
   1905	if (t->nhpftids)
   1906		bitmap_zero(t->hpftid_bmap, t->nhpftids);
   1907	bitmap_zero(t->ftid_bmap, t->nftids);
   1908	return 0;
   1909}
   1910
   1911/**
   1912 *	cxgb4_create_server - create an IP server
   1913 *	@dev: the device
   1914 *	@stid: the server TID
   1915 *	@sip: local IP address to bind server to
   1916 *	@sport: the server's TCP port
   1917 *	@vlan: the VLAN header information
   1918 *	@queue: queue to direct messages from this server to
   1919 *
   1920 *	Create an IP server for the given port and address.
   1921 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
   1922 */
   1923int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
   1924			__be32 sip, __be16 sport, __be16 vlan,
   1925			unsigned int queue)
   1926{
   1927	unsigned int chan;
   1928	struct sk_buff *skb;
   1929	struct adapter *adap;
   1930	struct cpl_pass_open_req *req;
   1931	int ret;
   1932
   1933	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
   1934	if (!skb)
   1935		return -ENOMEM;
   1936
   1937	adap = netdev2adap(dev);
   1938	req = __skb_put(skb, sizeof(*req));
   1939	INIT_TP_WR(req, 0);
   1940	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
   1941	req->local_port = sport;
   1942	req->peer_port = htons(0);
   1943	req->local_ip = sip;
   1944	req->peer_ip = htonl(0);
   1945	chan = rxq_to_chan(&adap->sge, queue);
   1946	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
   1947	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
   1948				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
   1949	ret = t4_mgmt_tx(adap, skb);
   1950	return net_xmit_eval(ret);
   1951}
   1952EXPORT_SYMBOL(cxgb4_create_server);
   1953
   1954/*	cxgb4_create_server6 - create an IPv6 server
   1955 *	@dev: the device
   1956 *	@stid: the server TID
   1957 *	@sip: local IPv6 address to bind server to
   1958 *	@sport: the server's TCP port
   1959 *	@queue: queue to direct messages from this server to
   1960 *
   1961 *	Create an IPv6 server for the given port and address.
   1962 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
   1963 */
   1964int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
   1965			 const struct in6_addr *sip, __be16 sport,
   1966			 unsigned int queue)
   1967{
   1968	unsigned int chan;
   1969	struct sk_buff *skb;
   1970	struct adapter *adap;
   1971	struct cpl_pass_open_req6 *req;
   1972	int ret;
   1973
   1974	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
   1975	if (!skb)
   1976		return -ENOMEM;
   1977
   1978	adap = netdev2adap(dev);
   1979	req = __skb_put(skb, sizeof(*req));
   1980	INIT_TP_WR(req, 0);
   1981	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
   1982	req->local_port = sport;
   1983	req->peer_port = htons(0);
   1984	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
   1985	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
   1986	req->peer_ip_hi = cpu_to_be64(0);
   1987	req->peer_ip_lo = cpu_to_be64(0);
   1988	chan = rxq_to_chan(&adap->sge, queue);
   1989	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
   1990	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
   1991				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
   1992	ret = t4_mgmt_tx(adap, skb);
   1993	return net_xmit_eval(ret);
   1994}
   1995EXPORT_SYMBOL(cxgb4_create_server6);
   1996
   1997int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
   1998			unsigned int queue, bool ipv6)
   1999{
   2000	struct sk_buff *skb;
   2001	struct adapter *adap;
   2002	struct cpl_close_listsvr_req *req;
   2003	int ret;
   2004
   2005	adap = netdev2adap(dev);
   2006
   2007	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
   2008	if (!skb)
   2009		return -ENOMEM;
   2010
   2011	req = __skb_put(skb, sizeof(*req));
   2012	INIT_TP_WR(req, 0);
   2013	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
   2014	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
   2015				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
   2016	ret = t4_mgmt_tx(adap, skb);
   2017	return net_xmit_eval(ret);
   2018}
   2019EXPORT_SYMBOL(cxgb4_remove_server);
   2020
   2021/**
   2022 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
   2023 *	@mtus: the HW MTU table
   2024 *	@mtu: the target MTU
   2025 *	@idx: index of selected entry in the MTU table
   2026 *
   2027 *	Returns the index and the value in the HW MTU table that is closest to
   2028 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
   2029 *	table, in which case that smallest available value is selected.
   2030 */
   2031unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
   2032			    unsigned int *idx)
   2033{
   2034	unsigned int i = 0;
   2035
   2036	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
   2037		++i;
   2038	if (idx)
   2039		*idx = i;
   2040	return mtus[i];
   2041}
   2042EXPORT_SYMBOL(cxgb4_best_mtu);
   2043
   2044/**
   2045 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
   2046 *     @mtus: the HW MTU table
   2047 *     @header_size: Header Size
   2048 *     @data_size_max: maximum Data Segment Size
   2049 *     @data_size_align: desired Data Segment Size Alignment (2^N)
   2050 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
   2051 *
   2052 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
   2053 *     MTU Table based solely on a Maximum MTU parameter, we break that
   2054 *     parameter up into a Header Size and Maximum Data Segment Size, and
   2055 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
   2056 *     the Hardware MTU Table which will result in a Data Segment Size with
   2057 *     the requested alignment _and_ that MTU isn't "too far" from the
   2058 *     closest MTU, then we'll return that rather than the closest MTU.
   2059 */
   2060unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
   2061				    unsigned short header_size,
   2062				    unsigned short data_size_max,
   2063				    unsigned short data_size_align,
   2064				    unsigned int *mtu_idxp)
   2065{
   2066	unsigned short max_mtu = header_size + data_size_max;
   2067	unsigned short data_size_align_mask = data_size_align - 1;
   2068	int mtu_idx, aligned_mtu_idx;
   2069
   2070	/* Scan the MTU Table till we find an MTU which is larger than our
   2071	 * Maximum MTU or we reach the end of the table.  Along the way,
   2072	 * record the last MTU found, if any, which will result in a Data
   2073	 * Segment Length matching the requested alignment.
   2074	 */
   2075	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
   2076		unsigned short data_size = mtus[mtu_idx] - header_size;
   2077
   2078		/* If this MTU minus the Header Size would result in a
   2079		 * Data Segment Size of the desired alignment, remember it.
   2080		 */
   2081		if ((data_size & data_size_align_mask) == 0)
   2082			aligned_mtu_idx = mtu_idx;
   2083
   2084		/* If we're not at the end of the Hardware MTU Table and the
   2085		 * next element is larger than our Maximum MTU, drop out of
   2086		 * the loop.
   2087		 */
   2088		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
   2089			break;
   2090	}
   2091
   2092	/* If we fell out of the loop because we ran to the end of the table,
   2093	 * then we just have to use the last [largest] entry.
   2094	 */
   2095	if (mtu_idx == NMTUS)
   2096		mtu_idx--;
   2097
   2098	/* If we found an MTU which resulted in the requested Data Segment
   2099	 * Length alignment and that's "not far" from the largest MTU which is
   2100	 * less than or equal to the maximum MTU, then use that.
   2101	 */
   2102	if (aligned_mtu_idx >= 0 &&
   2103	    mtu_idx - aligned_mtu_idx <= 1)
   2104		mtu_idx = aligned_mtu_idx;
   2105
   2106	/* If the caller has passed in an MTU Index pointer, pass the
   2107	 * MTU Index back.  Return the MTU value.
   2108	 */
   2109	if (mtu_idxp)
   2110		*mtu_idxp = mtu_idx;
   2111	return mtus[mtu_idx];
   2112}
   2113EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
   2114
   2115/**
   2116 *	cxgb4_port_chan - get the HW channel of a port
   2117 *	@dev: the net device for the port
   2118 *
   2119 *	Return the HW Tx channel of the given port.
   2120 */
   2121unsigned int cxgb4_port_chan(const struct net_device *dev)
   2122{
   2123	return netdev2pinfo(dev)->tx_chan;
   2124}
   2125EXPORT_SYMBOL(cxgb4_port_chan);
   2126
   2127/**
   2128 *      cxgb4_port_e2cchan - get the HW c-channel of a port
   2129 *      @dev: the net device for the port
   2130 *
   2131 *      Return the HW RX c-channel of the given port.
   2132 */
   2133unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
   2134{
   2135	return netdev2pinfo(dev)->rx_cchan;
   2136}
   2137EXPORT_SYMBOL(cxgb4_port_e2cchan);
   2138
   2139unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
   2140{
   2141	struct adapter *adap = netdev2adap(dev);
   2142	u32 v1, v2, lp_count, hp_count;
   2143
   2144	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
   2145	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
   2146	if (is_t4(adap->params.chip)) {
   2147		lp_count = LP_COUNT_G(v1);
   2148		hp_count = HP_COUNT_G(v1);
   2149	} else {
   2150		lp_count = LP_COUNT_T5_G(v1);
   2151		hp_count = HP_COUNT_T5_G(v2);
   2152	}
   2153	return lpfifo ? lp_count : hp_count;
   2154}
   2155EXPORT_SYMBOL(cxgb4_dbfifo_count);
   2156
   2157/**
   2158 *	cxgb4_port_viid - get the VI id of a port
   2159 *	@dev: the net device for the port
   2160 *
   2161 *	Return the VI id of the given port.
   2162 */
   2163unsigned int cxgb4_port_viid(const struct net_device *dev)
   2164{
   2165	return netdev2pinfo(dev)->viid;
   2166}
   2167EXPORT_SYMBOL(cxgb4_port_viid);
   2168
   2169/**
   2170 *	cxgb4_port_idx - get the index of a port
   2171 *	@dev: the net device for the port
   2172 *
   2173 *	Return the index of the given port.
   2174 */
   2175unsigned int cxgb4_port_idx(const struct net_device *dev)
   2176{
   2177	return netdev2pinfo(dev)->port_id;
   2178}
   2179EXPORT_SYMBOL(cxgb4_port_idx);
   2180
   2181void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
   2182			 struct tp_tcp_stats *v6)
   2183{
   2184	struct adapter *adap = pci_get_drvdata(pdev);
   2185
   2186	spin_lock(&adap->stats_lock);
   2187	t4_tp_get_tcp_stats(adap, v4, v6, false);
   2188	spin_unlock(&adap->stats_lock);
   2189}
   2190EXPORT_SYMBOL(cxgb4_get_tcp_stats);
   2191
   2192void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
   2193		      const unsigned int *pgsz_order)
   2194{
   2195	struct adapter *adap = netdev2adap(dev);
   2196
   2197	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
   2198	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
   2199		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
   2200		     HPZ3_V(pgsz_order[3]));
   2201}
   2202EXPORT_SYMBOL(cxgb4_iscsi_init);
   2203
   2204int cxgb4_flush_eq_cache(struct net_device *dev)
   2205{
   2206	struct adapter *adap = netdev2adap(dev);
   2207
   2208	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
   2209}
   2210EXPORT_SYMBOL(cxgb4_flush_eq_cache);
   2211
   2212static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
   2213{
   2214	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
   2215	__be64 indices;
   2216	int ret;
   2217
   2218	spin_lock(&adap->win0_lock);
   2219	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
   2220			   sizeof(indices), (__be32 *)&indices,
   2221			   T4_MEMORY_READ);
   2222	spin_unlock(&adap->win0_lock);
   2223	if (!ret) {
   2224		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
   2225		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
   2226	}
   2227	return ret;
   2228}
   2229
   2230int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
   2231			u16 size)
   2232{
   2233	struct adapter *adap = netdev2adap(dev);
   2234	u16 hw_pidx, hw_cidx;
   2235	int ret;
   2236
   2237	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
   2238	if (ret)
   2239		goto out;
   2240
   2241	if (pidx != hw_pidx) {
   2242		u16 delta;
   2243		u32 val;
   2244
   2245		if (pidx >= hw_pidx)
   2246			delta = pidx - hw_pidx;
   2247		else
   2248			delta = size - hw_pidx + pidx;
   2249
   2250		if (is_t4(adap->params.chip))
   2251			val = PIDX_V(delta);
   2252		else
   2253			val = PIDX_T5_V(delta);
   2254		wmb();
   2255		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
   2256			     QID_V(qid) | val);
   2257	}
   2258out:
   2259	return ret;
   2260}
   2261EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
   2262
   2263int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
   2264{
   2265	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
   2266	u32 edc0_end, edc1_end, mc0_end, mc1_end;
   2267	u32 offset, memtype, memaddr;
   2268	struct adapter *adap;
   2269	u32 hma_size = 0;
   2270	int ret;
   2271
   2272	adap = netdev2adap(dev);
   2273
   2274	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
   2275
   2276	/* Figure out where the offset lands in the Memory Type/Address scheme.
   2277	 * This code assumes that the memory is laid out starting at offset 0
   2278	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
   2279	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
   2280	 * MC0, and some have both MC0 and MC1.
   2281	 */
   2282	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
   2283	edc0_size = EDRAM0_SIZE_G(size) << 20;
   2284	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
   2285	edc1_size = EDRAM1_SIZE_G(size) << 20;
   2286	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
   2287	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
   2288
   2289	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
   2290		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
   2291		hma_size = EXT_MEM1_SIZE_G(size) << 20;
   2292	}
   2293	edc0_end = edc0_size;
   2294	edc1_end = edc0_end + edc1_size;
   2295	mc0_end = edc1_end + mc0_size;
   2296
   2297	if (offset < edc0_end) {
   2298		memtype = MEM_EDC0;
   2299		memaddr = offset;
   2300	} else if (offset < edc1_end) {
   2301		memtype = MEM_EDC1;
   2302		memaddr = offset - edc0_end;
   2303	} else {
   2304		if (hma_size && (offset < (edc1_end + hma_size))) {
   2305			memtype = MEM_HMA;
   2306			memaddr = offset - edc1_end;
   2307		} else if (offset < mc0_end) {
   2308			memtype = MEM_MC0;
   2309			memaddr = offset - edc1_end;
   2310		} else if (is_t5(adap->params.chip)) {
   2311			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
   2312			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
   2313			mc1_end = mc0_end + mc1_size;
   2314			if (offset < mc1_end) {
   2315				memtype = MEM_MC1;
   2316				memaddr = offset - mc0_end;
   2317			} else {
   2318				/* offset beyond the end of any memory */
   2319				goto err;
   2320			}
   2321		} else {
   2322			/* T4/T6 only has a single memory channel */
   2323			goto err;
   2324		}
   2325	}
   2326
   2327	spin_lock(&adap->win0_lock);
   2328	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
   2329	spin_unlock(&adap->win0_lock);
   2330	return ret;
   2331
   2332err:
   2333	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
   2334		stag, offset);
   2335	return -EINVAL;
   2336}
   2337EXPORT_SYMBOL(cxgb4_read_tpte);
   2338
   2339u64 cxgb4_read_sge_timestamp(struct net_device *dev)
   2340{
   2341	u32 hi, lo;
   2342	struct adapter *adap;
   2343
   2344	adap = netdev2adap(dev);
   2345	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
   2346	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
   2347
   2348	return ((u64)hi << 32) | (u64)lo;
   2349}
   2350EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
   2351
   2352int cxgb4_bar2_sge_qregs(struct net_device *dev,
   2353			 unsigned int qid,
   2354			 enum cxgb4_bar2_qtype qtype,
   2355			 int user,
   2356			 u64 *pbar2_qoffset,
   2357			 unsigned int *pbar2_qid)
   2358{
   2359	return t4_bar2_sge_qregs(netdev2adap(dev),
   2360				 qid,
   2361				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
   2362				  ? T4_BAR2_QTYPE_EGRESS
   2363				  : T4_BAR2_QTYPE_INGRESS),
   2364				 user,
   2365				 pbar2_qoffset,
   2366				 pbar2_qid);
   2367}
   2368EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
   2369
   2370static struct pci_driver cxgb4_driver;
   2371
   2372static void check_neigh_update(struct neighbour *neigh)
   2373{
   2374	const struct device *parent;
   2375	const struct net_device *netdev = neigh->dev;
   2376
   2377	if (is_vlan_dev(netdev))
   2378		netdev = vlan_dev_real_dev(netdev);
   2379	parent = netdev->dev.parent;
   2380	if (parent && parent->driver == &cxgb4_driver.driver)
   2381		t4_l2t_update(dev_get_drvdata(parent), neigh);
   2382}
   2383
   2384static int netevent_cb(struct notifier_block *nb, unsigned long event,
   2385		       void *data)
   2386{
   2387	switch (event) {
   2388	case NETEVENT_NEIGH_UPDATE:
   2389		check_neigh_update(data);
   2390		break;
   2391	case NETEVENT_REDIRECT:
   2392	default:
   2393		break;
   2394	}
   2395	return 0;
   2396}
   2397
   2398static bool netevent_registered;
   2399static struct notifier_block cxgb4_netevent_nb = {
   2400	.notifier_call = netevent_cb
   2401};
   2402
   2403static void drain_db_fifo(struct adapter *adap, int usecs)
   2404{
   2405	u32 v1, v2, lp_count, hp_count;
   2406
   2407	do {
   2408		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
   2409		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
   2410		if (is_t4(adap->params.chip)) {
   2411			lp_count = LP_COUNT_G(v1);
   2412			hp_count = HP_COUNT_G(v1);
   2413		} else {
   2414			lp_count = LP_COUNT_T5_G(v1);
   2415			hp_count = HP_COUNT_T5_G(v2);
   2416		}
   2417
   2418		if (lp_count == 0 && hp_count == 0)
   2419			break;
   2420		set_current_state(TASK_UNINTERRUPTIBLE);
   2421		schedule_timeout(usecs_to_jiffies(usecs));
   2422	} while (1);
   2423}
   2424
   2425static void disable_txq_db(struct sge_txq *q)
   2426{
   2427	unsigned long flags;
   2428
   2429	spin_lock_irqsave(&q->db_lock, flags);
   2430	q->db_disabled = 1;
   2431	spin_unlock_irqrestore(&q->db_lock, flags);
   2432}
   2433
   2434static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
   2435{
   2436	spin_lock_irq(&q->db_lock);
   2437	if (q->db_pidx_inc) {
   2438		/* Make sure that all writes to the TX descriptors
   2439		 * are committed before we tell HW about them.
   2440		 */
   2441		wmb();
   2442		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
   2443			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
   2444		q->db_pidx_inc = 0;
   2445	}
   2446	q->db_disabled = 0;
   2447	spin_unlock_irq(&q->db_lock);
   2448}
   2449
   2450static void disable_dbs(struct adapter *adap)
   2451{
   2452	int i;
   2453
   2454	for_each_ethrxq(&adap->sge, i)
   2455		disable_txq_db(&adap->sge.ethtxq[i].q);
   2456	if (is_offload(adap)) {
   2457		struct sge_uld_txq_info *txq_info =
   2458			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
   2459
   2460		if (txq_info) {
   2461			for_each_ofldtxq(&adap->sge, i) {
   2462				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
   2463
   2464				disable_txq_db(&txq->q);
   2465			}
   2466		}
   2467	}
   2468	for_each_port(adap, i)
   2469		disable_txq_db(&adap->sge.ctrlq[i].q);
   2470}
   2471
   2472static void enable_dbs(struct adapter *adap)
   2473{
   2474	int i;
   2475
   2476	for_each_ethrxq(&adap->sge, i)
   2477		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
   2478	if (is_offload(adap)) {
   2479		struct sge_uld_txq_info *txq_info =
   2480			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
   2481
   2482		if (txq_info) {
   2483			for_each_ofldtxq(&adap->sge, i) {
   2484				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
   2485
   2486				enable_txq_db(adap, &txq->q);
   2487			}
   2488		}
   2489	}
   2490	for_each_port(adap, i)
   2491		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
   2492}
   2493
   2494static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
   2495{
   2496	enum cxgb4_uld type = CXGB4_ULD_RDMA;
   2497
   2498	if (adap->uld && adap->uld[type].handle)
   2499		adap->uld[type].control(adap->uld[type].handle, cmd);
   2500}
   2501
   2502static void process_db_full(struct work_struct *work)
   2503{
   2504	struct adapter *adap;
   2505
   2506	adap = container_of(work, struct adapter, db_full_task);
   2507
   2508	drain_db_fifo(adap, dbfifo_drain_delay);
   2509	enable_dbs(adap);
   2510	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
   2511	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
   2512		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
   2513				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
   2514				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
   2515	else
   2516		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
   2517				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
   2518}
   2519
   2520static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
   2521{
   2522	u16 hw_pidx, hw_cidx;
   2523	int ret;
   2524
   2525	spin_lock_irq(&q->db_lock);
   2526	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
   2527	if (ret)
   2528		goto out;
   2529	if (q->db_pidx != hw_pidx) {
   2530		u16 delta;
   2531		u32 val;
   2532
   2533		if (q->db_pidx >= hw_pidx)
   2534			delta = q->db_pidx - hw_pidx;
   2535		else
   2536			delta = q->size - hw_pidx + q->db_pidx;
   2537
   2538		if (is_t4(adap->params.chip))
   2539			val = PIDX_V(delta);
   2540		else
   2541			val = PIDX_T5_V(delta);
   2542		wmb();
   2543		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
   2544			     QID_V(q->cntxt_id) | val);
   2545	}
   2546out:
   2547	q->db_disabled = 0;
   2548	q->db_pidx_inc = 0;
   2549	spin_unlock_irq(&q->db_lock);
   2550	if (ret)
   2551		CH_WARN(adap, "DB drop recovery failed.\n");
   2552}
   2553
   2554static void recover_all_queues(struct adapter *adap)
   2555{
   2556	int i;
   2557
   2558	for_each_ethrxq(&adap->sge, i)
   2559		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
   2560	if (is_offload(adap)) {
   2561		struct sge_uld_txq_info *txq_info =
   2562			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
   2563		if (txq_info) {
   2564			for_each_ofldtxq(&adap->sge, i) {
   2565				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
   2566
   2567				sync_txq_pidx(adap, &txq->q);
   2568			}
   2569		}
   2570	}
   2571	for_each_port(adap, i)
   2572		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
   2573}
   2574
   2575static void process_db_drop(struct work_struct *work)
   2576{
   2577	struct adapter *adap;
   2578
   2579	adap = container_of(work, struct adapter, db_drop_task);
   2580
   2581	if (is_t4(adap->params.chip)) {
   2582		drain_db_fifo(adap, dbfifo_drain_delay);
   2583		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
   2584		drain_db_fifo(adap, dbfifo_drain_delay);
   2585		recover_all_queues(adap);
   2586		drain_db_fifo(adap, dbfifo_drain_delay);
   2587		enable_dbs(adap);
   2588		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
   2589	} else if (is_t5(adap->params.chip)) {
   2590		u32 dropped_db = t4_read_reg(adap, 0x010ac);
   2591		u16 qid = (dropped_db >> 15) & 0x1ffff;
   2592		u16 pidx_inc = dropped_db & 0x1fff;
   2593		u64 bar2_qoffset;
   2594		unsigned int bar2_qid;
   2595		int ret;
   2596
   2597		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
   2598					0, &bar2_qoffset, &bar2_qid);
   2599		if (ret)
   2600			dev_err(adap->pdev_dev, "doorbell drop recovery: "
   2601				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
   2602		else
   2603			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
   2604			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
   2605
   2606		/* Re-enable BAR2 WC */
   2607		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
   2608	}
   2609
   2610	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
   2611		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
   2612}
   2613
   2614void t4_db_full(struct adapter *adap)
   2615{
   2616	if (is_t4(adap->params.chip)) {
   2617		disable_dbs(adap);
   2618		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
   2619		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
   2620				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
   2621		queue_work(adap->workq, &adap->db_full_task);
   2622	}
   2623}
   2624
   2625void t4_db_dropped(struct adapter *adap)
   2626{
   2627	if (is_t4(adap->params.chip)) {
   2628		disable_dbs(adap);
   2629		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
   2630	}
   2631	queue_work(adap->workq, &adap->db_drop_task);
   2632}
   2633
   2634void t4_register_netevent_notifier(void)
   2635{
   2636	if (!netevent_registered) {
   2637		register_netevent_notifier(&cxgb4_netevent_nb);
   2638		netevent_registered = true;
   2639	}
   2640}
   2641
   2642static void detach_ulds(struct adapter *adap)
   2643{
   2644	unsigned int i;
   2645
   2646	if (!is_uld(adap))
   2647		return;
   2648
   2649	mutex_lock(&uld_mutex);
   2650	list_del(&adap->list_node);
   2651
   2652	for (i = 0; i < CXGB4_ULD_MAX; i++)
   2653		if (adap->uld && adap->uld[i].handle)
   2654			adap->uld[i].state_change(adap->uld[i].handle,
   2655					     CXGB4_STATE_DETACH);
   2656
   2657	if (netevent_registered && list_empty(&adapter_list)) {
   2658		unregister_netevent_notifier(&cxgb4_netevent_nb);
   2659		netevent_registered = false;
   2660	}
   2661	mutex_unlock(&uld_mutex);
   2662}
   2663
   2664static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
   2665{
   2666	unsigned int i;
   2667
   2668	mutex_lock(&uld_mutex);
   2669	for (i = 0; i < CXGB4_ULD_MAX; i++)
   2670		if (adap->uld && adap->uld[i].handle)
   2671			adap->uld[i].state_change(adap->uld[i].handle,
   2672						  new_state);
   2673	mutex_unlock(&uld_mutex);
   2674}
   2675
   2676#if IS_ENABLED(CONFIG_IPV6)
   2677static int cxgb4_inet6addr_handler(struct notifier_block *this,
   2678				   unsigned long event, void *data)
   2679{
   2680	struct inet6_ifaddr *ifa = data;
   2681	struct net_device *event_dev = ifa->idev->dev;
   2682	const struct device *parent = NULL;
   2683#if IS_ENABLED(CONFIG_BONDING)
   2684	struct adapter *adap;
   2685#endif
   2686	if (is_vlan_dev(event_dev))
   2687		event_dev = vlan_dev_real_dev(event_dev);
   2688#if IS_ENABLED(CONFIG_BONDING)
   2689	if (event_dev->flags & IFF_MASTER) {
   2690		list_for_each_entry(adap, &adapter_list, list_node) {
   2691			switch (event) {
   2692			case NETDEV_UP:
   2693				cxgb4_clip_get(adap->port[0],
   2694					       (const u32 *)ifa, 1);
   2695				break;
   2696			case NETDEV_DOWN:
   2697				cxgb4_clip_release(adap->port[0],
   2698						   (const u32 *)ifa, 1);
   2699				break;
   2700			default:
   2701				break;
   2702			}
   2703		}
   2704		return NOTIFY_OK;
   2705	}
   2706#endif
   2707
   2708	if (event_dev)
   2709		parent = event_dev->dev.parent;
   2710
   2711	if (parent && parent->driver == &cxgb4_driver.driver) {
   2712		switch (event) {
   2713		case NETDEV_UP:
   2714			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
   2715			break;
   2716		case NETDEV_DOWN:
   2717			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
   2718			break;
   2719		default:
   2720			break;
   2721		}
   2722	}
   2723	return NOTIFY_OK;
   2724}
   2725
   2726static bool inet6addr_registered;
   2727static struct notifier_block cxgb4_inet6addr_notifier = {
   2728	.notifier_call = cxgb4_inet6addr_handler
   2729};
   2730
   2731static void update_clip(const struct adapter *adap)
   2732{
   2733	int i;
   2734	struct net_device *dev;
   2735	int ret;
   2736
   2737	rcu_read_lock();
   2738
   2739	for (i = 0; i < MAX_NPORTS; i++) {
   2740		dev = adap->port[i];
   2741		ret = 0;
   2742
   2743		if (dev)
   2744			ret = cxgb4_update_root_dev_clip(dev);
   2745
   2746		if (ret < 0)
   2747			break;
   2748	}
   2749	rcu_read_unlock();
   2750}
   2751#endif /* IS_ENABLED(CONFIG_IPV6) */
   2752
   2753/**
   2754 *	cxgb_up - enable the adapter
   2755 *	@adap: adapter being enabled
   2756 *
   2757 *	Called when the first port is enabled, this function performs the
   2758 *	actions necessary to make an adapter operational, such as completing
   2759 *	the initialization of HW modules, and enabling interrupts.
   2760 *
   2761 *	Must be called with the rtnl lock held.
   2762 */
   2763static int cxgb_up(struct adapter *adap)
   2764{
   2765	struct sge *s = &adap->sge;
   2766	int err;
   2767
   2768	mutex_lock(&uld_mutex);
   2769	err = setup_sge_queues(adap);
   2770	if (err)
   2771		goto rel_lock;
   2772	err = setup_rss(adap);
   2773	if (err)
   2774		goto freeq;
   2775
   2776	if (adap->flags & CXGB4_USING_MSIX) {
   2777		if (s->nd_msix_idx < 0) {
   2778			err = -ENOMEM;
   2779			goto irq_err;
   2780		}
   2781
   2782		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
   2783				  t4_nondata_intr, 0,
   2784				  adap->msix_info[s->nd_msix_idx].desc, adap);
   2785		if (err)
   2786			goto irq_err;
   2787
   2788		err = request_msix_queue_irqs(adap);
   2789		if (err)
   2790			goto irq_err_free_nd_msix;
   2791	} else {
   2792		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
   2793				  (adap->flags & CXGB4_USING_MSI) ? 0
   2794								  : IRQF_SHARED,
   2795				  adap->port[0]->name, adap);
   2796		if (err)
   2797			goto irq_err;
   2798	}
   2799
   2800	enable_rx(adap);
   2801	t4_sge_start(adap);
   2802	t4_intr_enable(adap);
   2803	adap->flags |= CXGB4_FULL_INIT_DONE;
   2804	mutex_unlock(&uld_mutex);
   2805
   2806	notify_ulds(adap, CXGB4_STATE_UP);
   2807#if IS_ENABLED(CONFIG_IPV6)
   2808	update_clip(adap);
   2809#endif
   2810	return err;
   2811
   2812irq_err_free_nd_msix:
   2813	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
   2814irq_err:
   2815	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
   2816freeq:
   2817	t4_free_sge_resources(adap);
   2818rel_lock:
   2819	mutex_unlock(&uld_mutex);
   2820	return err;
   2821}
   2822
   2823static void cxgb_down(struct adapter *adapter)
   2824{
   2825	cancel_work_sync(&adapter->tid_release_task);
   2826	cancel_work_sync(&adapter->db_full_task);
   2827	cancel_work_sync(&adapter->db_drop_task);
   2828	adapter->tid_release_task_busy = false;
   2829	adapter->tid_release_head = NULL;
   2830
   2831	t4_sge_stop(adapter);
   2832	t4_free_sge_resources(adapter);
   2833
   2834	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
   2835}
   2836
   2837/*
   2838 * net_device operations
   2839 */
   2840static int cxgb_open(struct net_device *dev)
   2841{
   2842	struct port_info *pi = netdev_priv(dev);
   2843	struct adapter *adapter = pi->adapter;
   2844	int err;
   2845
   2846	netif_carrier_off(dev);
   2847
   2848	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
   2849		err = cxgb_up(adapter);
   2850		if (err < 0)
   2851			return err;
   2852	}
   2853
   2854	/* It's possible that the basic port information could have
   2855	 * changed since we first read it.
   2856	 */
   2857	err = t4_update_port_info(pi);
   2858	if (err < 0)
   2859		return err;
   2860
   2861	err = link_start(dev);
   2862	if (err)
   2863		return err;
   2864
   2865	if (pi->nmirrorqsets) {
   2866		mutex_lock(&pi->vi_mirror_mutex);
   2867		err = cxgb4_port_mirror_alloc_queues(dev);
   2868		if (err)
   2869			goto out_unlock;
   2870
   2871		err = cxgb4_port_mirror_start(dev);
   2872		if (err)
   2873			goto out_free_queues;
   2874		mutex_unlock(&pi->vi_mirror_mutex);
   2875	}
   2876
   2877	netif_tx_start_all_queues(dev);
   2878	return 0;
   2879
   2880out_free_queues:
   2881	cxgb4_port_mirror_free_queues(dev);
   2882
   2883out_unlock:
   2884	mutex_unlock(&pi->vi_mirror_mutex);
   2885	return err;
   2886}
   2887
   2888static int cxgb_close(struct net_device *dev)
   2889{
   2890	struct port_info *pi = netdev_priv(dev);
   2891	struct adapter *adapter = pi->adapter;
   2892	int ret;
   2893
   2894	netif_tx_stop_all_queues(dev);
   2895	netif_carrier_off(dev);
   2896	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
   2897				  false, false, false);
   2898#ifdef CONFIG_CHELSIO_T4_DCB
   2899	cxgb4_dcb_reset(dev);
   2900	dcb_tx_queue_prio_enable(dev, false);
   2901#endif
   2902	if (ret)
   2903		return ret;
   2904
   2905	if (pi->nmirrorqsets) {
   2906		mutex_lock(&pi->vi_mirror_mutex);
   2907		cxgb4_port_mirror_stop(dev);
   2908		cxgb4_port_mirror_free_queues(dev);
   2909		mutex_unlock(&pi->vi_mirror_mutex);
   2910	}
   2911
   2912	return 0;
   2913}
   2914
   2915int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
   2916		__be32 sip, __be16 sport, __be16 vlan,
   2917		unsigned int queue, unsigned char port, unsigned char mask)
   2918{
   2919	int ret;
   2920	struct filter_entry *f;
   2921	struct adapter *adap;
   2922	int i;
   2923	u8 *val;
   2924
   2925	adap = netdev2adap(dev);
   2926
   2927	/* Adjust stid to correct filter index */
   2928	stid -= adap->tids.sftid_base;
   2929	stid += adap->tids.nftids;
   2930
   2931	/* Check to make sure the filter requested is writable ...
   2932	 */
   2933	f = &adap->tids.ftid_tab[stid];
   2934	ret = writable_filter(f);
   2935	if (ret)
   2936		return ret;
   2937
   2938	/* Clear out any old resources being used by the filter before
   2939	 * we start constructing the new filter.
   2940	 */
   2941	if (f->valid)
   2942		clear_filter(adap, f);
   2943
   2944	/* Clear out filter specifications */
   2945	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
   2946	f->fs.val.lport = be16_to_cpu(sport);
   2947	f->fs.mask.lport  = ~0;
   2948	val = (u8 *)&sip;
   2949	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
   2950		for (i = 0; i < 4; i++) {
   2951			f->fs.val.lip[i] = val[i];
   2952			f->fs.mask.lip[i] = ~0;
   2953		}
   2954		if (adap->params.tp.vlan_pri_map & PORT_F) {
   2955			f->fs.val.iport = port;
   2956			f->fs.mask.iport = mask;
   2957		}
   2958	}
   2959
   2960	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
   2961		f->fs.val.proto = IPPROTO_TCP;
   2962		f->fs.mask.proto = ~0;
   2963	}
   2964
   2965	f->fs.dirsteer = 1;
   2966	f->fs.iq = queue;
   2967	/* Mark filter as locked */
   2968	f->locked = 1;
   2969	f->fs.rpttid = 1;
   2970
   2971	/* Save the actual tid. We need this to get the corresponding
   2972	 * filter entry structure in filter_rpl.
   2973	 */
   2974	f->tid = stid + adap->tids.ftid_base;
   2975	ret = set_filter_wr(adap, stid);
   2976	if (ret) {
   2977		clear_filter(adap, f);
   2978		return ret;
   2979	}
   2980
   2981	return 0;
   2982}
   2983EXPORT_SYMBOL(cxgb4_create_server_filter);
   2984
   2985int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
   2986		unsigned int queue, bool ipv6)
   2987{
   2988	struct filter_entry *f;
   2989	struct adapter *adap;
   2990
   2991	adap = netdev2adap(dev);
   2992
   2993	/* Adjust stid to correct filter index */
   2994	stid -= adap->tids.sftid_base;
   2995	stid += adap->tids.nftids;
   2996
   2997	f = &adap->tids.ftid_tab[stid];
   2998	/* Unlock the filter */
   2999	f->locked = 0;
   3000
   3001	return delete_filter(adap, stid);
   3002}
   3003EXPORT_SYMBOL(cxgb4_remove_server_filter);
   3004
   3005static void cxgb_get_stats(struct net_device *dev,
   3006			   struct rtnl_link_stats64 *ns)
   3007{
   3008	struct port_stats stats;
   3009	struct port_info *p = netdev_priv(dev);
   3010	struct adapter *adapter = p->adapter;
   3011
   3012	/* Block retrieving statistics during EEH error
   3013	 * recovery. Otherwise, the recovery might fail
   3014	 * and the PCI device will be removed permanently
   3015	 */
   3016	spin_lock(&adapter->stats_lock);
   3017	if (!netif_device_present(dev)) {
   3018		spin_unlock(&adapter->stats_lock);
   3019		return;
   3020	}
   3021	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
   3022				 &p->stats_base);
   3023	spin_unlock(&adapter->stats_lock);
   3024
   3025	ns->tx_bytes   = stats.tx_octets;
   3026	ns->tx_packets = stats.tx_frames;
   3027	ns->rx_bytes   = stats.rx_octets;
   3028	ns->rx_packets = stats.rx_frames;
   3029	ns->multicast  = stats.rx_mcast_frames;
   3030
   3031	/* detailed rx_errors */
   3032	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
   3033			       stats.rx_runt;
   3034	ns->rx_over_errors   = 0;
   3035	ns->rx_crc_errors    = stats.rx_fcs_err;
   3036	ns->rx_frame_errors  = stats.rx_symbol_err;
   3037	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
   3038			       stats.rx_ovflow2 + stats.rx_ovflow3 +
   3039			       stats.rx_trunc0 + stats.rx_trunc1 +
   3040			       stats.rx_trunc2 + stats.rx_trunc3;
   3041	ns->rx_missed_errors = 0;
   3042
   3043	/* detailed tx_errors */
   3044	ns->tx_aborted_errors   = 0;
   3045	ns->tx_carrier_errors   = 0;
   3046	ns->tx_fifo_errors      = 0;
   3047	ns->tx_heartbeat_errors = 0;
   3048	ns->tx_window_errors    = 0;
   3049
   3050	ns->tx_errors = stats.tx_error_frames;
   3051	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
   3052		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
   3053}
   3054
   3055static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
   3056{
   3057	unsigned int mbox;
   3058	int ret = 0, prtad, devad;
   3059	struct port_info *pi = netdev_priv(dev);
   3060	struct adapter *adapter = pi->adapter;
   3061	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
   3062
   3063	switch (cmd) {
   3064	case SIOCGMIIPHY:
   3065		if (pi->mdio_addr < 0)
   3066			return -EOPNOTSUPP;
   3067		data->phy_id = pi->mdio_addr;
   3068		break;
   3069	case SIOCGMIIREG:
   3070	case SIOCSMIIREG:
   3071		if (mdio_phy_id_is_c45(data->phy_id)) {
   3072			prtad = mdio_phy_id_prtad(data->phy_id);
   3073			devad = mdio_phy_id_devad(data->phy_id);
   3074		} else if (data->phy_id < 32) {
   3075			prtad = data->phy_id;
   3076			devad = 0;
   3077			data->reg_num &= 0x1f;
   3078		} else
   3079			return -EINVAL;
   3080
   3081		mbox = pi->adapter->pf;
   3082		if (cmd == SIOCGMIIREG)
   3083			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
   3084					 data->reg_num, &data->val_out);
   3085		else
   3086			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
   3087					 data->reg_num, data->val_in);
   3088		break;
   3089	case SIOCGHWTSTAMP:
   3090		return copy_to_user(req->ifr_data, &pi->tstamp_config,
   3091				    sizeof(pi->tstamp_config)) ?
   3092			-EFAULT : 0;
   3093	case SIOCSHWTSTAMP:
   3094		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
   3095				   sizeof(pi->tstamp_config)))
   3096			return -EFAULT;
   3097
   3098		if (!is_t4(adapter->params.chip)) {
   3099			switch (pi->tstamp_config.tx_type) {
   3100			case HWTSTAMP_TX_OFF:
   3101			case HWTSTAMP_TX_ON:
   3102				break;
   3103			default:
   3104				return -ERANGE;
   3105			}
   3106
   3107			switch (pi->tstamp_config.rx_filter) {
   3108			case HWTSTAMP_FILTER_NONE:
   3109				pi->rxtstamp = false;
   3110				break;
   3111			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
   3112			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
   3113				cxgb4_ptprx_timestamping(pi, pi->port_id,
   3114							 PTP_TS_L4);
   3115				break;
   3116			case HWTSTAMP_FILTER_PTP_V2_EVENT:
   3117				cxgb4_ptprx_timestamping(pi, pi->port_id,
   3118							 PTP_TS_L2_L4);
   3119				break;
   3120			case HWTSTAMP_FILTER_ALL:
   3121			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
   3122			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
   3123			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
   3124			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
   3125				pi->rxtstamp = true;
   3126				break;
   3127			default:
   3128				pi->tstamp_config.rx_filter =
   3129					HWTSTAMP_FILTER_NONE;
   3130				return -ERANGE;
   3131			}
   3132
   3133			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
   3134			    (pi->tstamp_config.rx_filter ==
   3135				HWTSTAMP_FILTER_NONE)) {
   3136				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
   3137					pi->ptp_enable = false;
   3138			}
   3139
   3140			if (pi->tstamp_config.rx_filter !=
   3141				HWTSTAMP_FILTER_NONE) {
   3142				if (cxgb4_ptp_redirect_rx_packet(adapter,
   3143								 pi) >= 0)
   3144					pi->ptp_enable = true;
   3145			}
   3146		} else {
   3147			/* For T4 Adapters */
   3148			switch (pi->tstamp_config.rx_filter) {
   3149			case HWTSTAMP_FILTER_NONE:
   3150			pi->rxtstamp = false;
   3151			break;
   3152			case HWTSTAMP_FILTER_ALL:
   3153			pi->rxtstamp = true;
   3154			break;
   3155			default:
   3156			pi->tstamp_config.rx_filter =
   3157			HWTSTAMP_FILTER_NONE;
   3158			return -ERANGE;
   3159			}
   3160		}
   3161		return copy_to_user(req->ifr_data, &pi->tstamp_config,
   3162				    sizeof(pi->tstamp_config)) ?
   3163			-EFAULT : 0;
   3164	default:
   3165		return -EOPNOTSUPP;
   3166	}
   3167	return ret;
   3168}
   3169
   3170static void cxgb_set_rxmode(struct net_device *dev)
   3171{
   3172	/* unfortunately we can't return errors to the stack */
   3173	set_rxmode(dev, -1, false);
   3174}
   3175
   3176static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
   3177{
   3178	struct port_info *pi = netdev_priv(dev);
   3179	int ret;
   3180
   3181	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
   3182			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
   3183	if (!ret)
   3184		dev->mtu = new_mtu;
   3185	return ret;
   3186}
   3187
   3188#ifdef CONFIG_PCI_IOV
   3189static int cxgb4_mgmt_open(struct net_device *dev)
   3190{
   3191	/* Turn carrier off since we don't have to transmit anything on this
   3192	 * interface.
   3193	 */
   3194	netif_carrier_off(dev);
   3195	return 0;
   3196}
   3197
   3198/* Fill MAC address that will be assigned by the FW */
   3199static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
   3200{
   3201	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
   3202	unsigned int i, vf, nvfs;
   3203	u16 a, b;
   3204	int err;
   3205	u8 *na;
   3206
   3207	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
   3208	if (err)
   3209		return;
   3210
   3211	na = adap->params.vpd.na;
   3212	for (i = 0; i < ETH_ALEN; i++)
   3213		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
   3214			      hex2val(na[2 * i + 1]));
   3215
   3216	a = (hw_addr[0] << 8) | hw_addr[1];
   3217	b = (hw_addr[1] << 8) | hw_addr[2];
   3218	a ^= b;
   3219	a |= 0x0200;    /* locally assigned Ethernet MAC address */
   3220	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
   3221	macaddr[0] = a >> 8;
   3222	macaddr[1] = a & 0xff;
   3223
   3224	for (i = 2; i < 5; i++)
   3225		macaddr[i] = hw_addr[i + 1];
   3226
   3227	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
   3228		vf < nvfs; vf++) {
   3229		macaddr[5] = adap->pf * nvfs + vf;
   3230		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
   3231	}
   3232}
   3233
   3234static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
   3235{
   3236	struct port_info *pi = netdev_priv(dev);
   3237	struct adapter *adap = pi->adapter;
   3238	int ret;
   3239
   3240	/* verify MAC addr is valid */
   3241	if (!is_valid_ether_addr(mac)) {
   3242		dev_err(pi->adapter->pdev_dev,
   3243			"Invalid Ethernet address %pM for VF %d\n",
   3244			mac, vf);
   3245		return -EINVAL;
   3246	}
   3247
   3248	dev_info(pi->adapter->pdev_dev,
   3249		 "Setting MAC %pM on VF %d\n", mac, vf);
   3250	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
   3251	if (!ret)
   3252		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
   3253	return ret;
   3254}
   3255
   3256static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
   3257				    int vf, struct ifla_vf_info *ivi)
   3258{
   3259	struct port_info *pi = netdev_priv(dev);
   3260	struct adapter *adap = pi->adapter;
   3261	struct vf_info *vfinfo;
   3262
   3263	if (vf >= adap->num_vfs)
   3264		return -EINVAL;
   3265	vfinfo = &adap->vfinfo[vf];
   3266
   3267	ivi->vf = vf;
   3268	ivi->max_tx_rate = vfinfo->tx_rate;
   3269	ivi->min_tx_rate = 0;
   3270	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
   3271	ivi->vlan = vfinfo->vlan;
   3272	ivi->linkstate = vfinfo->link_state;
   3273	return 0;
   3274}
   3275
   3276static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
   3277				       struct netdev_phys_item_id *ppid)
   3278{
   3279	struct port_info *pi = netdev_priv(dev);
   3280	unsigned int phy_port_id;
   3281
   3282	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
   3283	ppid->id_len = sizeof(phy_port_id);
   3284	memcpy(ppid->id, &phy_port_id, ppid->id_len);
   3285	return 0;
   3286}
   3287
   3288static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
   3289				  int min_tx_rate, int max_tx_rate)
   3290{
   3291	struct port_info *pi = netdev_priv(dev);
   3292	struct adapter *adap = pi->adapter;
   3293	unsigned int link_ok, speed, mtu;
   3294	u32 fw_pfvf, fw_class;
   3295	int class_id = vf;
   3296	int ret;
   3297	u16 pktsize;
   3298
   3299	if (vf >= adap->num_vfs)
   3300		return -EINVAL;
   3301
   3302	if (min_tx_rate) {
   3303		dev_err(adap->pdev_dev,
   3304			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
   3305			min_tx_rate, vf);
   3306		return -EINVAL;
   3307	}
   3308
   3309	if (max_tx_rate == 0) {
   3310		/* unbind VF to to any Traffic Class */
   3311		fw_pfvf =
   3312		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
   3313		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
   3314		fw_class = 0xffffffff;
   3315		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
   3316				    &fw_pfvf, &fw_class);
   3317		if (ret) {
   3318			dev_err(adap->pdev_dev,
   3319				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
   3320				ret, adap->pf, vf);
   3321			return -EINVAL;
   3322		}
   3323		dev_info(adap->pdev_dev,
   3324			 "PF %d VF %d is unbound from TX Rate Limiting\n",
   3325			 adap->pf, vf);
   3326		adap->vfinfo[vf].tx_rate = 0;
   3327		return 0;
   3328	}
   3329
   3330	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
   3331	if (ret != FW_SUCCESS) {
   3332		dev_err(adap->pdev_dev,
   3333			"Failed to get link information for VF %d\n", vf);
   3334		return -EINVAL;
   3335	}
   3336
   3337	if (!link_ok) {
   3338		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
   3339		return -EINVAL;
   3340	}
   3341
   3342	if (max_tx_rate > speed) {
   3343		dev_err(adap->pdev_dev,
   3344			"Max tx rate %d for VF %d can't be > link-speed %u",
   3345			max_tx_rate, vf, speed);
   3346		return -EINVAL;
   3347	}
   3348
   3349	pktsize = mtu;
   3350	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
   3351	pktsize = pktsize - sizeof(struct ethhdr) - 4;
   3352	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
   3353	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
   3354	/* configure Traffic Class for rate-limiting */
   3355	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
   3356			      SCHED_CLASS_LEVEL_CL_RL,
   3357			      SCHED_CLASS_MODE_CLASS,
   3358			      SCHED_CLASS_RATEUNIT_BITS,
   3359			      SCHED_CLASS_RATEMODE_ABS,
   3360			      pi->tx_chan, class_id, 0,
   3361			      max_tx_rate * 1000, 0, pktsize, 0);
   3362	if (ret) {
   3363		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
   3364			ret);
   3365		return -EINVAL;
   3366	}
   3367	dev_info(adap->pdev_dev,
   3368		 "Class %d with MSS %u configured with rate %u\n",
   3369		 class_id, pktsize, max_tx_rate);
   3370
   3371	/* bind VF to configured Traffic Class */
   3372	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
   3373		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
   3374	fw_class = class_id;
   3375	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
   3376			    &fw_class);
   3377	if (ret) {
   3378		dev_err(adap->pdev_dev,
   3379			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
   3380			ret, adap->pf, vf, class_id);
   3381		return -EINVAL;
   3382	}
   3383	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
   3384		 adap->pf, vf, class_id);
   3385	adap->vfinfo[vf].tx_rate = max_tx_rate;
   3386	return 0;
   3387}
   3388
   3389static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
   3390				  u16 vlan, u8 qos, __be16 vlan_proto)
   3391{
   3392	struct port_info *pi = netdev_priv(dev);
   3393	struct adapter *adap = pi->adapter;
   3394	int ret;
   3395
   3396	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
   3397		return -EINVAL;
   3398
   3399	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
   3400		return -EPROTONOSUPPORT;
   3401
   3402	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
   3403	if (!ret) {
   3404		adap->vfinfo[vf].vlan = vlan;
   3405		return 0;
   3406	}
   3407
   3408	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
   3409		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
   3410	return ret;
   3411}
   3412
   3413static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
   3414					int link)
   3415{
   3416	struct port_info *pi = netdev_priv(dev);
   3417	struct adapter *adap = pi->adapter;
   3418	u32 param, val;
   3419	int ret = 0;
   3420
   3421	if (vf >= adap->num_vfs)
   3422		return -EINVAL;
   3423
   3424	switch (link) {
   3425	case IFLA_VF_LINK_STATE_AUTO:
   3426		val = FW_VF_LINK_STATE_AUTO;
   3427		break;
   3428
   3429	case IFLA_VF_LINK_STATE_ENABLE:
   3430		val = FW_VF_LINK_STATE_ENABLE;
   3431		break;
   3432
   3433	case IFLA_VF_LINK_STATE_DISABLE:
   3434		val = FW_VF_LINK_STATE_DISABLE;
   3435		break;
   3436
   3437	default:
   3438		return -EINVAL;
   3439	}
   3440
   3441	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
   3442		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
   3443	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
   3444			    &param, &val);
   3445	if (ret) {
   3446		dev_err(adap->pdev_dev,
   3447			"Error %d in setting PF %d VF %d link state\n",
   3448			ret, adap->pf, vf);
   3449		return -EINVAL;
   3450	}
   3451
   3452	adap->vfinfo[vf].link_state = link;
   3453	return ret;
   3454}
   3455#endif /* CONFIG_PCI_IOV */
   3456
   3457static int cxgb_set_mac_addr(struct net_device *dev, void *p)
   3458{
   3459	int ret;
   3460	struct sockaddr *addr = p;
   3461	struct port_info *pi = netdev_priv(dev);
   3462
   3463	if (!is_valid_ether_addr(addr->sa_data))
   3464		return -EADDRNOTAVAIL;
   3465
   3466	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
   3467				    addr->sa_data, true, &pi->smt_idx);
   3468	if (ret < 0)
   3469		return ret;
   3470
   3471	eth_hw_addr_set(dev, addr->sa_data);
   3472	return 0;
   3473}
   3474
   3475#ifdef CONFIG_NET_POLL_CONTROLLER
   3476static void cxgb_netpoll(struct net_device *dev)
   3477{
   3478	struct port_info *pi = netdev_priv(dev);
   3479	struct adapter *adap = pi->adapter;
   3480
   3481	if (adap->flags & CXGB4_USING_MSIX) {
   3482		int i;
   3483		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
   3484
   3485		for (i = pi->nqsets; i; i--, rx++)
   3486			t4_sge_intr_msix(0, &rx->rspq);
   3487	} else
   3488		t4_intr_handler(adap)(0, adap);
   3489}
   3490#endif
   3491
   3492static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
   3493{
   3494	struct port_info *pi = netdev_priv(dev);
   3495	struct adapter *adap = pi->adapter;
   3496	struct ch_sched_queue qe = { 0 };
   3497	struct ch_sched_params p = { 0 };
   3498	struct sched_class *e;
   3499	u32 req_rate;
   3500	int err = 0;
   3501
   3502	if (!can_sched(dev))
   3503		return -ENOTSUPP;
   3504
   3505	if (index < 0 || index > pi->nqsets - 1)
   3506		return -EINVAL;
   3507
   3508	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
   3509		dev_err(adap->pdev_dev,
   3510			"Failed to rate limit on queue %d. Link Down?\n",
   3511			index);
   3512		return -EINVAL;
   3513	}
   3514
   3515	qe.queue = index;
   3516	e = cxgb4_sched_queue_lookup(dev, &qe);
   3517	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
   3518		dev_err(adap->pdev_dev,
   3519			"Queue %u already bound to class %u of type: %u\n",
   3520			index, e->idx, e->info.u.params.level);
   3521		return -EBUSY;
   3522	}
   3523
   3524	/* Convert from Mbps to Kbps */
   3525	req_rate = rate * 1000;
   3526
   3527	/* Max rate is 100 Gbps */
   3528	if (req_rate > SCHED_MAX_RATE_KBPS) {
   3529		dev_err(adap->pdev_dev,
   3530			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
   3531			rate, SCHED_MAX_RATE_KBPS / 1000);
   3532		return -ERANGE;
   3533	}
   3534
   3535	/* First unbind the queue from any existing class */
   3536	memset(&qe, 0, sizeof(qe));
   3537	qe.queue = index;
   3538	qe.class = SCHED_CLS_NONE;
   3539
   3540	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
   3541	if (err) {
   3542		dev_err(adap->pdev_dev,
   3543			"Unbinding Queue %d on port %d fail. Err: %d\n",
   3544			index, pi->port_id, err);
   3545		return err;
   3546	}
   3547
   3548	/* Queue already unbound */
   3549	if (!req_rate)
   3550		return 0;
   3551
   3552	/* Fetch any available unused or matching scheduling class */
   3553	p.type = SCHED_CLASS_TYPE_PACKET;
   3554	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
   3555	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
   3556	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
   3557	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
   3558	p.u.params.channel  = pi->tx_chan;
   3559	p.u.params.class    = SCHED_CLS_NONE;
   3560	p.u.params.minrate  = 0;
   3561	p.u.params.maxrate  = req_rate;
   3562	p.u.params.weight   = 0;
   3563	p.u.params.pktsize  = dev->mtu;
   3564
   3565	e = cxgb4_sched_class_alloc(dev, &p);
   3566	if (!e)
   3567		return -ENOMEM;
   3568
   3569	/* Bind the queue to a scheduling class */
   3570	memset(&qe, 0, sizeof(qe));
   3571	qe.queue = index;
   3572	qe.class = e->idx;
   3573
   3574	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
   3575	if (err)
   3576		dev_err(adap->pdev_dev,
   3577			"Queue rate limiting failed. Err: %d\n", err);
   3578	return err;
   3579}
   3580
   3581static int cxgb_setup_tc_flower(struct net_device *dev,
   3582				struct flow_cls_offload *cls_flower)
   3583{
   3584	switch (cls_flower->command) {
   3585	case FLOW_CLS_REPLACE:
   3586		return cxgb4_tc_flower_replace(dev, cls_flower);
   3587	case FLOW_CLS_DESTROY:
   3588		return cxgb4_tc_flower_destroy(dev, cls_flower);
   3589	case FLOW_CLS_STATS:
   3590		return cxgb4_tc_flower_stats(dev, cls_flower);
   3591	default:
   3592		return -EOPNOTSUPP;
   3593	}
   3594}
   3595
   3596static int cxgb_setup_tc_cls_u32(struct net_device *dev,
   3597				 struct tc_cls_u32_offload *cls_u32)
   3598{
   3599	switch (cls_u32->command) {
   3600	case TC_CLSU32_NEW_KNODE:
   3601	case TC_CLSU32_REPLACE_KNODE:
   3602		return cxgb4_config_knode(dev, cls_u32);
   3603	case TC_CLSU32_DELETE_KNODE:
   3604		return cxgb4_delete_knode(dev, cls_u32);
   3605	default:
   3606		return -EOPNOTSUPP;
   3607	}
   3608}
   3609
   3610static int cxgb_setup_tc_matchall(struct net_device *dev,
   3611				  struct tc_cls_matchall_offload *cls_matchall,
   3612				  bool ingress)
   3613{
   3614	struct adapter *adap = netdev2adap(dev);
   3615
   3616	if (!adap->tc_matchall)
   3617		return -ENOMEM;
   3618
   3619	switch (cls_matchall->command) {
   3620	case TC_CLSMATCHALL_REPLACE:
   3621		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
   3622	case TC_CLSMATCHALL_DESTROY:
   3623		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
   3624	case TC_CLSMATCHALL_STATS:
   3625		if (ingress)
   3626			return cxgb4_tc_matchall_stats(dev, cls_matchall);
   3627		break;
   3628	default:
   3629		break;
   3630	}
   3631
   3632	return -EOPNOTSUPP;
   3633}
   3634
   3635static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
   3636					  void *type_data, void *cb_priv)
   3637{
   3638	struct net_device *dev = cb_priv;
   3639	struct port_info *pi = netdev2pinfo(dev);
   3640	struct adapter *adap = netdev2adap(dev);
   3641
   3642	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
   3643		dev_err(adap->pdev_dev,
   3644			"Failed to setup tc on port %d. Link Down?\n",
   3645			pi->port_id);
   3646		return -EINVAL;
   3647	}
   3648
   3649	if (!tc_cls_can_offload_and_chain0(dev, type_data))
   3650		return -EOPNOTSUPP;
   3651
   3652	switch (type) {
   3653	case TC_SETUP_CLSU32:
   3654		return cxgb_setup_tc_cls_u32(dev, type_data);
   3655	case TC_SETUP_CLSFLOWER:
   3656		return cxgb_setup_tc_flower(dev, type_data);
   3657	case TC_SETUP_CLSMATCHALL:
   3658		return cxgb_setup_tc_matchall(dev, type_data, true);
   3659	default:
   3660		return -EOPNOTSUPP;
   3661	}
   3662}
   3663
   3664static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
   3665					 void *type_data, void *cb_priv)
   3666{
   3667	struct net_device *dev = cb_priv;
   3668	struct port_info *pi = netdev2pinfo(dev);
   3669	struct adapter *adap = netdev2adap(dev);
   3670
   3671	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
   3672		dev_err(adap->pdev_dev,
   3673			"Failed to setup tc on port %d. Link Down?\n",
   3674			pi->port_id);
   3675		return -EINVAL;
   3676	}
   3677
   3678	if (!tc_cls_can_offload_and_chain0(dev, type_data))
   3679		return -EOPNOTSUPP;
   3680
   3681	switch (type) {
   3682	case TC_SETUP_CLSMATCHALL:
   3683		return cxgb_setup_tc_matchall(dev, type_data, false);
   3684	default:
   3685		break;
   3686	}
   3687
   3688	return -EOPNOTSUPP;
   3689}
   3690
   3691static int cxgb_setup_tc_mqprio(struct net_device *dev,
   3692				struct tc_mqprio_qopt_offload *mqprio)
   3693{
   3694	struct adapter *adap = netdev2adap(dev);
   3695
   3696	if (!is_ethofld(adap) || !adap->tc_mqprio)
   3697		return -ENOMEM;
   3698
   3699	return cxgb4_setup_tc_mqprio(dev, mqprio);
   3700}
   3701
   3702static LIST_HEAD(cxgb_block_cb_list);
   3703
   3704static int cxgb_setup_tc_block(struct net_device *dev,
   3705			       struct flow_block_offload *f)
   3706{
   3707	struct port_info *pi = netdev_priv(dev);
   3708	flow_setup_cb_t *cb;
   3709	bool ingress_only;
   3710
   3711	pi->tc_block_shared = f->block_shared;
   3712	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
   3713		cb = cxgb_setup_tc_block_egress_cb;
   3714		ingress_only = false;
   3715	} else {
   3716		cb = cxgb_setup_tc_block_ingress_cb;
   3717		ingress_only = true;
   3718	}
   3719
   3720	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
   3721					  cb, pi, dev, ingress_only);
   3722}
   3723
   3724static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
   3725			 void *type_data)
   3726{
   3727	switch (type) {
   3728	case TC_SETUP_QDISC_MQPRIO:
   3729		return cxgb_setup_tc_mqprio(dev, type_data);
   3730	case TC_SETUP_BLOCK:
   3731		return cxgb_setup_tc_block(dev, type_data);
   3732	default:
   3733		return -EOPNOTSUPP;
   3734	}
   3735}
   3736
   3737static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
   3738				      unsigned int table, unsigned int entry,
   3739				      struct udp_tunnel_info *ti)
   3740{
   3741	struct port_info *pi = netdev_priv(netdev);
   3742	struct adapter *adapter = pi->adapter;
   3743	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
   3744	int ret = 0, i;
   3745
   3746	switch (ti->type) {
   3747	case UDP_TUNNEL_TYPE_VXLAN:
   3748		adapter->vxlan_port = 0;
   3749		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
   3750		break;
   3751	case UDP_TUNNEL_TYPE_GENEVE:
   3752		adapter->geneve_port = 0;
   3753		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
   3754		break;
   3755	default:
   3756		return -EINVAL;
   3757	}
   3758
   3759	/* Matchall mac entries can be deleted only after all tunnel ports
   3760	 * are brought down or removed.
   3761	 */
   3762	if (!adapter->rawf_cnt)
   3763		return 0;
   3764	for_each_port(adapter, i) {
   3765		pi = adap2pinfo(adapter, i);
   3766		ret = t4_free_raw_mac_filt(adapter, pi->viid,
   3767					   match_all_mac, match_all_mac,
   3768					   adapter->rawf_start + pi->port_id,
   3769					   1, pi->port_id, false);
   3770		if (ret < 0) {
   3771			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
   3772				    i);
   3773			return ret;
   3774		}
   3775	}
   3776
   3777	return 0;
   3778}
   3779
   3780static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
   3781				    unsigned int table, unsigned int entry,
   3782				    struct udp_tunnel_info *ti)
   3783{
   3784	struct port_info *pi = netdev_priv(netdev);
   3785	struct adapter *adapter = pi->adapter;
   3786	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
   3787	int i, ret;
   3788
   3789	switch (ti->type) {
   3790	case UDP_TUNNEL_TYPE_VXLAN:
   3791		adapter->vxlan_port = ti->port;
   3792		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
   3793			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
   3794		break;
   3795	case UDP_TUNNEL_TYPE_GENEVE:
   3796		adapter->geneve_port = ti->port;
   3797		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
   3798			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
   3799		break;
   3800	default:
   3801		return -EINVAL;
   3802	}
   3803
   3804	/* Create a 'match all' mac filter entry for inner mac,
   3805	 * if raw mac interface is supported. Once the linux kernel provides
   3806	 * driver entry points for adding/deleting the inner mac addresses,
   3807	 * we will remove this 'match all' entry and fallback to adding
   3808	 * exact match filters.
   3809	 */
   3810	for_each_port(adapter, i) {
   3811		pi = adap2pinfo(adapter, i);
   3812
   3813		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
   3814					    match_all_mac,
   3815					    match_all_mac,
   3816					    adapter->rawf_start + pi->port_id,
   3817					    1, pi->port_id, false);
   3818		if (ret < 0) {
   3819			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
   3820				    be16_to_cpu(ti->port));
   3821			return ret;
   3822		}
   3823	}
   3824
   3825	return 0;
   3826}
   3827
   3828static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
   3829	.set_port	= cxgb_udp_tunnel_set_port,
   3830	.unset_port	= cxgb_udp_tunnel_unset_port,
   3831	.tables		= {
   3832		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
   3833		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
   3834	},
   3835};
   3836
   3837static netdev_features_t cxgb_features_check(struct sk_buff *skb,
   3838					     struct net_device *dev,
   3839					     netdev_features_t features)
   3840{
   3841	struct port_info *pi = netdev_priv(dev);
   3842	struct adapter *adapter = pi->adapter;
   3843
   3844	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
   3845		return features;
   3846
   3847	/* Check if hw supports offload for this packet */
   3848	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
   3849		return features;
   3850
   3851	/* Offload is not supported for this encapsulated packet */
   3852	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
   3853}
   3854
   3855static netdev_features_t cxgb_fix_features(struct net_device *dev,
   3856					   netdev_features_t features)
   3857{
   3858	/* Disable GRO, if RX_CSUM is disabled */
   3859	if (!(features & NETIF_F_RXCSUM))
   3860		features &= ~NETIF_F_GRO;
   3861
   3862	return features;
   3863}
   3864
   3865static const struct net_device_ops cxgb4_netdev_ops = {
   3866	.ndo_open             = cxgb_open,
   3867	.ndo_stop             = cxgb_close,
   3868	.ndo_start_xmit       = t4_start_xmit,
   3869	.ndo_select_queue     =	cxgb_select_queue,
   3870	.ndo_get_stats64      = cxgb_get_stats,
   3871	.ndo_set_rx_mode      = cxgb_set_rxmode,
   3872	.ndo_set_mac_address  = cxgb_set_mac_addr,
   3873	.ndo_set_features     = cxgb_set_features,
   3874	.ndo_validate_addr    = eth_validate_addr,
   3875	.ndo_eth_ioctl         = cxgb_ioctl,
   3876	.ndo_change_mtu       = cxgb_change_mtu,
   3877#ifdef CONFIG_NET_POLL_CONTROLLER
   3878	.ndo_poll_controller  = cxgb_netpoll,
   3879#endif
   3880#ifdef CONFIG_CHELSIO_T4_FCOE
   3881	.ndo_fcoe_enable      = cxgb_fcoe_enable,
   3882	.ndo_fcoe_disable     = cxgb_fcoe_disable,
   3883#endif /* CONFIG_CHELSIO_T4_FCOE */
   3884	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
   3885	.ndo_setup_tc         = cxgb_setup_tc,
   3886	.ndo_features_check   = cxgb_features_check,
   3887	.ndo_fix_features     = cxgb_fix_features,
   3888};
   3889
   3890#ifdef CONFIG_PCI_IOV
   3891static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
   3892	.ndo_open               = cxgb4_mgmt_open,
   3893	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
   3894	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
   3895	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
   3896	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
   3897	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
   3898	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
   3899};
   3900
   3901static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
   3902				   struct ethtool_drvinfo *info)
   3903{
   3904	struct adapter *adapter = netdev2adap(dev);
   3905
   3906	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
   3907	strlcpy(info->bus_info, pci_name(adapter->pdev),
   3908		sizeof(info->bus_info));
   3909}
   3910
   3911static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
   3912	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
   3913};
   3914#endif
   3915
   3916static void notify_fatal_err(struct work_struct *work)
   3917{
   3918	struct adapter *adap;
   3919
   3920	adap = container_of(work, struct adapter, fatal_err_notify_task);
   3921	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
   3922}
   3923
   3924void t4_fatal_err(struct adapter *adap)
   3925{
   3926	int port;
   3927
   3928	if (pci_channel_offline(adap->pdev))
   3929		return;
   3930
   3931	/* Disable the SGE since ULDs are going to free resources that
   3932	 * could be exposed to the adapter.  RDMA MWs for example...
   3933	 */
   3934	t4_shutdown_adapter(adap);
   3935	for_each_port(adap, port) {
   3936		struct net_device *dev = adap->port[port];
   3937
   3938		/* If we get here in very early initialization the network
   3939		 * devices may not have been set up yet.
   3940		 */
   3941		if (!dev)
   3942			continue;
   3943
   3944		netif_tx_stop_all_queues(dev);
   3945		netif_carrier_off(dev);
   3946	}
   3947	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
   3948	queue_work(adap->workq, &adap->fatal_err_notify_task);
   3949}
   3950
   3951static void setup_memwin(struct adapter *adap)
   3952{
   3953	u32 nic_win_base = t4_get_util_window(adap);
   3954
   3955	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
   3956}
   3957
   3958static void setup_memwin_rdma(struct adapter *adap)
   3959{
   3960	if (adap->vres.ocq.size) {
   3961		u32 start;
   3962		unsigned int sz_kb;
   3963
   3964		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
   3965		start &= PCI_BASE_ADDRESS_MEM_MASK;
   3966		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
   3967		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
   3968		t4_write_reg(adap,
   3969			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
   3970			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
   3971		t4_write_reg(adap,
   3972			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
   3973			     adap->vres.ocq.start);
   3974		t4_read_reg(adap,
   3975			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
   3976	}
   3977}
   3978
   3979/* HMA Definitions */
   3980
   3981/* The maximum number of address that can be send in a single FW cmd */
   3982#define HMA_MAX_ADDR_IN_CMD	5
   3983
   3984#define HMA_PAGE_SIZE		PAGE_SIZE
   3985
   3986#define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
   3987
   3988#define HMA_PAGE_ORDER					\
   3989	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
   3990	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
   3991
   3992/* The minimum and maximum possible HMA sizes that can be specified in the FW
   3993 * configuration(in units of MB).
   3994 */
   3995#define HMA_MIN_TOTAL_SIZE	1
   3996#define HMA_MAX_TOTAL_SIZE				\
   3997	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
   3998	  HMA_MAX_NO_FW_ADDRESS) >> 20)
   3999
   4000static void adap_free_hma_mem(struct adapter *adapter)
   4001{
   4002	struct scatterlist *iter;
   4003	struct page *page;
   4004	int i;
   4005
   4006	if (!adapter->hma.sgt)
   4007		return;
   4008
   4009	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
   4010		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
   4011			     adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
   4012		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
   4013	}
   4014
   4015	for_each_sg(adapter->hma.sgt->sgl, iter,
   4016		    adapter->hma.sgt->orig_nents, i) {
   4017		page = sg_page(iter);
   4018		if (page)
   4019			__free_pages(page, HMA_PAGE_ORDER);
   4020	}
   4021
   4022	kfree(adapter->hma.phy_addr);
   4023	sg_free_table(adapter->hma.sgt);
   4024	kfree(adapter->hma.sgt);
   4025	adapter->hma.sgt = NULL;
   4026}
   4027
   4028static int adap_config_hma(struct adapter *adapter)
   4029{
   4030	struct scatterlist *sgl, *iter;
   4031	struct sg_table *sgt;
   4032	struct page *newpage;
   4033	unsigned int i, j, k;
   4034	u32 param, hma_size;
   4035	unsigned int ncmds;
   4036	size_t page_size;
   4037	u32 page_order;
   4038	int node, ret;
   4039
   4040	/* HMA is supported only for T6+ cards.
   4041	 * Avoid initializing HMA in kdump kernels.
   4042	 */
   4043	if (is_kdump_kernel() ||
   4044	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
   4045		return 0;
   4046
   4047	/* Get the HMA region size required by fw */
   4048	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4049		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
   4050	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
   4051			      1, &param, &hma_size);
   4052	/* An error means card has its own memory or HMA is not supported by
   4053	 * the firmware. Return without any errors.
   4054	 */
   4055	if (ret || !hma_size)
   4056		return 0;
   4057
   4058	if (hma_size < HMA_MIN_TOTAL_SIZE ||
   4059	    hma_size > HMA_MAX_TOTAL_SIZE) {
   4060		dev_err(adapter->pdev_dev,
   4061			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
   4062			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
   4063		return -EINVAL;
   4064	}
   4065
   4066	page_size = HMA_PAGE_SIZE;
   4067	page_order = HMA_PAGE_ORDER;
   4068	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
   4069	if (unlikely(!adapter->hma.sgt)) {
   4070		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
   4071		return -ENOMEM;
   4072	}
   4073	sgt = adapter->hma.sgt;
   4074	/* FW returned value will be in MB's
   4075	 */
   4076	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
   4077	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
   4078		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
   4079		kfree(adapter->hma.sgt);
   4080		adapter->hma.sgt = NULL;
   4081		return -ENOMEM;
   4082	}
   4083
   4084	sgl = adapter->hma.sgt->sgl;
   4085	node = dev_to_node(adapter->pdev_dev);
   4086	for_each_sg(sgl, iter, sgt->orig_nents, i) {
   4087		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
   4088					   __GFP_ZERO, page_order);
   4089		if (!newpage) {
   4090			dev_err(adapter->pdev_dev,
   4091				"Not enough memory for HMA page allocation\n");
   4092			ret = -ENOMEM;
   4093			goto free_hma;
   4094		}
   4095		sg_set_page(iter, newpage, page_size << page_order, 0);
   4096	}
   4097
   4098	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
   4099				DMA_BIDIRECTIONAL);
   4100	if (!sgt->nents) {
   4101		dev_err(adapter->pdev_dev,
   4102			"Not enough memory for HMA DMA mapping");
   4103		ret = -ENOMEM;
   4104		goto free_hma;
   4105	}
   4106	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
   4107
   4108	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
   4109					GFP_KERNEL);
   4110	if (unlikely(!adapter->hma.phy_addr))
   4111		goto free_hma;
   4112
   4113	for_each_sg(sgl, iter, sgt->nents, i) {
   4114		newpage = sg_page(iter);
   4115		adapter->hma.phy_addr[i] = sg_dma_address(iter);
   4116	}
   4117
   4118	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
   4119	/* Pass on the addresses to firmware */
   4120	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
   4121		struct fw_hma_cmd hma_cmd;
   4122		u8 naddr = HMA_MAX_ADDR_IN_CMD;
   4123		u8 soc = 0, eoc = 0;
   4124		u8 hma_mode = 1; /* Presently we support only Page table mode */
   4125
   4126		soc = (i == 0) ? 1 : 0;
   4127		eoc = (i == ncmds - 1) ? 1 : 0;
   4128
   4129		/* For last cmd, set naddr corresponding to remaining
   4130		 * addresses
   4131		 */
   4132		if (i == ncmds - 1) {
   4133			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
   4134			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
   4135		}
   4136		memset(&hma_cmd, 0, sizeof(hma_cmd));
   4137		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
   4138				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
   4139		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
   4140
   4141		hma_cmd.mode_to_pcie_params =
   4142			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
   4143			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
   4144
   4145		/* HMA cmd size specified in MB's */
   4146		hma_cmd.naddr_size =
   4147			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
   4148			      FW_HMA_CMD_NADDR_V(naddr));
   4149
   4150		/* Total Page size specified in units of 4K */
   4151		hma_cmd.addr_size_pkd =
   4152			htonl(FW_HMA_CMD_ADDR_SIZE_V
   4153				((page_size << page_order) >> 12));
   4154
   4155		/* Fill the 5 addresses */
   4156		for (j = 0; j < naddr; j++) {
   4157			hma_cmd.phy_address[j] =
   4158				cpu_to_be64(adapter->hma.phy_addr[j + k]);
   4159		}
   4160		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
   4161				 sizeof(hma_cmd), &hma_cmd);
   4162		if (ret) {
   4163			dev_err(adapter->pdev_dev,
   4164				"HMA FW command failed with err %d\n", ret);
   4165			goto free_hma;
   4166		}
   4167	}
   4168
   4169	if (!ret)
   4170		dev_info(adapter->pdev_dev,
   4171			 "Reserved %uMB host memory for HMA\n", hma_size);
   4172	return ret;
   4173
   4174free_hma:
   4175	adap_free_hma_mem(adapter);
   4176	return ret;
   4177}
   4178
   4179static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
   4180{
   4181	u32 v;
   4182	int ret;
   4183
   4184	/* Now that we've successfully configured and initialized the adapter
   4185	 * can ask the Firmware what resources it has provisioned for us.
   4186	 */
   4187	ret = t4_get_pfres(adap);
   4188	if (ret) {
   4189		dev_err(adap->pdev_dev,
   4190			"Unable to retrieve resource provisioning information\n");
   4191		return ret;
   4192	}
   4193
   4194	/* get device capabilities */
   4195	memset(c, 0, sizeof(*c));
   4196	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   4197			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
   4198	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
   4199	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
   4200	if (ret < 0)
   4201		return ret;
   4202
   4203	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   4204			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
   4205	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
   4206	if (ret < 0)
   4207		return ret;
   4208
   4209	ret = t4_config_glbl_rss(adap, adap->pf,
   4210				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
   4211				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
   4212				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
   4213	if (ret < 0)
   4214		return ret;
   4215
   4216	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
   4217			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
   4218			  FW_CMD_CAP_PF);
   4219	if (ret < 0)
   4220		return ret;
   4221
   4222	t4_sge_init(adap);
   4223
   4224	/* tweak some settings */
   4225	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
   4226	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
   4227	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
   4228	v = t4_read_reg(adap, TP_PIO_DATA_A);
   4229	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
   4230
   4231	/* first 4 Tx modulation queues point to consecutive Tx channels */
   4232	adap->params.tp.tx_modq_map = 0xE4;
   4233	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
   4234		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
   4235
   4236	/* associate each Tx modulation queue with consecutive Tx channels */
   4237	v = 0x84218421;
   4238	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
   4239			  &v, 1, TP_TX_SCHED_HDR_A);
   4240	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
   4241			  &v, 1, TP_TX_SCHED_FIFO_A);
   4242	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
   4243			  &v, 1, TP_TX_SCHED_PCMD_A);
   4244
   4245#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
   4246	if (is_offload(adap)) {
   4247		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
   4248			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4249			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4250			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4251			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
   4252		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
   4253			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4254			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4255			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
   4256			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
   4257	}
   4258
   4259	/* get basic stuff going */
   4260	return t4_early_init(adap, adap->pf);
   4261}
   4262
   4263/*
   4264 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
   4265 */
   4266#define MAX_ATIDS 8192U
   4267
   4268/*
   4269 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
   4270 *
   4271 * If the firmware we're dealing with has Configuration File support, then
   4272 * we use that to perform all configuration
   4273 */
   4274
   4275/*
   4276 * Tweak configuration based on module parameters, etc.  Most of these have
   4277 * defaults assigned to them by Firmware Configuration Files (if we're using
   4278 * them) but need to be explicitly set if we're using hard-coded
   4279 * initialization.  But even in the case of using Firmware Configuration
   4280 * Files, we'd like to expose the ability to change these via module
   4281 * parameters so these are essentially common tweaks/settings for
   4282 * Configuration Files and hard-coded initialization ...
   4283 */
   4284static int adap_init0_tweaks(struct adapter *adapter)
   4285{
   4286	/*
   4287	 * Fix up various Host-Dependent Parameters like Page Size, Cache
   4288	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
   4289	 * 64B Cache Line Size ...
   4290	 */
   4291	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
   4292
   4293	/*
   4294	 * Process module parameters which affect early initialization.
   4295	 */
   4296	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
   4297		dev_err(&adapter->pdev->dev,
   4298			"Ignoring illegal rx_dma_offset=%d, using 2\n",
   4299			rx_dma_offset);
   4300		rx_dma_offset = 2;
   4301	}
   4302	t4_set_reg_field(adapter, SGE_CONTROL_A,
   4303			 PKTSHIFT_V(PKTSHIFT_M),
   4304			 PKTSHIFT_V(rx_dma_offset));
   4305
   4306	/*
   4307	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
   4308	 * adds the pseudo header itself.
   4309	 */
   4310	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
   4311			       CSUM_HAS_PSEUDO_HDR_F, 0);
   4312
   4313	return 0;
   4314}
   4315
   4316/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
   4317 * unto themselves and they contain their own firmware to perform their
   4318 * tasks ...
   4319 */
   4320static int phy_aq1202_version(const u8 *phy_fw_data,
   4321			      size_t phy_fw_size)
   4322{
   4323	int offset;
   4324
   4325	/* At offset 0x8 you're looking for the primary image's
   4326	 * starting offset which is 3 Bytes wide
   4327	 *
   4328	 * At offset 0xa of the primary image, you look for the offset
   4329	 * of the DRAM segment which is 3 Bytes wide.
   4330	 *
   4331	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
   4332	 * wide
   4333	 */
   4334	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
   4335	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
   4336	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
   4337
   4338	offset = le24(phy_fw_data + 0x8) << 12;
   4339	offset = le24(phy_fw_data + offset + 0xa);
   4340	return be16(phy_fw_data + offset + 0x27e);
   4341
   4342	#undef be16
   4343	#undef le16
   4344	#undef le24
   4345}
   4346
   4347static struct info_10gbt_phy_fw {
   4348	unsigned int phy_fw_id;		/* PCI Device ID */
   4349	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
   4350	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
   4351	int phy_flash;			/* Has FLASH for PHY Firmware */
   4352} phy_info_array[] = {
   4353	{
   4354		PHY_AQ1202_DEVICEID,
   4355		PHY_AQ1202_FIRMWARE,
   4356		phy_aq1202_version,
   4357		1,
   4358	},
   4359	{
   4360		PHY_BCM84834_DEVICEID,
   4361		PHY_BCM84834_FIRMWARE,
   4362		NULL,
   4363		0,
   4364	},
   4365	{ 0, NULL, NULL },
   4366};
   4367
   4368static struct info_10gbt_phy_fw *find_phy_info(int devid)
   4369{
   4370	int i;
   4371
   4372	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
   4373		if (phy_info_array[i].phy_fw_id == devid)
   4374			return &phy_info_array[i];
   4375	}
   4376	return NULL;
   4377}
   4378
   4379/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
   4380 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
   4381 * we return a negative error number.  If we transfer new firmware we return 1
   4382 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
   4383 */
   4384static int adap_init0_phy(struct adapter *adap)
   4385{
   4386	const struct firmware *phyf;
   4387	int ret;
   4388	struct info_10gbt_phy_fw *phy_info;
   4389
   4390	/* Use the device ID to determine which PHY file to flash.
   4391	 */
   4392	phy_info = find_phy_info(adap->pdev->device);
   4393	if (!phy_info) {
   4394		dev_warn(adap->pdev_dev,
   4395			 "No PHY Firmware file found for this PHY\n");
   4396		return -EOPNOTSUPP;
   4397	}
   4398
   4399	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
   4400	 * use that. The adapter firmware provides us with a memory buffer
   4401	 * where we can load a PHY firmware file from the host if we want to
   4402	 * override the PHY firmware File in flash.
   4403	 */
   4404	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
   4405				      adap->pdev_dev);
   4406	if (ret < 0) {
   4407		/* For adapters without FLASH attached to PHY for their
   4408		 * firmware, it's obviously a fatal error if we can't get the
   4409		 * firmware to the adapter.  For adapters with PHY firmware
   4410		 * FLASH storage, it's worth a warning if we can't find the
   4411		 * PHY Firmware but we'll neuter the error ...
   4412		 */
   4413		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
   4414			"/lib/firmware/%s, error %d\n",
   4415			phy_info->phy_fw_file, -ret);
   4416		if (phy_info->phy_flash) {
   4417			int cur_phy_fw_ver = 0;
   4418
   4419			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
   4420			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
   4421				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
   4422			ret = 0;
   4423		}
   4424
   4425		return ret;
   4426	}
   4427
   4428	/* Load PHY Firmware onto adapter.
   4429	 */
   4430	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
   4431			     (u8 *)phyf->data, phyf->size);
   4432	if (ret < 0)
   4433		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
   4434			-ret);
   4435	else if (ret > 0) {
   4436		int new_phy_fw_ver = 0;
   4437
   4438		if (phy_info->phy_fw_version)
   4439			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
   4440								  phyf->size);
   4441		dev_info(adap->pdev_dev, "Successfully transferred PHY "
   4442			 "Firmware /lib/firmware/%s, version %#x\n",
   4443			 phy_info->phy_fw_file, new_phy_fw_ver);
   4444	}
   4445
   4446	release_firmware(phyf);
   4447
   4448	return ret;
   4449}
   4450
   4451/*
   4452 * Attempt to initialize the adapter via a Firmware Configuration File.
   4453 */
   4454static int adap_init0_config(struct adapter *adapter, int reset)
   4455{
   4456	char *fw_config_file, fw_config_file_path[256];
   4457	u32 finiver, finicsum, cfcsum, param, val;
   4458	struct fw_caps_config_cmd caps_cmd;
   4459	unsigned long mtype = 0, maddr = 0;
   4460	const struct firmware *cf;
   4461	char *config_name = NULL;
   4462	int config_issued = 0;
   4463	int ret;
   4464
   4465	/*
   4466	 * Reset device if necessary.
   4467	 */
   4468	if (reset) {
   4469		ret = t4_fw_reset(adapter, adapter->mbox,
   4470				  PIORSTMODE_F | PIORST_F);
   4471		if (ret < 0)
   4472			goto bye;
   4473	}
   4474
   4475	/* If this is a 10Gb/s-BT adapter make sure the chip-external
   4476	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
   4477	 * to be performed after any global adapter RESET above since some
   4478	 * PHYs only have local RAM copies of the PHY firmware.
   4479	 */
   4480	if (is_10gbt_device(adapter->pdev->device)) {
   4481		ret = adap_init0_phy(adapter);
   4482		if (ret < 0)
   4483			goto bye;
   4484	}
   4485	/*
   4486	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
   4487	 * then use that.  Otherwise, use the configuration file stored
   4488	 * in the adapter flash ...
   4489	 */
   4490	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
   4491	case CHELSIO_T4:
   4492		fw_config_file = FW4_CFNAME;
   4493		break;
   4494	case CHELSIO_T5:
   4495		fw_config_file = FW5_CFNAME;
   4496		break;
   4497	case CHELSIO_T6:
   4498		fw_config_file = FW6_CFNAME;
   4499		break;
   4500	default:
   4501		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
   4502		       adapter->pdev->device);
   4503		ret = -EINVAL;
   4504		goto bye;
   4505	}
   4506
   4507	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
   4508	if (ret < 0) {
   4509		config_name = "On FLASH";
   4510		mtype = FW_MEMTYPE_CF_FLASH;
   4511		maddr = t4_flash_cfg_addr(adapter);
   4512	} else {
   4513		u32 params[7], val[7];
   4514
   4515		sprintf(fw_config_file_path,
   4516			"/lib/firmware/%s", fw_config_file);
   4517		config_name = fw_config_file_path;
   4518
   4519		if (cf->size >= FLASH_CFG_MAX_SIZE)
   4520			ret = -ENOMEM;
   4521		else {
   4522			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4523			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
   4524			ret = t4_query_params(adapter, adapter->mbox,
   4525					      adapter->pf, 0, 1, params, val);
   4526			if (ret == 0) {
   4527				/*
   4528				 * For t4_memory_rw() below addresses and
   4529				 * sizes have to be in terms of multiples of 4
   4530				 * bytes.  So, if the Configuration File isn't
   4531				 * a multiple of 4 bytes in length we'll have
   4532				 * to write that out separately since we can't
   4533				 * guarantee that the bytes following the
   4534				 * residual byte in the buffer returned by
   4535				 * request_firmware() are zeroed out ...
   4536				 */
   4537				size_t resid = cf->size & 0x3;
   4538				size_t size = cf->size & ~0x3;
   4539				__be32 *data = (__be32 *)cf->data;
   4540
   4541				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
   4542				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
   4543
   4544				spin_lock(&adapter->win0_lock);
   4545				ret = t4_memory_rw(adapter, 0, mtype, maddr,
   4546						   size, data, T4_MEMORY_WRITE);
   4547				if (ret == 0 && resid != 0) {
   4548					union {
   4549						__be32 word;
   4550						char buf[4];
   4551					} last;
   4552					int i;
   4553
   4554					last.word = data[size >> 2];
   4555					for (i = resid; i < 4; i++)
   4556						last.buf[i] = 0;
   4557					ret = t4_memory_rw(adapter, 0, mtype,
   4558							   maddr + size,
   4559							   4, &last.word,
   4560							   T4_MEMORY_WRITE);
   4561				}
   4562				spin_unlock(&adapter->win0_lock);
   4563			}
   4564		}
   4565
   4566		release_firmware(cf);
   4567		if (ret)
   4568			goto bye;
   4569	}
   4570
   4571	val = 0;
   4572
   4573	/* Ofld + Hash filter is supported. Older fw will fail this request and
   4574	 * it is fine.
   4575	 */
   4576	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4577		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
   4578	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
   4579			    1, &param, &val);
   4580
   4581	/* FW doesn't know about Hash filter + ofld support,
   4582	 * it's not a problem, don't return an error.
   4583	 */
   4584	if (ret < 0) {
   4585		dev_warn(adapter->pdev_dev,
   4586			 "Hash filter with ofld is not supported by FW\n");
   4587	}
   4588
   4589	/*
   4590	 * Issue a Capability Configuration command to the firmware to get it
   4591	 * to parse the Configuration File.  We don't use t4_fw_config_file()
   4592	 * because we want the ability to modify various features after we've
   4593	 * processed the configuration file ...
   4594	 */
   4595	memset(&caps_cmd, 0, sizeof(caps_cmd));
   4596	caps_cmd.op_to_write =
   4597		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   4598		      FW_CMD_REQUEST_F |
   4599		      FW_CMD_READ_F);
   4600	caps_cmd.cfvalid_to_len16 =
   4601		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
   4602		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
   4603		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
   4604		      FW_LEN16(caps_cmd));
   4605	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
   4606			 &caps_cmd);
   4607
   4608	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
   4609	 * Configuration File in FLASH), our last gasp effort is to use the
   4610	 * Firmware Configuration File which is embedded in the firmware.  A
   4611	 * very few early versions of the firmware didn't have one embedded
   4612	 * but we can ignore those.
   4613	 */
   4614	if (ret == -ENOENT) {
   4615		memset(&caps_cmd, 0, sizeof(caps_cmd));
   4616		caps_cmd.op_to_write =
   4617			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   4618					FW_CMD_REQUEST_F |
   4619					FW_CMD_READ_F);
   4620		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
   4621		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
   4622				sizeof(caps_cmd), &caps_cmd);
   4623		config_name = "Firmware Default";
   4624	}
   4625
   4626	config_issued = 1;
   4627	if (ret < 0)
   4628		goto bye;
   4629
   4630	finiver = ntohl(caps_cmd.finiver);
   4631	finicsum = ntohl(caps_cmd.finicsum);
   4632	cfcsum = ntohl(caps_cmd.cfcsum);
   4633	if (finicsum != cfcsum)
   4634		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
   4635			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
   4636			 finicsum, cfcsum);
   4637
   4638	/*
   4639	 * And now tell the firmware to use the configuration we just loaded.
   4640	 */
   4641	caps_cmd.op_to_write =
   4642		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   4643		      FW_CMD_REQUEST_F |
   4644		      FW_CMD_WRITE_F);
   4645	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
   4646	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
   4647			 NULL);
   4648	if (ret < 0)
   4649		goto bye;
   4650
   4651	/*
   4652	 * Tweak configuration based on system architecture, module
   4653	 * parameters, etc.
   4654	 */
   4655	ret = adap_init0_tweaks(adapter);
   4656	if (ret < 0)
   4657		goto bye;
   4658
   4659	/* We will proceed even if HMA init fails. */
   4660	ret = adap_config_hma(adapter);
   4661	if (ret)
   4662		dev_err(adapter->pdev_dev,
   4663			"HMA configuration failed with error %d\n", ret);
   4664
   4665	if (is_t6(adapter->params.chip)) {
   4666		adap_config_hpfilter(adapter);
   4667		ret = setup_ppod_edram(adapter);
   4668		if (!ret)
   4669			dev_info(adapter->pdev_dev, "Successfully enabled "
   4670				 "ppod edram feature\n");
   4671	}
   4672
   4673	/*
   4674	 * And finally tell the firmware to initialize itself using the
   4675	 * parameters from the Configuration File.
   4676	 */
   4677	ret = t4_fw_initialize(adapter, adapter->mbox);
   4678	if (ret < 0)
   4679		goto bye;
   4680
   4681	/* Emit Firmware Configuration File information and return
   4682	 * successfully.
   4683	 */
   4684	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
   4685		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
   4686		 config_name, finiver, cfcsum);
   4687	return 0;
   4688
   4689	/*
   4690	 * Something bad happened.  Return the error ...  (If the "error"
   4691	 * is that there's no Configuration File on the adapter we don't
   4692	 * want to issue a warning since this is fairly common.)
   4693	 */
   4694bye:
   4695	if (config_issued && ret != -ENOENT)
   4696		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
   4697			 config_name, -ret);
   4698	return ret;
   4699}
   4700
   4701static struct fw_info fw_info_array[] = {
   4702	{
   4703		.chip = CHELSIO_T4,
   4704		.fs_name = FW4_CFNAME,
   4705		.fw_mod_name = FW4_FNAME,
   4706		.fw_hdr = {
   4707			.chip = FW_HDR_CHIP_T4,
   4708			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
   4709			.intfver_nic = FW_INTFVER(T4, NIC),
   4710			.intfver_vnic = FW_INTFVER(T4, VNIC),
   4711			.intfver_ri = FW_INTFVER(T4, RI),
   4712			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
   4713			.intfver_fcoe = FW_INTFVER(T4, FCOE),
   4714		},
   4715	}, {
   4716		.chip = CHELSIO_T5,
   4717		.fs_name = FW5_CFNAME,
   4718		.fw_mod_name = FW5_FNAME,
   4719		.fw_hdr = {
   4720			.chip = FW_HDR_CHIP_T5,
   4721			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
   4722			.intfver_nic = FW_INTFVER(T5, NIC),
   4723			.intfver_vnic = FW_INTFVER(T5, VNIC),
   4724			.intfver_ri = FW_INTFVER(T5, RI),
   4725			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
   4726			.intfver_fcoe = FW_INTFVER(T5, FCOE),
   4727		},
   4728	}, {
   4729		.chip = CHELSIO_T6,
   4730		.fs_name = FW6_CFNAME,
   4731		.fw_mod_name = FW6_FNAME,
   4732		.fw_hdr = {
   4733			.chip = FW_HDR_CHIP_T6,
   4734			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
   4735			.intfver_nic = FW_INTFVER(T6, NIC),
   4736			.intfver_vnic = FW_INTFVER(T6, VNIC),
   4737			.intfver_ofld = FW_INTFVER(T6, OFLD),
   4738			.intfver_ri = FW_INTFVER(T6, RI),
   4739			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
   4740			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
   4741			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
   4742			.intfver_fcoe = FW_INTFVER(T6, FCOE),
   4743		},
   4744	}
   4745
   4746};
   4747
   4748static struct fw_info *find_fw_info(int chip)
   4749{
   4750	int i;
   4751
   4752	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
   4753		if (fw_info_array[i].chip == chip)
   4754			return &fw_info_array[i];
   4755	}
   4756	return NULL;
   4757}
   4758
   4759/*
   4760 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
   4761 */
   4762static int adap_init0(struct adapter *adap, int vpd_skip)
   4763{
   4764	struct fw_caps_config_cmd caps_cmd;
   4765	u32 params[7], val[7];
   4766	enum dev_state state;
   4767	u32 v, port_vec;
   4768	int reset = 1;
   4769	int ret;
   4770
   4771	/* Grab Firmware Device Log parameters as early as possible so we have
   4772	 * access to it for debugging, etc.
   4773	 */
   4774	ret = t4_init_devlog_params(adap);
   4775	if (ret < 0)
   4776		return ret;
   4777
   4778	/* Contact FW, advertising Master capability */
   4779	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
   4780			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
   4781	if (ret < 0) {
   4782		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
   4783			ret);
   4784		return ret;
   4785	}
   4786	if (ret == adap->mbox)
   4787		adap->flags |= CXGB4_MASTER_PF;
   4788
   4789	/*
   4790	 * If we're the Master PF Driver and the device is uninitialized,
   4791	 * then let's consider upgrading the firmware ...  (We always want
   4792	 * to check the firmware version number in order to A. get it for
   4793	 * later reporting and B. to warn if the currently loaded firmware
   4794	 * is excessively mismatched relative to the driver.)
   4795	 */
   4796
   4797	t4_get_version_info(adap);
   4798	ret = t4_check_fw_version(adap);
   4799	/* If firmware is too old (not supported by driver) force an update. */
   4800	if (ret)
   4801		state = DEV_STATE_UNINIT;
   4802	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
   4803		struct fw_info *fw_info;
   4804		struct fw_hdr *card_fw;
   4805		const struct firmware *fw;
   4806		const u8 *fw_data = NULL;
   4807		unsigned int fw_size = 0;
   4808
   4809		/* This is the firmware whose headers the driver was compiled
   4810		 * against
   4811		 */
   4812		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
   4813		if (fw_info == NULL) {
   4814			dev_err(adap->pdev_dev,
   4815				"unable to get firmware info for chip %d.\n",
   4816				CHELSIO_CHIP_VERSION(adap->params.chip));
   4817			return -EINVAL;
   4818		}
   4819
   4820		/* allocate memory to read the header of the firmware on the
   4821		 * card
   4822		 */
   4823		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
   4824		if (!card_fw) {
   4825			ret = -ENOMEM;
   4826			goto bye;
   4827		}
   4828
   4829		/* Get FW from from /lib/firmware/ */
   4830		ret = request_firmware(&fw, fw_info->fw_mod_name,
   4831				       adap->pdev_dev);
   4832		if (ret < 0) {
   4833			dev_err(adap->pdev_dev,
   4834				"unable to load firmware image %s, error %d\n",
   4835				fw_info->fw_mod_name, ret);
   4836		} else {
   4837			fw_data = fw->data;
   4838			fw_size = fw->size;
   4839		}
   4840
   4841		/* upgrade FW logic */
   4842		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
   4843				 state, &reset);
   4844
   4845		/* Cleaning up */
   4846		release_firmware(fw);
   4847		kvfree(card_fw);
   4848
   4849		if (ret < 0)
   4850			goto bye;
   4851	}
   4852
   4853	/* If the firmware is initialized already, emit a simply note to that
   4854	 * effect. Otherwise, it's time to try initializing the adapter.
   4855	 */
   4856	if (state == DEV_STATE_INIT) {
   4857		ret = adap_config_hma(adap);
   4858		if (ret)
   4859			dev_err(adap->pdev_dev,
   4860				"HMA configuration failed with error %d\n",
   4861				ret);
   4862		dev_info(adap->pdev_dev, "Coming up as %s: "\
   4863			 "Adapter already initialized\n",
   4864			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
   4865	} else {
   4866		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
   4867			 "Initializing adapter\n");
   4868
   4869		/* Find out whether we're dealing with a version of the
   4870		 * firmware which has configuration file support.
   4871		 */
   4872		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4873			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
   4874		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
   4875				      params, val);
   4876
   4877		/* If the firmware doesn't support Configuration Files,
   4878		 * return an error.
   4879		 */
   4880		if (ret < 0) {
   4881			dev_err(adap->pdev_dev, "firmware doesn't support "
   4882				"Firmware Configuration Files\n");
   4883			goto bye;
   4884		}
   4885
   4886		/* The firmware provides us with a memory buffer where we can
   4887		 * load a Configuration File from the host if we want to
   4888		 * override the Configuration File in flash.
   4889		 */
   4890		ret = adap_init0_config(adap, reset);
   4891		if (ret == -ENOENT) {
   4892			dev_err(adap->pdev_dev, "no Configuration File "
   4893				"present on adapter.\n");
   4894			goto bye;
   4895		}
   4896		if (ret < 0) {
   4897			dev_err(adap->pdev_dev, "could not initialize "
   4898				"adapter, error %d\n", -ret);
   4899			goto bye;
   4900		}
   4901	}
   4902
   4903	/* Now that we've successfully configured and initialized the adapter
   4904	 * (or found it already initialized), we can ask the Firmware what
   4905	 * resources it has provisioned for us.
   4906	 */
   4907	ret = t4_get_pfres(adap);
   4908	if (ret) {
   4909		dev_err(adap->pdev_dev,
   4910			"Unable to retrieve resource provisioning information\n");
   4911		goto bye;
   4912	}
   4913
   4914	/* Grab VPD parameters.  This should be done after we establish a
   4915	 * connection to the firmware since some of the VPD parameters
   4916	 * (notably the Core Clock frequency) are retrieved via requests to
   4917	 * the firmware.  On the other hand, we need these fairly early on
   4918	 * so we do this right after getting ahold of the firmware.
   4919	 *
   4920	 * We need to do this after initializing the adapter because someone
   4921	 * could have FLASHed a new VPD which won't be read by the firmware
   4922	 * until we do the RESET ...
   4923	 */
   4924	if (!vpd_skip) {
   4925		ret = t4_get_vpd_params(adap, &adap->params.vpd);
   4926		if (ret < 0)
   4927			goto bye;
   4928	}
   4929
   4930	/* Find out what ports are available to us.  Note that we need to do
   4931	 * this before calling adap_init0_no_config() since it needs nports
   4932	 * and portvec ...
   4933	 */
   4934	v =
   4935	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4936	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
   4937	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
   4938	if (ret < 0)
   4939		goto bye;
   4940
   4941	adap->params.nports = hweight32(port_vec);
   4942	adap->params.portvec = port_vec;
   4943
   4944	/* Give the SGE code a chance to pull in anything that it needs ...
   4945	 * Note that this must be called after we retrieve our VPD parameters
   4946	 * in order to know how to convert core ticks to seconds, etc.
   4947	 */
   4948	ret = t4_sge_init(adap);
   4949	if (ret < 0)
   4950		goto bye;
   4951
   4952	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
   4953	 * indicates that the Firmware and Hardware support this.
   4954	 */
   4955	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
   4956		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
   4957	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   4958			      1, params, val);
   4959
   4960	if (!ret) {
   4961		adap->sge.dbqtimer_tick = val[0];
   4962		ret = t4_read_sge_dbqtimers(adap,
   4963					    ARRAY_SIZE(adap->sge.dbqtimer_val),
   4964					    adap->sge.dbqtimer_val);
   4965	}
   4966
   4967	if (!ret)
   4968		adap->flags |= CXGB4_SGE_DBQ_TIMER;
   4969
   4970	if (is_bypass_device(adap->pdev->device))
   4971		adap->params.bypass = 1;
   4972
   4973	/*
   4974	 * Grab some of our basic fundamental operating parameters.
   4975	 */
   4976	params[0] = FW_PARAM_PFVF(EQ_START);
   4977	params[1] = FW_PARAM_PFVF(L2T_START);
   4978	params[2] = FW_PARAM_PFVF(L2T_END);
   4979	params[3] = FW_PARAM_PFVF(FILTER_START);
   4980	params[4] = FW_PARAM_PFVF(FILTER_END);
   4981	params[5] = FW_PARAM_PFVF(IQFLINT_START);
   4982	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
   4983	if (ret < 0)
   4984		goto bye;
   4985	adap->sge.egr_start = val[0];
   4986	adap->l2t_start = val[1];
   4987	adap->l2t_end = val[2];
   4988	adap->tids.ftid_base = val[3];
   4989	adap->tids.nftids = val[4] - val[3] + 1;
   4990	adap->sge.ingr_start = val[5];
   4991
   4992	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
   4993		params[0] = FW_PARAM_PFVF(HPFILTER_START);
   4994		params[1] = FW_PARAM_PFVF(HPFILTER_END);
   4995		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   4996				      params, val);
   4997		if (ret < 0)
   4998			goto bye;
   4999
   5000		adap->tids.hpftid_base = val[0];
   5001		adap->tids.nhpftids = val[1] - val[0] + 1;
   5002
   5003		/* Read the raw mps entries. In T6, the last 2 tcam entries
   5004		 * are reserved for raw mac addresses (rawf = 2, one per port).
   5005		 */
   5006		params[0] = FW_PARAM_PFVF(RAWF_START);
   5007		params[1] = FW_PARAM_PFVF(RAWF_END);
   5008		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   5009				      params, val);
   5010		if (ret == 0) {
   5011			adap->rawf_start = val[0];
   5012			adap->rawf_cnt = val[1] - val[0] + 1;
   5013		}
   5014
   5015		adap->tids.tid_base =
   5016			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
   5017	}
   5018
   5019	/* qids (ingress/egress) returned from firmware can be anywhere
   5020	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
   5021	 * Hence driver needs to allocate memory for this range to
   5022	 * store the queue info. Get the highest IQFLINT/EQ index returned
   5023	 * in FW_EQ_*_CMD.alloc command.
   5024	 */
   5025	params[0] = FW_PARAM_PFVF(EQ_END);
   5026	params[1] = FW_PARAM_PFVF(IQFLINT_END);
   5027	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
   5028	if (ret < 0)
   5029		goto bye;
   5030	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
   5031	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
   5032
   5033	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
   5034				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
   5035	if (!adap->sge.egr_map) {
   5036		ret = -ENOMEM;
   5037		goto bye;
   5038	}
   5039
   5040	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
   5041				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
   5042	if (!adap->sge.ingr_map) {
   5043		ret = -ENOMEM;
   5044		goto bye;
   5045	}
   5046
   5047	/* Allocate the memory for the vaious egress queue bitmaps
   5048	 * ie starving_fl, txq_maperr and blocked_fl.
   5049	 */
   5050	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
   5051					sizeof(long), GFP_KERNEL);
   5052	if (!adap->sge.starving_fl) {
   5053		ret = -ENOMEM;
   5054		goto bye;
   5055	}
   5056
   5057	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
   5058				       sizeof(long), GFP_KERNEL);
   5059	if (!adap->sge.txq_maperr) {
   5060		ret = -ENOMEM;
   5061		goto bye;
   5062	}
   5063
   5064#ifdef CONFIG_DEBUG_FS
   5065	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
   5066				       sizeof(long), GFP_KERNEL);
   5067	if (!adap->sge.blocked_fl) {
   5068		ret = -ENOMEM;
   5069		goto bye;
   5070	}
   5071	bitmap_zero(adap->sge.blocked_fl, adap->sge.egr_sz);
   5072#endif
   5073
   5074	params[0] = FW_PARAM_PFVF(CLIP_START);
   5075	params[1] = FW_PARAM_PFVF(CLIP_END);
   5076	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
   5077	if (ret < 0)
   5078		goto bye;
   5079	adap->clipt_start = val[0];
   5080	adap->clipt_end = val[1];
   5081
   5082	/* Get the supported number of traffic classes */
   5083	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
   5084	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
   5085	if (ret < 0) {
   5086		/* We couldn't retrieve the number of Traffic Classes
   5087		 * supported by the hardware/firmware. So we hard
   5088		 * code it here.
   5089		 */
   5090		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
   5091	} else {
   5092		adap->params.nsched_cls = val[0];
   5093	}
   5094
   5095	/* query params related to active filter region */
   5096	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
   5097	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
   5098	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
   5099	/* If Active filter size is set we enable establishing
   5100	 * offload connection through firmware work request
   5101	 */
   5102	if ((val[0] != val[1]) && (ret >= 0)) {
   5103		adap->flags |= CXGB4_FW_OFLD_CONN;
   5104		adap->tids.aftid_base = val[0];
   5105		adap->tids.aftid_end = val[1];
   5106	}
   5107
   5108	/* If we're running on newer firmware, let it know that we're
   5109	 * prepared to deal with encapsulated CPL messages.  Older
   5110	 * firmware won't understand this and we'll just get
   5111	 * unencapsulated messages ...
   5112	 */
   5113	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
   5114	val[0] = 1;
   5115	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
   5116
   5117	/*
   5118	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
   5119	 * capability.  Earlier versions of the firmware didn't have the
   5120	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
   5121	 * permission to use ULPTX MEMWRITE DSGL.
   5122	 */
   5123	if (is_t4(adap->params.chip)) {
   5124		adap->params.ulptx_memwrite_dsgl = false;
   5125	} else {
   5126		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
   5127		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5128				      1, params, val);
   5129		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
   5130	}
   5131
   5132	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
   5133	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
   5134	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5135			      1, params, val);
   5136	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
   5137
   5138	/* See if FW supports FW_FILTER2 work request */
   5139	if (is_t4(adap->params.chip)) {
   5140		adap->params.filter2_wr_support = false;
   5141	} else {
   5142		params[0] = FW_PARAM_DEV(FILTER2_WR);
   5143		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5144				      1, params, val);
   5145		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
   5146	}
   5147
   5148	/* Check if FW supports returning vin and smt index.
   5149	 * If this is not supported, driver will interpret
   5150	 * these values from viid.
   5151	 */
   5152	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
   5153	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5154			      1, params, val);
   5155	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
   5156
   5157	/*
   5158	 * Get device capabilities so we can determine what resources we need
   5159	 * to manage.
   5160	 */
   5161	memset(&caps_cmd, 0, sizeof(caps_cmd));
   5162	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
   5163				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
   5164	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
   5165	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
   5166			 &caps_cmd);
   5167	if (ret < 0)
   5168		goto bye;
   5169
   5170	/* hash filter has some mandatory register settings to be tested and for
   5171	 * that it needs to test whether offload is enabled or not, hence
   5172	 * checking and setting it here.
   5173	 */
   5174	if (caps_cmd.ofldcaps)
   5175		adap->params.offload = 1;
   5176
   5177	if (caps_cmd.ofldcaps ||
   5178	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
   5179	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
   5180		/* query offload-related parameters */
   5181		params[0] = FW_PARAM_DEV(NTID);
   5182		params[1] = FW_PARAM_PFVF(SERVER_START);
   5183		params[2] = FW_PARAM_PFVF(SERVER_END);
   5184		params[3] = FW_PARAM_PFVF(TDDP_START);
   5185		params[4] = FW_PARAM_PFVF(TDDP_END);
   5186		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
   5187		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
   5188				      params, val);
   5189		if (ret < 0)
   5190			goto bye;
   5191		adap->tids.ntids = val[0];
   5192		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
   5193		adap->tids.stid_base = val[1];
   5194		adap->tids.nstids = val[2] - val[1] + 1;
   5195		/*
   5196		 * Setup server filter region. Divide the available filter
   5197		 * region into two parts. Regular filters get 1/3rd and server
   5198		 * filters get 2/3rd part. This is only enabled if workarond
   5199		 * path is enabled.
   5200		 * 1. For regular filters.
   5201		 * 2. Server filter: This are special filters which are used
   5202		 * to redirect SYN packets to offload queue.
   5203		 */
   5204		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
   5205			adap->tids.sftid_base = adap->tids.ftid_base +
   5206					DIV_ROUND_UP(adap->tids.nftids, 3);
   5207			adap->tids.nsftids = adap->tids.nftids -
   5208					 DIV_ROUND_UP(adap->tids.nftids, 3);
   5209			adap->tids.nftids = adap->tids.sftid_base -
   5210						adap->tids.ftid_base;
   5211		}
   5212		adap->vres.ddp.start = val[3];
   5213		adap->vres.ddp.size = val[4] - val[3] + 1;
   5214		adap->params.ofldq_wr_cred = val[5];
   5215
   5216		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
   5217			init_hash_filter(adap);
   5218		} else {
   5219			adap->num_ofld_uld += 1;
   5220		}
   5221
   5222		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
   5223			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
   5224			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
   5225			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   5226					      params, val);
   5227			if (!ret) {
   5228				adap->tids.eotid_base = val[0];
   5229				adap->tids.neotids = min_t(u32, MAX_ATIDS,
   5230							   val[1] - val[0] + 1);
   5231				adap->params.ethofld = 1;
   5232			}
   5233		}
   5234	}
   5235	if (caps_cmd.rdmacaps) {
   5236		params[0] = FW_PARAM_PFVF(STAG_START);
   5237		params[1] = FW_PARAM_PFVF(STAG_END);
   5238		params[2] = FW_PARAM_PFVF(RQ_START);
   5239		params[3] = FW_PARAM_PFVF(RQ_END);
   5240		params[4] = FW_PARAM_PFVF(PBL_START);
   5241		params[5] = FW_PARAM_PFVF(PBL_END);
   5242		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
   5243				      params, val);
   5244		if (ret < 0)
   5245			goto bye;
   5246		adap->vres.stag.start = val[0];
   5247		adap->vres.stag.size = val[1] - val[0] + 1;
   5248		adap->vres.rq.start = val[2];
   5249		adap->vres.rq.size = val[3] - val[2] + 1;
   5250		adap->vres.pbl.start = val[4];
   5251		adap->vres.pbl.size = val[5] - val[4] + 1;
   5252
   5253		params[0] = FW_PARAM_PFVF(SRQ_START);
   5254		params[1] = FW_PARAM_PFVF(SRQ_END);
   5255		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   5256				      params, val);
   5257		if (!ret) {
   5258			adap->vres.srq.start = val[0];
   5259			adap->vres.srq.size = val[1] - val[0] + 1;
   5260		}
   5261		if (adap->vres.srq.size) {
   5262			adap->srq = t4_init_srq(adap->vres.srq.size);
   5263			if (!adap->srq)
   5264				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
   5265		}
   5266
   5267		params[0] = FW_PARAM_PFVF(SQRQ_START);
   5268		params[1] = FW_PARAM_PFVF(SQRQ_END);
   5269		params[2] = FW_PARAM_PFVF(CQ_START);
   5270		params[3] = FW_PARAM_PFVF(CQ_END);
   5271		params[4] = FW_PARAM_PFVF(OCQ_START);
   5272		params[5] = FW_PARAM_PFVF(OCQ_END);
   5273		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
   5274				      val);
   5275		if (ret < 0)
   5276			goto bye;
   5277		adap->vres.qp.start = val[0];
   5278		adap->vres.qp.size = val[1] - val[0] + 1;
   5279		adap->vres.cq.start = val[2];
   5280		adap->vres.cq.size = val[3] - val[2] + 1;
   5281		adap->vres.ocq.start = val[4];
   5282		adap->vres.ocq.size = val[5] - val[4] + 1;
   5283
   5284		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
   5285		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
   5286		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
   5287				      val);
   5288		if (ret < 0) {
   5289			adap->params.max_ordird_qp = 8;
   5290			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
   5291			ret = 0;
   5292		} else {
   5293			adap->params.max_ordird_qp = val[0];
   5294			adap->params.max_ird_adapter = val[1];
   5295		}
   5296		dev_info(adap->pdev_dev,
   5297			 "max_ordird_qp %d max_ird_adapter %d\n",
   5298			 adap->params.max_ordird_qp,
   5299			 adap->params.max_ird_adapter);
   5300
   5301		/* Enable write_with_immediate if FW supports it */
   5302		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
   5303		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
   5304				      val);
   5305		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
   5306
   5307		/* Enable write_cmpl if FW supports it */
   5308		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
   5309		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
   5310				      val);
   5311		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
   5312		adap->num_ofld_uld += 2;
   5313	}
   5314	if (caps_cmd.iscsicaps) {
   5315		params[0] = FW_PARAM_PFVF(ISCSI_START);
   5316		params[1] = FW_PARAM_PFVF(ISCSI_END);
   5317		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   5318				      params, val);
   5319		if (ret < 0)
   5320			goto bye;
   5321		adap->vres.iscsi.start = val[0];
   5322		adap->vres.iscsi.size = val[1] - val[0] + 1;
   5323		if (is_t6(adap->params.chip)) {
   5324			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
   5325			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
   5326			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
   5327					      params, val);
   5328			if (!ret) {
   5329				adap->vres.ppod_edram.start = val[0];
   5330				adap->vres.ppod_edram.size =
   5331					val[1] - val[0] + 1;
   5332
   5333				dev_info(adap->pdev_dev,
   5334					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
   5335					 val[0], val[1],
   5336					 adap->vres.ppod_edram.size);
   5337			}
   5338		}
   5339		/* LIO target and cxgb4i initiaitor */
   5340		adap->num_ofld_uld += 2;
   5341	}
   5342	if (caps_cmd.cryptocaps) {
   5343		if (ntohs(caps_cmd.cryptocaps) &
   5344		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
   5345			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
   5346			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5347					      2, params, val);
   5348			if (ret < 0) {
   5349				if (ret != -EINVAL)
   5350					goto bye;
   5351			} else {
   5352				adap->vres.ncrypto_fc = val[0];
   5353			}
   5354			adap->num_ofld_uld += 1;
   5355		}
   5356		if (ntohs(caps_cmd.cryptocaps) &
   5357		    FW_CAPS_CONFIG_TLS_INLINE) {
   5358			params[0] = FW_PARAM_PFVF(TLS_START);
   5359			params[1] = FW_PARAM_PFVF(TLS_END);
   5360			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
   5361					      2, params, val);
   5362			if (ret < 0)
   5363				goto bye;
   5364			adap->vres.key.start = val[0];
   5365			adap->vres.key.size = val[1] - val[0] + 1;
   5366			adap->num_uld += 1;
   5367		}
   5368		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
   5369	}
   5370
   5371	/* The MTU/MSS Table is initialized by now, so load their values.  If
   5372	 * we're initializing the adapter, then we'll make any modifications
   5373	 * we want to the MTU/MSS Table and also initialize the congestion
   5374	 * parameters.
   5375	 */
   5376	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
   5377	if (state != DEV_STATE_INIT) {
   5378		int i;
   5379
   5380		/* The default MTU Table contains values 1492 and 1500.
   5381		 * However, for TCP, it's better to have two values which are
   5382		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
   5383		 * This allows us to have a TCP Data Payload which is a
   5384		 * multiple of 8 regardless of what combination of TCP Options
   5385		 * are in use (always a multiple of 4 bytes) which is
   5386		 * important for performance reasons.  For instance, if no
   5387		 * options are in use, then we have a 20-byte IP header and a
   5388		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
   5389		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
   5390		 * which is not a multiple of 8.  So using an MSS of 1488 in
   5391		 * this case results in a TCP Data Payload of 1448 bytes which
   5392		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
   5393		 * Stamps have been negotiated, then an MTU of 1500 bytes
   5394		 * results in a TCP Data Payload of 1448 bytes which, as
   5395		 * above, is a multiple of 8 bytes ...
   5396		 */
   5397		for (i = 0; i < NMTUS; i++)
   5398			if (adap->params.mtus[i] == 1492) {
   5399				adap->params.mtus[i] = 1488;
   5400				break;
   5401			}
   5402
   5403		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
   5404			     adap->params.b_wnd);
   5405	}
   5406	t4_init_sge_params(adap);
   5407	adap->flags |= CXGB4_FW_OK;
   5408	t4_init_tp_params(adap, true);
   5409	return 0;
   5410
   5411	/*
   5412	 * Something bad happened.  If a command timed out or failed with EIO
   5413	 * FW does not operate within its spec or something catastrophic
   5414	 * happened to HW/FW, stop issuing commands.
   5415	 */
   5416bye:
   5417	adap_free_hma_mem(adap);
   5418	kfree(adap->sge.egr_map);
   5419	kfree(adap->sge.ingr_map);
   5420	kfree(adap->sge.starving_fl);
   5421	kfree(adap->sge.txq_maperr);
   5422#ifdef CONFIG_DEBUG_FS
   5423	kfree(adap->sge.blocked_fl);
   5424#endif
   5425	if (ret != -ETIMEDOUT && ret != -EIO)
   5426		t4_fw_bye(adap, adap->mbox);
   5427	return ret;
   5428}
   5429
   5430/* EEH callbacks */
   5431
   5432static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
   5433					 pci_channel_state_t state)
   5434{
   5435	int i;
   5436	struct adapter *adap = pci_get_drvdata(pdev);
   5437
   5438	if (!adap)
   5439		goto out;
   5440
   5441	rtnl_lock();
   5442	adap->flags &= ~CXGB4_FW_OK;
   5443	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
   5444	spin_lock(&adap->stats_lock);
   5445	for_each_port(adap, i) {
   5446		struct net_device *dev = adap->port[i];
   5447		if (dev) {
   5448			netif_device_detach(dev);
   5449			netif_carrier_off(dev);
   5450		}
   5451	}
   5452	spin_unlock(&adap->stats_lock);
   5453	disable_interrupts(adap);
   5454	if (adap->flags & CXGB4_FULL_INIT_DONE)
   5455		cxgb_down(adap);
   5456	rtnl_unlock();
   5457	if ((adap->flags & CXGB4_DEV_ENABLED)) {
   5458		pci_disable_device(pdev);
   5459		adap->flags &= ~CXGB4_DEV_ENABLED;
   5460	}
   5461out:	return state == pci_channel_io_perm_failure ?
   5462		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
   5463}
   5464
   5465static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
   5466{
   5467	int i, ret;
   5468	struct fw_caps_config_cmd c;
   5469	struct adapter *adap = pci_get_drvdata(pdev);
   5470
   5471	if (!adap) {
   5472		pci_restore_state(pdev);
   5473		pci_save_state(pdev);
   5474		return PCI_ERS_RESULT_RECOVERED;
   5475	}
   5476
   5477	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
   5478		if (pci_enable_device(pdev)) {
   5479			dev_err(&pdev->dev, "Cannot reenable PCI "
   5480					    "device after reset\n");
   5481			return PCI_ERS_RESULT_DISCONNECT;
   5482		}
   5483		adap->flags |= CXGB4_DEV_ENABLED;
   5484	}
   5485
   5486	pci_set_master(pdev);
   5487	pci_restore_state(pdev);
   5488	pci_save_state(pdev);
   5489
   5490	if (t4_wait_dev_ready(adap->regs) < 0)
   5491		return PCI_ERS_RESULT_DISCONNECT;
   5492	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
   5493		return PCI_ERS_RESULT_DISCONNECT;
   5494	adap->flags |= CXGB4_FW_OK;
   5495	if (adap_init1(adap, &c))
   5496		return PCI_ERS_RESULT_DISCONNECT;
   5497
   5498	for_each_port(adap, i) {
   5499		struct port_info *pi = adap2pinfo(adap, i);
   5500		u8 vivld = 0, vin = 0;
   5501
   5502		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
   5503				  NULL, NULL, &vivld, &vin);
   5504		if (ret < 0)
   5505			return PCI_ERS_RESULT_DISCONNECT;
   5506		pi->viid = ret;
   5507		pi->xact_addr_filt = -1;
   5508		/* If fw supports returning the VIN as part of FW_VI_CMD,
   5509		 * save the returned values.
   5510		 */
   5511		if (adap->params.viid_smt_extn_support) {
   5512			pi->vivld = vivld;
   5513			pi->vin = vin;
   5514		} else {
   5515			/* Retrieve the values from VIID */
   5516			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
   5517			pi->vin = FW_VIID_VIN_G(pi->viid);
   5518		}
   5519	}
   5520
   5521	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
   5522		     adap->params.b_wnd);
   5523	setup_memwin(adap);
   5524	if (cxgb_up(adap))
   5525		return PCI_ERS_RESULT_DISCONNECT;
   5526	return PCI_ERS_RESULT_RECOVERED;
   5527}
   5528
   5529static void eeh_resume(struct pci_dev *pdev)
   5530{
   5531	int i;
   5532	struct adapter *adap = pci_get_drvdata(pdev);
   5533
   5534	if (!adap)
   5535		return;
   5536
   5537	rtnl_lock();
   5538	for_each_port(adap, i) {
   5539		struct net_device *dev = adap->port[i];
   5540		if (dev) {
   5541			if (netif_running(dev)) {
   5542				link_start(dev);
   5543				cxgb_set_rxmode(dev);
   5544			}
   5545			netif_device_attach(dev);
   5546		}
   5547	}
   5548	rtnl_unlock();
   5549}
   5550
   5551static void eeh_reset_prepare(struct pci_dev *pdev)
   5552{
   5553	struct adapter *adapter = pci_get_drvdata(pdev);
   5554	int i;
   5555
   5556	if (adapter->pf != 4)
   5557		return;
   5558
   5559	adapter->flags &= ~CXGB4_FW_OK;
   5560
   5561	notify_ulds(adapter, CXGB4_STATE_DOWN);
   5562
   5563	for_each_port(adapter, i)
   5564		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
   5565			cxgb_close(adapter->port[i]);
   5566
   5567	disable_interrupts(adapter);
   5568	cxgb4_free_mps_ref_entries(adapter);
   5569
   5570	adap_free_hma_mem(adapter);
   5571
   5572	if (adapter->flags & CXGB4_FULL_INIT_DONE)
   5573		cxgb_down(adapter);
   5574}
   5575
   5576static void eeh_reset_done(struct pci_dev *pdev)
   5577{
   5578	struct adapter *adapter = pci_get_drvdata(pdev);
   5579	int err, i;
   5580
   5581	if (adapter->pf != 4)
   5582		return;
   5583
   5584	err = t4_wait_dev_ready(adapter->regs);
   5585	if (err < 0) {
   5586		dev_err(adapter->pdev_dev,
   5587			"Device not ready, err %d", err);
   5588		return;
   5589	}
   5590
   5591	setup_memwin(adapter);
   5592
   5593	err = adap_init0(adapter, 1);
   5594	if (err) {
   5595		dev_err(adapter->pdev_dev,
   5596			"Adapter init failed, err %d", err);
   5597		return;
   5598	}
   5599
   5600	setup_memwin_rdma(adapter);
   5601
   5602	if (adapter->flags & CXGB4_FW_OK) {
   5603		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
   5604		if (err) {
   5605			dev_err(adapter->pdev_dev,
   5606				"Port init failed, err %d", err);
   5607			return;
   5608		}
   5609	}
   5610
   5611	err = cfg_queues(adapter);
   5612	if (err) {
   5613		dev_err(adapter->pdev_dev,
   5614			"Config queues failed, err %d", err);
   5615		return;
   5616	}
   5617
   5618	cxgb4_init_mps_ref_entries(adapter);
   5619
   5620	err = setup_fw_sge_queues(adapter);
   5621	if (err) {
   5622		dev_err(adapter->pdev_dev,
   5623			"FW sge queue allocation failed, err %d", err);
   5624		return;
   5625	}
   5626
   5627	for_each_port(adapter, i)
   5628		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
   5629			cxgb_open(adapter->port[i]);
   5630}
   5631
   5632static const struct pci_error_handlers cxgb4_eeh = {
   5633	.error_detected = eeh_err_detected,
   5634	.slot_reset     = eeh_slot_reset,
   5635	.resume         = eeh_resume,
   5636	.reset_prepare  = eeh_reset_prepare,
   5637	.reset_done     = eeh_reset_done,
   5638};
   5639
   5640/* Return true if the Link Configuration supports "High Speeds" (those greater
   5641 * than 1Gb/s).
   5642 */
   5643static inline bool is_x_10g_port(const struct link_config *lc)
   5644{
   5645	unsigned int speeds, high_speeds;
   5646
   5647	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
   5648	high_speeds = speeds &
   5649			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
   5650
   5651	return high_speeds != 0;
   5652}
   5653
   5654/* Perform default configuration of DMA queues depending on the number and type
   5655 * of ports we found and the number of available CPUs.  Most settings can be
   5656 * modified by the admin prior to actual use.
   5657 */
   5658static int cfg_queues(struct adapter *adap)
   5659{
   5660	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
   5661	u32 ncpus = num_online_cpus();
   5662	u32 niqflint, neq, num_ulds;
   5663	struct sge *s = &adap->sge;
   5664	u32 i, n10g = 0, qidx = 0;
   5665	u32 q10g = 0, q1g;
   5666
   5667	/* Reduce memory usage in kdump environment, disable all offload. */
   5668	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
   5669		adap->params.offload = 0;
   5670		adap->params.crypto = 0;
   5671		adap->params.ethofld = 0;
   5672	}
   5673
   5674	/* Calculate the number of Ethernet Queue Sets available based on
   5675	 * resources provisioned for us.  We always have an Asynchronous
   5676	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
   5677	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
   5678	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
   5679	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
   5680	 *
   5681	 * Note that we should also take into account all of the various
   5682	 * Offload Queues.  But, in any situation where we're operating in
   5683	 * a Resource Constrained Provisioning environment, doing any Offload
   5684	 * at all is problematic ...
   5685	 */
   5686	niqflint = adap->params.pfres.niqflint - 1;
   5687	if (!(adap->flags & CXGB4_USING_MSIX))
   5688		niqflint--;
   5689	neq = adap->params.pfres.neq / 2;
   5690	avail_qsets = min(niqflint, neq);
   5691
   5692	if (avail_qsets < adap->params.nports) {
   5693		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
   5694			avail_qsets, adap->params.nports);
   5695		return -ENOMEM;
   5696	}
   5697
   5698	/* Count the number of 10Gb/s or better ports */
   5699	for_each_port(adap, i)
   5700		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
   5701
   5702	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
   5703
   5704	/* We default to 1 queue per non-10G port and up to # of cores queues
   5705	 * per 10G port.
   5706	 */
   5707	if (n10g)
   5708		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
   5709
   5710#ifdef CONFIG_CHELSIO_T4_DCB
   5711	/* For Data Center Bridging support we need to be able to support up
   5712	 * to 8 Traffic Priorities; each of which will be assigned to its
   5713	 * own TX Queue in order to prevent Head-Of-Line Blocking.
   5714	 */
   5715	q1g = 8;
   5716	if (adap->params.nports * 8 > avail_eth_qsets) {
   5717		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
   5718			avail_eth_qsets, adap->params.nports * 8);
   5719		return -ENOMEM;
   5720	}
   5721
   5722	if (adap->params.nports * ncpus < avail_eth_qsets)
   5723		q10g = max(8U, ncpus);
   5724	else
   5725		q10g = max(8U, q10g);
   5726
   5727	while ((q10g * n10g) >
   5728	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
   5729		q10g--;
   5730
   5731#else /* !CONFIG_CHELSIO_T4_DCB */
   5732	q1g = 1;
   5733	q10g = min(q10g, ncpus);
   5734#endif /* !CONFIG_CHELSIO_T4_DCB */
   5735	if (is_kdump_kernel()) {
   5736		q10g = 1;
   5737		q1g = 1;
   5738	}
   5739
   5740	for_each_port(adap, i) {
   5741		struct port_info *pi = adap2pinfo(adap, i);
   5742
   5743		pi->first_qset = qidx;
   5744		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
   5745		qidx += pi->nqsets;
   5746	}
   5747
   5748	s->ethqsets = qidx;
   5749	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
   5750	avail_qsets -= qidx;
   5751
   5752	if (is_uld(adap)) {
   5753		/* For offload we use 1 queue/channel if all ports are up to 1G,
   5754		 * otherwise we divide all available queues amongst the channels
   5755		 * capped by the number of available cores.
   5756		 */
   5757		num_ulds = adap->num_uld + adap->num_ofld_uld;
   5758		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
   5759		avail_uld_qsets = roundup(i, adap->params.nports);
   5760		if (avail_qsets < num_ulds * adap->params.nports) {
   5761			adap->params.offload = 0;
   5762			adap->params.crypto = 0;
   5763			s->ofldqsets = 0;
   5764		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
   5765			s->ofldqsets = adap->params.nports;
   5766		} else {
   5767			s->ofldqsets = avail_uld_qsets;
   5768		}
   5769
   5770		avail_qsets -= num_ulds * s->ofldqsets;
   5771	}
   5772
   5773	/* ETHOFLD Queues used for QoS offload should follow same
   5774	 * allocation scheme as normal Ethernet Queues.
   5775	 */
   5776	if (is_ethofld(adap)) {
   5777		if (avail_qsets < s->max_ethqsets) {
   5778			adap->params.ethofld = 0;
   5779			s->eoqsets = 0;
   5780		} else {
   5781			s->eoqsets = s->max_ethqsets;
   5782		}
   5783		avail_qsets -= s->eoqsets;
   5784	}
   5785
   5786	/* Mirror queues must follow same scheme as normal Ethernet
   5787	 * Queues, when there are enough queues available. Otherwise,
   5788	 * allocate at least 1 queue per port. If even 1 queue is not
   5789	 * available, then disable mirror queues support.
   5790	 */
   5791	if (avail_qsets >= s->max_ethqsets)
   5792		s->mirrorqsets = s->max_ethqsets;
   5793	else if (avail_qsets >= adap->params.nports)
   5794		s->mirrorqsets = adap->params.nports;
   5795	else
   5796		s->mirrorqsets = 0;
   5797	avail_qsets -= s->mirrorqsets;
   5798
   5799	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
   5800		struct sge_eth_rxq *r = &s->ethrxq[i];
   5801
   5802		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
   5803		r->fl.size = 72;
   5804	}
   5805
   5806	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
   5807		s->ethtxq[i].q.size = 1024;
   5808
   5809	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
   5810		s->ctrlq[i].q.size = 512;
   5811
   5812	if (!is_t4(adap->params.chip))
   5813		s->ptptxq.q.size = 8;
   5814
   5815	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
   5816	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
   5817
   5818	return 0;
   5819}
   5820
   5821/*
   5822 * Reduce the number of Ethernet queues across all ports to at most n.
   5823 * n provides at least one queue per port.
   5824 */
   5825static void reduce_ethqs(struct adapter *adap, int n)
   5826{
   5827	int i;
   5828	struct port_info *pi;
   5829
   5830	while (n < adap->sge.ethqsets)
   5831		for_each_port(adap, i) {
   5832			pi = adap2pinfo(adap, i);
   5833			if (pi->nqsets > 1) {
   5834				pi->nqsets--;
   5835				adap->sge.ethqsets--;
   5836				if (adap->sge.ethqsets <= n)
   5837					break;
   5838			}
   5839		}
   5840
   5841	n = 0;
   5842	for_each_port(adap, i) {
   5843		pi = adap2pinfo(adap, i);
   5844		pi->first_qset = n;
   5845		n += pi->nqsets;
   5846	}
   5847}
   5848
   5849static int alloc_msix_info(struct adapter *adap, u32 num_vec)
   5850{
   5851	struct msix_info *msix_info;
   5852
   5853	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
   5854	if (!msix_info)
   5855		return -ENOMEM;
   5856
   5857	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
   5858					    sizeof(long), GFP_KERNEL);
   5859	if (!adap->msix_bmap.msix_bmap) {
   5860		kfree(msix_info);
   5861		return -ENOMEM;
   5862	}
   5863
   5864	spin_lock_init(&adap->msix_bmap.lock);
   5865	adap->msix_bmap.mapsize = num_vec;
   5866
   5867	adap->msix_info = msix_info;
   5868	return 0;
   5869}
   5870
   5871static void free_msix_info(struct adapter *adap)
   5872{
   5873	kfree(adap->msix_bmap.msix_bmap);
   5874	kfree(adap->msix_info);
   5875}
   5876
   5877int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
   5878{
   5879	struct msix_bmap *bmap = &adap->msix_bmap;
   5880	unsigned int msix_idx;
   5881	unsigned long flags;
   5882
   5883	spin_lock_irqsave(&bmap->lock, flags);
   5884	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
   5885	if (msix_idx < bmap->mapsize) {
   5886		__set_bit(msix_idx, bmap->msix_bmap);
   5887	} else {
   5888		spin_unlock_irqrestore(&bmap->lock, flags);
   5889		return -ENOSPC;
   5890	}
   5891
   5892	spin_unlock_irqrestore(&bmap->lock, flags);
   5893	return msix_idx;
   5894}
   5895
   5896void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
   5897				 unsigned int msix_idx)
   5898{
   5899	struct msix_bmap *bmap = &adap->msix_bmap;
   5900	unsigned long flags;
   5901
   5902	spin_lock_irqsave(&bmap->lock, flags);
   5903	__clear_bit(msix_idx, bmap->msix_bmap);
   5904	spin_unlock_irqrestore(&bmap->lock, flags);
   5905}
   5906
   5907/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
   5908#define EXTRA_VECS 2
   5909
   5910static int enable_msix(struct adapter *adap)
   5911{
   5912	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
   5913	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
   5914	u8 num_uld = 0, nchan = adap->params.nports;
   5915	u32 i, want, need, num_vec;
   5916	struct sge *s = &adap->sge;
   5917	struct msix_entry *entries;
   5918	struct port_info *pi;
   5919	int allocated, ret;
   5920
   5921	want = s->max_ethqsets;
   5922#ifdef CONFIG_CHELSIO_T4_DCB
   5923	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
   5924	 * each port.
   5925	 */
   5926	need = 8 * nchan;
   5927#else
   5928	need = nchan;
   5929#endif
   5930	eth_need = need;
   5931	if (is_uld(adap)) {
   5932		num_uld = adap->num_ofld_uld + adap->num_uld;
   5933		want += num_uld * s->ofldqsets;
   5934		uld_need = num_uld * nchan;
   5935		need += uld_need;
   5936	}
   5937
   5938	if (is_ethofld(adap)) {
   5939		want += s->eoqsets;
   5940		ethofld_need = eth_need;
   5941		need += ethofld_need;
   5942	}
   5943
   5944	if (s->mirrorqsets) {
   5945		want += s->mirrorqsets;
   5946		mirror_need = nchan;
   5947		need += mirror_need;
   5948	}
   5949
   5950	want += EXTRA_VECS;
   5951	need += EXTRA_VECS;
   5952
   5953	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
   5954	if (!entries)
   5955		return -ENOMEM;
   5956
   5957	for (i = 0; i < want; i++)
   5958		entries[i].entry = i;
   5959
   5960	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
   5961	if (allocated < 0) {
   5962		/* Disable offload and attempt to get vectors for NIC
   5963		 * only mode.
   5964		 */
   5965		want = s->max_ethqsets + EXTRA_VECS;
   5966		need = eth_need + EXTRA_VECS;
   5967		allocated = pci_enable_msix_range(adap->pdev, entries,
   5968						  need, want);
   5969		if (allocated < 0) {
   5970			dev_info(adap->pdev_dev,
   5971				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
   5972			ret = allocated;
   5973			goto out_free;
   5974		}
   5975
   5976		dev_info(adap->pdev_dev,
   5977			 "Disabling offload due to insufficient MSI-X vectors\n");
   5978		adap->params.offload = 0;
   5979		adap->params.crypto = 0;
   5980		adap->params.ethofld = 0;
   5981		s->ofldqsets = 0;
   5982		s->eoqsets = 0;
   5983		s->mirrorqsets = 0;
   5984		uld_need = 0;
   5985		ethofld_need = 0;
   5986		mirror_need = 0;
   5987	}
   5988
   5989	num_vec = allocated;
   5990	if (num_vec < want) {
   5991		/* Distribute available vectors to the various queue groups.
   5992		 * Every group gets its minimum requirement and NIC gets top
   5993		 * priority for leftovers.
   5994		 */
   5995		ethqsets = eth_need;
   5996		if (is_uld(adap))
   5997			ofldqsets = nchan;
   5998		if (is_ethofld(adap))
   5999			eoqsets = ethofld_need;
   6000		if (s->mirrorqsets)
   6001			mirrorqsets = mirror_need;
   6002
   6003		num_vec -= need;
   6004		while (num_vec) {
   6005			if (num_vec < eth_need + ethofld_need ||
   6006			    ethqsets > s->max_ethqsets)
   6007				break;
   6008
   6009			for_each_port(adap, i) {
   6010				pi = adap2pinfo(adap, i);
   6011				if (pi->nqsets < 2)
   6012					continue;
   6013
   6014				ethqsets++;
   6015				num_vec--;
   6016				if (ethofld_need) {
   6017					eoqsets++;
   6018					num_vec--;
   6019				}
   6020			}
   6021		}
   6022
   6023		if (is_uld(adap)) {
   6024			while (num_vec) {
   6025				if (num_vec < uld_need ||
   6026				    ofldqsets > s->ofldqsets)
   6027					break;
   6028
   6029				ofldqsets++;
   6030				num_vec -= uld_need;
   6031			}
   6032		}
   6033
   6034		if (s->mirrorqsets) {
   6035			while (num_vec) {
   6036				if (num_vec < mirror_need ||
   6037				    mirrorqsets > s->mirrorqsets)
   6038					break;
   6039
   6040				mirrorqsets++;
   6041				num_vec -= mirror_need;
   6042			}
   6043		}
   6044	} else {
   6045		ethqsets = s->max_ethqsets;
   6046		if (is_uld(adap))
   6047			ofldqsets = s->ofldqsets;
   6048		if (is_ethofld(adap))
   6049			eoqsets = s->eoqsets;
   6050		if (s->mirrorqsets)
   6051			mirrorqsets = s->mirrorqsets;
   6052	}
   6053
   6054	if (ethqsets < s->max_ethqsets) {
   6055		s->max_ethqsets = ethqsets;
   6056		reduce_ethqs(adap, ethqsets);
   6057	}
   6058
   6059	if (is_uld(adap)) {
   6060		s->ofldqsets = ofldqsets;
   6061		s->nqs_per_uld = s->ofldqsets;
   6062	}
   6063
   6064	if (is_ethofld(adap))
   6065		s->eoqsets = eoqsets;
   6066
   6067	if (s->mirrorqsets) {
   6068		s->mirrorqsets = mirrorqsets;
   6069		for_each_port(adap, i) {
   6070			pi = adap2pinfo(adap, i);
   6071			pi->nmirrorqsets = s->mirrorqsets / nchan;
   6072			mutex_init(&pi->vi_mirror_mutex);
   6073		}
   6074	}
   6075
   6076	/* map for msix */
   6077	ret = alloc_msix_info(adap, allocated);
   6078	if (ret)
   6079		goto out_disable_msix;
   6080
   6081	for (i = 0; i < allocated; i++) {
   6082		adap->msix_info[i].vec = entries[i].vector;
   6083		adap->msix_info[i].idx = i;
   6084	}
   6085
   6086	dev_info(adap->pdev_dev,
   6087		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
   6088		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
   6089		 s->mirrorqsets);
   6090
   6091	kfree(entries);
   6092	return 0;
   6093
   6094out_disable_msix:
   6095	pci_disable_msix(adap->pdev);
   6096
   6097out_free:
   6098	kfree(entries);
   6099	return ret;
   6100}
   6101
   6102#undef EXTRA_VECS
   6103
   6104static int init_rss(struct adapter *adap)
   6105{
   6106	unsigned int i;
   6107	int err;
   6108
   6109	err = t4_init_rss_mode(adap, adap->mbox);
   6110	if (err)
   6111		return err;
   6112
   6113	for_each_port(adap, i) {
   6114		struct port_info *pi = adap2pinfo(adap, i);
   6115
   6116		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
   6117		if (!pi->rss)
   6118			return -ENOMEM;
   6119	}
   6120	return 0;
   6121}
   6122
   6123/* Dump basic information about the adapter */
   6124static void print_adapter_info(struct adapter *adapter)
   6125{
   6126	/* Hardware/Firmware/etc. Version/Revision IDs */
   6127	t4_dump_version_info(adapter);
   6128
   6129	/* Software/Hardware configuration */
   6130	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
   6131		 is_offload(adapter) ? "R" : "",
   6132		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
   6133		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
   6134		 is_offload(adapter) ? "Offload" : "non-Offload");
   6135}
   6136
   6137static void print_port_info(const struct net_device *dev)
   6138{
   6139	char buf[80];
   6140	char *bufp = buf;
   6141	const struct port_info *pi = netdev_priv(dev);
   6142	const struct adapter *adap = pi->adapter;
   6143
   6144	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
   6145		bufp += sprintf(bufp, "100M/");
   6146	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
   6147		bufp += sprintf(bufp, "1G/");
   6148	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
   6149		bufp += sprintf(bufp, "10G/");
   6150	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
   6151		bufp += sprintf(bufp, "25G/");
   6152	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
   6153		bufp += sprintf(bufp, "40G/");
   6154	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
   6155		bufp += sprintf(bufp, "50G/");
   6156	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
   6157		bufp += sprintf(bufp, "100G/");
   6158	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
   6159		bufp += sprintf(bufp, "200G/");
   6160	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
   6161		bufp += sprintf(bufp, "400G/");
   6162	if (bufp != buf)
   6163		--bufp;
   6164	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
   6165
   6166	netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
   6167}
   6168
   6169/*
   6170 * Free the following resources:
   6171 * - memory used for tables
   6172 * - MSI/MSI-X
   6173 * - net devices
   6174 * - resources FW is holding for us
   6175 */
   6176static void free_some_resources(struct adapter *adapter)
   6177{
   6178	unsigned int i;
   6179
   6180	kvfree(adapter->smt);
   6181	kvfree(adapter->l2t);
   6182	kvfree(adapter->srq);
   6183	t4_cleanup_sched(adapter);
   6184	kvfree(adapter->tids.tid_tab);
   6185	cxgb4_cleanup_tc_matchall(adapter);
   6186	cxgb4_cleanup_tc_mqprio(adapter);
   6187	cxgb4_cleanup_tc_flower(adapter);
   6188	cxgb4_cleanup_tc_u32(adapter);
   6189	cxgb4_cleanup_ethtool_filters(adapter);
   6190	kfree(adapter->sge.egr_map);
   6191	kfree(adapter->sge.ingr_map);
   6192	kfree(adapter->sge.starving_fl);
   6193	kfree(adapter->sge.txq_maperr);
   6194#ifdef CONFIG_DEBUG_FS
   6195	kfree(adapter->sge.blocked_fl);
   6196#endif
   6197	disable_msi(adapter);
   6198
   6199	for_each_port(adapter, i)
   6200		if (adapter->port[i]) {
   6201			struct port_info *pi = adap2pinfo(adapter, i);
   6202
   6203			if (pi->viid != 0)
   6204				t4_free_vi(adapter, adapter->mbox, adapter->pf,
   6205					   0, pi->viid);
   6206			kfree(adap2pinfo(adapter, i)->rss);
   6207			free_netdev(adapter->port[i]);
   6208		}
   6209	if (adapter->flags & CXGB4_FW_OK)
   6210		t4_fw_bye(adapter, adapter->pf);
   6211}
   6212
   6213#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
   6214		   NETIF_F_GSO_UDP_L4)
   6215#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
   6216		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
   6217#define SEGMENT_SIZE 128
   6218
   6219static int t4_get_chip_type(struct adapter *adap, int ver)
   6220{
   6221	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
   6222
   6223	switch (ver) {
   6224	case CHELSIO_T4:
   6225		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
   6226	case CHELSIO_T5:
   6227		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
   6228	case CHELSIO_T6:
   6229		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
   6230	default:
   6231		break;
   6232	}
   6233	return -EINVAL;
   6234}
   6235
   6236#ifdef CONFIG_PCI_IOV
   6237static void cxgb4_mgmt_setup(struct net_device *dev)
   6238{
   6239	dev->type = ARPHRD_NONE;
   6240	dev->mtu = 0;
   6241	dev->hard_header_len = 0;
   6242	dev->addr_len = 0;
   6243	dev->tx_queue_len = 0;
   6244	dev->flags |= IFF_NOARP;
   6245	dev->priv_flags |= IFF_NO_QUEUE;
   6246
   6247	/* Initialize the device structure. */
   6248	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
   6249	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
   6250}
   6251
   6252static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
   6253{
   6254	struct adapter *adap = pci_get_drvdata(pdev);
   6255	int err = 0;
   6256	int current_vfs = pci_num_vf(pdev);
   6257	u32 pcie_fw;
   6258
   6259	pcie_fw = readl(adap->regs + PCIE_FW_A);
   6260	/* Check if fw is initialized */
   6261	if (!(pcie_fw & PCIE_FW_INIT_F)) {
   6262		dev_warn(&pdev->dev, "Device not initialized\n");
   6263		return -EOPNOTSUPP;
   6264	}
   6265
   6266	/* If any of the VF's is already assigned to Guest OS, then
   6267	 * SRIOV for the same cannot be modified
   6268	 */
   6269	if (current_vfs && pci_vfs_assigned(pdev)) {
   6270		dev_err(&pdev->dev,
   6271			"Cannot modify SR-IOV while VFs are assigned\n");
   6272		return current_vfs;
   6273	}
   6274	/* Note that the upper-level code ensures that we're never called with
   6275	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
   6276	 * it never hurts to code defensively.
   6277	 */
   6278	if (num_vfs != 0 && current_vfs != 0)
   6279		return -EBUSY;
   6280
   6281	/* Nothing to do for no change. */
   6282	if (num_vfs == current_vfs)
   6283		return num_vfs;
   6284
   6285	/* Disable SRIOV when zero is passed. */
   6286	if (!num_vfs) {
   6287		pci_disable_sriov(pdev);
   6288		/* free VF Management Interface */
   6289		unregister_netdev(adap->port[0]);
   6290		free_netdev(adap->port[0]);
   6291		adap->port[0] = NULL;
   6292
   6293		/* free VF resources */
   6294		adap->num_vfs = 0;
   6295		kfree(adap->vfinfo);
   6296		adap->vfinfo = NULL;
   6297		return 0;
   6298	}
   6299
   6300	if (!current_vfs) {
   6301		struct fw_pfvf_cmd port_cmd, port_rpl;
   6302		struct net_device *netdev;
   6303		unsigned int pmask, port;
   6304		struct pci_dev *pbridge;
   6305		struct port_info *pi;
   6306		char name[IFNAMSIZ];
   6307		u32 devcap2;
   6308		u16 flags;
   6309
   6310		/* If we want to instantiate Virtual Functions, then our
   6311		 * parent bridge's PCI-E needs to support Alternative Routing
   6312		 * ID (ARI) because our VFs will show up at function offset 8
   6313		 * and above.
   6314		 */
   6315		pbridge = pdev->bus->self;
   6316		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
   6317		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
   6318
   6319		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
   6320		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
   6321			/* Our parent bridge does not support ARI so issue a
   6322			 * warning and skip instantiating the VFs.  They
   6323			 * won't be reachable.
   6324			 */
   6325			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
   6326				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
   6327				 PCI_FUNC(pbridge->devfn));
   6328			return -ENOTSUPP;
   6329		}
   6330		memset(&port_cmd, 0, sizeof(port_cmd));
   6331		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
   6332						 FW_CMD_REQUEST_F |
   6333						 FW_CMD_READ_F |
   6334						 FW_PFVF_CMD_PFN_V(adap->pf) |
   6335						 FW_PFVF_CMD_VFN_V(0));
   6336		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
   6337		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
   6338				 &port_rpl);
   6339		if (err)
   6340			return err;
   6341		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
   6342		port = ffs(pmask) - 1;
   6343		/* Allocate VF Management Interface. */
   6344		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
   6345			 adap->pf);
   6346		netdev = alloc_netdev(sizeof(struct port_info),
   6347				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
   6348		if (!netdev)
   6349			return -ENOMEM;
   6350
   6351		pi = netdev_priv(netdev);
   6352		pi->adapter = adap;
   6353		pi->lport = port;
   6354		pi->tx_chan = port;
   6355		SET_NETDEV_DEV(netdev, &pdev->dev);
   6356
   6357		adap->port[0] = netdev;
   6358		pi->port_id = 0;
   6359
   6360		err = register_netdev(adap->port[0]);
   6361		if (err) {
   6362			pr_info("Unable to register VF mgmt netdev %s\n", name);
   6363			free_netdev(adap->port[0]);
   6364			adap->port[0] = NULL;
   6365			return err;
   6366		}
   6367		/* Allocate and set up VF Information. */
   6368		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
   6369				       sizeof(struct vf_info), GFP_KERNEL);
   6370		if (!adap->vfinfo) {
   6371			unregister_netdev(adap->port[0]);
   6372			free_netdev(adap->port[0]);
   6373			adap->port[0] = NULL;
   6374			return -ENOMEM;
   6375		}
   6376		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
   6377	}
   6378	/* Instantiate the requested number of VFs. */
   6379	err = pci_enable_sriov(pdev, num_vfs);
   6380	if (err) {
   6381		pr_info("Unable to instantiate %d VFs\n", num_vfs);
   6382		if (!current_vfs) {
   6383			unregister_netdev(adap->port[0]);
   6384			free_netdev(adap->port[0]);
   6385			adap->port[0] = NULL;
   6386			kfree(adap->vfinfo);
   6387			adap->vfinfo = NULL;
   6388		}
   6389		return err;
   6390	}
   6391
   6392	adap->num_vfs = num_vfs;
   6393	return num_vfs;
   6394}
   6395#endif /* CONFIG_PCI_IOV */
   6396
   6397#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
   6398
   6399static int chcr_offload_state(struct adapter *adap,
   6400			      enum cxgb4_netdev_tls_ops op_val)
   6401{
   6402	switch (op_val) {
   6403#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
   6404	case CXGB4_TLSDEV_OPS:
   6405		if (!adap->uld[CXGB4_ULD_KTLS].handle) {
   6406			dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
   6407			return -EOPNOTSUPP;
   6408		}
   6409		if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
   6410			dev_dbg(adap->pdev_dev,
   6411				"ch_ktls driver has no registered tlsdev_ops\n");
   6412			return -EOPNOTSUPP;
   6413		}
   6414		break;
   6415#endif /* CONFIG_CHELSIO_TLS_DEVICE */
   6416#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
   6417	case CXGB4_XFRMDEV_OPS:
   6418		if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
   6419			dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
   6420			return -EOPNOTSUPP;
   6421		}
   6422		if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
   6423			dev_dbg(adap->pdev_dev,
   6424				"chipsec driver has no registered xfrmdev_ops\n");
   6425			return -EOPNOTSUPP;
   6426		}
   6427		break;
   6428#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
   6429	default:
   6430		dev_dbg(adap->pdev_dev,
   6431			"driver has no support for offload %d\n", op_val);
   6432		return -EOPNOTSUPP;
   6433	}
   6434
   6435	return 0;
   6436}
   6437
   6438#endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
   6439
   6440#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
   6441
   6442static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
   6443			      enum tls_offload_ctx_dir direction,
   6444			      struct tls_crypto_info *crypto_info,
   6445			      u32 tcp_sn)
   6446{
   6447	struct adapter *adap = netdev2adap(netdev);
   6448	int ret;
   6449
   6450	mutex_lock(&uld_mutex);
   6451	ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
   6452	if (ret)
   6453		goto out_unlock;
   6454
   6455	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
   6456	if (ret)
   6457		goto out_unlock;
   6458
   6459	ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
   6460								direction,
   6461								crypto_info,
   6462								tcp_sn);
   6463	/* if there is a failure, clear the refcount */
   6464	if (ret)
   6465		cxgb4_set_ktls_feature(adap,
   6466				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
   6467out_unlock:
   6468	mutex_unlock(&uld_mutex);
   6469	return ret;
   6470}
   6471
   6472static void cxgb4_ktls_dev_del(struct net_device *netdev,
   6473			       struct tls_context *tls_ctx,
   6474			       enum tls_offload_ctx_dir direction)
   6475{
   6476	struct adapter *adap = netdev2adap(netdev);
   6477
   6478	mutex_lock(&uld_mutex);
   6479	if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
   6480		goto out_unlock;
   6481
   6482	adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
   6483							  direction);
   6484
   6485out_unlock:
   6486	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
   6487	mutex_unlock(&uld_mutex);
   6488}
   6489
   6490static const struct tlsdev_ops cxgb4_ktls_ops = {
   6491	.tls_dev_add = cxgb4_ktls_dev_add,
   6492	.tls_dev_del = cxgb4_ktls_dev_del,
   6493};
   6494#endif /* CONFIG_CHELSIO_TLS_DEVICE */
   6495
   6496#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
   6497
   6498static int cxgb4_xfrm_add_state(struct xfrm_state *x)
   6499{
   6500	struct adapter *adap = netdev2adap(x->xso.dev);
   6501	int ret;
   6502
   6503	if (!mutex_trylock(&uld_mutex)) {
   6504		dev_dbg(adap->pdev_dev,
   6505			"crypto uld critical resource is under use\n");
   6506		return -EBUSY;
   6507	}
   6508	ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
   6509	if (ret)
   6510		goto out_unlock;
   6511
   6512	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
   6513
   6514out_unlock:
   6515	mutex_unlock(&uld_mutex);
   6516
   6517	return ret;
   6518}
   6519
   6520static void cxgb4_xfrm_del_state(struct xfrm_state *x)
   6521{
   6522	struct adapter *adap = netdev2adap(x->xso.dev);
   6523
   6524	if (!mutex_trylock(&uld_mutex)) {
   6525		dev_dbg(adap->pdev_dev,
   6526			"crypto uld critical resource is under use\n");
   6527		return;
   6528	}
   6529	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
   6530		goto out_unlock;
   6531
   6532	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
   6533
   6534out_unlock:
   6535	mutex_unlock(&uld_mutex);
   6536}
   6537
   6538static void cxgb4_xfrm_free_state(struct xfrm_state *x)
   6539{
   6540	struct adapter *adap = netdev2adap(x->xso.dev);
   6541
   6542	if (!mutex_trylock(&uld_mutex)) {
   6543		dev_dbg(adap->pdev_dev,
   6544			"crypto uld critical resource is under use\n");
   6545		return;
   6546	}
   6547	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
   6548		goto out_unlock;
   6549
   6550	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
   6551
   6552out_unlock:
   6553	mutex_unlock(&uld_mutex);
   6554}
   6555
   6556static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
   6557{
   6558	struct adapter *adap = netdev2adap(x->xso.dev);
   6559	bool ret = false;
   6560
   6561	if (!mutex_trylock(&uld_mutex)) {
   6562		dev_dbg(adap->pdev_dev,
   6563			"crypto uld critical resource is under use\n");
   6564		return ret;
   6565	}
   6566	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
   6567		goto out_unlock;
   6568
   6569	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
   6570
   6571out_unlock:
   6572	mutex_unlock(&uld_mutex);
   6573	return ret;
   6574}
   6575
   6576static void cxgb4_advance_esn_state(struct xfrm_state *x)
   6577{
   6578	struct adapter *adap = netdev2adap(x->xso.dev);
   6579
   6580	if (!mutex_trylock(&uld_mutex)) {
   6581		dev_dbg(adap->pdev_dev,
   6582			"crypto uld critical resource is under use\n");
   6583		return;
   6584	}
   6585	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
   6586		goto out_unlock;
   6587
   6588	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
   6589
   6590out_unlock:
   6591	mutex_unlock(&uld_mutex);
   6592}
   6593
   6594static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
   6595	.xdo_dev_state_add      = cxgb4_xfrm_add_state,
   6596	.xdo_dev_state_delete   = cxgb4_xfrm_del_state,
   6597	.xdo_dev_state_free     = cxgb4_xfrm_free_state,
   6598	.xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
   6599	.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
   6600};
   6601
   6602#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
   6603
   6604static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
   6605{
   6606	struct net_device *netdev;
   6607	struct adapter *adapter;
   6608	static int adap_idx = 1;
   6609	int s_qpp, qpp, num_seg;
   6610	struct port_info *pi;
   6611	enum chip_type chip;
   6612	void __iomem *regs;
   6613	int func, chip_ver;
   6614	u16 device_id;
   6615	int i, err;
   6616	u32 whoami;
   6617
   6618	err = pci_request_regions(pdev, KBUILD_MODNAME);
   6619	if (err) {
   6620		/* Just info, some other driver may have claimed the device. */
   6621		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
   6622		return err;
   6623	}
   6624
   6625	err = pci_enable_device(pdev);
   6626	if (err) {
   6627		dev_err(&pdev->dev, "cannot enable PCI device\n");
   6628		goto out_release_regions;
   6629	}
   6630
   6631	regs = pci_ioremap_bar(pdev, 0);
   6632	if (!regs) {
   6633		dev_err(&pdev->dev, "cannot map device registers\n");
   6634		err = -ENOMEM;
   6635		goto out_disable_device;
   6636	}
   6637
   6638	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
   6639	if (!adapter) {
   6640		err = -ENOMEM;
   6641		goto out_unmap_bar0;
   6642	}
   6643
   6644	adapter->regs = regs;
   6645	err = t4_wait_dev_ready(regs);
   6646	if (err < 0)
   6647		goto out_free_adapter;
   6648
   6649	/* We control everything through one PF */
   6650	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
   6651	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
   6652	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
   6653	if ((int)chip < 0) {
   6654		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
   6655		err = chip;
   6656		goto out_free_adapter;
   6657	}
   6658	chip_ver = CHELSIO_CHIP_VERSION(chip);
   6659	func = chip_ver <= CHELSIO_T5 ?
   6660	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
   6661
   6662	adapter->pdev = pdev;
   6663	adapter->pdev_dev = &pdev->dev;
   6664	adapter->name = pci_name(pdev);
   6665	adapter->mbox = func;
   6666	adapter->pf = func;
   6667	adapter->params.chip = chip;
   6668	adapter->adap_idx = adap_idx;
   6669	adapter->msg_enable = DFLT_MSG_ENABLE;
   6670	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
   6671				    (sizeof(struct mbox_cmd) *
   6672				     T4_OS_LOG_MBOX_CMDS),
   6673				    GFP_KERNEL);
   6674	if (!adapter->mbox_log) {
   6675		err = -ENOMEM;
   6676		goto out_free_adapter;
   6677	}
   6678	spin_lock_init(&adapter->mbox_lock);
   6679	INIT_LIST_HEAD(&adapter->mlist.list);
   6680	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
   6681	pci_set_drvdata(pdev, adapter);
   6682
   6683	if (func != ent->driver_data) {
   6684		pci_disable_device(pdev);
   6685		pci_save_state(pdev);        /* to restore SR-IOV later */
   6686		return 0;
   6687	}
   6688
   6689	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
   6690	if (err) {
   6691		dev_err(&pdev->dev, "no usable DMA configuration\n");
   6692		goto out_free_adapter;
   6693	}
   6694
   6695	pci_enable_pcie_error_reporting(pdev);
   6696	pci_set_master(pdev);
   6697	pci_save_state(pdev);
   6698	adap_idx++;
   6699	adapter->workq = create_singlethread_workqueue("cxgb4");
   6700	if (!adapter->workq) {
   6701		err = -ENOMEM;
   6702		goto out_free_adapter;
   6703	}
   6704
   6705	/* PCI device has been enabled */
   6706	adapter->flags |= CXGB4_DEV_ENABLED;
   6707	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
   6708
   6709	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
   6710	 * Ingress Packet Data to Free List Buffers in order to allow for
   6711	 * chipset performance optimizations between the Root Complex and
   6712	 * Memory Controllers.  (Messages to the associated Ingress Queue
   6713	 * notifying new Packet Placement in the Free Lists Buffers will be
   6714	 * send without the Relaxed Ordering Attribute thus guaranteeing that
   6715	 * all preceding PCIe Transaction Layer Packets will be processed
   6716	 * first.)  But some Root Complexes have various issues with Upstream
   6717	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
   6718	 * The PCIe devices which under the Root Complexes will be cleared the
   6719	 * Relaxed Ordering bit in the configuration space, So we check our
   6720	 * PCIe configuration space to see if it's flagged with advice against
   6721	 * using Relaxed Ordering.
   6722	 */
   6723	if (!pcie_relaxed_ordering_enabled(pdev))
   6724		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
   6725
   6726	spin_lock_init(&adapter->stats_lock);
   6727	spin_lock_init(&adapter->tid_release_lock);
   6728	spin_lock_init(&adapter->win0_lock);
   6729
   6730	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
   6731	INIT_WORK(&adapter->db_full_task, process_db_full);
   6732	INIT_WORK(&adapter->db_drop_task, process_db_drop);
   6733	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
   6734
   6735	err = t4_prep_adapter(adapter);
   6736	if (err)
   6737		goto out_free_adapter;
   6738
   6739	if (is_kdump_kernel()) {
   6740		/* Collect hardware state and append to /proc/vmcore */
   6741		err = cxgb4_cudbg_vmcore_add_dump(adapter);
   6742		if (err) {
   6743			dev_warn(adapter->pdev_dev,
   6744				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
   6745				 err);
   6746			err = 0;
   6747		}
   6748	}
   6749
   6750	if (!is_t4(adapter->params.chip)) {
   6751		s_qpp = (QUEUESPERPAGEPF0_S +
   6752			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
   6753			adapter->pf);
   6754		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
   6755		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
   6756		num_seg = PAGE_SIZE / SEGMENT_SIZE;
   6757
   6758		/* Each segment size is 128B. Write coalescing is enabled only
   6759		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
   6760		 * queue is less no of segments that can be accommodated in
   6761		 * a page size.
   6762		 */
   6763		if (qpp > num_seg) {
   6764			dev_err(&pdev->dev,
   6765				"Incorrect number of egress queues per page\n");
   6766			err = -EINVAL;
   6767			goto out_free_adapter;
   6768		}
   6769		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
   6770		pci_resource_len(pdev, 2));
   6771		if (!adapter->bar2) {
   6772			dev_err(&pdev->dev, "cannot map device bar2 region\n");
   6773			err = -ENOMEM;
   6774			goto out_free_adapter;
   6775		}
   6776	}
   6777
   6778	setup_memwin(adapter);
   6779	err = adap_init0(adapter, 0);
   6780	if (err)
   6781		goto out_unmap_bar;
   6782
   6783	setup_memwin_rdma(adapter);
   6784
   6785	/* configure SGE_STAT_CFG_A to read WC stats */
   6786	if (!is_t4(adapter->params.chip))
   6787		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
   6788			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
   6789			      T6_STATMODE_V(0)));
   6790
   6791	/* Initialize hash mac addr list */
   6792	INIT_LIST_HEAD(&adapter->mac_hlist);
   6793
   6794	for_each_port(adapter, i) {
   6795		/* For supporting MQPRIO Offload, need some extra
   6796		 * queues for each ETHOFLD TIDs. Keep it equal to
   6797		 * MAX_ATIDs for now. Once we connect to firmware
   6798		 * later and query the EOTID params, we'll come to
   6799		 * know the actual # of EOTIDs supported.
   6800		 */
   6801		netdev = alloc_etherdev_mq(sizeof(struct port_info),
   6802					   MAX_ETH_QSETS + MAX_ATIDS);
   6803		if (!netdev) {
   6804			err = -ENOMEM;
   6805			goto out_free_dev;
   6806		}
   6807
   6808		SET_NETDEV_DEV(netdev, &pdev->dev);
   6809
   6810		adapter->port[i] = netdev;
   6811		pi = netdev_priv(netdev);
   6812		pi->adapter = adapter;
   6813		pi->xact_addr_filt = -1;
   6814		pi->port_id = i;
   6815		netdev->irq = pdev->irq;
   6816
   6817		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
   6818			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
   6819			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
   6820			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
   6821			NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
   6822
   6823		if (chip_ver > CHELSIO_T5) {
   6824			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
   6825						   NETIF_F_IPV6_CSUM |
   6826						   NETIF_F_RXCSUM |
   6827						   NETIF_F_GSO_UDP_TUNNEL |
   6828						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
   6829						   NETIF_F_TSO | NETIF_F_TSO6;
   6830
   6831			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
   6832					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
   6833					       NETIF_F_HW_TLS_RECORD;
   6834
   6835			if (adapter->rawf_cnt)
   6836				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
   6837		}
   6838
   6839		netdev->features |= netdev->hw_features;
   6840		netdev->vlan_features = netdev->features & VLAN_FEAT;
   6841#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
   6842		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
   6843			netdev->hw_features |= NETIF_F_HW_TLS_TX;
   6844			netdev->tlsdev_ops = &cxgb4_ktls_ops;
   6845			/* initialize the refcount */
   6846			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
   6847		}
   6848#endif /* CONFIG_CHELSIO_TLS_DEVICE */
   6849#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
   6850		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
   6851			netdev->hw_enc_features |= NETIF_F_HW_ESP;
   6852			netdev->features |= NETIF_F_HW_ESP;
   6853			netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
   6854		}
   6855#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
   6856
   6857		netdev->priv_flags |= IFF_UNICAST_FLT;
   6858
   6859		/* MTU range: 81 - 9600 */
   6860		netdev->min_mtu = 81;              /* accommodate SACK */
   6861		netdev->max_mtu = MAX_MTU;
   6862
   6863		netdev->netdev_ops = &cxgb4_netdev_ops;
   6864#ifdef CONFIG_CHELSIO_T4_DCB
   6865		netdev->dcbnl_ops = &cxgb4_dcb_ops;
   6866		cxgb4_dcb_state_init(netdev);
   6867		cxgb4_dcb_version_init(netdev);
   6868#endif
   6869		cxgb4_set_ethtool_ops(netdev);
   6870	}
   6871
   6872	cxgb4_init_ethtool_dump(adapter);
   6873
   6874	pci_set_drvdata(pdev, adapter);
   6875
   6876	if (adapter->flags & CXGB4_FW_OK) {
   6877		err = t4_port_init(adapter, func, func, 0);
   6878		if (err)
   6879			goto out_free_dev;
   6880	} else if (adapter->params.nports == 1) {
   6881		/* If we don't have a connection to the firmware -- possibly
   6882		 * because of an error -- grab the raw VPD parameters so we
   6883		 * can set the proper MAC Address on the debug network
   6884		 * interface that we've created.
   6885		 */
   6886		u8 hw_addr[ETH_ALEN];
   6887		u8 *na = adapter->params.vpd.na;
   6888
   6889		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
   6890		if (!err) {
   6891			for (i = 0; i < ETH_ALEN; i++)
   6892				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
   6893					      hex2val(na[2 * i + 1]));
   6894			t4_set_hw_addr(adapter, 0, hw_addr);
   6895		}
   6896	}
   6897
   6898	if (!(adapter->flags & CXGB4_FW_OK))
   6899		goto fw_attach_fail;
   6900
   6901	/* Configure queues and allocate tables now, they can be needed as
   6902	 * soon as the first register_netdev completes.
   6903	 */
   6904	err = cfg_queues(adapter);
   6905	if (err)
   6906		goto out_free_dev;
   6907
   6908	adapter->smt = t4_init_smt();
   6909	if (!adapter->smt) {
   6910		/* We tolerate a lack of SMT, giving up some functionality */
   6911		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
   6912	}
   6913
   6914	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
   6915	if (!adapter->l2t) {
   6916		/* We tolerate a lack of L2T, giving up some functionality */
   6917		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
   6918		adapter->params.offload = 0;
   6919	}
   6920
   6921#if IS_ENABLED(CONFIG_IPV6)
   6922	if (chip_ver <= CHELSIO_T5 &&
   6923	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
   6924		/* CLIP functionality is not present in hardware,
   6925		 * hence disable all offload features
   6926		 */
   6927		dev_warn(&pdev->dev,
   6928			 "CLIP not enabled in hardware, continuing\n");
   6929		adapter->params.offload = 0;
   6930	} else {
   6931		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
   6932						  adapter->clipt_end);
   6933		if (!adapter->clipt) {
   6934			/* We tolerate a lack of clip_table, giving up
   6935			 * some functionality
   6936			 */
   6937			dev_warn(&pdev->dev,
   6938				 "could not allocate Clip table, continuing\n");
   6939			adapter->params.offload = 0;
   6940		}
   6941	}
   6942#endif
   6943
   6944	for_each_port(adapter, i) {
   6945		pi = adap2pinfo(adapter, i);
   6946		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
   6947		if (!pi->sched_tbl)
   6948			dev_warn(&pdev->dev,
   6949				 "could not activate scheduling on port %d\n",
   6950				 i);
   6951	}
   6952
   6953	if (is_offload(adapter) || is_hashfilter(adapter)) {
   6954		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
   6955			u32 v;
   6956
   6957			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
   6958			if (chip_ver <= CHELSIO_T5) {
   6959				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
   6960				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
   6961				adapter->tids.hash_base = v / 4;
   6962			} else {
   6963				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
   6964				v = t4_read_reg(adapter,
   6965						T6_LE_DB_HASH_TID_BASE_A);
   6966				adapter->tids.hash_base = v;
   6967			}
   6968		}
   6969	}
   6970
   6971	if (tid_init(&adapter->tids) < 0) {
   6972		dev_warn(&pdev->dev, "could not allocate TID table, "
   6973			 "continuing\n");
   6974		adapter->params.offload = 0;
   6975	} else {
   6976		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
   6977		if (!adapter->tc_u32)
   6978			dev_warn(&pdev->dev,
   6979				 "could not offload tc u32, continuing\n");
   6980
   6981		if (cxgb4_init_tc_flower(adapter))
   6982			dev_warn(&pdev->dev,
   6983				 "could not offload tc flower, continuing\n");
   6984
   6985		if (cxgb4_init_tc_mqprio(adapter))
   6986			dev_warn(&pdev->dev,
   6987				 "could not offload tc mqprio, continuing\n");
   6988
   6989		if (cxgb4_init_tc_matchall(adapter))
   6990			dev_warn(&pdev->dev,
   6991				 "could not offload tc matchall, continuing\n");
   6992		if (cxgb4_init_ethtool_filters(adapter))
   6993			dev_warn(&pdev->dev,
   6994				 "could not initialize ethtool filters, continuing\n");
   6995	}
   6996
   6997	/* See what interrupts we'll be using */
   6998	if (msi > 1 && enable_msix(adapter) == 0)
   6999		adapter->flags |= CXGB4_USING_MSIX;
   7000	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
   7001		adapter->flags |= CXGB4_USING_MSI;
   7002		if (msi > 1)
   7003			free_msix_info(adapter);
   7004	}
   7005
   7006	/* check for PCI Express bandwidth capabiltites */
   7007	pcie_print_link_status(pdev);
   7008
   7009	cxgb4_init_mps_ref_entries(adapter);
   7010
   7011	err = init_rss(adapter);
   7012	if (err)
   7013		goto out_free_dev;
   7014
   7015	err = setup_non_data_intr(adapter);
   7016	if (err) {
   7017		dev_err(adapter->pdev_dev,
   7018			"Non Data interrupt allocation failed, err: %d\n", err);
   7019		goto out_free_dev;
   7020	}
   7021
   7022	err = setup_fw_sge_queues(adapter);
   7023	if (err) {
   7024		dev_err(adapter->pdev_dev,
   7025			"FW sge queue allocation failed, err %d", err);
   7026		goto out_free_dev;
   7027	}
   7028
   7029fw_attach_fail:
   7030	/*
   7031	 * The card is now ready to go.  If any errors occur during device
   7032	 * registration we do not fail the whole card but rather proceed only
   7033	 * with the ports we manage to register successfully.  However we must
   7034	 * register at least one net device.
   7035	 */
   7036	for_each_port(adapter, i) {
   7037		pi = adap2pinfo(adapter, i);
   7038		adapter->port[i]->dev_port = pi->lport;
   7039		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
   7040		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
   7041
   7042		netif_carrier_off(adapter->port[i]);
   7043
   7044		err = register_netdev(adapter->port[i]);
   7045		if (err)
   7046			break;
   7047		adapter->chan_map[pi->tx_chan] = i;
   7048		print_port_info(adapter->port[i]);
   7049	}
   7050	if (i == 0) {
   7051		dev_err(&pdev->dev, "could not register any net devices\n");
   7052		goto out_free_dev;
   7053	}
   7054	if (err) {
   7055		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
   7056		err = 0;
   7057	}
   7058
   7059	if (cxgb4_debugfs_root) {
   7060		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
   7061							   cxgb4_debugfs_root);
   7062		setup_debugfs(adapter);
   7063	}
   7064
   7065	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
   7066	pdev->needs_freset = 1;
   7067
   7068	if (is_uld(adapter))
   7069		cxgb4_uld_enable(adapter);
   7070
   7071	if (!is_t4(adapter->params.chip))
   7072		cxgb4_ptp_init(adapter);
   7073
   7074	if (IS_REACHABLE(CONFIG_THERMAL) &&
   7075	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
   7076		cxgb4_thermal_init(adapter);
   7077
   7078	print_adapter_info(adapter);
   7079	return 0;
   7080
   7081 out_free_dev:
   7082	t4_free_sge_resources(adapter);
   7083	free_some_resources(adapter);
   7084	if (adapter->flags & CXGB4_USING_MSIX)
   7085		free_msix_info(adapter);
   7086	if (adapter->num_uld || adapter->num_ofld_uld)
   7087		t4_uld_mem_free(adapter);
   7088 out_unmap_bar:
   7089	if (!is_t4(adapter->params.chip))
   7090		iounmap(adapter->bar2);
   7091 out_free_adapter:
   7092	if (adapter->workq)
   7093		destroy_workqueue(adapter->workq);
   7094
   7095	kfree(adapter->mbox_log);
   7096	kfree(adapter);
   7097 out_unmap_bar0:
   7098	iounmap(regs);
   7099 out_disable_device:
   7100	pci_disable_pcie_error_reporting(pdev);
   7101	pci_disable_device(pdev);
   7102 out_release_regions:
   7103	pci_release_regions(pdev);
   7104	return err;
   7105}
   7106
   7107static void remove_one(struct pci_dev *pdev)
   7108{
   7109	struct adapter *adapter = pci_get_drvdata(pdev);
   7110	struct hash_mac_addr *entry, *tmp;
   7111
   7112	if (!adapter) {
   7113		pci_release_regions(pdev);
   7114		return;
   7115	}
   7116
   7117	/* If we allocated filters, free up state associated with any
   7118	 * valid filters ...
   7119	 */
   7120	clear_all_filters(adapter);
   7121
   7122	adapter->flags |= CXGB4_SHUTTING_DOWN;
   7123
   7124	if (adapter->pf == 4) {
   7125		int i;
   7126
   7127		/* Tear down per-adapter Work Queue first since it can contain
   7128		 * references to our adapter data structure.
   7129		 */
   7130		destroy_workqueue(adapter->workq);
   7131
   7132		detach_ulds(adapter);
   7133
   7134		for_each_port(adapter, i)
   7135			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
   7136				unregister_netdev(adapter->port[i]);
   7137
   7138		t4_uld_clean_up(adapter);
   7139
   7140		adap_free_hma_mem(adapter);
   7141
   7142		disable_interrupts(adapter);
   7143
   7144		cxgb4_free_mps_ref_entries(adapter);
   7145
   7146		debugfs_remove_recursive(adapter->debugfs_root);
   7147
   7148		if (!is_t4(adapter->params.chip))
   7149			cxgb4_ptp_stop(adapter);
   7150		if (IS_REACHABLE(CONFIG_THERMAL))
   7151			cxgb4_thermal_remove(adapter);
   7152
   7153		if (adapter->flags & CXGB4_FULL_INIT_DONE)
   7154			cxgb_down(adapter);
   7155
   7156		if (adapter->flags & CXGB4_USING_MSIX)
   7157			free_msix_info(adapter);
   7158		if (adapter->num_uld || adapter->num_ofld_uld)
   7159			t4_uld_mem_free(adapter);
   7160		free_some_resources(adapter);
   7161		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
   7162					 list) {
   7163			list_del(&entry->list);
   7164			kfree(entry);
   7165		}
   7166
   7167#if IS_ENABLED(CONFIG_IPV6)
   7168		t4_cleanup_clip_tbl(adapter);
   7169#endif
   7170		if (!is_t4(adapter->params.chip))
   7171			iounmap(adapter->bar2);
   7172	}
   7173#ifdef CONFIG_PCI_IOV
   7174	else {
   7175		cxgb4_iov_configure(adapter->pdev, 0);
   7176	}
   7177#endif
   7178	iounmap(adapter->regs);
   7179	pci_disable_pcie_error_reporting(pdev);
   7180	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
   7181		pci_disable_device(pdev);
   7182		adapter->flags &= ~CXGB4_DEV_ENABLED;
   7183	}
   7184	pci_release_regions(pdev);
   7185	kfree(adapter->mbox_log);
   7186	synchronize_rcu();
   7187	kfree(adapter);
   7188}
   7189
   7190/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
   7191 * delivery.  This is essentially a stripped down version of the PCI remove()
   7192 * function where we do the minimal amount of work necessary to shutdown any
   7193 * further activity.
   7194 */
   7195static void shutdown_one(struct pci_dev *pdev)
   7196{
   7197	struct adapter *adapter = pci_get_drvdata(pdev);
   7198
   7199	/* As with remove_one() above (see extended comment), we only want do
   7200	 * do cleanup on PCI Devices which went all the way through init_one()
   7201	 * ...
   7202	 */
   7203	if (!adapter) {
   7204		pci_release_regions(pdev);
   7205		return;
   7206	}
   7207
   7208	adapter->flags |= CXGB4_SHUTTING_DOWN;
   7209
   7210	if (adapter->pf == 4) {
   7211		int i;
   7212
   7213		for_each_port(adapter, i)
   7214			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
   7215				cxgb_close(adapter->port[i]);
   7216
   7217		rtnl_lock();
   7218		cxgb4_mqprio_stop_offload(adapter);
   7219		rtnl_unlock();
   7220
   7221		if (is_uld(adapter)) {
   7222			detach_ulds(adapter);
   7223			t4_uld_clean_up(adapter);
   7224		}
   7225
   7226		disable_interrupts(adapter);
   7227		disable_msi(adapter);
   7228
   7229		t4_sge_stop(adapter);
   7230		if (adapter->flags & CXGB4_FW_OK)
   7231			t4_fw_bye(adapter, adapter->mbox);
   7232	}
   7233}
   7234
   7235static struct pci_driver cxgb4_driver = {
   7236	.name     = KBUILD_MODNAME,
   7237	.id_table = cxgb4_pci_tbl,
   7238	.probe    = init_one,
   7239	.remove   = remove_one,
   7240	.shutdown = shutdown_one,
   7241#ifdef CONFIG_PCI_IOV
   7242	.sriov_configure = cxgb4_iov_configure,
   7243#endif
   7244	.err_handler = &cxgb4_eeh,
   7245};
   7246
   7247static int __init cxgb4_init_module(void)
   7248{
   7249	int ret;
   7250
   7251	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
   7252
   7253	ret = pci_register_driver(&cxgb4_driver);
   7254	if (ret < 0)
   7255		goto err_pci;
   7256
   7257#if IS_ENABLED(CONFIG_IPV6)
   7258	if (!inet6addr_registered) {
   7259		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
   7260		if (ret)
   7261			pci_unregister_driver(&cxgb4_driver);
   7262		else
   7263			inet6addr_registered = true;
   7264	}
   7265#endif
   7266
   7267	if (ret == 0)
   7268		return ret;
   7269
   7270err_pci:
   7271	debugfs_remove(cxgb4_debugfs_root);
   7272
   7273	return ret;
   7274}
   7275
   7276static void __exit cxgb4_cleanup_module(void)
   7277{
   7278#if IS_ENABLED(CONFIG_IPV6)
   7279	if (inet6addr_registered) {
   7280		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
   7281		inet6addr_registered = false;
   7282	}
   7283#endif
   7284	pci_unregister_driver(&cxgb4_driver);
   7285	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
   7286}
   7287
   7288module_init(cxgb4_init_module);
   7289module_exit(cxgb4_cleanup_module);